freebsd-skq/sys/kern/kern_mutex.c
Fabien Thomas f5f9340b98 Add software PMC support.
New kernel events can be added at various location for sampling or counting.
This will for example allow easy system profiling whatever the processor is
with known tools like pmcstat(8).

Simultaneous usage of software PMC and hardware PMC is possible, for example
looking at the lock acquire failure, page fault while sampling on
instructions.

Sponsored by: NETASQ
MFC after:	1 month
2012-03-28 20:58:30 +00:00

954 lines
24 KiB
C

/*-
* Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Berkeley Software Design Inc's name may not be used to endorse or
* promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
* and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
*/
/*
* Machine independent bits of mutex implementation.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_adaptive_mutexes.h"
#include "opt_ddb.h"
#include "opt_global.h"
#include "opt_hwpmc_hooks.h"
#include "opt_kdtrace.h"
#include "opt_sched.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/sbuf.h>
#include <sys/sysctl.h>
#include <sys/turnstile.h>
#include <sys/vmmeter.h>
#include <sys/lock_profile.h>
#include <machine/atomic.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <ddb/ddb.h>
#include <fs/devfs/devfs_int.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
#define ADAPTIVE_MUTEXES
#endif
#ifdef HWPMC_HOOKS
#include <sys/pmckern.h>
PMC_SOFT_DEFINE( , , lock, failed);
#endif
/*
* Internal utility macros.
*/
#define mtx_unowned(m) ((m)->mtx_lock == MTX_UNOWNED)
#define mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED)
#define mtx_owner(m) ((struct thread *)((m)->mtx_lock & ~MTX_FLAGMASK))
static void assert_mtx(const struct lock_object *lock, int what);
#ifdef DDB
static void db_show_mtx(const struct lock_object *lock);
#endif
static void lock_mtx(struct lock_object *lock, int how);
static void lock_spin(struct lock_object *lock, int how);
#ifdef KDTRACE_HOOKS
static int owner_mtx(const struct lock_object *lock,
struct thread **owner);
#endif
static int unlock_mtx(struct lock_object *lock);
static int unlock_spin(struct lock_object *lock);
/*
* Lock classes for sleep and spin mutexes.
*/
struct lock_class lock_class_mtx_sleep = {
.lc_name = "sleep mutex",
.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
.lc_assert = assert_mtx,
#ifdef DDB
.lc_ddb_show = db_show_mtx,
#endif
.lc_lock = lock_mtx,
.lc_unlock = unlock_mtx,
#ifdef KDTRACE_HOOKS
.lc_owner = owner_mtx,
#endif
};
struct lock_class lock_class_mtx_spin = {
.lc_name = "spin mutex",
.lc_flags = LC_SPINLOCK | LC_RECURSABLE,
.lc_assert = assert_mtx,
#ifdef DDB
.lc_ddb_show = db_show_mtx,
#endif
.lc_lock = lock_spin,
.lc_unlock = unlock_spin,
#ifdef KDTRACE_HOOKS
.lc_owner = owner_mtx,
#endif
};
/*
* System-wide mutexes
*/
struct mtx blocked_lock;
struct mtx Giant;
void
assert_mtx(const struct lock_object *lock, int what)
{
mtx_assert((const struct mtx *)lock, what);
}
void
lock_mtx(struct lock_object *lock, int how)
{
mtx_lock((struct mtx *)lock);
}
void
lock_spin(struct lock_object *lock, int how)
{
panic("spin locks can only use msleep_spin");
}
int
unlock_mtx(struct lock_object *lock)
{
struct mtx *m;
m = (struct mtx *)lock;
mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
mtx_unlock(m);
return (0);
}
int
unlock_spin(struct lock_object *lock)
{
panic("spin locks can only use msleep_spin");
}
#ifdef KDTRACE_HOOKS
int
owner_mtx(const struct lock_object *lock, struct thread **owner)
{
const struct mtx *m = (const struct mtx *)lock;
*owner = mtx_owner(m);
return (mtx_unowned(m) == 0);
}
#endif
/*
* Function versions of the inlined __mtx_* macros. These are used by
* modules and can also be called from assembly language if needed.
