freebsd-skq/tests/sys/aio/aio_test.c
jhb 1a65f86393 Revert r318180 and re-enable AIO tests on md(4) by default.
The 'physio' fast-path used by AIO requests on md(4) devices, is not
gated on the unsafe_aio knob.  Prior to r327755, some AIO requests could
fail the fast-path and fall back to the slow-path (requests for devices
not supporting unmapped I/O and requests which failed with EFAULT during
the fast-path).  However, those cases now return a suitable error rather
than using the slow-path.

PR:		217261
Reviewed by:	asomers
Sponsored by:	Chelsio Communications
Differential Revision:	https://reviews.freebsd.org/D14742
2018-03-19 19:09:15 +00:00

1200 lines
28 KiB
C

/*-
* Copyright (c) 2004 Robert N. M. Watson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Regression test to do some very basic AIO exercising on several types of
* file descriptors. Currently, the tests consist of initializing a fixed
* size buffer with pseudo-random data, writing it to one fd using AIO, then
* reading it from a second descriptor using AIO. For some targets, the same
* fd is used for write and read (i.e., file, md device), but for others the
* operation is performed on a peer (pty, socket, fifo, etc). For each file
* descriptor type, several completion methods are tested. This test program
* does not attempt to exercise error cases or more subtle asynchronous
* behavior, just make sure that the basic operations work on some basic object
* types.
*/
#include <sys/param.h>
#include <sys/module.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/mdioctl.h>
#include <aio.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <libutil.h>
#include <limits.h>
#include <semaphore.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <termios.h>
#include <unistd.h>
#include <atf-c.h>
#include "freebsd_test_suite/macros.h"
#include "local.h"
/*
* GLOBAL_MAX sets the largest usable buffer size to be read and written, as
* it sizes ac_buffer in the aio_context structure. It is also the default
* size for file I/O. For other types, we use smaller blocks or we risk
* blocking (and we run in a single process/thread so that would be bad).
*/
#define GLOBAL_MAX 16384
#define BUFFER_MAX GLOBAL_MAX
/*
* A completion function will block until the aio has completed, then return
* the result of the aio. errno will be set appropriately.
*/
typedef ssize_t (*completion)(struct aiocb*);
struct aio_context {
int ac_read_fd, ac_write_fd;
long ac_seed;
char ac_buffer[GLOBAL_MAX];
int ac_buflen;
int ac_seconds;
};
static sem_t completions;
/*
* Fill a buffer given a seed that can be fed into srandom() to initialize
* the PRNG in a repeatable manner.
*/
static void
aio_fill_buffer(char *buffer, int len, long seed)
{
char ch;
int i;
srandom(seed);
for (i = 0; i < len; i++) {
ch = random() & 0xff;
buffer[i] = ch;
}
}
/*
* Test that a buffer matches a given seed. See aio_fill_buffer(). Return
* (1) on a match, (0) on a mismatch.
*/
static int
aio_test_buffer(char *buffer, int len, long seed)
{
char ch;
int i;
srandom(seed);
for (i = 0; i < len; i++) {
ch = random() & 0xff;
if (buffer[i] != ch)
return (0);
}
return (1);
}
/*
* Initialize a testing context given the file descriptors provided by the
* test setup.
*/
static void
aio_context_init(struct aio_context *ac, int read_fd,
int write_fd, int buflen)
{
ATF_REQUIRE_MSG(buflen <= BUFFER_MAX,
"aio_context_init: buffer too large (%d > %d)",
buflen, BUFFER_MAX);
bzero(ac, sizeof(*ac));
ac->ac_read_fd = read_fd;
ac->ac_write_fd = write_fd;
ac->ac_buflen = buflen;
srandomdev();
ac->ac_seed = random();
aio_fill_buffer(ac->ac_buffer, buflen, ac->ac_seed);
