freebsd-skq/sys/i386/include/pmap.h
gibbs fcdbf70fd9 Implement vector callback for PVHVM and unify event channel implementations
Re-structure Xen HVM support so that:
	- Xen is detected and hypercalls can be performed very
	  early in system startup.
	- Xen interrupt services are implemented using FreeBSD's native
	  interrupt delivery infrastructure.
	- the Xen interrupt service implementation is shared between PV
	  and HVM guests.
	- Xen interrupt handlers can optionally use a filter handler
	  in order to avoid the overhead of dispatch to an interrupt
	  thread.
	- interrupt load can be distributed among all available CPUs.
	- the overhead of accessing the emulated local and I/O apics
	  on HVM is removed for event channel port events.
	- a similar optimization can eventually, and fairly easily,
	  be used to optimize MSI.

Early Xen detection, HVM refactoring, PVHVM interrupt infrastructure,
and misc Xen cleanups:

Sponsored by: Spectra Logic Corporation

Unification of PV & HVM interrupt infrastructure, bug fixes,
and misc Xen cleanups:

Submitted by: Roger Pau Monné
Sponsored by: Citrix Systems R&D

sys/x86/x86/local_apic.c:
sys/amd64/include/apicvar.h:
sys/i386/include/apicvar.h:
sys/amd64/amd64/apic_vector.S:
sys/i386/i386/apic_vector.s:
sys/amd64/amd64/machdep.c:
sys/i386/i386/machdep.c:
sys/i386/xen/exception.s:
sys/x86/include/segments.h:
	Reserve IDT vector 0x93 for the Xen event channel upcall
	interrupt handler.  On Hypervisors that support the direct
	vector callback feature, we can request that this vector be
	called directly by an injected HVM interrupt event, instead
	of a simulated PCI interrupt on the Xen platform PCI device.
	This avoids all of the overhead of dealing with the emulated
	I/O APIC and local APIC.  It also means that the Hypervisor
	can inject these events on any CPU, allowing upcalls for
	different ports to be handled in parallel.

sys/amd64/amd64/mp_machdep.c:
sys/i386/i386/mp_machdep.c:
	Map Xen per-vcpu area during AP startup.

sys/amd64/include/intr_machdep.h:
sys/i386/include/intr_machdep.h:
	Increase the FreeBSD IRQ vector table to include space
	for event channel interrupt sources.

sys/amd64/include/pcpu.h:
sys/i386/include/pcpu.h:
	Remove Xen HVM per-cpu variable data.  These fields are now
	allocated via the dynamic per-cpu scheme.  See xen_intr.c
	for details.

sys/amd64/include/xen/hypercall.h:
sys/dev/xen/blkback/blkback.c:
sys/i386/include/xen/xenvar.h:
sys/i386/xen/clock.c:
sys/i386/xen/xen_machdep.c:
sys/xen/gnttab.c:
	Prefer FreeBSD primatives to Linux ones in Xen support code.

sys/amd64/include/xen/xen-os.h:
sys/i386/include/xen/xen-os.h:
sys/xen/xen-os.h:
sys/dev/xen/balloon/balloon.c:
sys/dev/xen/blkback/blkback.c:
sys/dev/xen/blkfront/blkfront.c:
sys/dev/xen/console/xencons_ring.c:
sys/dev/xen/control/control.c:
sys/dev/xen/netback/netback.c:
sys/dev/xen/netfront/netfront.c:
sys/dev/xen/xenpci/xenpci.c:
sys/i386/i386/machdep.c:
sys/i386/include/pmap.h:
sys/i386/include/xen/xenfunc.h:
sys/i386/isa/npx.c:
sys/i386/xen/clock.c:
sys/i386/xen/mp_machdep.c:
sys/i386/xen/mptable.c:
sys/i386/xen/xen_clock_util.c:
sys/i386/xen/xen_machdep.c:
sys/i386/xen/xen_rtc.c:
sys/xen/evtchn/evtchn_dev.c:
sys/xen/features.c:
sys/xen/gnttab.c:
sys/xen/gnttab.h:
sys/xen/hvm.h:
sys/xen/xenbus/xenbus.c:
sys/xen/xenbus/xenbus_if.m:
sys/xen/xenbus/xenbusb_front.c:
sys/xen/xenbus/xenbusvar.h:
sys/xen/xenstore/xenstore.c:
sys/xen/xenstore/xenstore_dev.c:
sys/xen/xenstore/xenstorevar.h:
	Pull common Xen OS support functions/settings into xen/xen-os.h.

