d1295abdc0
out of cpu_switch() and into pmap_activate() where they belong. This also removes all the #ifdef from cpu_switch().
2688 lines
68 KiB
C
2688 lines
68 KiB
C
/*-
|
|
* Copyright (c) 2001 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/*-
|
|
* Copyright (C) 1995, 1996 Wolfgang Solfrank.
|
|
* Copyright (C) 1995, 1996 TooLs GmbH.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by TooLs GmbH.
|
|
* 4. The name of TooLs GmbH may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
|
|
*/
|
|
/*-
|
|
* Copyright (C) 2001 Benno Rice.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Manages physical address maps.
|
|
*
|
|
* Since the information managed by this module is also stored by the
|
|
* logical address mapping module, this module may throw away valid virtual
|
|
* to physical mappings at almost any time. However, invalidations of
|
|
* mappings must be done as requested.
|
|
*
|
|
* In order to cope with hardware architectures which make virtual to
|
|
* physical map invalidates expensive, this module may delay invalidate
|
|
* reduced protection operations until such time as they are actually
|
|
* necessary. This module is given full information as to which processors
|
|
* are currently using which maps, and to when physical maps must be made
|
|
* correct.
|
|
*/
|
|
|
|
#include "opt_kstack_pages.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/cpuset.h>
|
|
#include <sys/kerneldump.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <dev/ofw/openfirm.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/uma.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/platform.h>
|
|
#include <machine/bat.h>
|
|
#include <machine/frame.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/psl.h>
|
|
#include <machine/pte.h>
|
|
#include <machine/smp.h>
|
|
#include <machine/sr.h>
|
|
#include <machine/mmuvar.h>
|
|
#include <machine/trap.h>
|
|
|
|
#include "mmu_if.h"
|
|
|
|
#define MOEA_DEBUG
|
|
|
|
#define TODO panic("%s: not implemented", __func__);
|
|
|
|
#define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4))
|
|
#define VSID_TO_SR(vsid) ((vsid) & 0xf)
|
|
#define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff)
|
|
|
|
struct ofw_map {
|
|
vm_offset_t om_va;
|
|
vm_size_t om_len;
|
|
vm_offset_t om_pa;
|
|
u_int om_mode;
|
|
};
|
|
|
|
extern unsigned char _etext[];
|
|
extern unsigned char _end[];
|
|
|
|
/*
|
|
* Map of physical memory regions.
|
|
*/
|
|
static struct mem_region *regions;
|
|
static struct mem_region *pregions;
|
|
static u_int phys_avail_count;
|
|
static int regions_sz, pregions_sz;
|
|
static struct ofw_map *translations;
|
|
|
|
/*
|
|
* Lock for the pteg and pvo tables.
|
|
*/
|
|
struct mtx moea_table_mutex;
|
|
struct mtx moea_vsid_mutex;
|
|
|
|
/* tlbie instruction synchronization */
|
|
static struct mtx tlbie_mtx;
|
|
|
|
/*
|
|
* PTEG data.
|
|
*/
|
|
static struct pteg *moea_pteg_table;
|
|
u_int moea_pteg_count;
|
|
u_int moea_pteg_mask;
|
|
|
|
/*
|
|
* PVO data.
|
|
*/
|
|
struct pvo_head *moea_pvo_table; /* pvo entries by pteg index */
|
|
struct pvo_head moea_pvo_kunmanaged =
|
|
LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged); /* list of unmanaged pages */
|
|
|
|
static struct rwlock_padalign pvh_global_lock;
|
|
|
|
uma_zone_t moea_upvo_zone; /* zone for pvo entries for unmanaged pages */
|
|
uma_zone_t moea_mpvo_zone; /* zone for pvo entries for managed pages */
|
|
|
|
#define BPVO_POOL_SIZE 32768
|
|
static struct pvo_entry *moea_bpvo_pool;
|
|
static int moea_bpvo_pool_index = 0;
|
|
|
|
#define VSID_NBPW (sizeof(u_int32_t) * 8)
|
|
static u_int moea_vsid_bitmap[NPMAPS / VSID_NBPW];
|
|
|
|
static boolean_t moea_initialized = FALSE;
|
|
|
|
/*
|
|
* Statistics.
|
|
*/
|
|
u_int moea_pte_valid = 0;
|
|
u_int moea_pte_overflow = 0;
|
|
u_int moea_pte_replacements = 0;
|
|
u_int moea_pvo_entries = 0;
|
|
u_int moea_pvo_enter_calls = 0;
|
|
u_int moea_pvo_remove_calls = 0;
|
|
u_int moea_pte_spills = 0;
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
|
|
0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
|
|
&moea_pte_overflow, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
|
|
&moea_pte_replacements, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
|
|
0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
|
|
&moea_pvo_enter_calls, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
|
|
&moea_pvo_remove_calls, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
|
|
&moea_pte_spills, 0, "");
|
|
|
|
/*
|
|
* Allocate physical memory for use in moea_bootstrap.
|
|
*/
|
|
static vm_offset_t moea_bootstrap_alloc(vm_size_t, u_int);
|
|
|
|
/*
|
|
* PTE calls.
|
|
*/
|
|
static int moea_pte_insert(u_int, struct pte *);
|
|
|
|
/*
|
|
* PVO calls.
|
|
*/
|
|
static int moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
|
|
vm_offset_t, vm_offset_t, u_int, int);
|
|
static void moea_pvo_remove(struct pvo_entry *, int);
|
|
static struct pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
|
|
static struct pte *moea_pvo_to_pte(const struct pvo_entry *, int);
|
|
|
|
/*
|
|
* Utility routines.
|
|
*/
|
|
static int moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
|
|
vm_prot_t, u_int, int8_t);
|
|
static void moea_syncicache(vm_offset_t, vm_size_t);
|
|
static boolean_t moea_query_bit(vm_page_t, int);
|
|
static u_int moea_clear_bit(vm_page_t, int);
|
|
static void moea_kremove(mmu_t, vm_offset_t);
|
|
int moea_pte_spill(vm_offset_t);
|
|
|
|
/*
|
|
* Kernel MMU interface
|
|
*/
|
|
void moea_clear_modify(mmu_t, vm_page_t);
|
|
void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
|
|
void moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
|
|
vm_page_t *mb, vm_offset_t b_offset, int xfersize);
|
|
int moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int,
|
|
int8_t);
|
|
void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
|
|
vm_prot_t);
|
|
void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
|
|
vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
|
|
vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
|
|
void moea_init(mmu_t);
|
|
boolean_t moea_is_modified(mmu_t, vm_page_t);
|
|
boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
|
|
boolean_t moea_is_referenced(mmu_t, vm_page_t);
|
|
int moea_ts_referenced(mmu_t, vm_page_t);
|
|
vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
|
|
boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
|
|
int moea_page_wired_mappings(mmu_t, vm_page_t);
|
|
void moea_pinit(mmu_t, pmap_t);
|
|
void moea_pinit0(mmu_t, pmap_t);
|
|
void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
|
|
void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
|
|
void moea_qremove(mmu_t, vm_offset_t, int);
|
|
void moea_release(mmu_t, pmap_t);
|
|
void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
|
|
void moea_remove_all(mmu_t, vm_page_t);
|
|
void moea_remove_write(mmu_t, vm_page_t);
|
|
void moea_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
|
|
void moea_zero_page(mmu_t, vm_page_t);
|
|
void moea_zero_page_area(mmu_t, vm_page_t, int, int);
|
|
void moea_zero_page_idle(mmu_t, vm_page_t);
|
|
void moea_activate(mmu_t, struct thread *);
|
|
void moea_deactivate(mmu_t, struct thread *);
|
|
void moea_cpu_bootstrap(mmu_t, int);
|
|
void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
|
|
void *moea_mapdev(mmu_t, vm_paddr_t, vm_size_t);
|
|
void *moea_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
|
|
void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
|
|
vm_paddr_t moea_kextract(mmu_t, vm_offset_t);
|
|
void moea_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t);
|
|
void moea_kenter(mmu_t, vm_offset_t, vm_paddr_t);
|
|
void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
|
|
boolean_t moea_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
|
|
static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
|
|
void moea_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va);
|
|
void moea_scan_init(mmu_t mmu);
|
|
|
|
static mmu_method_t moea_methods[] = {
|
|
MMUMETHOD(mmu_clear_modify, moea_clear_modify),
|
|
MMUMETHOD(mmu_copy_page, moea_copy_page),
|
|
MMUMETHOD(mmu_copy_pages, moea_copy_pages),
|
|
MMUMETHOD(mmu_enter, moea_enter),
|
|
MMUMETHOD(mmu_enter_object, moea_enter_object),
|
|
MMUMETHOD(mmu_enter_quick, moea_enter_quick),
|
|
MMUMETHOD(mmu_extract, moea_extract),
|
|
MMUMETHOD(mmu_extract_and_hold, moea_extract_and_hold),
|
|
MMUMETHOD(mmu_init, moea_init),
|
|
MMUMETHOD(mmu_is_modified, moea_is_modified),
|
|
MMUMETHOD(mmu_is_prefaultable, moea_is_prefaultable),
|
|
MMUMETHOD(mmu_is_referenced, moea_is_referenced),
|
|
MMUMETHOD(mmu_ts_referenced, moea_ts_referenced),
|
|
MMUMETHOD(mmu_map, moea_map),
|
|
MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
|
|
MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
|
|
MMUMETHOD(mmu_pinit, moea_pinit),
|
|
MMUMETHOD(mmu_pinit0, moea_pinit0),
|
|
MMUMETHOD(mmu_protect, moea_protect),
|
|
MMUMETHOD(mmu_qenter, moea_qenter),
|
|
MMUMETHOD(mmu_qremove, moea_qremove),
|
|
MMUMETHOD(mmu_release, moea_release),
|
|
MMUMETHOD(mmu_remove, moea_remove),
|
|
MMUMETHOD(mmu_remove_all, moea_remove_all),
|
|
MMUMETHOD(mmu_remove_write, moea_remove_write),
|
|
MMUMETHOD(mmu_sync_icache, moea_sync_icache),
|
|
MMUMETHOD(mmu_unwire, moea_unwire),
|
|
MMUMETHOD(mmu_zero_page, moea_zero_page),
|
|
MMUMETHOD(mmu_zero_page_area, moea_zero_page_area),
|
|
MMUMETHOD(mmu_zero_page_idle, moea_zero_page_idle),
|
|
MMUMETHOD(mmu_activate, moea_activate),
|
|
MMUMETHOD(mmu_deactivate, moea_deactivate),
|
|
MMUMETHOD(mmu_page_set_memattr, moea_page_set_memattr),
|
|
|
|
/* Internal interfaces */
|
|
MMUMETHOD(mmu_bootstrap, moea_bootstrap),
|
|
MMUMETHOD(mmu_cpu_bootstrap, moea_cpu_bootstrap),
|
|
MMUMETHOD(mmu_mapdev_attr, moea_mapdev_attr),
|
|
MMUMETHOD(mmu_mapdev, moea_mapdev),
|
|
MMUMETHOD(mmu_unmapdev, moea_unmapdev),
|
|
MMUMETHOD(mmu_kextract, moea_kextract),
|
|
MMUMETHOD(mmu_kenter, moea_kenter),
|
|
MMUMETHOD(mmu_kenter_attr, moea_kenter_attr),
|
|
MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
|
|
MMUMETHOD(mmu_scan_init, moea_scan_init),
|
|
MMUMETHOD(mmu_dumpsys_map, moea_dumpsys_map),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
|
|
|
|
static __inline uint32_t
|
|
moea_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
|
|
{
|
|
uint32_t pte_lo;
|
|
int i;
|
|
|
|
if (ma != VM_MEMATTR_DEFAULT) {
|
|
switch (ma) {
|
|
case VM_MEMATTR_UNCACHEABLE:
|
|
return (PTE_I | PTE_G);
|
|
case VM_MEMATTR_WRITE_COMBINING:
|
|
case VM_MEMATTR_WRITE_BACK:
|
|
case VM_MEMATTR_PREFETCHABLE:
|
|
return (PTE_I);
|
|
case VM_MEMATTR_WRITE_THROUGH:
|
|
return (PTE_W | PTE_M);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Assume the page is cache inhibited and access is guarded unless
|
|
* it's in our available memory array.