ATF_REQUIRE_MSG(aio_test_buffer(ac->ac_buffer, buflen,
ac->ac_seed) != 0, "aio_test_buffer: internal error");
}
static ssize_t
poll(struct aiocb *aio)
{
int error;
while ((error = aio_error(aio)) == EINPROGRESS)
usleep(25000);
if (error)
return (error);
else
return (aio_return(aio));
}
static void
sigusr1_handler(int sig __unused)
{
ATF_REQUIRE_EQ(0, sem_post(&completions));
}
static void
thr_handler(union sigval sv __unused)
{
ATF_REQUIRE_EQ(0, sem_post(&completions));
}
static ssize_t
poll_signaled(struct aiocb *aio)
{
int error;
ATF_REQUIRE_EQ(0, sem_wait(&completions));
error = aio_error(aio);
switch (error) {
case EINPROGRESS:
errno = EINTR;
return (-1);
case 0:
return (aio_return(aio));
default:
return (error);
}
}
/*
* Setup a signal handler for signal delivery tests
* This isn't thread safe, but it's ok since ATF runs each testcase in a
* separate process
*/
static struct sigevent*
setup_signal(void)
{
static struct sigevent sev;
ATF_REQUIRE_EQ(0, sem_init(&completions, false, 0));
sev.sigev_notify = SIGEV_SIGNAL;
sev.sigev_signo = SIGUSR1;
ATF_REQUIRE(SIG_ERR != signal(SIGUSR1, sigusr1_handler));
return (&sev);
}
/*
* Setup a thread for thread delivery tests
* This isn't thread safe, but it's ok since ATF runs each testcase in a
* separate process
*/
static struct sigevent*
setup_thread(void)
{
static struct sigevent sev;
ATF_REQUIRE_EQ(0, sem_init(&completions, false, 0));
sev.sigev_notify = SIGEV_THREAD;
sev.sigev_notify_function = thr_handler;
sev.sigev_notify_attributes = NULL;
return (&sev);
}
static ssize_t
suspend(struct aiocb *aio)
{
const struct aiocb *const iocbs[] = {aio};
int error;
error = aio_suspend(iocbs, 1, NULL);
if (error == 0)
return (aio_return(aio));
else
return (error);
}
static ssize_t
waitcomplete(struct aiocb *aio)
{
struct aiocb *aiop;
ssize_t ret;
ret = aio_waitcomplete(&aiop, NULL);
ATF_REQUIRE_EQ(aio, aiop);
return (ret);
}
/*
* Perform a simple write test of our initialized data buffer to the provided
* file descriptor.
*/
static void
aio_write_test(struct aio_context *ac, completion comp, struct sigevent *sev)
{
struct aiocb aio;
ssize_t len;
bzero(&aio, sizeof(aio));
aio.aio_buf = ac->ac_buffer;
aio.aio_nbytes = ac->ac_buflen;
aio.aio_fildes = ac->ac_write_fd;
aio.aio_offset = 0;
if (sev)
aio.aio_sigevent = *sev;
if (aio_write(&aio) < 0)
atf_tc_fail("aio_write failed: %s", strerror(errno));
len = comp(&aio);
if (len < 0)
atf_tc_fail("aio failed: %s", strerror(errno));
if (len != ac->ac_buflen)
atf_tc_fail("aio short write (%jd)", (intmax_t)len);
}
/*
* Perform a simple read test of our initialized data buffer from the
* provided file descriptor.
*/
static void
aio_read_test(struct aio_context *ac, completion comp, struct sigevent *sev)
{
struct aiocb aio;
ssize_t len;
bzero(ac->ac_buffer, ac->ac_buflen);
bzero(&aio, sizeof(aio));
aio.aio_buf = ac->ac_buffer;
aio.aio_nbytes = ac->ac_buflen;
aio.aio_fildes = ac->ac_read_fd;
aio.aio_offset = 0;
if (sev)
aio.aio_sigevent = *sev;
if (aio_read(&aio) < 0)
atf_tc_fail("aio_read failed: %s", strerror(errno));
len = comp(&aio);
if (len < 0)
atf_tc_fail("aio failed: %s", strerror(errno));
ATF_REQUIRE_EQ_MSG(len, ac->ac_buflen,
"aio short read (%jd)", (intmax_t)len);
if (aio_test_buffer(ac->ac_buffer, ac->ac_buflen, ac->ac_seed) == 0)
atf_tc_fail("buffer mismatched");
}
/*
* Series of type-specific tests for AIO. For now, we just make sure we can
* issue a write and then a read to each type. We assume that once a write
* is issued, a read can follow.
*/
/*
* Test with a classic file. Assumes we can create a moderate size temporary
* file.