*/
void
_mtx_lock_flags(struct mtx *m, int opts, const char *file, int line)
{
if (SCHEDULER_STOPPED())
return;
MPASS(curthread != NULL);
KASSERT(m->mtx_lock != MTX_DESTROYED,
("mtx_lock() of destroyed mutex @ %s:%d", file, line));
KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
file, line));
WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
file, line, NULL);
__mtx_lock(m, curthread, opts, file, line);
LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
line);
WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
curthread->td_locks++;
}
void
_mtx_unlock_flags(struct mtx *m, int opts, const char *file, int line)
{
if (SCHEDULER_STOPPED())
return;
MPASS(curthread != NULL);
KASSERT(m->mtx_lock != MTX_DESTROYED,
("mtx_unlock() of destroyed mutex @ %s:%d", file, line));
KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
file, line));
curthread->td_locks--;
WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
line);
mtx_assert(m, MA_OWNED);
if (m->mtx_recurse == 0)
LOCKSTAT_PROFILE_RELEASE_LOCK(LS_MTX_UNLOCK_RELEASE, m);
__mtx_unlock(m, curthread, opts, file, line);
}
void
_mtx_lock_spin_flags(struct mtx *m, int opts, const char *file, int line)
{
if (SCHEDULER_STOPPED())
return;
MPASS(curthread != NULL);
KASSERT(m->mtx_lock != MTX_DESTROYED,
("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line));
KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
("mtx_lock_spin() of sleep mutex %s @ %s:%d",
m->lock_object.lo_name, file, line));
if (mtx_owned(m))
KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0,
("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n",
m->lock_object.lo_name, file, line));
WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
file, line, NULL);
__mtx_lock_spin(m, curthread, opts, file, line);
LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
line);
WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
}
void
_mtx_unlock_spin_flags(struct mtx *m, int opts, const char *file, int line)
{
if (SCHEDULER_STOPPED())
return;
MPASS(curthread != NULL);
KASSERT(m->mtx_lock != MTX_DESTROYED,
("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line));
KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
m->lock_object.lo_name, file, line));
WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
line);
mtx_assert(m, MA_OWNED);
__mtx_unlock_spin(m);
}
/*
* The important part of mtx_trylock{,_flags}()
* Tries to acquire lock `m.' If this function is called on a mutex that
* is already owned, it will recursively acquire the lock.
*/
int
mtx_trylock_flags_(struct mtx *m, int opts, const char *file, int line)
{
#ifdef LOCK_PROFILING
uint64_t waittime = 0;
int contested = 0;
#endif
int rval;
if (SCHEDULER_STOPPED())
return (1);
MPASS(curthread != NULL);
KASSERT(m->mtx_lock != MTX_DESTROYED,
("mtx_trylock() of destroyed mutex @ %s:%d", file, line));
KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
file, line));
if (mtx_owned(m) && (m->lock_object.lo_flags & LO_RECURSABLE) != 0) {
m->mtx_recurse++;
atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
rval = 1;
} else
rval = _mtx_obtain_lock(m, (uintptr_t)curthread);
LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line);
if (rval) {
WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
file, line);
curthread->td_locks++;
if (m->mtx_recurse == 0)
LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_LOCK_ACQUIRE,
m, contested, waittime, file, line);
}
return (rval);
}
/*
* _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
*
* We call this if the lock is either contested (i.e. we need to go to
* sleep waiting for it), or if we need to recurse on it.