|
|
*/
|
|
pte_lo = PTE_I | PTE_G;
|
|
for (i = 0; i < pregions_sz; i++) {
|
|
if ((pa >= pregions[i].mr_start) &&
|
|
(pa < (pregions[i].mr_start + pregions[i].mr_size))) {
|
|
pte_lo = PTE_M;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return pte_lo;
|
|
}
|
|
|
|
static void
|
|
tlbie(vm_offset_t va)
|
|
{
|
|
|
|
mtx_lock_spin(&tlbie_mtx);
|
|
__asm __volatile("ptesync");
|
|
__asm __volatile("tlbie %0" :: "r"(va));
|
|
__asm __volatile("eieio; tlbsync; ptesync");
|
|
mtx_unlock_spin(&tlbie_mtx);
|
|
}
|
|
|
|
static void
|
|
tlbia(void)
|
|
{
|
|
vm_offset_t va;
|
|
|
|
for (va = 0; va < 0x00040000; va += 0x00001000) {
|
|
__asm __volatile("tlbie %0" :: "r"(va));
|
|
powerpc_sync();
|
|
}
|
|
__asm __volatile("tlbsync");
|
|
powerpc_sync();
|
|
}
|
|
|
|
static __inline int
|
|
va_to_sr(u_int *sr, vm_offset_t va)
|
|
{
|
|
return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
|
|
}
|
|
|
|
static __inline u_int
|
|
va_to_pteg(u_int sr, vm_offset_t addr)
|
|
{
|
|
u_int hash;
|
|
|
|
hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
|
|
ADDR_PIDX_SHFT);
|
|
return (hash & moea_pteg_mask);
|
|
}
|
|
|
|
static __inline struct pvo_head *
|
|
vm_page_to_pvoh(vm_page_t m)
|
|
{
|
|
|
|
return (&m->md.mdpg_pvoh);
|
|
}
|
|
|
|
static __inline void
|
|
moea_attr_clear(vm_page_t m, int ptebit)
|
|
{
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
m->md.mdpg_attrs &= ~ptebit;
|
|
}
|
|
|
|
static __inline int
|
|
moea_attr_fetch(vm_page_t m)
|
|
{
|
|
|
|
return (m->md.mdpg_attrs);
|
|
}
|
|
|
|
static __inline void
|
|
moea_attr_save(vm_page_t m, int ptebit)
|
|
{
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
m->md.mdpg_attrs |= ptebit;
|
|
}
|
|
|
|
static __inline int
|
|
moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
|
|
{
|
|
if (pt->pte_hi == pvo_pt->pte_hi)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static __inline int
|
|
moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
|
|
{
|
|
return (pt->pte_hi & ~PTE_VALID) ==
|
|
(((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
|
|
((va >> ADDR_API_SHFT) & PTE_API) | which);
|
|
}
|
|
|
|
static __inline void
|
|
moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
|
|
{
|
|
|
|
mtx_assert(&moea_table_mutex, MA_OWNED);
|
|
|
|
/*
|
|
* Construct a PTE. Default to IMB initially. Valid bit only gets
|
|
* set when the real pte is set in memory.
|
|
*
|
|
* Note: Don't set the valid bit for correct operation of tlb update.
|
|
*/
|
|
pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
|
|
(((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
|
|
pt->pte_lo = pte_lo;
|
|
}
|
|
|
|
static __inline void
|
|
moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
|
|
{
|
|
|
|
mtx_assert(&moea_table_mutex, MA_OWNED);
|
|
pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
|
|
}
|
|
|
|
static __inline void
|
|
moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
|
|
{
|
|
|
|
mtx_assert(&moea_table_mutex, MA_OWNED);
|
|
|
|
/*
|
|
* As shown in Section 7.6.3.2.3
|
|
*/
|
|
pt->pte_lo &= ~ptebit;
|
|
tlbie(va);
|
|
}
|
|
|
|
static __inline void
|
|
moea_pte_set(struct pte *pt, struct pte *pvo_pt)
|
|
{
|
|
|
|
mtx_assert(&moea_table_mutex, MA_OWNED);
|
|
pvo_pt->pte_hi |= PTE_VALID;
|
|
|
|
/*
|
|
* Update the PTE as defined in section 7.6.3.1.
|
|
* Note that the REF/CHG bits are from pvo_pt and thus should have
|
|
* been saved so this routine can restore them (if desired).
|
|
*/
|
|
pt->pte_lo = pvo_pt->pte_lo;
|
|
powerpc_sync();
|
|
pt->pte_hi = pvo_pt->pte_hi;
|
|
powerpc_sync();
|
|
moea_pte_valid++;
|
|
}
|
|
|
|
static __inline void
|
|
moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
|
|
{
|
|
|
|
mtx_assert(&moea_table_mutex, MA_OWNED);
|
|
pvo_pt->pte_hi &= ~PTE_VALID;
|
|
|
|
/*
|
|
* Force the reg & chg bits back into the PTEs.
|
|
*/
|
|
powerpc_sync();
|
|
|
|
/*
|
|
* Invalidate the pte.
|
|
*/
|
|
pt->pte_hi &= ~PTE_VALID;
|
|
|
|
tlbie(va);
|
|
|
|
/*
|
|
* Save the reg & chg bits.
|
|
*/
|
|
moea_pte_synch(pt, pvo_pt);
|
|
moea_pte_valid--;
|
|
}
|
|
|
|
static __inline void
|
|
moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
|
|
{
|
|
|
|
/*
|
|
* Invalidate the PTE
|
|
*/
|
|
moea_pte_unset(pt, pvo_pt, va);
|
|
moea_pte_set(pt, pvo_pt);
|
|
}
|
|
|
|
/*
|
|
* Quick sort callout for comparing memory regions.
|
|
*/
|
|
static int om_cmp(const void *a, const void *b);
|
|
|
|
static int
|
|
om_cmp(const void *a, const void *b)
|
|
{
|
|
const struct ofw_map *mapa;
|
|
const struct ofw_map *mapb;
|
|
|
|
mapa = a;
|
|
mapb = b;
|
|
if (mapa->om_pa < mapb->om_pa)
|
|
return (-1);
|
|
else if (mapa->om_pa > mapb->om_pa)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
moea_cpu_bootstrap(mmu_t mmup, int ap)
|
|
{
|
|
u_int sdr;
|
|
int i;
|
|
|
|
if (ap) {
|
|
powerpc_sync();
|
|
__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
|
|
__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
|
|
isync();
|
|
__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
|
|
__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
|
|
isync();
|
|
}
|
|
|
|
__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
|
|
__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
|
|
isync();
|
|
|
|
__asm __volatile("mtibatu 1,%0" :: "r"(0));
|
|
__asm __volatile("mtdbatu 2,%0" :: "r"(0));
|
|
__asm __volatile("mtibatu 2,%0" :: "r"(0));
|
|
__asm __volatile("mtdbatu 3,%0" :: "r"(0));
|
|
__asm __volatile("mtibatu 3,%0" :: "r"(0));
|
|
isync();
|
|
|
|
for (i = 0; i < 16; i++)
|
|
mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
|
|
powerpc_sync();
|
|
|
|
sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
|
|
__asm __volatile("mtsdr1 %0" :: "r"(sdr));
|
|
isync();
|
|
|
|
tlbia();
|
|
}
|
|
|
|
void
|
|
moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
|
|
{
|
|
ihandle_t mmui;
|
|
phandle_t chosen, mmu;
|
|
int sz;
|
|
int i, j;
|
|
vm_size_t size, physsz, hwphyssz;
|
|
vm_offset_t pa, va, off;
|
|
void *dpcpu;
|
|
register_t msr;
|
|
|
|
/*
|
|
* Set up BAT0 to map the lowest 256 MB area
|
|
*/
|
|
battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
|
|
battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
|
|
|
|
/*
|
|
* Map PCI memory space.
|
|
*/
|
|
battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
|
|
battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
|
|
|
|
battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
|
|
battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
|
|
|
|
battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
|
|
battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
|
|
|
|
battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
|
|
battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
|
|
|
|
/*
|
|
* Map obio devices.
|
|
*/
|
|
battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
|
|
battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
|
|
|
|
/*
|
|
* Use an IBAT and a DBAT to map the bottom segment of memory
|
|
* where we are. Turn off instruction relocation temporarily
|
|
* to prevent faults while reprogramming the IBAT.