*/
#define FILE_LEN GLOBAL_MAX
#define FILE_PATHNAME "testfile"
static void
aio_file_test(completion comp, struct sigevent *sev)
{
struct aio_context ac;
int fd;
ATF_REQUIRE_KERNEL_MODULE("aio");
ATF_REQUIRE_UNSAFE_AIO();
fd = open(FILE_PATHNAME, O_RDWR | O_CREAT, 0600);
ATF_REQUIRE_MSG(fd != -1, "open failed: %s", strerror(errno));
aio_context_init(&ac, fd, fd, FILE_LEN);
aio_write_test(&ac, comp, sev);
aio_read_test(&ac, comp, sev);
close(fd);
}
ATF_TC_WITHOUT_HEAD(file_poll);
ATF_TC_BODY(file_poll, tc)
{
aio_file_test(poll, NULL);
}
ATF_TC_WITHOUT_HEAD(file_signal);
ATF_TC_BODY(file_signal, tc)
{
aio_file_test(poll_signaled, setup_signal());
}
ATF_TC_WITHOUT_HEAD(file_suspend);
ATF_TC_BODY(file_suspend, tc)
{
aio_file_test(suspend, NULL);
}
ATF_TC_WITHOUT_HEAD(file_thread);
ATF_TC_BODY(file_thread, tc)
{
aio_file_test(poll_signaled, setup_thread());
}
ATF_TC_WITHOUT_HEAD(file_waitcomplete);
ATF_TC_BODY(file_waitcomplete, tc)
{
aio_file_test(waitcomplete, NULL);
}
#define FIFO_LEN 256
#define FIFO_PATHNAME "testfifo"
static void
aio_fifo_test(completion comp, struct sigevent *sev)
{
int error, read_fd = -1, write_fd = -1;
struct aio_context ac;
ATF_REQUIRE_KERNEL_MODULE("aio");
ATF_REQUIRE_UNSAFE_AIO();
ATF_REQUIRE_MSG(mkfifo(FIFO_PATHNAME, 0600) != -1,
"mkfifo failed: %s", strerror(errno));
read_fd = open(FIFO_PATHNAME, O_RDONLY | O_NONBLOCK);
if (read_fd == -1) {
error = errno;
errno = error;
atf_tc_fail("read_fd open failed: %s",
strerror(errno));
}
write_fd = open(FIFO_PATHNAME, O_WRONLY);
if (write_fd == -1) {
error = errno;
errno = error;
atf_tc_fail("write_fd open failed: %s",
strerror(errno));
}
aio_context_init(&ac, read_fd, write_fd, FIFO_LEN);
aio_write_test(&ac, comp, sev);
aio_read_test(&ac, comp, sev);
close(read_fd);
close(write_fd);
}
ATF_TC_WITHOUT_HEAD(fifo_poll);
ATF_TC_BODY(fifo_poll, tc)
{
aio_fifo_test(poll, NULL);
}
ATF_TC_WITHOUT_HEAD(fifo_signal);
ATF_TC_BODY(fifo_signal, tc)
{
aio_fifo_test(poll_signaled, setup_signal());
}
ATF_TC_WITHOUT_HEAD(fifo_suspend);
ATF_TC_BODY(fifo_suspend, tc)
{
aio_fifo_test(suspend, NULL);
}
ATF_TC_WITHOUT_HEAD(fifo_thread);
ATF_TC_BODY(fifo_thread, tc)
{
aio_fifo_test(poll_signaled, setup_thread());
}
ATF_TC_WITHOUT_HEAD(fifo_waitcomplete);
ATF_TC_BODY(fifo_waitcomplete, tc)
{
aio_fifo_test(waitcomplete, NULL);
}
#define UNIX_SOCKETPAIR_LEN 256
static void
aio_unix_socketpair_test(completion comp, struct sigevent *sev)
{
struct aio_context ac;
struct rusage ru_before, ru_after;
int sockets[2];
ATF_REQUIRE_KERNEL_MODULE("aio");
ATF_REQUIRE_MSG(socketpair(PF_UNIX, SOCK_STREAM, 0, sockets) != -1,
"socketpair failed: %s", strerror(errno));
aio_context_init(&ac, sockets[0], sockets[1], UNIX_SOCKETPAIR_LEN);
ATF_REQUIRE_MSG(getrusage(RUSAGE_SELF, &ru_before) != -1,
"getrusage failed: %s", strerror(errno));
aio_write_test(&ac, comp, sev);
ATF_REQUIRE_MSG(getrusage(RUSAGE_SELF, &ru_after) != -1,
"getrusage failed: %s", strerror(errno));
ATF_REQUIRE(ru_after.ru_msgsnd == ru_before.ru_msgsnd + 1);
ru_before = ru_after;
aio_read_test(&ac, comp, sev);
ATF_REQUIRE_MSG(getrusage(RUSAGE_SELF, &ru_after) != -1,
"getrusage failed: %s", strerror(errno));
ATF_REQUIRE(ru_after.ru_msgrcv == ru_before.ru_msgrcv + 1);
close(sockets[0]);
close(sockets[1]);
}
ATF_TC_WITHOUT_HEAD(socket_poll);
ATF_TC_BODY(socket_poll, tc)
{
aio_unix_socketpair_test(poll, NULL);
}
ATF_TC_WITHOUT_HEAD(socket_signal);
ATF_TC_BODY(socket_signal, tc)
{
aio_unix_socketpair_test(poll_signaled, setup_signal());
}
ATF_TC_WITHOUT_HEAD(socket_suspend);
ATF_TC_BODY(socket_suspend, tc)
{