sys/amd64/include/xen/xen-os.h:
sys/i386/include/xen/xen-os.h:
sys/xen/xen-os.h:
	Remove constants, macros, and functions unused in FreeBSD's Xen
	support.

sys/xen/xen-os.h:
sys/i386/xen/xen_machdep.c:
sys/x86/xen/hvm.c:
	Introduce new functions xen_domain(), xen_pv_domain(), and
	xen_hvm_domain().  These are used in favor of #ifdefs so that
	FreeBSD can dynamically detect and adapt to the presence of
	a hypervisor.  The goal is to have an HVM optimized GENERIC,
	but more is necessary before this is possible.

sys/amd64/amd64/machdep.c:
sys/dev/xen/xenpci/xenpcivar.h:
sys/dev/xen/xenpci/xenpci.c:
sys/x86/xen/hvm.c:
sys/sys/kernel.h:
	Refactor magic ioport, Hypercall table and Hypervisor shared
	information page setup, and move it to a dedicated HVM support
	module.

	HVM mode initialization is now triggered during the
	SI_SUB_HYPERVISOR phase of system startup.  This currently
	occurs just after the kernel VM is fully setup which is
	just enough infrastructure to allow the hypercall table
	and shared info page to be properly mapped.

sys/xen/hvm.h:
sys/x86/xen/hvm.c:
	Add definitions and a method for configuring Hypervisor event
	delievery via a direct vector callback.

sys/amd64/include/xen/xen-os.h:
sys/x86/xen/hvm.c:

sys/conf/files:
sys/conf/files.amd64:
sys/conf/files.i386:
	Adjust kernel build to reflect the refactoring of early
	Xen startup code and Xen interrupt services.

sys/dev/xen/blkback/blkback.c:
sys/dev/xen/blkfront/blkfront.c:
sys/dev/xen/blkfront/block.h:
sys/dev/xen/control/control.c:
sys/dev/xen/evtchn/evtchn_dev.c:
sys/dev/xen/netback/netback.c:
sys/dev/xen/netfront/netfront.c:
sys/xen/xenstore/xenstore.c:
sys/xen/evtchn/evtchn_dev.c:
sys/dev/xen/console/console.c:
sys/dev/xen/console/xencons_ring.c
	Adjust drivers to use new xen_intr_*() API.

sys/dev/xen/blkback/blkback.c:
	Since blkback defers all event handling to a taskqueue,
	convert this task queue to a "fast" taskqueue, and schedule
	it via an interrupt filter.  This avoids an unnecessary
	ithread context switch.

sys/xen/xenstore/xenstore.c:
	The xenstore driver is MPSAFE.  Indicate as much when
	registering its interrupt handler.

sys/xen/xenbus/xenbus.c:
sys/xen/xenbus/xenbusvar.h:
	Remove unused event channel APIs.

sys/xen/evtchn.h:
	Remove all kernel Xen interrupt service API definitions
	from this file.  It is now only used for structure and
	ioctl definitions related to the event channel userland
	device driver.

	Update the definitions in this file to match those from
	NetBSD.  Implementing this interface will be necessary for
	Dom0 support.

sys/xen/evtchn/evtchnvar.h:
	Add a header file for implemenation internal APIs related
	to managing event channels event delivery.  This is used
	to allow, for example, the event channel userland device
	driver to access low-level routines that typical kernel
	consumers of event channel services should never access.

sys/xen/interface/event_channel.h:
sys/xen/xen_intr.h:
	Standardize on the evtchn_port_t type for referring to
	an event channel port id.  In order to prevent low-level
	event channel APIs from leaking to kernel consumers who
	should not have access to this data, the type is defined
	twice: Once in the Xen provided event_channel.h, and again
	in xen/xen_intr.h.  The double declaration is protected by
	__XEN_EVTCHN_PORT_DEFINED__ to ensure it is never declared
	twice within a given compilation unit.

sys/xen/xen_intr.h:
sys/xen/evtchn/evtchn.c:
sys/x86/xen/xen_intr.c:
sys/dev/xen/xenpci/evtchn.c:
sys/dev/xen/xenpci/xenpcivar.h:
	New implementation of Xen interrupt services.  This is
	similar in many respects to the i386 PV implementation with
	the exception that events for bound to event channel ports
	(i.e. not IPI, virtual IRQ, or physical IRQ) are further
	optimized to avoid mask/unmask operations that aren't
	necessary for these edge triggered events.