*/
void
_mtx_lock_sleep(struct mtx *m, uintptr_t tid, int opts, const char *file,
int line)
{
struct turnstile *ts;
uintptr_t v;
#ifdef ADAPTIVE_MUTEXES
volatile struct thread *owner;
#endif
#ifdef KTR
int cont_logged = 0;
#endif
#ifdef LOCK_PROFILING
int contested = 0;
uint64_t waittime = 0;
#endif
#ifdef KDTRACE_HOOKS
uint64_t spin_cnt = 0;
uint64_t sleep_cnt = 0;
int64_t sleep_time = 0;
#endif
if (SCHEDULER_STOPPED())
return;
if (mtx_owned(m)) {
KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0,
("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
m->lock_object.lo_name, file, line));
m->mtx_recurse++;
atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
if (LOCK_LOG_TEST(&m->lock_object, opts))
CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
return;
}
#ifdef HWPMC_HOOKS
PMC_SOFT_CALL( , , lock, failed);
#endif
lock_profile_obtain_lock_failed(&m->lock_object,
&contested, &waittime);
if (LOCK_LOG_TEST(&m->lock_object, opts))
CTR4(KTR_LOCK,
"_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
m->lock_object.lo_name, (void *)m->mtx_lock, file, line);
while (!_mtx_obtain_lock(m, tid)) {
#ifdef KDTRACE_HOOKS
spin_cnt++;
#endif
#ifdef ADAPTIVE_MUTEXES
/*
* If the owner is running on another CPU, spin until the
* owner stops running or the state of the lock changes.
*/
v = m->mtx_lock;
if (v != MTX_UNOWNED) {
owner = (struct thread *)(v & ~MTX_FLAGMASK);
if (TD_IS_RUNNING(owner)) {
if (LOCK_LOG_TEST(&m->lock_object, 0))
CTR3(KTR_LOCK,
"%s: spinning on %p held by %p",
__func__, m, owner);
while (mtx_owner(m) == owner &&
TD_IS_RUNNING(owner)) {
cpu_spinwait();
#ifdef KDTRACE_HOOKS
spin_cnt++;
#endif
}
continue;
}
}
#endif
ts = turnstile_trywait(&m->lock_object);
v = m->mtx_lock;
/*
* Check if the lock has been released while spinning for
* the turnstile chain lock.
*/
if (v == MTX_UNOWNED) {
turnstile_cancel(ts);
continue;
}
#ifdef ADAPTIVE_MUTEXES
/*
* The current lock owner might have started executing
* on another CPU (or the lock could have changed
* owners) while we were waiting on the turnstile
* chain lock. If so, drop the turnstile lock and try
* again.
*/
owner = (struct thread *)(v & ~MTX_FLAGMASK);
if (TD_IS_RUNNING(owner)) {
turnstile_cancel(ts);
continue;
}
#endif
/*
* If the mutex isn't already contested and a failure occurs
* setting the contested bit, the mutex was either released
* or the state of the MTX_RECURSED bit changed.
*/
if ((v & MTX_CONTESTED) == 0 &&
!atomic_cmpset_ptr(&m->mtx_lock, v, v | MTX_CONTESTED)) {
turnstile_cancel(ts);
continue;
}
/*
* We definitely must sleep for this lock.
*/
mtx_assert(m, MA_NOTOWNED);
#ifdef KTR
if (!cont_logged) {
CTR6(KTR_CONTENTION,
"contention: %p at %s:%d wants %s, taken by %s:%d",
(void *)tid, file, line, m->lock_object.lo_name,
WITNESS_FILE(&m->lock_object),
WITNESS_LINE(&m->lock_object));
cont_logged = 1;
}
#endif
/*
* Block on the turnstile.
*/
#ifdef KDTRACE_HOOKS
sleep_time -= lockstat_nsecs();
#endif
turnstile_wait(ts, mtx_owner(m), TS_EXCLUSIVE_QUEUE);
#ifdef KDTRACE_HOOKS
sleep_time += lockstat_nsecs();
sleep_cnt++;
#endif
}
#ifdef KTR
if (cont_logged) {
CTR4(KTR_CONTENTION,
"contention end: %s acquired by %p at %s:%d",
m->lock_object.lo_name, (void *)tid, file, line);
}
#endif
LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_LOCK_ACQUIRE, m, contested,
waittime, file, line);
#ifdef KDTRACE_HOOKS
if (sleep_time)
LOCKSTAT_RECORD1(LS_MTX_LOCK_BLOCK, m, sleep_time);
/*
* Only record the loops spinning and not sleeping.