aio_unix_socketpair_test(suspend, NULL);
}
ATF_TC_WITHOUT_HEAD(socket_thread);
ATF_TC_BODY(socket_thread, tc)
{
aio_unix_socketpair_test(poll_signaled, setup_thread());
}
ATF_TC_WITHOUT_HEAD(socket_waitcomplete);
ATF_TC_BODY(socket_waitcomplete, tc)
{
aio_unix_socketpair_test(waitcomplete, NULL);
}
struct aio_pty_arg {
int apa_read_fd;
int apa_write_fd;
};
#define PTY_LEN 256
static void
aio_pty_test(completion comp, struct sigevent *sev)
{
struct aio_context ac;
int read_fd, write_fd;
struct termios ts;
int error;
ATF_REQUIRE_KERNEL_MODULE("aio");
ATF_REQUIRE_UNSAFE_AIO();
ATF_REQUIRE_MSG(openpty(&read_fd, &write_fd, NULL, NULL, NULL) == 0,
"openpty failed: %s", strerror(errno));
if (tcgetattr(write_fd, &ts) < 0) {
error = errno;
errno = error;
atf_tc_fail("tcgetattr failed: %s", strerror(errno));
}
cfmakeraw(&ts);
if (tcsetattr(write_fd, TCSANOW, &ts) < 0) {
error = errno;
errno = error;
atf_tc_fail("tcsetattr failed: %s", strerror(errno));
}
aio_context_init(&ac, read_fd, write_fd, PTY_LEN);
aio_write_test(&ac, comp, sev);
aio_read_test(&ac, comp, sev);
close(read_fd);
close(write_fd);
}
ATF_TC_WITHOUT_HEAD(pty_poll);
ATF_TC_BODY(pty_poll, tc)
{
aio_pty_test(poll, NULL);
}
ATF_TC_WITHOUT_HEAD(pty_signal);
ATF_TC_BODY(pty_signal, tc)
{
aio_pty_test(poll_signaled, setup_signal());
}
ATF_TC_WITHOUT_HEAD(pty_suspend);
ATF_TC_BODY(pty_suspend, tc)
{
aio_pty_test(suspend, NULL);
}
ATF_TC_WITHOUT_HEAD(pty_thread);
ATF_TC_BODY(pty_thread, tc)
{
aio_pty_test(poll_signaled, setup_thread());
}
ATF_TC_WITHOUT_HEAD(pty_waitcomplete);
ATF_TC_BODY(pty_waitcomplete, tc)
{
aio_pty_test(waitcomplete, NULL);
}
#define PIPE_LEN 256
static void
aio_pipe_test(completion comp, struct sigevent *sev)
{
struct aio_context ac;
int pipes[2];
ATF_REQUIRE_KERNEL_MODULE("aio");
ATF_REQUIRE_UNSAFE_AIO();
ATF_REQUIRE_MSG(pipe(pipes) != -1,
"pipe failed: %s", strerror(errno));
aio_context_init(&ac, pipes[0], pipes[1], PIPE_LEN);
aio_write_test(&ac, comp, sev);
aio_read_test(&ac, comp, sev);
close(pipes[0]);
close(pipes[1]);
}
ATF_TC_WITHOUT_HEAD(pipe_poll);
ATF_TC_BODY(pipe_poll, tc)
{
aio_pipe_test(poll, NULL);
}
ATF_TC_WITHOUT_HEAD(pipe_signal);
ATF_TC_BODY(pipe_signal, tc)
{
aio_pipe_test(poll_signaled, setup_signal());
}
ATF_TC_WITHOUT_HEAD(pipe_suspend);
ATF_TC_BODY(pipe_suspend, tc)
{
aio_pipe_test(suspend, NULL);
}
ATF_TC_WITHOUT_HEAD(pipe_thread);
ATF_TC_BODY(pipe_thread, tc)
{
aio_pipe_test(poll_signaled, setup_thread());
}
ATF_TC_WITHOUT_HEAD(pipe_waitcomplete);
ATF_TC_BODY(pipe_waitcomplete, tc)
{
aio_pipe_test(waitcomplete, NULL);
}
#define MD_LEN GLOBAL_MAX
#define MDUNIT_LINK "mdunit_link"
static void
aio_md_cleanup(void)
{
struct md_ioctl mdio;
int mdctl_fd, error, n, unit;
char buf[80];
mdctl_fd = open("/dev/" MDCTL_NAME, O_RDWR, 0);
ATF_REQUIRE(mdctl_fd >= 0);
n = readlink(MDUNIT_LINK, buf, sizeof(buf));
if (n > 0) {
if (sscanf(buf, "%d", &unit) == 1 && unit >= 0) {
bzero(&mdio, sizeof(mdio));
mdio.md_version = MDIOVERSION;
mdio.md_unit = unit;
if (ioctl(mdctl_fd, MDIOCDETACH, &mdio) == -1) {
error = errno;
close(mdctl_fd);
errno = error;
atf_tc_fail("ioctl MDIOCDETACH failed: %s",
strerror(errno));
}
}
}
close(mdctl_fd);
}
static void
aio_md_test(completion comp, struct sigevent *sev)
{
int error, fd, mdctl_fd, unit;
char pathname[PATH_MAX];
struct aio_context ac;
struct md_ioctl mdio;
char buf[80];
ATF_REQUIRE_KERNEL_MODULE("aio");
mdctl_fd = open("/dev/" MDCTL_NAME, O_RDWR, 0);
ATF_REQUIRE_MSG(mdctl_fd != -1,
"opening /dev/%s failed: %s", MDCTL_NAME, strerror(errno));
bzero(&mdio, sizeof(mdio));
mdio.md_version = MDIOVERSION;