	Stubs exist for supporting physical IRQ binding, but will
	need additional work before this implementation can be
	fully shared between PV and HVM.

sys/amd64/amd64/mp_machdep.c:
sys/i386/i386/mp_machdep.c:
sys/i386/xen/mp_machdep.c
sys/x86/xen/hvm.c:
	Add support for placing vcpu_info into an arbritary memory
	page instead of using HYPERVISOR_shared_info->vcpu_info.
	This allows the creation of domains with more than 32 vcpus.

sys/i386/i386/machdep.c:
sys/i386/xen/clock.c:
sys/i386/xen/xen_machdep.c:
sys/i386/xen/exception.s:
	Add support for new event channle implementation.
2013-08-29 19:52:18 +00:00

468 lines
14 KiB
C

/*-
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department and William Jolitz of UUNET Technologies Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Derived from hp300 version by Mike Hibler, this version by William
* Jolitz uses a recursive map [a pde points to the page directory] to
* map the page tables using the pagetables themselves. This is done to
* reduce the impact on kernel virtual memory for lots of sparse address
* space, and to reduce the cost of memory to each process.
*
* from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
* from: @(#)pmap.h 7.4 (Berkeley) 5/12/91
* $FreeBSD$
*/
#ifndef _MACHINE_PMAP_H_
#define _MACHINE_PMAP_H_
/*
* Page-directory and page-table entries follow this format, with a few
* of the fields not present here and there, depending on a lot of things.
*/
/* ---- Intel Nomenclature ---- */
#define PG_V 0x001 /* P Valid */
#define PG_RW 0x002 /* R/W Read/Write */
#define PG_U 0x004 /* U/S User/Supervisor */
#define PG_NC_PWT 0x008 /* PWT Write through */
#define PG_NC_PCD 0x010 /* PCD Cache disable */
#define PG_A 0x020 /* A Accessed */
#define PG_M 0x040 /* D Dirty */
#define PG_PS 0x080 /* PS Page size (0=4k,1=4M) */
#define PG_PTE_PAT 0x080 /* PAT PAT index */
#define PG_G 0x100 /* G Global */
#define PG_AVAIL1 0x200 /* / Available for system */
#define PG_AVAIL2 0x400 /* < programmers use */
#define PG_AVAIL3 0x800 /* \ */
#define PG_PDE_PAT 0x1000 /* PAT PAT index */
#ifdef PAE
#define PG_NX (1ull<<63) /* No-execute */
#endif
/* Our various interpretations of the above */
#define PG_W PG_AVAIL1 /* "Wired" pseudoflag */
#define PG_MANAGED PG_AVAIL2
#ifdef PAE
#define PG_FRAME (0x000ffffffffff000ull)
#define PG_PS_FRAME (0x000fffffffe00000ull)
#else
#define PG_FRAME (~PAGE_MASK)
#define PG_PS_FRAME (0xffc00000)
#endif
#define PG_PROT (PG_RW|PG_U) /* all protection bits . */
#define PG_N (PG_NC_PWT|PG_NC_PCD) /* Non-cacheable */
/* Page level cache control fields used to determine the PAT type */
#define PG_PDE_CACHE (PG_PDE_PAT | PG_NC_PWT | PG_NC_PCD)
#define PG_PTE_CACHE (PG_PTE_PAT | PG_NC_PWT | PG_NC_PCD)
/*
* Promotion to a 2 or 4MB (PDE) page mapping requires that the corresponding
* 4KB (PTE) page mappings have identical settings for the following fields:
*/
#define PG_PTE_PROMOTE (PG_MANAGED | PG_W | PG_G | PG_PTE_PAT | \
PG_M | PG_A | PG_NC_PCD | PG_NC_PWT | PG_U | PG_RW | PG_V)
/*
* Page Protection Exception bits
*/
#define PGEX_P 0x01 /* Protection violation vs. not present */
#define PGEX_W 0x02 /* during a Write cycle */
#define PGEX_U 0x04 /* access from User mode (UPL) */
#define PGEX_RSV 0x08 /* reserved PTE field is non-zero */