*/
if (spin_cnt > sleep_cnt)
LOCKSTAT_RECORD1(LS_MTX_LOCK_SPIN, m, (spin_cnt - sleep_cnt));
#endif
}
static void
_mtx_lock_spin_failed(struct mtx *m)
{
struct thread *td;
td = mtx_owner(m);
/* If the mutex is unlocked, try again. */
if (td == NULL)
return;
printf( "spin lock %p (%s) held by %p (tid %d) too long\n",
m, m->lock_object.lo_name, td, td->td_tid);
#ifdef WITNESS
witness_display_spinlock(&m->lock_object, td, printf);
#endif
panic("spin lock held too long");
}
#ifdef SMP
/*
* _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock.
*
* This is only called if we need to actually spin for the lock. Recursion
* is handled inline.
*/
void
_mtx_lock_spin(struct mtx *m, uintptr_t tid, int opts, const char *file,
int line)
{
int i = 0;
#ifdef LOCK_PROFILING
int contested = 0;
uint64_t waittime = 0;
#endif
if (SCHEDULER_STOPPED())
return;
if (LOCK_LOG_TEST(&m->lock_object, opts))
CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
#ifdef HWPMC_HOOKS
PMC_SOFT_CALL( , , lock, failed);
#endif
lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime);
while (!_mtx_obtain_lock(m, tid)) {
/* Give interrupts a chance while we spin. */
spinlock_exit();
while (m->mtx_lock != MTX_UNOWNED) {
if (i++ < 10000000) {
cpu_spinwait();
continue;
}
if (i < 60000000 || kdb_active || panicstr != NULL)
DELAY(1);
else
_mtx_lock_spin_failed(m);
cpu_spinwait();
}
spinlock_enter();
}
if (LOCK_LOG_TEST(&m->lock_object, opts))
CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_SPIN_LOCK_ACQUIRE, m,
contested, waittime, (file), (line));
LOCKSTAT_RECORD1(LS_MTX_SPIN_LOCK_SPIN, m, i);
}
#endif /* SMP */
void
thread_lock_flags_(struct thread *td, int opts, const char *file, int line)
{
struct mtx *m;
uintptr_t tid;
int i;
#ifdef LOCK_PROFILING
int contested = 0;
uint64_t waittime = 0;
#endif
#ifdef KDTRACE_HOOKS
uint64_t spin_cnt = 0;
#endif
i = 0;
tid = (uintptr_t)curthread;
if (SCHEDULER_STOPPED())
return;
for (;;) {
retry:
spinlock_enter();
m = td->td_lock;
KASSERT(m->mtx_lock != MTX_DESTROYED,
("thread_lock() of destroyed mutex @ %s:%d", file, line));
KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
("thread_lock() of sleep mutex %s @ %s:%d",
m->lock_object.lo_name, file, line));
if (mtx_owned(m))
KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0,
("thread_lock: recursed on non-recursive mutex %s @ %s:%d\n",
m->lock_object.lo_name, file, line));
WITNESS_CHECKORDER(&m->lock_object,
opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
while (!_mtx_obtain_lock(m, tid)) {
#ifdef KDTRACE_HOOKS
spin_cnt++;
#endif
if (m->mtx_lock == tid) {
m->mtx_recurse++;
break;
}
#ifdef HWPMC_HOOKS
PMC_SOFT_CALL( , , lock, failed);
#endif
lock_profile_obtain_lock_failed(&m->lock_object,
&contested, &waittime);
/* Give interrupts a chance while we spin. */
spinlock_exit();
while (m->mtx_lock != MTX_UNOWNED) {
if (i++ < 10000000)
cpu_spinwait();
else if (i < 60000000 ||
kdb_active || panicstr != NULL)
DELAY(1);
else
_mtx_lock_spin_failed(m);
cpu_spinwait();
if (m != td->td_lock)
goto retry;
}
spinlock_enter();
}
if (m == td->td_lock)
break;
__mtx_unlock_spin(m); /* does spinlock_exit() */
#ifdef KDTRACE_HOOKS
spin_cnt++;
#endif
}
if (m->mtx_recurse == 0)
LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_MTX_SPIN_LOCK_ACQUIRE,
m, contested, waittime, (file), (line));
LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
line);
WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
LOCKSTAT_RECORD1(LS_THREAD_LOCK_SPIN, m, spin_cnt);
}
struct mtx *
thread_lock_block(struct thread *td)
{
struct mtx *lock;
THREAD_LOCK_ASSERT(td, MA_OWNED);
lock = td->td_lock;
td->td_lock = &blocked_lock;
mtx_unlock_spin(lock);
return (lock);
}
void
thread_lock_unblock(struct thread *td, struct mtx *new)
{
mtx_assert(new, MA_OWNED);
MPASS(td->td_lock == &blocked_lock);
atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new);
}
void
thread_lock_set(struct thread *td, struct mtx *new)
{
struct mtx *lock;
mtx_assert(new, MA_OWNED);
THREAD_LOCK_ASSERT(td, MA_OWNED);
lock = td->td_lock;
td->td_lock = new;
mtx_unlock_spin(lock);
}
/*
* _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
*
* We are only called here if the lock is recursed or contested (i.e. we
* need to wake up a blocked thread).