mdio.md_type = MD_MALLOC;
mdio.md_options = MD_AUTOUNIT | MD_COMPRESS;
mdio.md_mediasize = GLOBAL_MAX;
mdio.md_sectorsize = 512;
if (ioctl(mdctl_fd, MDIOCATTACH, &mdio) < 0) {
error = errno;
errno = error;
atf_tc_fail("ioctl MDIOCATTACH failed: %s", strerror(errno));
}
close(mdctl_fd);
/* Store the md unit number in a symlink for future cleanup */
unit = mdio.md_unit;
snprintf(buf, sizeof(buf), "%d", unit);
ATF_REQUIRE_EQ(0, symlink(buf, MDUNIT_LINK));
snprintf(pathname, PATH_MAX, "/dev/md%d", unit);
fd = open(pathname, O_RDWR);
ATF_REQUIRE_MSG(fd != -1,
"opening %s failed: %s", pathname, strerror(errno));
aio_context_init(&ac, fd, fd, MD_LEN);
aio_write_test(&ac, comp, sev);
aio_read_test(&ac, comp, sev);
close(fd);
}
ATF_TC_WITH_CLEANUP(md_poll);
ATF_TC_HEAD(md_poll, tc)
{
atf_tc_set_md_var(tc, "require.user", "root");
}
ATF_TC_BODY(md_poll, tc)
{
aio_md_test(poll, NULL);
}
ATF_TC_CLEANUP(md_poll, tc)
{
aio_md_cleanup();
}
ATF_TC_WITH_CLEANUP(md_signal);
ATF_TC_HEAD(md_signal, tc)
{
atf_tc_set_md_var(tc, "require.user", "root");
}
ATF_TC_BODY(md_signal, tc)
{
aio_md_test(poll_signaled, setup_signal());
}
ATF_TC_CLEANUP(md_signal, tc)
{
aio_md_cleanup();
}
ATF_TC_WITH_CLEANUP(md_suspend);
ATF_TC_HEAD(md_suspend, tc)
{
atf_tc_set_md_var(tc, "require.user", "root");
}
ATF_TC_BODY(md_suspend, tc)
{
aio_md_test(suspend, NULL);
}
ATF_TC_CLEANUP(md_suspend, tc)
{
aio_md_cleanup();
}
ATF_TC_WITH_CLEANUP(md_thread);
ATF_TC_HEAD(md_thread, tc)
{
atf_tc_set_md_var(tc, "require.user", "root");
}
ATF_TC_BODY(md_thread, tc)
{
aio_md_test(poll_signaled, setup_thread());
}
ATF_TC_CLEANUP(md_thread, tc)
{
aio_md_cleanup();
}
ATF_TC_WITH_CLEANUP(md_waitcomplete);
ATF_TC_HEAD(md_waitcomplete, tc)
{
atf_tc_set_md_var(tc, "require.user", "root");
}
ATF_TC_BODY(md_waitcomplete, tc)
{
aio_md_test(waitcomplete, NULL);
}
ATF_TC_CLEANUP(md_waitcomplete, tc)
{
aio_md_cleanup();
}
ATF_TC_WITHOUT_HEAD(aio_large_read_test);
ATF_TC_BODY(aio_large_read_test, tc)
{
struct aiocb cb, *cbp;
ssize_t nread;
size_t len;
int fd;
#ifdef __LP64__
int clamped;
#endif
ATF_REQUIRE_KERNEL_MODULE("aio");
ATF_REQUIRE_UNSAFE_AIO();
#ifdef __LP64__
len = sizeof(clamped);
if (sysctlbyname("debug.iosize_max_clamp", &clamped, &len, NULL, 0) ==
-1)
atf_libc_error(errno, "Failed to read debug.iosize_max_clamp");
#endif
/* Determine the maximum supported read(2) size. */
len = SSIZE_MAX;
#ifdef __LP64__
if (clamped)
len = INT_MAX;
#endif
fd = open(FILE_PATHNAME, O_RDWR | O_CREAT, 0600);
ATF_REQUIRE_MSG(fd != -1, "open failed: %s", strerror(errno));
unlink(FILE_PATHNAME);
memset(&cb, 0, sizeof(cb));
cb.aio_nbytes = len;
cb.aio_fildes = fd;
cb.aio_buf = NULL;
if (aio_read(&cb) == -1)
atf_tc_fail("aio_read() of maximum read size failed: %s",
strerror(errno));
nread = aio_waitcomplete(&cbp, NULL);
if (nread == -1)
atf_tc_fail("aio_waitcomplete() failed: %s", strerror(errno));
if (nread != 0)
atf_tc_fail("aio_read() from empty file returned data: %zd",
nread);
memset(&cb, 0, sizeof(cb));
cb.aio_nbytes = len + 1;
cb.aio_fildes = fd;
cb.aio_buf = NULL;
if (aio_read(&cb) == -1) {
if (errno == EINVAL)
goto finished;
atf_tc_fail("aio_read() of too large read size failed: %s",
strerror(errno));
}
nread = aio_waitcomplete(&cbp, NULL);
if (nread == -1) {
if (errno == EINVAL)
goto finished;
atf_tc_fail("aio_waitcomplete() failed: %s", strerror(errno));
}
atf_tc_fail("aio_read() of too large read size returned: %zd", nread);
finished:
close(fd);
}
/*
* This tests for a bug where arriving socket data can wakeup multiple
* AIO read requests resulting in an uncancellable request.