|
|
*/
|
|
msr = mfmsr();
|
|
mtmsr(msr & ~PSL_IR);
|
|
__asm (".balign 32; \n"
|
|
"mtibatu 0,%0; mtibatl 0,%1; isync; \n"
|
|
"mtdbatu 0,%0; mtdbatl 0,%1; isync"
|
|
:: "r"(battable[0].batu), "r"(battable[0].batl));
|
|
mtmsr(msr);
|
|
|
|
/* map pci space */
|
|
__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
|
|
__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
|
|
isync();
|
|
|
|
/* set global direct map flag */
|
|
hw_direct_map = 1;
|
|
|
|
mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz);
|
|
CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
|
|
|
|
for (i = 0; i < pregions_sz; i++) {
|
|
vm_offset_t pa;
|
|
vm_offset_t end;
|
|
|
|
CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
|
|
pregions[i].mr_start,
|
|
pregions[i].mr_start + pregions[i].mr_size,
|
|
pregions[i].mr_size);
|
|
/*
|
|
* Install entries into the BAT table to allow all
|
|
* of physmem to be convered by on-demand BAT entries.
|
|
* The loop will sometimes set the same battable element
|
|
* twice, but that's fine since they won't be used for
|
|
* a while yet.
|
|
*/
|
|
pa = pregions[i].mr_start & 0xf0000000;
|
|
end = pregions[i].mr_start + pregions[i].mr_size;
|
|
do {
|
|
u_int n = pa >> ADDR_SR_SHFT;
|
|
|
|
battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
|
|
battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
|
|
pa += SEGMENT_LENGTH;
|
|
} while (pa < end);
|
|
}
|
|
|
|
if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
|
|
panic("moea_bootstrap: phys_avail too small");
|
|
|
|
phys_avail_count = 0;
|
|
physsz = 0;
|
|
hwphyssz = 0;
|
|
TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
|
|
for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
|
|
CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
|
|
regions[i].mr_start + regions[i].mr_size,
|
|
regions[i].mr_size);
|
|
if (hwphyssz != 0 &&
|
|
(physsz + regions[i].mr_size) >= hwphyssz) {
|
|
if (physsz < hwphyssz) {
|
|
phys_avail[j] = regions[i].mr_start;
|
|
phys_avail[j + 1] = regions[i].mr_start +
|
|
hwphyssz - physsz;
|
|
physsz = hwphyssz;
|
|
phys_avail_count++;
|
|
}
|
|
break;
|
|
}
|
|
phys_avail[j] = regions[i].mr_start;
|
|
phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
|
|
phys_avail_count++;
|
|
physsz += regions[i].mr_size;
|
|
}
|
|
|
|
/* Check for overlap with the kernel and exception vectors */
|
|
for (j = 0; j < 2*phys_avail_count; j+=2) {
|
|
if (phys_avail[j] < EXC_LAST)
|
|
phys_avail[j] += EXC_LAST;
|
|
|
|
if (kernelstart >= phys_avail[j] &&
|
|
kernelstart < phys_avail[j+1]) {
|
|
if (kernelend < phys_avail[j+1]) {
|
|
phys_avail[2*phys_avail_count] =
|
|
(kernelend & ~PAGE_MASK) + PAGE_SIZE;
|
|
phys_avail[2*phys_avail_count + 1] =
|
|
phys_avail[j+1];
|
|
phys_avail_count++;
|
|
}
|
|
|
|
phys_avail[j+1] = kernelstart & ~PAGE_MASK;
|
|
}
|
|
|
|
if (kernelend >= phys_avail[j] &&
|
|
kernelend < phys_avail[j+1]) {
|
|
if (kernelstart > phys_avail[j]) {
|
|
phys_avail[2*phys_avail_count] = phys_avail[j];
|
|
phys_avail[2*phys_avail_count + 1] =
|
|
kernelstart & ~PAGE_MASK;
|
|
phys_avail_count++;
|
|
}
|
|
|
|
phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
physmem = btoc(physsz);
|
|
|
|
/*
|
|
* Allocate PTEG table.
|
|
*/
|
|
#ifdef PTEGCOUNT
|
|
moea_pteg_count = PTEGCOUNT;
|
|
#else
|
|
moea_pteg_count = 0x1000;
|
|
|
|
while (moea_pteg_count < physmem)
|
|
moea_pteg_count <<= 1;
|
|
|
|
moea_pteg_count >>= 1;
|
|
#endif /* PTEGCOUNT */
|
|
|
|
size = moea_pteg_count * sizeof(struct pteg);
|
|
CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
|
|
size);
|
|
moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
|
|
CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
|
|
bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
|
|
moea_pteg_mask = moea_pteg_count - 1;
|
|
|
|
/*
|
|
* Allocate pv/overflow lists.
|
|
*/
|
|
size = sizeof(struct pvo_head) * moea_pteg_count;
|
|
moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
|
|
PAGE_SIZE);
|
|
CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
|
|
for (i = 0; i < moea_pteg_count; i++)
|
|
LIST_INIT(&moea_pvo_table[i]);
|
|
|
|
/*
|
|
* Initialize the lock that synchronizes access to the pteg and pvo
|
|
* tables.
|
|
*/
|
|
mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
|
|
MTX_RECURSE);
|
|
mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
|
|
|
|
mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
|
|
|
|
/*
|
|
* Initialise the unmanaged pvo pool.
|
|
*/
|
|
moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
|
|
BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
|
|
moea_bpvo_pool_index = 0;
|
|
|
|
/*
|
|
* Make sure kernel vsid is allocated as well as VSID 0.
|
|
*/
|
|
moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
|
|
|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
|
|
moea_vsid_bitmap[0] |= 1;
|
|
|
|
/*
|
|
* Initialize the kernel pmap (which is statically allocated).
|
|
*/
|
|
PMAP_LOCK_INIT(kernel_pmap);
|
|
for (i = 0; i < 16; i++)
|
|
kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
|
|
CPU_FILL(&kernel_pmap->pm_active);
|
|
RB_INIT(&kernel_pmap->pmap_pvo);
|
|
|
|
/*
|
|
* Initialize the global pv list lock.
|
|
*/
|
|
rw_init(&pvh_global_lock, "pmap pv global");
|
|
|
|
/*
|
|
* Set up the Open Firmware mappings
|
|
*/
|
|
chosen = OF_finddevice("/chosen");
|
|
if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
|
|
(mmu = OF_instance_to_package(mmui)) != -1 &&
|
|
(sz = OF_getproplen(mmu, "translations")) != -1) {
|
|
translations = NULL;
|
|
for (i = 0; phys_avail[i] != 0; i += 2) {
|
|
if (phys_avail[i + 1] >= sz) {
|
|
translations = (struct ofw_map *)phys_avail[i];
|
|
break;
|
|
}
|
|
}
|
|
if (translations == NULL)
|
|
panic("moea_bootstrap: no space to copy translations");
|
|
bzero(translations, sz);
|
|
if (OF_getprop(mmu, "translations", translations, sz) == -1)
|
|
panic("moea_bootstrap: can't get ofw translations");
|
|
CTR0(KTR_PMAP, "moea_bootstrap: translations");
|
|
sz /= sizeof(*translations);
|
|
qsort(translations, sz, sizeof (*translations), om_cmp);
|
|
for (i = 0; i < sz; i++) {
|
|
CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
|
|
translations[i].om_pa, translations[i].om_va,
|
|
translations[i].om_len);
|
|
|
|
/*
|
|
* If the mapping is 1:1, let the RAM and device
|
|
* on-demand BAT tables take care of the translation.
|
|
*/
|
|
if (translations[i].om_va == translations[i].om_pa)
|
|
continue;
|
|
|
|
/* Enter the pages */
|
|
for (off = 0; off < translations[i].om_len;
|
|
off += PAGE_SIZE)
|
|
moea_kenter(mmup, translations[i].om_va + off,
|
|
translations[i].om_pa + off);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate the last available physical address.
|
|
*/
|
|
for (i = 0; phys_avail[i + 2] != 0; i += 2)
|
|
;
|
|
Maxmem = powerpc_btop(phys_avail[i + 1]);
|
|
|
|
moea_cpu_bootstrap(mmup,0);
|
|
|
|
pmap_bootstrapped++;
|
|
|
|
/*
|
|
* Set the start and end of kva.
|
|
*/
|
|
virtual_avail = VM_MIN_KERNEL_ADDRESS;
|
|
virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
|
|
|
|
/*
|
|
* Allocate a kernel stack with a guard page for thread0 and map it
|
|
* into the kernel page map.
|
|
*/
|
|
pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
|
|
va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
|
|
virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
|
|
CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
|
|
thread0.td_kstack = va;
|
|
thread0.td_kstack_pages = KSTACK_PAGES;
|
|
for (i = 0; i < KSTACK_PAGES; i++) {
|
|
moea_kenter(mmup, va, pa);
|
|
pa += PAGE_SIZE;
|
|
va += PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Allocate virtual address space for the message buffer.
|
|
*/
|
|
pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
|
|
msgbufp = (struct msgbuf *)virtual_avail;
|
|
va = virtual_avail;
|
|
virtual_avail += round_page(msgbufsize);
|
|
while (va < virtual_avail) {
|
|
moea_kenter(mmup, va, pa);
|
|
pa += PAGE_SIZE;
|
|
va += PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Allocate virtual address space for the dynamic percpu area.
|
|
*/
|
|
pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
|
|
dpcpu = (void *)virtual_avail;
|
|
va = virtual_avail;
|
|
virtual_avail += DPCPU_SIZE;
|
|
while (va < virtual_avail) {
|
|
moea_kenter(mmup, va, pa);
|
|
pa += PAGE_SIZE;
|
|
va += PAGE_SIZE;
|
|
}
|
|
dpcpu_init(dpcpu, 0);
|
|
}
|
|
|
|
/*
|
|
* Activate a user pmap. The pmap must be activated before it's address
|
|
* space can be accessed in any way.
|
|
*/
|
|
void
|
|
moea_activate(mmu_t mmu, struct thread *td)
|
|
{
|
|
pmap_t pm, pmr;
|
|
|
|
/*
|
|
* Load all the data we need up front to encourage the compiler to
|
|
* not issue any loads while we have interrupts disabled below.