*/
void
_mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line)
{
struct turnstile *ts;
if (SCHEDULER_STOPPED())
return;
if (mtx_recursed(m)) {
if (--(m->mtx_recurse) == 0)
atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
if (LOCK_LOG_TEST(&m->lock_object, opts))
CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
return;
}
/*
* We have to lock the chain before the turnstile so this turnstile
* can be removed from the hash list if it is empty.
*/
turnstile_chain_lock(&m->lock_object);
ts = turnstile_lookup(&m->lock_object);
if (LOCK_LOG_TEST(&m->lock_object, opts))
CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
MPASS(ts != NULL);
turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE);
_mtx_release_lock_quick(m);
/*
* This turnstile is now no longer associated with the mutex. We can
* unlock the chain lock so a new turnstile may take it's place.
*/
turnstile_unpend(ts, TS_EXCLUSIVE_LOCK);
turnstile_chain_unlock(&m->lock_object);
}
/*
* All the unlocking of MTX_SPIN locks is done inline.
* See the __mtx_unlock_spin() macro for the details.
*/
/*
* The backing function for the INVARIANTS-enabled mtx_assert()
*/
#ifdef INVARIANT_SUPPORT
void
_mtx_assert(const struct mtx *m, int what, const char *file, int line)
{
if (panicstr != NULL || dumping)
return;
switch (what) {
case MA_OWNED:
case MA_OWNED | MA_RECURSED:
case MA_OWNED | MA_NOTRECURSED:
if (!mtx_owned(m))
panic("mutex %s not owned at %s:%d",
m->lock_object.lo_name, file, line);
if (mtx_recursed(m)) {
if ((what & MA_NOTRECURSED) != 0)
panic("mutex %s recursed at %s:%d",
m->lock_object.lo_name, file, line);
} else if ((what & MA_RECURSED) != 0) {
panic("mutex %s unrecursed at %s:%d",
m->lock_object.lo_name, file, line);
}
break;
case MA_NOTOWNED:
if (mtx_owned(m))
panic("mutex %s owned at %s:%d",
m->lock_object.lo_name, file, line);
break;
default:
panic("unknown mtx_assert at %s:%d", file, line);
}
}
#endif
/*
* The MUTEX_DEBUG-enabled mtx_validate()
*
* Most of these checks have been moved off into the LO_INITIALIZED flag
* maintained by the witness code.
*/
#ifdef MUTEX_DEBUG
void mtx_validate(struct mtx *);
void
mtx_validate(struct mtx *m)
{
/*
* XXX: When kernacc() does not require Giant we can reenable this check
*/
#ifdef notyet
/*
* Can't call kernacc() from early init386(), especially when
* initializing Giant mutex, because some stuff in kernacc()
* requires Giant itself.
*/
if (!cold)
if (!kernacc((caddr_t)m, sizeof(m),
VM_PROT_READ | VM_PROT_WRITE))
panic("Can't read and write to mutex %p", m);
#endif
}
#endif
/*
* General init routine used by the MTX_SYSINIT() macro.