*/
ATF_TC_WITHOUT_HEAD(aio_socket_two_reads);
ATF_TC_BODY(aio_socket_two_reads, tc)
{
struct ioreq {
struct aiocb iocb;
char buffer[1024];
} ioreq[2];
struct aiocb *iocb;
unsigned i;
int s[2];
char c;
ATF_REQUIRE_KERNEL_MODULE("aio");
#if __FreeBSD_version < 1100101
aft_tc_skip("kernel version %d is too old (%d required)",
__FreeBSD_version, 1100101);
#endif
ATF_REQUIRE(socketpair(PF_UNIX, SOCK_STREAM, 0, s) != -1);
/* Queue two read requests. */
memset(&ioreq, 0, sizeof(ioreq));
for (i = 0; i < nitems(ioreq); i++) {
ioreq[i].iocb.aio_nbytes = sizeof(ioreq[i].buffer);
ioreq[i].iocb.aio_fildes = s[0];
ioreq[i].iocb.aio_buf = ioreq[i].buffer;
ATF_REQUIRE(aio_read(&ioreq[i].iocb) == 0);
}
/* Send a single byte. This should complete one request. */
c = 0xc3;
ATF_REQUIRE(write(s[1], &c, sizeof(c)) == 1);
ATF_REQUIRE(aio_waitcomplete(&iocb, NULL) == 1);
/* Determine which request completed and verify the data was read. */
if (iocb == &ioreq[0].iocb)
i = 0;
else
i = 1;
ATF_REQUIRE(ioreq[i].buffer[0] == c);
i ^= 1;
/*
* Try to cancel the other request. On broken systems this
* will fail and the process will hang on exit.
*/
ATF_REQUIRE(aio_error(&ioreq[i].iocb) == EINPROGRESS);
ATF_REQUIRE(aio_cancel(s[0], &ioreq[i].iocb) == AIO_CANCELED);
close(s[1]);
close(s[0]);
}
/*
* This test ensures that aio_write() on a blocking socket of a "large"
* buffer does not return a short completion.
*/
ATF_TC_WITHOUT_HEAD(aio_socket_blocking_short_write);
ATF_TC_BODY(aio_socket_blocking_short_write, tc)
{
struct aiocb iocb, *iocbp;
char *buffer[2];
ssize_t done;
int buffer_size, sb_size;
socklen_t len;
int s[2];
ATF_REQUIRE_KERNEL_MODULE("aio");
ATF_REQUIRE(socketpair(PF_UNIX, SOCK_STREAM, 0, s) != -1);
len = sizeof(sb_size);
ATF_REQUIRE(getsockopt(s[0], SOL_SOCKET, SO_RCVBUF, &sb_size, &len) !=
-1);
ATF_REQUIRE(len == sizeof(sb_size));
buffer_size = sb_size;
ATF_REQUIRE(getsockopt(s[1], SOL_SOCKET, SO_SNDBUF, &sb_size, &len) !=
-1);
ATF_REQUIRE(len == sizeof(sb_size));
if (sb_size > buffer_size)
buffer_size = sb_size;
/*
* Use twice the size of the MAX(receive buffer, send buffer)
* to ensure that the write is split up into multiple writes
* internally.
*/
buffer_size *= 2;
buffer[0] = malloc(buffer_size);
ATF_REQUIRE(buffer[0] != NULL);
buffer[1] = malloc(buffer_size);
ATF_REQUIRE(buffer[1] != NULL);
srandomdev();
aio_fill_buffer(buffer[1], buffer_size, random());
memset(&iocb, 0, sizeof(iocb));
iocb.aio_fildes = s[1];
iocb.aio_buf = buffer[1];
iocb.aio_nbytes = buffer_size;
ATF_REQUIRE(aio_write(&iocb) == 0);
done = recv(s[0], buffer[0], buffer_size, MSG_WAITALL);
ATF_REQUIRE(done == buffer_size);
done = aio_waitcomplete(&iocbp, NULL);
ATF_REQUIRE(iocbp == &iocb);
ATF_REQUIRE(done == buffer_size);
ATF_REQUIRE(memcmp(buffer[0], buffer[1], buffer_size) == 0);
close(s[1]);
close(s[0]);
}
/*
* This test verifies that cancelling a partially completed socket write
* returns a short write rather than ECANCELED.
