jhb 6f8f2fe586 Fully handle size_t lengths in AIO requests.
First, update the return types of aio_return() and aio_waitcomplete() to
ssize_t.

POSIX requires aio_return() to return a ssize_t so that it can represent
all return values from read() and write().  aio_waitcomplete() should use
ssize_t for the same reason.

aio_return() has used ssize_t in <aio.h> since r31620 but the manpage and
system call entry were not updated.  aio_waitcomplete() has always
returned int.

Note that this does not require new system call stubs as this is
effectively only an API change in how the compiler interprets the return
value.

Second, allow aio_nbytes values up to IOSIZE_MAX instead of just INT_MAX.

aio_read/write should now honor the same length limits as normal read/write.

Third, use longs instead of ints in the aio_return() and aio_waitcomplete()
system call functions so that the 64-bit size_t in the in-kernel aiocb
isn't truncated to 32-bits before being copied out to userland or
being returned.

Finally, a simple test has been added to verify the bounds checking on the
maximum read size from a file.
2016-03-21 21:37:33 +00:00
..

src/tests: The FreeBSD test suite
=================================

To run the FreeBSD test suite:
(1)  Make sure that kyua is installed:
       pkg install kyua
(2)  To run the tests:
       kyua test -k /usr/tests/Kyuafile
(3)  To see the test results:
       kyua report  

For further information on using the test suite, read tests(7):
       man tests

Description of FreeBSD test suite
=================================
The build of the test suite is organized in the following manner:

* The build of all test artifacts is protected by the MK_TESTS knob.
  The user can disable these with the WITHOUT_TESTS setting in
  src.conf(5).

* The goal for /usr/tests/ (the installed test programs) is to follow
  the same hierarchy as /usr/src/ wherever possible, which in turn drives
  several of the design decisions described below.  This simplifies the
  discoverability of tests.  We want a mapping such as:

    /usr/src/bin/cp/      -> /usr/tests/bin/cp/
    /usr/src/lib/libc/    -> /usr/tests/lib/libc/
    /usr/src/usr.bin/cut/ -> /usr/tests/usr.bin/cut/
    ... and many more ...

* Test programs for specific utilities and libraries are located next
  to the source code of such programs.  For example, the tests for the
  src/lib/libcrypt/ library live in src/lib/libcrypt/tests/.  The tests/
  subdirectory is optional and should, in general, be avoided.

* The src/tests/ hierarchy (this directory) provides generic test
  infrastructure and glue code to join all test programs together into
  a single test suite definition.

* The src/tests/ hierarchy also includes cross-functional test programs:
  i.e. test programs that cover more than a single utility or library
  and thus don't fit anywhere else in the tree.  Consider this to follow
  the same rationale as src/share/man/: this directory contains generic
  manual pages while the manual pages that are specific to individual
  tools or libraries live next to the source code.

In order to keep the src/tests/ hierarchy decoupled from the actual test
programs being installed --which is a worthy goal because it simplifies
the addition of new test programs and simplifies the maintenance of the
tree-- the top-level Kyuafile does not know which subdirectories may
exist upfront.  Instead, such Kyuafile automatically detects, at
run-time, which */Kyuafile files exist and uses those directly.

Similarly, every directory in src/ that wants to install a Kyuafile to
just recurse into other subdirectories reuses this Kyuafile with
auto-discovery features.  As an example, take a look at src/lib/tests/
whose sole purpose is to install a Kyuafile into /usr/tests/lib/.
The goal in this specific case is for /usr/tests/lib/ to be generated
entirely from src/lib/.

-- 
$FreeBSD$