*/
void
mtx_sysinit(void *arg)
{
struct mtx_args *margs = arg;
mtx_init(margs->ma_mtx, margs->ma_desc, NULL, margs->ma_opts);
}
/*
* Mutex initialization routine; initialize lock `m' of type contained in
* `opts' with options contained in `opts' and name `name.' The optional
* lock type `type' is used as a general lock category name for use with
* witness.
*/
void
mtx_init(struct mtx *m, const char *name, const char *type, int opts)
{
struct lock_class *class;
int flags;
MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE)) == 0);
ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock,
("%s: mtx_lock not aligned for %s: %p", __func__, name,
&m->mtx_lock));
#ifdef MUTEX_DEBUG
/* Diagnostic and error correction */
mtx_validate(m);
#endif
/* Determine lock class and lock flags. */
if (opts & MTX_SPIN)
class = &lock_class_mtx_spin;
else
class = &lock_class_mtx_sleep;
flags = 0;
if (opts & MTX_QUIET)
flags |= LO_QUIET;
if (opts & MTX_RECURSE)
flags |= LO_RECURSABLE;
if ((opts & MTX_NOWITNESS) == 0)
flags |= LO_WITNESS;
if (opts & MTX_DUPOK)
flags |= LO_DUPOK;
if (opts & MTX_NOPROFILE)
flags |= LO_NOPROFILE;
/* Initialize mutex. */
m->mtx_lock = MTX_UNOWNED;
m->mtx_recurse = 0;
lock_init(&m->lock_object, class, name, type, flags);
}
/*
* Remove lock `m' from all_mtx queue. We don't allow MTX_QUIET to be
* passed in as a flag here because if the corresponding mtx_init() was
* called with MTX_QUIET set, then it will already be set in the mutex's
* flags.
*/
void
mtx_destroy(struct mtx *m)
{
if (!mtx_owned(m))
MPASS(mtx_unowned(m));
else {
MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
/* Perform the non-mtx related part of mtx_unlock_spin(). */
if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin)
spinlock_exit();
else
curthread->td_locks--;
lock_profile_release_lock(&m->lock_object);
/* Tell witness this isn't locked to make it happy. */
WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__,
__LINE__);
}
m->mtx_lock = MTX_DESTROYED;
lock_destroy(&m->lock_object);
}
/*
* Intialize the mutex code and system mutexes. This is called from the MD
* startup code prior to mi_startup(). The per-CPU data space needs to be
* setup before this is called.
*/
void
mutex_init(void)
{
/* Setup turnstiles so that sleep mutexes work. */
init_turnstiles();
/*
* Initialize mutexes.
*/
mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN);
blocked_lock.mtx_lock = 0xdeadc0de; /* Always blocked. */
mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
mtx_init(&devmtx, "cdev", NULL, MTX_DEF);
mtx_lock(&Giant);
}
#ifdef DDB
void
db_show_mtx(const struct lock_object *lock)
{
struct thread *td;
const struct mtx *m;
m = (const struct mtx *)lock;
db_printf(" flags: {");
if (LOCK_CLASS(lock) == &lock_class_mtx_spin)
db_printf("SPIN");
else
db_printf("DEF");
if (m->lock_object.lo_flags & LO_RECURSABLE)
db_printf(", RECURSE");
if (m->lock_object.lo_flags & LO_DUPOK)
db_printf(", DUPOK");
db_printf("}\n");
db_printf(" state: {");
if (mtx_unowned(m))
db_printf("UNOWNED");
else if (mtx_destroyed(m))
db_printf("DESTROYED");
else {
db_printf("OWNED");
if (m->mtx_lock & MTX_CONTESTED)
db_printf(", CONTESTED");
if (m->mtx_lock & MTX_RECURSED)
db_printf(", RECURSED");
}
db_printf("}\n");
if (!mtx_unowned(m) && !mtx_destroyed(m)) {
td = mtx_owner(m);
db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td,
td->td_tid, td->td_proc->p_pid, td->td_name);
if (mtx_recursed(m))
db_printf(" recursed: %d\n", m->mtx_recurse);
}
}
#endif