*/
ATF_TC_WITHOUT_HEAD(aio_socket_short_write_cancel);
ATF_TC_BODY(aio_socket_short_write_cancel, tc)
{
struct aiocb iocb, *iocbp;
char *buffer[2];
ssize_t done;
int buffer_size, sb_size;
socklen_t len;
int s[2];
ATF_REQUIRE_KERNEL_MODULE("aio");
ATF_REQUIRE(socketpair(PF_UNIX, SOCK_STREAM, 0, s) != -1);
len = sizeof(sb_size);
ATF_REQUIRE(getsockopt(s[0], SOL_SOCKET, SO_RCVBUF, &sb_size, &len) !=
-1);
ATF_REQUIRE(len == sizeof(sb_size));
buffer_size = sb_size;
ATF_REQUIRE(getsockopt(s[1], SOL_SOCKET, SO_SNDBUF, &sb_size, &len) !=
-1);
ATF_REQUIRE(len == sizeof(sb_size));
if (sb_size > buffer_size)
buffer_size = sb_size;
/*
* Use three times the size of the MAX(receive buffer, send
* buffer) for the write to ensure that the write is split up
* into multiple writes internally. The recv() ensures that
* the write has partially completed, but a remaining size of
* two buffers should ensure that the write has not completed
* fully when it is cancelled.
*/
buffer[0] = malloc(buffer_size);
ATF_REQUIRE(buffer[0] != NULL);
buffer[1] = malloc(buffer_size * 3);
ATF_REQUIRE(buffer[1] != NULL);
srandomdev();
aio_fill_buffer(buffer[1], buffer_size * 3, random());
memset(&iocb, 0, sizeof(iocb));
iocb.aio_fildes = s[1];
iocb.aio_buf = buffer[1];
iocb.aio_nbytes = buffer_size * 3;
ATF_REQUIRE(aio_write(&iocb) == 0);
done = recv(s[0], buffer[0], buffer_size, MSG_WAITALL);
ATF_REQUIRE(done == buffer_size);
ATF_REQUIRE(aio_error(&iocb) == EINPROGRESS);
ATF_REQUIRE(aio_cancel(s[1], &iocb) == AIO_NOTCANCELED);
done = aio_waitcomplete(&iocbp, NULL);
ATF_REQUIRE(iocbp == &iocb);
ATF_REQUIRE(done >= buffer_size && done <= buffer_size * 2);
ATF_REQUIRE(memcmp(buffer[0], buffer[1], buffer_size) == 0);
close(s[1]);
close(s[0]);
}
/*
* test aio_fsync's behavior with bad inputs
*/
ATF_TC_WITHOUT_HEAD(aio_fsync_errors);
ATF_TC_BODY(aio_fsync_errors, tc)
{
int fd;
struct aiocb iocb;
ATF_REQUIRE_KERNEL_MODULE("aio");
ATF_REQUIRE_UNSAFE_AIO();
fd = open(FILE_PATHNAME, O_RDWR | O_CREAT, 0600);
ATF_REQUIRE_MSG(fd != -1, "open failed: %s", strerror(errno));
unlink(FILE_PATHNAME);
/* aio_fsync should return EINVAL unless op is O_SYNC */
memset(&iocb, 0, sizeof(iocb));
iocb.aio_fildes = fd;
ATF_CHECK_EQ(-1, aio_fsync(666, &iocb));
ATF_CHECK_EQ(EINVAL, errno);
/* aio_fsync should return EBADF if fd is not a valid descriptor */
memset(&iocb, 0, sizeof(iocb));
iocb.aio_fildes = 666;
ATF_CHECK_EQ(-1, aio_fsync(O_SYNC, &iocb));
ATF_CHECK_EQ(EBADF, errno);
/* aio_fsync should return EINVAL if sigev_notify is invalid */
memset(&iocb, 0, sizeof(iocb));
iocb.aio_fildes = fd;
iocb.aio_sigevent.sigev_notify = 666;
ATF_CHECK_EQ(-1, aio_fsync(666, &iocb));
ATF_CHECK_EQ(EINVAL, errno);
}
/*
* This test just performs a basic test of aio_fsync().