|
|
*/
|
|
pm = &td->td_proc->p_vmspace->vm_pmap;
|
|
pmr = pm->pmap_phys;
|
|
|
|
CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
|
|
PCPU_SET(curpmap, pmr);
|
|
|
|
mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
|
|
}
|
|
|
|
void
|
|
moea_deactivate(mmu_t mmu, struct thread *td)
|
|
{
|
|
pmap_t pm;
|
|
|
|
pm = &td->td_proc->p_vmspace->vm_pmap;
|
|
CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
|
|
PCPU_SET(curpmap, NULL);
|
|
}
|
|
|
|
void
|
|
moea_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
|
|
{
|
|
struct pvo_entry key, *pvo;
|
|
|
|
PMAP_LOCK(pm);
|
|
key.pvo_vaddr = sva;
|
|
for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
|
|
pvo != NULL && PVO_VADDR(pvo) < eva;
|
|
pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
|
|
if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
|
|
panic("moea_unwire: pvo %p is missing PVO_WIRED", pvo);
|
|
pvo->pvo_vaddr &= ~PVO_WIRED;
|
|
pm->pm_stats.wired_count--;
|
|
}
|
|
PMAP_UNLOCK(pm);
|
|
}
|
|
|
|
void
|
|
moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
|
|
{
|
|
vm_offset_t dst;
|
|
vm_offset_t src;
|
|
|
|
dst = VM_PAGE_TO_PHYS(mdst);
|
|
src = VM_PAGE_TO_PHYS(msrc);
|
|
|
|
bcopy((void *)src, (void *)dst, PAGE_SIZE);
|
|
}
|
|
|
|
void
|
|
moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
|
|
vm_page_t *mb, vm_offset_t b_offset, int xfersize)
|
|
{
|
|
void *a_cp, *b_cp;
|
|
vm_offset_t a_pg_offset, b_pg_offset;
|
|
int cnt;
|
|
|
|
while (xfersize > 0) {
|
|
a_pg_offset = a_offset & PAGE_MASK;
|
|
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
|
|
a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
|
|
a_pg_offset;
|
|
b_pg_offset = b_offset & PAGE_MASK;
|
|
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
|
|
b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
|
|
b_pg_offset;
|
|
bcopy(a_cp, b_cp, cnt);
|
|
a_offset += cnt;
|
|
b_offset += cnt;
|
|
xfersize -= cnt;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Zero a page of physical memory by temporarily mapping it into the tlb.
|
|
*/
|
|
void
|
|
moea_zero_page(mmu_t mmu, vm_page_t m)
|
|
{
|
|
vm_offset_t off, pa = VM_PAGE_TO_PHYS(m);
|
|
|
|
for (off = 0; off < PAGE_SIZE; off += cacheline_size)
|
|
__asm __volatile("dcbz 0,%0" :: "r"(pa + off));
|
|
}
|
|
|
|
void
|
|
moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
|
|
{
|
|
vm_offset_t pa = VM_PAGE_TO_PHYS(m);
|
|
void *va = (void *)(pa + off);
|
|
|
|
bzero(va, size);
|
|
}
|
|
|
|
void
|
|
moea_zero_page_idle(mmu_t mmu, vm_page_t m)
|
|
{
|
|
|
|
moea_zero_page(mmu, m);
|
|
}
|
|
|
|
/*
|
|
* Map the given physical page at the specified virtual address in the
|
|
* target pmap with the protection requested. If specified the page
|
|
* will be wired down.
|
|
*/
|
|
int
|
|
moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
|
|
u_int flags, int8_t psind)
|
|
{
|
|
int error;
|
|
|
|
for (;;) {
|
|
rw_wlock(&pvh_global_lock);
|
|
PMAP_LOCK(pmap);
|
|
error = moea_enter_locked(pmap, va, m, prot, flags, psind);
|
|
rw_wunlock(&pvh_global_lock);
|
|
PMAP_UNLOCK(pmap);
|
|
if (error != ENOMEM)
|
|
return (KERN_SUCCESS);
|
|
if ((flags & PMAP_ENTER_NOSLEEP) != 0)
|
|
return (KERN_RESOURCE_SHORTAGE);
|
|
VM_OBJECT_ASSERT_UNLOCKED(m->object);
|
|
VM_WAIT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map the given physical page at the specified virtual address in the
|
|
* target pmap with the protection requested. If specified the page
|
|
* will be wired down.
|
|
*
|
|
* The global pvh and pmap must be locked.
|
|
*/
|
|
static int
|
|
moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
|
|
u_int flags, int8_t psind __unused)
|
|
{
|
|
struct pvo_head *pvo_head;
|
|
uma_zone_t zone;
|
|
u_int pte_lo, pvo_flags;
|
|
int error;
|
|
|
|
if (pmap_bootstrapped)
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
|
|
VM_OBJECT_ASSERT_LOCKED(m->object);
|
|
|
|
if ((m->oflags & VPO_UNMANAGED) != 0 || !moea_initialized) {
|
|
pvo_head = &moea_pvo_kunmanaged;
|
|
zone = moea_upvo_zone;
|
|
pvo_flags = 0;
|
|
} else {
|
|
pvo_head = vm_page_to_pvoh(m);
|
|
zone = moea_mpvo_zone;
|
|
pvo_flags = PVO_MANAGED;
|
|
}
|
|
|
|
pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
|
|
|
|
if (prot & VM_PROT_WRITE) {
|
|
pte_lo |= PTE_BW;
|
|
if (pmap_bootstrapped &&
|
|
(m->oflags & VPO_UNMANAGED) == 0)
|
|
vm_page_aflag_set(m, PGA_WRITEABLE);
|
|
} else
|
|
pte_lo |= PTE_BR;
|
|
|
|
if ((flags & PMAP_ENTER_WIRED) != 0)
|
|
pvo_flags |= PVO_WIRED;
|
|
|
|
error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
|
|
pte_lo, pvo_flags);
|
|
|
|
/*
|
|
* Flush the real page from the instruction cache. This has be done
|
|
* for all user mappings to prevent information leakage via the
|
|
* instruction cache. moea_pvo_enter() returns ENOENT for the first
|
|
* mapping for a page.
|
|
*/
|
|
if (pmap != kernel_pmap && error == ENOENT &&
|
|
(pte_lo & (PTE_I | PTE_G)) == 0)
|
|
moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Maps a sequence of resident pages belonging to the same object.
|
|
* The sequence begins with the given page m_start. This page is
|
|
* mapped at the given virtual address start. Each subsequent page is
|
|
* mapped at a virtual address that is offset from start by the same
|
|
* amount as the page is offset from m_start within the object. The
|
|
* last page in the sequence is the page with the largest offset from
|
|
* m_start that can be mapped at a virtual address less than the given
|
|
* virtual address end. Not every virtual page between start and end
|
|
* is mapped; only those for which a resident page exists with the
|
|
* corresponding offset from m_start are mapped.
|
|
*/
|
|
void
|
|
moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
|
|
vm_page_t m_start, vm_prot_t prot)
|
|
{
|
|
vm_page_t m;
|
|
vm_pindex_t diff, psize;
|
|
|
|
VM_OBJECT_ASSERT_LOCKED(m_start->object);
|
|
|
|
psize = atop(end - start);
|
|
m = m_start;
|
|
rw_wlock(&pvh_global_lock);
|
|
PMAP_LOCK(pm);
|
|
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
|
|
moea_enter_locked(pm, start + ptoa(diff), m, prot &
|
|
(VM_PROT_READ | VM_PROT_EXECUTE), 0, 0);
|
|
m = TAILQ_NEXT(m, listq);
|
|
}
|
|
rw_wunlock(&pvh_global_lock);
|
|
PMAP_UNLOCK(pm);
|
|
}
|
|
|
|
void
|
|
moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
|
|
vm_prot_t prot)
|
|
{
|
|
|
|
rw_wlock(&pvh_global_lock);
|
|
PMAP_LOCK(pm);
|
|
moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
|
|
0, 0);
|
|
rw_wunlock(&pvh_global_lock);
|
|
PMAP_UNLOCK(pm);
|
|
}
|
|
|
|
vm_paddr_t
|
|
moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_paddr_t pa;
|
|
|
|
PMAP_LOCK(pm);
|
|
pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
|
|
if (pvo == NULL)
|
|
pa = 0;
|
|
else
|
|
pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
|
|
PMAP_UNLOCK(pm);
|
|
return (pa);
|
|
}
|
|
|
|
/*
|
|
* Atomically extract and hold the physical page with the given
|
|
* pmap and virtual address pair if that mapping permits the given
|
|
* protection.
|
|
*/
|
|
vm_page_t
|
|
moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_page_t m;
|
|
vm_paddr_t pa;
|
|
|
|
m = NULL;
|
|
pa = 0;
|
|
PMAP_LOCK(pmap);
|
|
retry:
|
|
pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
|
|
if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
|
|
((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
|
|
(prot & VM_PROT_WRITE) == 0)) {
|
|
if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
|
|
goto retry;
|
|
m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
|
|
vm_page_hold(m);
|
|
}
|
|
PA_UNLOCK_COND(pa);
|
|
PMAP_UNLOCK(pmap);
|
|
return (m);
|
|
}
|
|
|
|
void
|
|
moea_init(mmu_t mmu)
|
|
{
|
|
|
|
moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
|
|
UMA_ZONE_VM | UMA_ZONE_NOFREE);
|
|
moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
|
|
UMA_ZONE_VM | UMA_ZONE_NOFREE);
|
|
moea_initialized = TRUE;
|
|
}
|
|
|
|
boolean_t
|
|
moea_is_referenced(mmu_t mmu, vm_page_t m)
|
|
{
|
|
boolean_t rv;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("moea_is_referenced: page %p is not managed", m));
|
|
rw_wlock(&pvh_global_lock);
|
|
rv = moea_query_bit(m, PTE_REF);
|
|
rw_wunlock(&pvh_global_lock);
|
|
return (rv);
|
|
}
|
|
|
|
boolean_t
|
|
moea_is_modified(mmu_t mmu, vm_page_t m)
|
|
{
|
|
boolean_t rv;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("moea_is_modified: page %p is not managed", m));
|
|
|
|
/*
|
|
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
|
|
* concurrently set while the object is locked. Thus, if PGA_WRITEABLE
|
|
* is clear, no PTEs can have PTE_CHG set.