#define PGEX_I 0x10 /* during an instruction fetch */
/*
* Size of Kernel address space. This is the number of page table pages
* (4MB each) to use for the kernel. 256 pages == 1 Gigabyte.
* This **MUST** be a multiple of 4 (eg: 252, 256, 260, etc).
* For PAE, the page table page unit size is 2MB. This means that 512 pages
* is 1 Gigabyte. Double everything. It must be a multiple of 8 for PAE.
*/
#ifndef KVA_PAGES
#ifdef PAE
#define KVA_PAGES 512
#else
#define KVA_PAGES 256
#endif
#endif
/*
* Pte related macros
*/
#define VADDR(pdi, pti) ((vm_offset_t)(((pdi)<<PDRSHIFT)|((pti)<<PAGE_SHIFT)))
/* Initial number of kernel page tables. */
#ifndef NKPT
#ifdef PAE
/* 152 page tables needed to map 16G (76B "struct vm_page", 2M page tables). */
#define NKPT 240
#else
/* 18 page tables needed to map 4G (72B "struct vm_page", 4M page tables). */
#define NKPT 30
#endif
#endif
#ifndef NKPDE
#define NKPDE (KVA_PAGES) /* number of page tables/pde's */
#endif
/*
* The *PTDI values control the layout of virtual memory
*
* XXX This works for now, but I am not real happy with it, I'll fix it
* right after I fix locore.s and the magic 28K hole
*/
#define KPTDI (NPDEPTD-NKPDE) /* start of kernel virtual pde's */
#define PTDPTDI (KPTDI-NPGPTD) /* ptd entry that points to ptd! */
/*
* XXX doesn't really belong here I guess...
*/
#define ISA_HOLE_START 0xa0000
#define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START)
#ifndef LOCORE
#include <sys/queue.h>
#include <sys/_cpuset.h>
#include <sys/_lock.h>
#include <sys/_mutex.h>
#include <vm/_vm_radix.h>
#ifdef PAE
typedef uint64_t pdpt_entry_t;
typedef uint64_t pd_entry_t;
typedef uint64_t pt_entry_t;
#define PTESHIFT (3)
#define PDESHIFT (3)
#else
typedef uint32_t pd_entry_t;
typedef uint32_t pt_entry_t;
#define PTESHIFT (2)
#define PDESHIFT (2)
#endif
/*
* Address of current address space page table maps and directories.
*/
#ifdef _KERNEL
extern pt_entry_t PTmap[];
extern pd_entry_t PTD[];
extern pd_entry_t PTDpde[];
#ifdef PAE
extern pdpt_entry_t *IdlePDPT;
#endif
extern pd_entry_t *IdlePTD; /* physical address of "Idle" state directory */
/*
* Translate a virtual address to the kernel virtual address of its page table
* entry (PTE). This can be used recursively. If the address of a PTE as
* previously returned by this macro is itself given as the argument, then the
* address of the page directory entry (PDE) that maps the PTE will be
* returned.
*
* This macro may be used before pmap_bootstrap() is called.
*/
#define vtopte(va) (PTmap + i386_btop(va))
/*
* Translate a virtual address to its physical address.
*
* This macro may be used before pmap_bootstrap() is called.
*/
#define vtophys(va) pmap_kextract((vm_offset_t)(va))
#if defined(XEN)
#include <sys/param.h>
#include <xen/xen-os.h>
#include <machine/xen/xenvar.h>
#include <machine/xen/xenpmap.h>
extern pt_entry_t pg_nx;
#define PG_KERNEL (PG_V | PG_A | PG_RW | PG_M)
#define MACH_TO_VM_PAGE(ma) PHYS_TO_VM_PAGE(xpmap_mtop((ma)))
#define VM_PAGE_TO_MACH(m) xpmap_ptom(VM_PAGE_TO_PHYS((m)))
#define VTOM(va) xpmap_ptom(VTOP(va))
static __inline vm_paddr_t
pmap_kextract_ma(vm_offset_t va)
{
vm_paddr_t ma;
if ((ma = PTD[va >> PDRSHIFT]) & PG_PS) {
ma = (ma & ~(NBPDR - 1)) | (va & (NBPDR - 1));
} else {