*/
ATF_TC_WITHOUT_HEAD(aio_fsync_test);
ATF_TC_BODY(aio_fsync_test, tc)
{
struct aiocb synccb, *iocbp;
struct {
struct aiocb iocb;
bool done;
char *buffer;
} buffers[16];
struct stat sb;
ssize_t rval;
unsigned i;
int fd;
ATF_REQUIRE_KERNEL_MODULE("aio");
ATF_REQUIRE_UNSAFE_AIO();
fd = open(FILE_PATHNAME, O_RDWR | O_CREAT, 0600);
ATF_REQUIRE_MSG(fd != -1, "open failed: %s", strerror(errno));
unlink(FILE_PATHNAME);
ATF_REQUIRE(fstat(fd, &sb) == 0);
ATF_REQUIRE(sb.st_blksize != 0);
ATF_REQUIRE(ftruncate(fd, sb.st_blksize * nitems(buffers)) == 0);
/*
* Queue several asynchronous write requests. Hopefully this
* forces the aio_fsync() request to be deferred. There is no
* reliable way to guarantee that however.
*/
srandomdev();
for (i = 0; i < nitems(buffers); i++) {
buffers[i].done = false;
memset(&buffers[i].iocb, 0, sizeof(buffers[i].iocb));
buffers[i].buffer = malloc(sb.st_blksize);
aio_fill_buffer(buffers[i].buffer, sb.st_blksize, random());
buffers[i].iocb.aio_fildes = fd;
buffers[i].iocb.aio_buf = buffers[i].buffer;
buffers[i].iocb.aio_nbytes = sb.st_blksize;
buffers[i].iocb.aio_offset = sb.st_blksize * i;
ATF_REQUIRE(aio_write(&buffers[i].iocb) == 0);
}
/* Queue the aio_fsync request. */
memset(&synccb, 0, sizeof(synccb));
synccb.aio_fildes = fd;
ATF_REQUIRE(aio_fsync(O_SYNC, &synccb) == 0);
/* Wait for requests to complete. */
for (;;) {
next:
rval = aio_waitcomplete(&iocbp, NULL);
ATF_REQUIRE(iocbp != NULL);
if (iocbp == &synccb) {
ATF_REQUIRE(rval == 0);
break;
}
for (i = 0; i < nitems(buffers); i++) {
if (iocbp == &buffers[i].iocb) {
ATF_REQUIRE(buffers[i].done == false);
ATF_REQUIRE(rval == sb.st_blksize);
buffers[i].done = true;
goto next;
}
}
ATF_REQUIRE_MSG(false, "unmatched AIO request");
}
for (i = 0; i < nitems(buffers); i++)
ATF_REQUIRE_MSG(buffers[i].done,
"AIO request %u did not complete", i);
close(fd);
}
ATF_TP_ADD_TCS(tp)
{
ATF_TP_ADD_TC(tp, file_poll);
ATF_TP_ADD_TC(tp, file_signal);
ATF_TP_ADD_TC(tp, file_suspend);
ATF_TP_ADD_TC(tp, file_thread);
ATF_TP_ADD_TC(tp, file_waitcomplete);
ATF_TP_ADD_TC(tp, fifo_poll);
ATF_TP_ADD_TC(tp, fifo_signal);
ATF_TP_ADD_TC(tp, fifo_suspend);
ATF_TP_ADD_TC(tp, fifo_thread);
ATF_TP_ADD_TC(tp, fifo_waitcomplete);
ATF_TP_ADD_TC(tp, socket_poll);
ATF_TP_ADD_TC(tp, socket_signal);
ATF_TP_ADD_TC(tp, socket_suspend);
ATF_TP_ADD_TC(tp, socket_thread);
ATF_TP_ADD_TC(tp, socket_waitcomplete);
ATF_TP_ADD_TC(tp, pty_poll);
ATF_TP_ADD_TC(tp, pty_signal);
ATF_TP_ADD_TC(tp, pty_suspend);
ATF_TP_ADD_TC(tp, pty_thread);
ATF_TP_ADD_TC(tp, pty_waitcomplete);
ATF_TP_ADD_TC(tp, pipe_poll);
ATF_TP_ADD_TC(tp, pipe_signal);
ATF_TP_ADD_TC(tp, pipe_suspend);
ATF_TP_ADD_TC(tp, pipe_thread);
ATF_TP_ADD_TC(tp, pipe_waitcomplete);
ATF_TP_ADD_TC(tp, md_poll);
ATF_TP_ADD_TC(tp, md_signal);
ATF_TP_ADD_TC(tp, md_suspend);
ATF_TP_ADD_TC(tp, md_thread);
ATF_TP_ADD_TC(tp, md_waitcomplete);
ATF_TP_ADD_TC(tp, aio_fsync_errors);
ATF_TP_ADD_TC(tp, aio_fsync_test);
ATF_TP_ADD_TC(tp, aio_large_read_test);
ATF_TP_ADD_TC(tp, aio_socket_two_reads);
ATF_TP_ADD_TC(tp, aio_socket_blocking_short_write);
ATF_TP_ADD_TC(tp, aio_socket_short_write_cancel);
return (atf_no_error());
}