|
|
*/
|
|
VM_OBJECT_ASSERT_WLOCKED(m->object);
|
|
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
|
|
return (FALSE);
|
|
rw_wlock(&pvh_global_lock);
|
|
rv = moea_query_bit(m, PTE_CHG);
|
|
rw_wunlock(&pvh_global_lock);
|
|
return (rv);
|
|
}
|
|
|
|
boolean_t
|
|
moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
boolean_t rv;
|
|
|
|
PMAP_LOCK(pmap);
|
|
pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
|
|
rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
|
|
PMAP_UNLOCK(pmap);
|
|
return (rv);
|
|
}
|
|
|
|
void
|
|
moea_clear_modify(mmu_t mmu, vm_page_t m)
|
|
{
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("moea_clear_modify: page %p is not managed", m));
|
|
VM_OBJECT_ASSERT_WLOCKED(m->object);
|
|
KASSERT(!vm_page_xbusied(m),
|
|
("moea_clear_modify: page %p is exclusive busy", m));
|
|
|
|
/*
|
|
* If the page is not PGA_WRITEABLE, then no PTEs can have PTE_CHG
|
|
* set. If the object containing the page is locked and the page is
|
|
* not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
|
|
*/
|
|
if ((m->aflags & PGA_WRITEABLE) == 0)
|
|
return;
|
|
rw_wlock(&pvh_global_lock);
|
|
moea_clear_bit(m, PTE_CHG);
|
|
rw_wunlock(&pvh_global_lock);
|
|
}
|
|
|
|
/*
|
|
* Clear the write and modified bits in each of the given page's mappings.
|
|
*/
|
|
void
|
|
moea_remove_write(mmu_t mmu, vm_page_t m)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
struct pte *pt;
|
|
pmap_t pmap;
|
|
u_int lo;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("moea_remove_write: page %p is not managed", m));
|
|
|
|
/*
|
|
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
|
|
* set by another thread while the object is locked. Thus,
|
|
* if PGA_WRITEABLE is clear, no page table entries need updating.
|
|
*/
|
|
VM_OBJECT_ASSERT_WLOCKED(m->object);
|
|
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
|
|
return;
|
|
rw_wlock(&pvh_global_lock);
|
|
lo = moea_attr_fetch(m);
|
|
powerpc_sync();
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
pmap = pvo->pvo_pmap;
|
|
PMAP_LOCK(pmap);
|
|
if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
|
|
pt = moea_pvo_to_pte(pvo, -1);
|
|
pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
|
|
pvo->pvo_pte.pte.pte_lo |= PTE_BR;
|
|
if (pt != NULL) {
|
|
moea_pte_synch(pt, &pvo->pvo_pte.pte);
|
|
lo |= pvo->pvo_pte.pte.pte_lo;
|
|
pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
|
|
moea_pte_change(pt, &pvo->pvo_pte.pte,
|
|
pvo->pvo_vaddr);
|
|
mtx_unlock(&moea_table_mutex);
|
|
}
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
if ((lo & PTE_CHG) != 0) {
|
|
moea_attr_clear(m, PTE_CHG);
|
|
vm_page_dirty(m);
|
|
}
|
|
vm_page_aflag_clear(m, PGA_WRITEABLE);
|
|
rw_wunlock(&pvh_global_lock);
|
|
}
|
|
|
|
/*
|
|
* moea_ts_referenced:
|
|
*
|
|
* Return a count of reference bits for a page, clearing those bits.
|
|
* It is not necessary for every reference bit to be cleared, but it
|
|
* is necessary that 0 only be returned when there are truly no
|
|
* reference bits set.
|
|
*
|
|
* XXX: The exact number of bits to check and clear is a matter that
|
|
* should be tested and standardized at some point in the future for
|
|
* optimal aging of shared pages.
|
|
*/
|
|
int
|
|
moea_ts_referenced(mmu_t mmu, vm_page_t m)
|
|
{
|
|
int count;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("moea_ts_referenced: page %p is not managed", m));
|
|
rw_wlock(&pvh_global_lock);
|
|
count = moea_clear_bit(m, PTE_REF);
|
|
rw_wunlock(&pvh_global_lock);
|
|
return (count);
|
|
}
|
|
|
|
/*
|
|
* Modify the WIMG settings of all mappings for a page.
|
|
*/
|
|
void
|
|
moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
struct pvo_head *pvo_head;
|
|
struct pte *pt;
|
|
pmap_t pmap;
|
|
u_int lo;
|
|
|
|
if ((m->oflags & VPO_UNMANAGED) != 0) {
|
|
m->md.mdpg_cache_attrs = ma;
|
|
return;
|
|
}
|
|
|
|
rw_wlock(&pvh_global_lock);
|
|
pvo_head = vm_page_to_pvoh(m);
|
|
lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
|
|
|
|
LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
|
|
pmap = pvo->pvo_pmap;
|
|
PMAP_LOCK(pmap);
|
|
pt = moea_pvo_to_pte(pvo, -1);
|
|
pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
|
|
pvo->pvo_pte.pte.pte_lo |= lo;
|
|
if (pt != NULL) {
|
|
moea_pte_change(pt, &pvo->pvo_pte.pte,
|
|
pvo->pvo_vaddr);
|
|
if (pvo->pvo_pmap == kernel_pmap)
|
|
isync();
|
|
}
|
|
mtx_unlock(&moea_table_mutex);
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
m->md.mdpg_cache_attrs = ma;
|
|
rw_wunlock(&pvh_global_lock);
|
|
}
|
|
|
|
/*
|
|
* Map a wired page into kernel virtual address space.
|
|
*/
|
|
void
|
|
moea_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
|
|
{
|
|
|
|
moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
|
|
}
|
|
|
|
void
|
|
moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
|
|
{
|
|
u_int pte_lo;
|
|
int error;
|
|
|
|
#if 0
|
|
if (va < VM_MIN_KERNEL_ADDRESS)
|
|
panic("moea_kenter: attempt to enter non-kernel address %#x",
|
|
va);
|
|
#endif
|
|
|
|
pte_lo = moea_calc_wimg(pa, ma);
|
|
|
|
PMAP_LOCK(kernel_pmap);
|
|
error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
|
|
&moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
|
|
|
|
if (error != 0 && error != ENOENT)
|
|
panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
|
|
pa, error);
|
|
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
}
|
|
|
|
/*
|
|
* Extract the physical page address associated with the given kernel virtual
|
|
* address.
|
|
*/
|
|
vm_paddr_t
|
|
moea_kextract(mmu_t mmu, vm_offset_t va)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_paddr_t pa;
|
|
|
|
/*
|
|
* Allow direct mappings on 32-bit OEA
|
|
*/
|
|
if (va < VM_MIN_KERNEL_ADDRESS) {
|
|
return (va);
|
|
}
|
|
|
|
PMAP_LOCK(kernel_pmap);
|
|
pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
|
|
KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
|
|
pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
return (pa);
|
|
}
|
|
|
|
/*
|
|
* Remove a wired page from kernel virtual address space.
|
|
*/
|
|
void
|
|
moea_kremove(mmu_t mmu, vm_offset_t va)
|
|
{
|
|
|
|
moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Map a range of physical addresses into kernel virtual address space.
|
|
*
|
|
* The value passed in *virt is a suggested virtual address for the mapping.
|
|
* Architectures which can support a direct-mapped physical to virtual region
|
|
* can return the appropriate address within that region, leaving '*virt'
|
|
* unchanged. We cannot and therefore do not; *virt is updated with the
|
|
* first usable address after the mapped region.
|
|
*/
|
|
vm_offset_t
|
|
moea_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
|
|
vm_paddr_t pa_end, int prot)
|
|
{
|
|
vm_offset_t sva, va;
|
|
|
|
sva = *virt;
|
|
va = sva;
|
|
for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
|
|
moea_kenter(mmu, va, pa_start);
|
|
*virt = va;
|
|
return (sva);
|
|
}
|
|
|
|
/*
|
|
* Returns true if the pmap's pv is one of the first
|
|
* 16 pvs linked to from this page. This count may
|
|
* be changed upwards or downwards in the future; it
|
|
* is only necessary that true be returned for a small
|
|
* subset of pmaps for proper page aging.
|
|
*/
|
|
boolean_t
|
|
moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
|
|
{
|
|
int loops;
|
|
struct pvo_entry *pvo;
|
|
boolean_t rv;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("moea_page_exists_quick: page %p is not managed", m));
|
|
loops = 0;
|
|
rv = FALSE;
|
|
rw_wlock(&pvh_global_lock);
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
if (pvo->pvo_pmap == pmap) {
|
|
rv = TRUE;
|
|
break;
|
|
}
|
|
if (++loops >= 16)
|
|
break;
|
|
}
|
|
rw_wunlock(&pvh_global_lock);
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Return the number of managed mappings to the given physical page
|
|
* that are wired.
|
|
*/
|
|
int
|
|
moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
int count;
|
|
|
|
count = 0;
|
|
if ((m->oflags & VPO_UNMANAGED) != 0)
|
|
return (count);
|
|
rw_wlock(&pvh_global_lock);
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
|
|
if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
|
|
count++;
|
|
rw_wunlock(&pvh_global_lock);
|
|
return (count);
|
|
}
|
|
|
|
static u_int moea_vsidcontext;
|
|
|
|
void
|
|
moea_pinit(mmu_t mmu, pmap_t pmap)
|
|
{
|
|
int i, mask;
|
|
u_int entropy;
|
|
|
|
KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
|
|
RB_INIT(&pmap->pmap_pvo);
|
|
|
|
entropy = 0;
|
|
__asm __volatile("mftb %0" : "=r"(entropy));
|
|
|
|
if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
|
|
== NULL) {
|
|
pmap->pmap_phys = pmap;
|
|
}
|
|
|
|
|
|
mtx_lock(&moea_vsid_mutex);
|
|
/*
|
|
* Allocate some segment registers for this pmap.
|
|
*/
|
|
for (i = 0; i < NPMAPS; i += VSID_NBPW) {
|
|
u_int hash, n;
|
|
|
|
/*
|
|
* Create a new value by mutiplying by a prime and adding in
|
|
* entropy from the timebase register. This is to make the
|
|
* VSID more random so that the PT hash function collides
|
|
* less often. (Note that the prime casues gcc to do shifts
|
|
* instead of a multiply.)
|
|
*/
|
|
moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
|
|
hash = moea_vsidcontext & (NPMAPS - 1);
|
|
if (hash == 0) /* 0 is special, avoid it */
|
|
continue;
|
|
n = hash >> 5;
|
|
mask = 1 << (hash & (VSID_NBPW - 1));
|
|
hash = (moea_vsidcontext & 0xfffff);
|
|
if (moea_vsid_bitmap[n] & mask) { /* collision? */
|
|
/* anything free in this bucket? */
|
|
if (moea_vsid_bitmap[n] == 0xffffffff) {
|
|
entropy = (moea_vsidcontext >> 20);
|
|
continue;
|
|
}
|
|
i = ffs(~moea_vsid_bitmap[n]) - 1;
|
|
mask = 1 << i;
|
|
hash &= 0xfffff & ~(VSID_NBPW - 1);
|
|
hash |= i;
|
|
}
|
|
KASSERT(!(moea_vsid_bitmap[n] & mask),
|
|
("Allocating in-use VSID group %#x\n", hash));
|
|
moea_vsid_bitmap[n] |= mask;
|
|
for (i = 0; i < 16; i++)
|
|
pmap->pm_sr[i] = VSID_MAKE(i, hash);
|
|
mtx_unlock(&moea_vsid_mutex);
|
|
return;
|
|
}
|
|
|
|
mtx_unlock(&moea_vsid_mutex);
|
|
panic("moea_pinit: out of segments");
|
|
}
|
|
|
|
/*
|
|
* Initialize the pmap associated with process 0.