ma = (*vtopte(va) & PG_FRAME) | (va & PAGE_MASK);
}
return ma;
}
static __inline vm_paddr_t
pmap_kextract(vm_offset_t va)
{
return xpmap_mtop(pmap_kextract_ma(va));
}
#define vtomach(va) pmap_kextract_ma(((vm_offset_t) (va)))
vm_paddr_t pmap_extract_ma(struct pmap *pmap, vm_offset_t va);
void pmap_kenter_ma(vm_offset_t va, vm_paddr_t pa);
void pmap_map_readonly(struct pmap *pmap, vm_offset_t va, int len);
void pmap_map_readwrite(struct pmap *pmap, vm_offset_t va, int len);
static __inline pt_entry_t
pte_load_store(pt_entry_t *ptep, pt_entry_t v)
{
pt_entry_t r;
r = *ptep;
PT_SET_VA(ptep, v, TRUE);
return (r);
}
static __inline pt_entry_t
pte_load_store_ma(pt_entry_t *ptep, pt_entry_t v)
{
pt_entry_t r;
r = *ptep;
PT_SET_VA_MA(ptep, v, TRUE);
return (r);
}
#define pte_load_clear(ptep) pte_load_store((ptep), (pt_entry_t)0ULL)
#define pte_store(ptep, pte) pte_load_store((ptep), (pt_entry_t)pte)
#define pte_store_ma(ptep, pte) pte_load_store_ma((ptep), (pt_entry_t)pte)
#define pde_store_ma(ptep, pte) pte_load_store_ma((ptep), (pt_entry_t)pte)
#elif !defined(XEN)
/*
* KPTmap is a linear mapping of the kernel page table. It differs from the
* recursive mapping in two ways: (1) it only provides access to kernel page
* table pages, and not user page table pages, and (2) it provides access to
* a kernel page table page after the corresponding virtual addresses have
* been promoted to a 2/4MB page mapping.
*
* KPTmap is first initialized by locore to support just NPKT page table
* pages. Later, it is reinitialized by pmap_bootstrap() to allow for
* expansion of the kernel page table.
*/
extern pt_entry_t *KPTmap;
/*
* Extract from the kernel page table the physical address that is mapped by
* the given virtual address "va".
*
* This function may be used before pmap_bootstrap() is called.
*/
static __inline vm_paddr_t
pmap_kextract(vm_offset_t va)
{
vm_paddr_t pa;
if ((pa = PTD[va >> PDRSHIFT]) & PG_PS) {
pa = (pa & PG_PS_FRAME) | (va & PDRMASK);
} else {
/*
* Beware of a concurrent promotion that changes the PDE at
* this point! For example, vtopte() must not be used to
* access the PTE because it would use the new PDE. It is,
* however, safe to use the old PDE because the page table
* page is preserved by the promotion.
*/
pa = KPTmap[i386_btop(va)];
pa = (pa & PG_FRAME) | (va & PAGE_MASK);
}
return (pa);
}
#endif
#if !defined(XEN)
#define PT_UPDATES_FLUSH()
#endif
#if defined(PAE) && !defined(XEN)
#define pde_cmpset(pdep, old, new) atomic_cmpset_64_i586(pdep, old, new)
#define pte_load_store(ptep, pte) atomic_swap_64_i586(ptep, pte)
#define pte_load_clear(ptep) atomic_swap_64_i586(ptep, 0)
#define pte_store(ptep, pte) atomic_store_rel_64_i586(ptep, pte)
extern pt_entry_t pg_nx;
#elif !defined(PAE) && !defined(XEN)
#define pde_cmpset(pdep, old, new) atomic_cmpset_int(pdep, old, new)
#define pte_load_store(ptep, pte) atomic_swap_int(ptep, pte)
#define pte_load_clear(ptep) atomic_swap_int(ptep, 0)
#define pte_store(ptep, pte) do { \
*(u_int *)(ptep) = (u_int)(pte); \
} while (0)
#endif /* PAE */
#define pte_clear(ptep) pte_store(ptep, 0)
#define pde_store(pdep, pde) pte_store(pdep, pde)
#endif /* _KERNEL */
/*
* Pmap stuff
*/
struct pv_entry;
struct pv_chunk;
struct md_page {
TAILQ_HEAD(,pv_entry) pv_list;
int pat_mode;
};
struct pmap {