|
|
*/
|
|
void
|
|
moea_pinit0(mmu_t mmu, pmap_t pm)
|
|
{
|
|
|
|
PMAP_LOCK_INIT(pm);
|
|
moea_pinit(mmu, pm);
|
|
bzero(&pm->pm_stats, sizeof(pm->pm_stats));
|
|
}
|
|
|
|
/*
|
|
* Set the physical protection on the specified range of this map as requested.
|
|
*/
|
|
void
|
|
moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
|
|
vm_prot_t prot)
|
|
{
|
|
struct pvo_entry *pvo, *tpvo, key;
|
|
struct pte *pt;
|
|
|
|
KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
|
|
("moea_protect: non current pmap"));
|
|
|
|
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
|
|
moea_remove(mmu, pm, sva, eva);
|
|
return;
|
|
}
|
|
|
|
rw_wlock(&pvh_global_lock);
|
|
PMAP_LOCK(pm);
|
|
key.pvo_vaddr = sva;
|
|
for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
|
|
pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
|
|
tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
|
|
|
|
/*
|
|
* Grab the PTE pointer before we diddle with the cached PTE
|
|
* copy.
|
|
*/
|
|
pt = moea_pvo_to_pte(pvo, -1);
|
|
/*
|
|
* Change the protection of the page.
|
|
*/
|
|
pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
|
|
pvo->pvo_pte.pte.pte_lo |= PTE_BR;
|
|
|
|
/*
|
|
* If the PVO is in the page table, update that pte as well.
|
|
*/
|
|
if (pt != NULL) {
|
|
moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
|
|
mtx_unlock(&moea_table_mutex);
|
|
}
|
|
}
|
|
rw_wunlock(&pvh_global_lock);
|
|
PMAP_UNLOCK(pm);
|
|
}
|
|
|
|
/*
|
|
* Map a list of wired pages into kernel virtual address space. This is
|
|
* intended for temporary mappings which do not need page modification or
|
|
* references recorded. Existing mappings in the region are overwritten.
|
|
*/
|
|
void
|
|
moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
|
|
{
|
|
vm_offset_t va;
|
|
|
|
va = sva;
|
|
while (count-- > 0) {
|
|
moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
|
|
va += PAGE_SIZE;
|
|
m++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove page mappings from kernel virtual address space. Intended for
|
|
* temporary mappings entered by moea_qenter.
|
|
*/
|
|
void
|
|
moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
|
|
{
|
|
vm_offset_t va;
|
|
|
|
va = sva;
|
|
while (count-- > 0) {
|
|
moea_kremove(mmu, va);
|
|
va += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
void
|
|
moea_release(mmu_t mmu, pmap_t pmap)
|
|
{
|
|
int idx, mask;
|
|
|
|
/*
|
|
* Free segment register's VSID
|
|
*/
|
|
if (pmap->pm_sr[0] == 0)
|
|
panic("moea_release");
|
|
|
|
mtx_lock(&moea_vsid_mutex);
|
|
idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
|
|
mask = 1 << (idx % VSID_NBPW);
|
|
idx /= VSID_NBPW;
|
|
moea_vsid_bitmap[idx] &= ~mask;
|
|
mtx_unlock(&moea_vsid_mutex);
|
|
}
|
|
|
|
/*
|
|
* Remove the given range of addresses from the specified map.
|
|
*/
|
|
void
|
|
moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
|
|
{
|
|
struct pvo_entry *pvo, *tpvo, key;
|
|
|
|
rw_wlock(&pvh_global_lock);
|
|
PMAP_LOCK(pm);
|
|
key.pvo_vaddr = sva;
|
|
for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
|
|
pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
|
|
tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
|
|
moea_pvo_remove(pvo, -1);
|
|
}
|
|
PMAP_UNLOCK(pm);
|
|
rw_wunlock(&pvh_global_lock);
|
|
}
|
|
|
|
/*
|
|
* Remove physical page from all pmaps in which it resides. moea_pvo_remove()
|
|
* will reflect changes in pte's back to the vm_page.
|
|
*/
|
|
void
|
|
moea_remove_all(mmu_t mmu, vm_page_t m)
|
|
{
|
|
struct pvo_head *pvo_head;
|
|
struct pvo_entry *pvo, *next_pvo;
|
|
pmap_t pmap;
|
|
|
|
rw_wlock(&pvh_global_lock);
|
|
pvo_head = vm_page_to_pvoh(m);
|
|
for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
|
|
next_pvo = LIST_NEXT(pvo, pvo_vlink);
|
|
|
|
pmap = pvo->pvo_pmap;
|
|
PMAP_LOCK(pmap);
|
|
moea_pvo_remove(pvo, -1);
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
if ((m->aflags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
|
|
moea_attr_clear(m, PTE_CHG);
|
|
vm_page_dirty(m);
|
|
}
|
|
vm_page_aflag_clear(m, PGA_WRITEABLE);
|
|
rw_wunlock(&pvh_global_lock);
|
|
}
|
|
|
|
/*
|
|
* Allocate a physical page of memory directly from the phys_avail map.
|
|
* Can only be called from moea_bootstrap before avail start and end are
|
|
* calculated.
|
|
*/
|
|
static vm_offset_t
|
|
moea_bootstrap_alloc(vm_size_t size, u_int align)
|
|
{
|
|
vm_offset_t s, e;
|
|
int i, j;
|
|
|
|
size = round_page(size);
|
|
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
|
|
if (align != 0)
|
|
s = (phys_avail[i] + align - 1) & ~(align - 1);
|
|
else
|
|
s = phys_avail[i];
|
|
e = s + size;
|
|
|
|
if (s < phys_avail[i] || e > phys_avail[i + 1])
|
|
continue;
|
|
|
|
if (s == phys_avail[i]) {
|
|
phys_avail[i] += size;
|
|
} else if (e == phys_avail[i + 1]) {
|
|
phys_avail[i + 1] -= size;
|
|
} else {
|
|
for (j = phys_avail_count * 2; j > i; j -= 2) {
|
|
phys_avail[j] = phys_avail[j - 2];
|
|
phys_avail[j + 1] = phys_avail[j - 1];
|
|
}
|
|
|
|
phys_avail[i + 3] = phys_avail[i + 1];
|
|
phys_avail[i + 1] = s;
|
|
phys_avail[i + 2] = e;
|
|
phys_avail_count++;
|
|
}
|
|
|
|
return (s);
|
|
}
|
|
panic("moea_bootstrap_alloc: could not allocate memory");
|
|
}
|
|
|
|
static void
|
|
moea_syncicache(vm_offset_t pa, vm_size_t len)
|
|
{
|
|
__syncicache((void *)pa, len);
|
|
}
|
|
|
|
static int
|
|
moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
|
|
vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
u_int sr;
|
|
int first;
|
|
u_int ptegidx;
|
|
int i;
|
|
int bootstrap;
|
|
|
|
moea_pvo_enter_calls++;
|
|
first = 0;
|
|
bootstrap = 0;
|
|
|
|
/*
|
|
* Compute the PTE Group index.
|
|
*/
|
|
va &= ~ADDR_POFF;
|
|
sr = va_to_sr(pm->pm_sr, va);
|
|
ptegidx = va_to_pteg(sr, va);
|
|
|
|
/*
|
|
* Remove any existing mapping for this page. Reuse the pvo entry if
|
|
* there is a mapping.
|
|
*/
|
|
mtx_lock(&moea_table_mutex);
|
|
LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
|
|
if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
|
|
if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
|
|
(pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
|
|
(pte_lo & PTE_PP)) {
|
|
/*
|
|
* The PTE is not changing. Instead, this may
|
|
* be a request to change the mapping's wired
|
|
* attribute.
|
|
*/
|
|
mtx_unlock(&moea_table_mutex);
|
|
if ((flags & PVO_WIRED) != 0 &&
|
|
(pvo->pvo_vaddr & PVO_WIRED) == 0) {
|
|
pvo->pvo_vaddr |= PVO_WIRED;
|
|
pm->pm_stats.wired_count++;
|
|
} else if ((flags & PVO_WIRED) == 0 &&
|
|
(pvo->pvo_vaddr & PVO_WIRED) != 0) {
|
|
pvo->pvo_vaddr &= ~PVO_WIRED;
|
|
pm->pm_stats.wired_count--;
|
|
}
|
|
return (0);
|
|
}
|
|
moea_pvo_remove(pvo, -1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we aren't overwriting a mapping, try to allocate.
|
|
*/
|
|
if (moea_initialized) {
|
|
pvo = uma_zalloc(zone, M_NOWAIT);
|
|
} else {
|
|
if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
|
|
panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
|
|
moea_bpvo_pool_index, BPVO_POOL_SIZE,
|
|
BPVO_POOL_SIZE * sizeof(struct pvo_entry));
|
|
}
|
|
pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
|
|
moea_bpvo_pool_index++;
|
|
bootstrap = 1;
|
|
}
|
|
|
|
if (pvo == NULL) {
|
|
mtx_unlock(&moea_table_mutex);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
moea_pvo_entries++;
|
|
pvo->pvo_vaddr = va;
|
|
pvo->pvo_pmap = pm;
|
|
LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
|
|
pvo->pvo_vaddr &= ~ADDR_POFF;
|
|
if (flags & PVO_WIRED)
|
|
pvo->pvo_vaddr |= PVO_WIRED;
|
|
if (pvo_head != &moea_pvo_kunmanaged)
|
|
pvo->pvo_vaddr |= PVO_MANAGED;
|
|
if (bootstrap)
|
|
pvo->pvo_vaddr |= PVO_BOOTSTRAP;
|
|
|
|
moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
|
|
|
|
/*
|
|
* Add to pmap list
|
|
*/
|
|
RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
|
|
|
|
/*
|
|
* Remember if the list was empty and therefore will be the first
|
|
* item.