struct mtx pm_mtx;
pd_entry_t *pm_pdir; /* KVA of page directory */
TAILQ_HEAD(,pv_chunk) pm_pvchunk; /* list of mappings in pmap */
cpuset_t pm_active; /* active on cpus */
struct pmap_statistics pm_stats; /* pmap statistics */
LIST_ENTRY(pmap) pm_list; /* List of all pmaps */
#ifdef PAE
pdpt_entry_t *pm_pdpt; /* KVA of page director pointer
table */
#endif
struct vm_radix pm_root; /* spare page table pages */
};
typedef struct pmap *pmap_t;
#ifdef _KERNEL
extern struct pmap kernel_pmap_store;
#define kernel_pmap (&kernel_pmap_store)
#define PMAP_LOCK(pmap) mtx_lock(&(pmap)->pm_mtx)
#define PMAP_LOCK_ASSERT(pmap, type) \
mtx_assert(&(pmap)->pm_mtx, (type))
#define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx)
#define PMAP_LOCK_INIT(pmap) mtx_init(&(pmap)->pm_mtx, "pmap", \
NULL, MTX_DEF | MTX_DUPOK)
#define PMAP_LOCKED(pmap) mtx_owned(&(pmap)->pm_mtx)
#define PMAP_MTX(pmap) (&(pmap)->pm_mtx)
#define PMAP_TRYLOCK(pmap) mtx_trylock(&(pmap)->pm_mtx)
#define PMAP_UNLOCK(pmap) mtx_unlock(&(pmap)->pm_mtx)
#endif
/*
* For each vm_page_t, there is a list of all currently valid virtual
* mappings of that page. An entry is a pv_entry_t, the list is pv_list.
*/
typedef struct pv_entry {
vm_offset_t pv_va; /* virtual address for mapping */
TAILQ_ENTRY(pv_entry) pv_next;
} *pv_entry_t;
/*
* pv_entries are allocated in chunks per-process. This avoids the
* need to track per-pmap assignments.
*/
#define _NPCM 11
#define _NPCPV 336
struct pv_chunk {
pmap_t pc_pmap;
TAILQ_ENTRY(pv_chunk) pc_list;
uint32_t pc_map[_NPCM]; /* bitmap; 1 = free */
TAILQ_ENTRY(pv_chunk) pc_lru;
struct pv_entry pc_pventry[_NPCPV];
};
#ifdef _KERNEL
extern caddr_t CADDR1;
extern pt_entry_t *CMAP1;
extern vm_paddr_t phys_avail[];
extern vm_paddr_t dump_avail[];
extern int pseflag;
extern int pgeflag;
extern char *ptvmmap; /* poor name! */
extern vm_offset_t virtual_avail;
extern vm_offset_t virtual_end;
#define pmap_page_get_memattr(m) ((vm_memattr_t)(m)->md.pat_mode)
#define pmap_page_is_write_mapped(m) (((m)->aflags & PGA_WRITEABLE) != 0)
#define pmap_unmapbios(va, sz) pmap_unmapdev((va), (sz))
/*
* Only the following functions or macros may be used before pmap_bootstrap()
* is called: pmap_kenter(), pmap_kextract(), pmap_kremove(), vtophys(), and
* vtopte().
*/
void pmap_bootstrap(vm_paddr_t);
int pmap_cache_bits(int mode, boolean_t is_pde);
int pmap_change_attr(vm_offset_t, vm_size_t, int);
void pmap_init_pat(void);
void pmap_kenter(vm_offset_t va, vm_paddr_t pa);
void *pmap_kenter_temporary(vm_paddr_t pa, int i);
void pmap_kremove(vm_offset_t);
void *pmap_mapbios(vm_paddr_t, vm_size_t);
void *pmap_mapdev(vm_paddr_t, vm_size_t);
void *pmap_mapdev_attr(vm_paddr_t, vm_size_t, int);
boolean_t pmap_page_is_mapped(vm_page_t m);
void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
void pmap_unmapdev(vm_offset_t, vm_size_t);
pt_entry_t *pmap_pte(pmap_t, vm_offset_t) __pure2;
void pmap_invalidate_page(pmap_t, vm_offset_t);
void pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t);
void pmap_invalidate_all(pmap_t);
void pmap_invalidate_cache(void);
void pmap_invalidate_cache_pages(vm_page_t *pages, int count);
void pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva);
#endif /* _KERNEL */
#endif /* !LOCORE */
#endif /* !_MACHINE_PMAP_H_ */