|
|
*/
|
|
if (LIST_FIRST(pvo_head) == NULL)
|
|
first = 1;
|
|
LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
|
|
|
|
if (pvo->pvo_vaddr & PVO_WIRED)
|
|
pm->pm_stats.wired_count++;
|
|
pm->pm_stats.resident_count++;
|
|
|
|
i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
|
|
KASSERT(i < 8, ("Invalid PTE index"));
|
|
if (i >= 0) {
|
|
PVO_PTEGIDX_SET(pvo, i);
|
|
} else {
|
|
panic("moea_pvo_enter: overflow");
|
|
moea_pte_overflow++;
|
|
}
|
|
mtx_unlock(&moea_table_mutex);
|
|
|
|
return (first ? ENOENT : 0);
|
|
}
|
|
|
|
static void
|
|
moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
|
|
{
|
|
struct pte *pt;
|
|
|
|
/*
|
|
* If there is an active pte entry, we need to deactivate it (and
|
|
* save the ref & cfg bits).
|
|
*/
|
|
pt = moea_pvo_to_pte(pvo, pteidx);
|
|
if (pt != NULL) {
|
|
moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
|
|
mtx_unlock(&moea_table_mutex);
|
|
PVO_PTEGIDX_CLR(pvo);
|
|
} else {
|
|
moea_pte_overflow--;
|
|
}
|
|
|
|
/*
|
|
* Update our statistics.
|
|
*/
|
|
pvo->pvo_pmap->pm_stats.resident_count--;
|
|
if (pvo->pvo_vaddr & PVO_WIRED)
|
|
pvo->pvo_pmap->pm_stats.wired_count--;
|
|
|
|
/*
|
|
* Save the REF/CHG bits into their cache if the page is managed.
|
|
*/
|
|
if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
|
|
struct vm_page *pg;
|
|
|
|
pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
|
|
if (pg != NULL) {
|
|
moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
|
|
(PTE_REF | PTE_CHG));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove this PVO from the PV and pmap lists.
|
|
*/
|
|
LIST_REMOVE(pvo, pvo_vlink);
|
|
RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
|
|
|
|
/*
|
|
* Remove this from the overflow list and return it to the pool
|
|
* if we aren't going to reuse it.
|
|
*/
|
|
LIST_REMOVE(pvo, pvo_olink);
|
|
if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
|
|
uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
|
|
moea_upvo_zone, pvo);
|
|
moea_pvo_entries--;
|
|
moea_pvo_remove_calls++;
|
|
}
|
|
|
|
static __inline int
|
|
moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
|
|
{
|
|
int pteidx;
|
|
|
|
/*
|
|
* We can find the actual pte entry without searching by grabbing
|
|
* the PTEG index from 3 unused bits in pte_lo[11:9] and by
|
|
* noticing the HID bit.
|
|
*/
|
|
pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
|
|
if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
|
|
pteidx ^= moea_pteg_mask * 8;
|
|
|
|
return (pteidx);
|
|
}
|
|
|
|
static struct pvo_entry *
|
|
moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
int ptegidx;
|
|
u_int sr;
|
|
|
|
va &= ~ADDR_POFF;
|
|
sr = va_to_sr(pm->pm_sr, va);
|
|
ptegidx = va_to_pteg(sr, va);
|
|
|
|
mtx_lock(&moea_table_mutex);
|
|
LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
|
|
if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
|
|
if (pteidx_p)
|
|
*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
|
|
break;
|
|
}
|
|
}
|
|
mtx_unlock(&moea_table_mutex);
|
|
|
|
return (pvo);
|
|
}
|
|
|
|
static struct pte *
|
|
moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
|
|
{
|
|
struct pte *pt;
|
|
|
|
/*
|
|
* If we haven't been supplied the ptegidx, calculate it.
|
|
*/
|
|
if (pteidx == -1) {
|
|
int ptegidx;
|
|
u_int sr;
|
|
|
|
sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
|
|
ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
|
|
pteidx = moea_pvo_pte_index(pvo, ptegidx);
|
|
}
|
|
|
|
pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
|
|
mtx_lock(&moea_table_mutex);
|
|
|
|
if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
|
|
panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
|
|
"valid pte index", pvo);
|
|
}
|
|
|
|
if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
|
|
panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
|
|
"pvo but no valid pte", pvo);
|
|
}
|
|
|
|
if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
|
|
if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
|
|
panic("moea_pvo_to_pte: pvo %p has valid pte in "
|
|
"moea_pteg_table %p but invalid in pvo", pvo, pt);
|
|
}
|
|
|
|
if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
|
|
!= 0) {
|
|
panic("moea_pvo_to_pte: pvo %p pte does not match "
|
|
"pte %p in moea_pteg_table", pvo, pt);
|
|
}
|
|
|
|
mtx_assert(&moea_table_mutex, MA_OWNED);
|
|
return (pt);
|
|
}
|
|
|
|
if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
|
|
panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
|
|
"moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
|
|
}
|
|
|
|
mtx_unlock(&moea_table_mutex);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* XXX: THIS STUFF SHOULD BE IN pte.c?
|
|
*/
|
|
int
|
|
moea_pte_spill(vm_offset_t addr)
|
|
{
|
|
struct pvo_entry *source_pvo, *victim_pvo;
|
|
struct pvo_entry *pvo;
|
|
int ptegidx, i, j;
|
|
u_int sr;
|
|
struct pteg *pteg;
|
|
struct pte *pt;
|
|
|
|
moea_pte_spills++;
|
|
|
|
sr = mfsrin(addr);
|
|
ptegidx = va_to_pteg(sr, addr);
|
|
|
|
/*
|
|
* Have to substitute some entry. Use the primary hash for this.
|
|
* Use low bits of timebase as random generator.
|
|
*/
|
|
pteg = &moea_pteg_table[ptegidx];
|
|
mtx_lock(&moea_table_mutex);
|
|
__asm __volatile("mftb %0" : "=r"(i));
|
|
i &= 7;
|
|
pt = &pteg->pt[i];
|
|
|
|
source_pvo = NULL;
|
|
victim_pvo = NULL;
|
|
LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
|
|
/*
|
|
* We need to find a pvo entry for this address.
|
|
*/
|
|
if (source_pvo == NULL &&
|
|
moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
|
|
pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
|
|
/*
|
|
* Now found an entry to be spilled into the pteg.
|
|
* The PTE is now valid, so we know it's active.
|
|
*/
|
|
j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
|
|
|
|
if (j >= 0) {
|
|
PVO_PTEGIDX_SET(pvo, j);
|
|
moea_pte_overflow--;
|
|
mtx_unlock(&moea_table_mutex);
|
|
return (1);
|
|
}
|
|
|
|
source_pvo = pvo;
|
|
|
|
if (victim_pvo != NULL)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We also need the pvo entry of the victim we are replacing
|
|
* so save the R & C bits of the PTE.
|
|
*/
|
|
if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
|
|
moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
|
|
victim_pvo = pvo;
|
|
if (source_pvo != NULL)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (source_pvo == NULL) {
|
|
mtx_unlock(&moea_table_mutex);
|
|
return (0);
|
|
}
|
|
|
|
if (victim_pvo == NULL) {
|
|
if ((pt->pte_hi & PTE_HID) == 0)
|
|
panic("moea_pte_spill: victim p-pte (%p) has no pvo"
|
|
"entry", pt);
|
|
|
|
/*
|
|
* If this is a secondary PTE, we need to search it's primary
|
|
* pvo bucket for the matching PVO.
|
|
*/
|
|
LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
|
|
pvo_olink) {
|
|
/*
|
|
* We also need the pvo entry of the victim we are
|
|
* replacing so save the R & C bits of the PTE.
|
|
*/
|
|
if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
|
|
victim_pvo = pvo;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (victim_pvo == NULL)
|
|
panic("moea_pte_spill: victim s-pte (%p) has no pvo"
|
|
"entry", pt);
|
|
}
|
|
|
|
/*
|
|
* We are invalidating the TLB entry for the EA we are replacing even
|
|
* though it's valid. If we don't, we lose any ref/chg bit changes
|
|
* contained in the TLB entry.
|
|
*/
|
|
source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
|
|
|
|
moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
|
|
moea_pte_set(pt, &source_pvo->pvo_pte.pte);
|
|
|
|
PVO_PTEGIDX_CLR(victim_pvo);
|
|
PVO_PTEGIDX_SET(source_pvo, i);
|
|
moea_pte_replacements++;
|
|
|
|
mtx_unlock(&moea_table_mutex);
|
|
return (1);
|
|
}
|
|
|
|
static __inline struct pvo_entry *
|
|
moea_pte_spillable_ident(u_int ptegidx)
|
|
{
|
|
struct pte *pt;
|
|
struct pvo_entry *pvo_walk, *pvo = NULL;
|
|
|
|
LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) {
|
|
if (pvo_walk->pvo_vaddr & PVO_WIRED)
|
|
continue;
|
|
|
|
if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID))
|
|
continue;
|
|
|
|
pt = moea_pvo_to_pte(pvo_walk, -1);
|
|
|
|
if (pt == NULL)
|
|
continue;
|
|
|
|
pvo = pvo_walk;
|
|
|
|
mtx_unlock(&moea_table_mutex);
|
|
if (!(pt->pte_lo & PTE_REF))
|
|
return (pvo_walk);
|
|
}
|
|
|
|
return (pvo);
|
|
}
|
|
|
|
static int
|
|
moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
|
|
{
|
|
struct pte *pt;
|
|
struct pvo_entry *victim_pvo;
|
|
int i;
|
|
int victim_idx;
|
|
u_int pteg_bkpidx = ptegidx;
|
|
|
|
mtx_assert(&moea_table_mutex, MA_OWNED);
|
|
|
|
/*
|
|
* First try primary hash.
|
|
*/
|
|
for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
|
|
if ((pt->pte_hi & PTE_VALID) == 0) {
|
|
pvo_pt->pte_hi &= ~PTE_HID;
|
|
moea_pte_set(pt, pvo_pt);
|
|
return (i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now try secondary hash.
|
|
*/
|
|
ptegidx ^= moea_pteg_mask;
|
|
|
|
for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
|
|
if ((pt->pte_hi & PTE_VALID) == 0) {
|
|
pvo_pt->pte_hi |= PTE_HID;
|
|
moea_pte_set(pt, pvo_pt);
|
|
return (i);
|
|
}
|
|
}
|
|
|
|
/* Try again, but this time try to force a PTE out. */
|
|
ptegidx = pteg_bkpidx;
|
|
|
|
victim_pvo = moea_pte_spillable_ident(ptegidx);
|
|
if (victim_pvo == NULL) {
|
|
ptegidx ^= moea_pteg_mask;
|
|
victim_pvo = moea_pte_spillable_ident(ptegidx);
|
|
}
|
|
|
|
if (victim_pvo == NULL) {
|
|
panic("moea_pte_insert: overflow");
|
|
return (-1);
|
|
}
|
|
|
|
victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx);
|
|
|
|
if (pteg_bkpidx == ptegidx)
|
|
pvo_pt->pte_hi &= ~PTE_HID;
|
|
else
|
|
pvo_pt->pte_hi |= PTE_HID;
|
|
|
|
/*
|
|
* Synchronize the sacrifice PTE with its PVO, then mark both
|
|
* invalid. The PVO will be reused when/if the VM system comes
|
|
* here after a fault.
|
|
*/
|
|
pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7];
|
|
|
|
if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi)
|
|
panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
|
|
|
|
/*
|
|
* Set the new PTE.
|
|
*/
|
|
moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
|
|
PVO_PTEGIDX_CLR(victim_pvo);
|
|
moea_pte_overflow++;
|
|
moea_pte_set(pt, pvo_pt);
|
|
|
|
return (victim_idx & 7);
|
|
}
|
|
|
|
static boolean_t
|
|
moea_query_bit(vm_page_t m, int ptebit)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
struct pte *pt;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
if (moea_attr_fetch(m) & ptebit)
|
|
return (TRUE);
|
|
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
|
|
/*
|
|
* See if we saved the bit off. If so, cache it and return
|
|
* success.
|
|
*/
|
|
if (pvo->pvo_pte.pte.pte_lo & ptebit) {
|
|
moea_attr_save(m, ptebit);
|
|
return (TRUE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* No luck, now go through the hard part of looking at the PTEs
|
|
* themselves. Sync so that any pending REF/CHG bits are flushed to
|
|
* the PTEs.
|
|
*/
|
|
powerpc_sync();
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
|
|
/*
|
|
* See if this pvo has a valid PTE. if so, fetch the
|
|
* REF/CHG bits from the valid PTE. If the appropriate
|
|
* ptebit is set, cache it and return success.
|
|
*/
|
|
pt = moea_pvo_to_pte(pvo, -1);
|
|
if (pt != NULL) {
|
|
moea_pte_synch(pt, &pvo->pvo_pte.pte);
|
|
mtx_unlock(&moea_table_mutex);
|
|
if (pvo->pvo_pte.pte.pte_lo & ptebit) {
|
|
moea_attr_save(m, ptebit);
|
|
return (TRUE);
|
|
}
|
|
}
|
|
}
|
|
|
|
return (FALSE);
|
|
}
|
|
|
|
static u_int
|
|
moea_clear_bit(vm_page_t m, int ptebit)
|
|
{
|
|
u_int count;
|
|
struct pvo_entry *pvo;
|
|
struct pte *pt;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
|
|
/*
|
|
* Clear the cached value.
|
|
*/
|
|
moea_attr_clear(m, ptebit);
|
|
|
|
/*
|
|
* Sync so that any pending REF/CHG bits are flushed to the PTEs (so
|
|
* we can reset the right ones). note that since the pvo entries and
|
|
* list heads are accessed via BAT0 and are never placed in the page
|
|
* table, we don't have to worry about further accesses setting the
|
|
* REF/CHG bits.
|
|
*/
|
|
powerpc_sync();
|
|
|
|
/*
|
|
* For each pvo entry, clear the pvo's ptebit. If this pvo has a
|
|
* valid pte clear the ptebit from the valid pte.
|
|
*/
|
|
count = 0;
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
pt = moea_pvo_to_pte(pvo, -1);
|
|
if (pt != NULL) {
|
|
moea_pte_synch(pt, &pvo->pvo_pte.pte);
|
|
if (pvo->pvo_pte.pte.pte_lo & ptebit) {
|
|
count++;
|
|
moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
|
|
}
|
|
mtx_unlock(&moea_table_mutex);
|
|
}
|
|
pvo->pvo_pte.pte.pte_lo &= ~ptebit;
|
|
}
|
|
|
|
return (count);
|
|
}
|
|
|
|
/*
|
|
* Return true if the physical range is encompassed by the battable[idx]
|
|
*/
|
|
static int
|
|
moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
|
|
{
|
|
u_int prot;
|
|
u_int32_t start;
|
|
u_int32_t end;
|
|
u_int32_t bat_ble;
|
|
|
|
/*
|
|
* Return immediately if not a valid mapping
|
|
*/
|
|
if (!(battable[idx].batu & BAT_Vs))
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* The BAT entry must be cache-inhibited, guarded, and r/w
|
|
* so it can function as an i/o page
|
|
*/
|
|
prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
|
|
if (prot != (BAT_I|BAT_G|BAT_PP_RW))
|
|
return (EPERM);
|
|
|
|
/*
|
|
* The address should be within the BAT range. Assume that the
|
|
* start address in the BAT has the correct alignment (thus
|
|
* not requiring masking)
|
|
*/
|
|
start = battable[idx].batl & BAT_PBS;
|
|
bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
|
|
end = start | (bat_ble << 15) | 0x7fff;
|
|
|
|
if ((pa < start) || ((pa + size) > end))
|
|
return (ERANGE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
boolean_t
|
|
moea_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* This currently does not work for entries that
|
|
* overlap 256M BAT segments.
|
|
*/
|
|
|
|
for(i = 0; i < 16; i++)
|
|
if (moea_bat_mapped(i, pa, size) == 0)
|
|
return (0);
|
|
|
|
return (EFAULT);
|
|
}
|
|
|
|
/*
|
|
* Map a set of physical memory pages into the kernel virtual
|
|
* address space. Return a pointer to where it is mapped. This
|
|
* routine is intended to be used for mapping device memory,
|
|
* NOT real memory.
|
|
*/
|
|
void *
|
|
moea_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
|
|
{
|
|
|
|
return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
|
|
}
|
|
|
|
void *
|
|
moea_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
|
|
{
|
|
vm_offset_t va, tmpva, ppa, offset;
|
|
int i;
|
|
|
|
ppa = trunc_page(pa);
|
|
offset = pa & PAGE_MASK;
|
|
size = roundup(offset + size, PAGE_SIZE);
|
|
|
|
/*
|
|
* If the physical address lies within a valid BAT table entry,
|
|
* return the 1:1 mapping. This currently doesn't work
|
|
* for regions that overlap 256M BAT segments.
|
|
*/
|
|
for (i = 0; i < 16; i++) {
|
|
if (moea_bat_mapped(i, pa, size) == 0)
|
|
return ((void *) pa);
|
|
}
|
|
|
|
va = kva_alloc(size);
|
|
if (!va)
|
|
panic("moea_mapdev: Couldn't alloc kernel virtual memory");
|
|
|
|
for (tmpva = va; size > 0;) {
|
|
moea_kenter_attr(mmu, tmpva, ppa, ma);
|
|
tlbie(tmpva);
|
|
size -= PAGE_SIZE;
|
|
tmpva += PAGE_SIZE;
|
|
ppa += PAGE_SIZE;
|
|
}
|
|
|
|
return ((void *)(va + offset));
|
|
}
|
|
|
|
void
|
|
moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
|
|
{
|
|
vm_offset_t base, offset;
|
|
|
|
/*
|
|
* If this is outside kernel virtual space, then it's a
|
|
* battable entry and doesn't require unmapping
|
|
*/
|
|
if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
|
|
base = trunc_page(va);
|
|
offset = va & PAGE_MASK;
|
|
size = roundup(offset + size, PAGE_SIZE);
|
|
kva_free(base, size);
|
|
}
|
|
}
|
|
|
|
static void
|
|
moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_offset_t lim;
|
|
vm_paddr_t pa;
|
|
vm_size_t len;
|
|
|
|
PMAP_LOCK(pm);
|
|
while (sz > 0) {
|
|
lim = round_page(va);
|
|
len = MIN(lim - va, sz);
|
|
pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
|
|
if (pvo != NULL) {
|
|
pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
|
|
(va & ADDR_POFF);
|
|
moea_syncicache(pa, len);
|
|
}
|
|
va += len;
|
|
sz -= len;
|
|
}
|
|
PMAP_UNLOCK(pm);
|
|
}
|
|
|
|
void
|
|
moea_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
|
|
{
|
|
|
|
*va = (void *)pa;
|
|
}
|
|
|
|
extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
|
|
|
|
void
|
|
moea_scan_init(mmu_t mmu)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_offset_t va;
|
|
int i;
|
|
|
|
if (!do_minidump) {
|
|
/* Initialize phys. segments for dumpsys(). */
|
|
memset(&dump_map, 0, sizeof(dump_map));
|
|
mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz);
|
|
for (i = 0; i < pregions_sz; i++) {
|
|
dump_map[i].pa_start = pregions[i].mr_start;
|
|
dump_map[i].pa_size = pregions[i].mr_size;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Virtual segments for minidumps: */
|
|
memset(&dump_map, 0, sizeof(dump_map));
|
|
|
|
/* 1st: kernel .data and .bss. */
|
|
dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
|
|
dump_map[0].pa_size =
|
|
round_page((uintptr_t)_end) - dump_map[0].pa_start;
|
|
|
|
/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
|
|
dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
|
|
dump_map[1].pa_size = round_page(msgbufp->msg_size);
|
|
|
|
/* 3rd: kernel VM. */
|
|
va = dump_map[1].pa_start + dump_map[1].pa_size;
|
|
/* Find start of next chunk (from va). */
|
|
while (va < virtual_end) {
|
|
/* Don't dump the buffer cache. */
|
|
if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
|
|
va = kmi.buffer_eva;
|
|
continue;
|
|
}
|
|
pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
|
|
if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID))
|
|
break;
|
|
va += PAGE_SIZE;
|
|
}
|
|
if (va < virtual_end) {
|
|
dump_map[2].pa_start = va;
|
|
va += PAGE_SIZE;
|
|
/* Find last page in chunk. */
|
|
while (va < virtual_end) {
|
|
/* Don't run into the buffer cache. */
|
|
if (va == kmi.buffer_sva)
|
|
break;
|
|
pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF,
|
|
NULL);
|
|
if (pvo == NULL ||
|
|
!(pvo->pvo_pte.pte.pte_hi & PTE_VALID))
|
|
break;
|
|
va += PAGE_SIZE;
|
|
}
|
|
dump_map[2].pa_size = va - dump_map[2].pa_start;
|
|
}
|
|
}
|