41adcc32e9
References: https://www.illumos.org/issues/3021 https://www.illumos.org/issues/3022 https://www.illumos.org/issues/3023 https://www.illumos.org/issues/3024 https://www.illumos.org/issues/3025 https://www.illumos.org/issues/3026 Obtained from: ssh://anonhg@hg.illumos.org/illumos-gate
1939 lines
45 KiB
C
1939 lines
45 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2011, Joyent, Inc. All rights reserved.
|
|
* Copyright (c) 2012 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <strings.h>
|
|
#include <errno.h>
|
|
#include <unistd.h>
|
|
#include <dt_impl.h>
|
|
#include <assert.h>
|
|
#include <alloca.h>
|
|
#include <limits.h>
|
|
|
|
#define DTRACE_AHASHSIZE 32779 /* big 'ol prime */
|
|
|
|
/*
|
|
* Because qsort(3C) does not allow an argument to be passed to a comparison
|
|
* function, the variables that affect comparison must regrettably be global;
|
|
* they are protected by a global static lock, dt_qsort_lock.
|
|
*/
|
|
static pthread_mutex_t dt_qsort_lock = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
static int dt_revsort;
|
|
static int dt_keysort;
|
|
static int dt_keypos;
|
|
|
|
#define DT_LESSTHAN (dt_revsort == 0 ? -1 : 1)
|
|
#define DT_GREATERTHAN (dt_revsort == 0 ? 1 : -1)
|
|
|
|
static void
|
|
dt_aggregate_count(int64_t *existing, int64_t *new, size_t size)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < size / sizeof (int64_t); i++)
|
|
existing[i] = existing[i] + new[i];
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_countcmp(int64_t *lhs, int64_t *rhs)
|
|
{
|
|
int64_t lvar = *lhs;
|
|
int64_t rvar = *rhs;
|
|
|
|
if (lvar < rvar)
|
|
return (DT_LESSTHAN);
|
|
|
|
if (lvar > rvar)
|
|
return (DT_GREATERTHAN);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dt_aggregate_min(int64_t *existing, int64_t *new, size_t size)
|
|
{
|
|
if (*new < *existing)
|
|
*existing = *new;
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dt_aggregate_max(int64_t *existing, int64_t *new, size_t size)
|
|
{
|
|
if (*new > *existing)
|
|
*existing = *new;
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_averagecmp(int64_t *lhs, int64_t *rhs)
|
|
{
|
|
int64_t lavg = lhs[0] ? (lhs[1] / lhs[0]) : 0;
|
|
int64_t ravg = rhs[0] ? (rhs[1] / rhs[0]) : 0;
|
|
|
|
if (lavg < ravg)
|
|
return (DT_LESSTHAN);
|
|
|
|
if (lavg > ravg)
|
|
return (DT_GREATERTHAN);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_stddevcmp(int64_t *lhs, int64_t *rhs)
|
|
{
|
|
uint64_t lsd = dt_stddev((uint64_t *)lhs, 1);
|
|
uint64_t rsd = dt_stddev((uint64_t *)rhs, 1);
|
|
|
|
if (lsd < rsd)
|
|
return (DT_LESSTHAN);
|
|
|
|
if (lsd > rsd)
|
|
return (DT_GREATERTHAN);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dt_aggregate_lquantize(int64_t *existing, int64_t *new, size_t size)
|
|
{
|
|
int64_t arg = *existing++;
|
|
uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
|
|
int i;
|
|
|
|
for (i = 0; i <= levels + 1; i++)
|
|
existing[i] = existing[i] + new[i + 1];
|
|
}
|
|
|
|
static long double
|
|
dt_aggregate_lquantizedsum(int64_t *lquanta)
|
|
{
|
|
int64_t arg = *lquanta++;
|
|
int32_t base = DTRACE_LQUANTIZE_BASE(arg);
|
|
uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
|
|
uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i;
|
|
long double total = (long double)lquanta[0] * (long double)(base - 1);
|
|
|
|
for (i = 0; i < levels; base += step, i++)
|
|
total += (long double)lquanta[i + 1] * (long double)base;
|
|
|
|
return (total + (long double)lquanta[levels + 1] *
|
|
(long double)(base + 1));
|
|
}
|
|
|
|
static int64_t
|
|
dt_aggregate_lquantizedzero(int64_t *lquanta)
|
|
{
|
|
int64_t arg = *lquanta++;
|
|
int32_t base = DTRACE_LQUANTIZE_BASE(arg);
|
|
uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
|
|
uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i;
|
|
|
|
if (base - 1 == 0)
|
|
return (lquanta[0]);
|
|
|
|
for (i = 0; i < levels; base += step, i++) {
|
|
if (base != 0)
|
|
continue;
|
|
|
|
return (lquanta[i + 1]);
|
|
}
|
|
|
|
if (base + 1 == 0)
|
|
return (lquanta[levels + 1]);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_lquantizedcmp(int64_t *lhs, int64_t *rhs)
|
|
{
|
|
long double lsum = dt_aggregate_lquantizedsum(lhs);
|
|
long double rsum = dt_aggregate_lquantizedsum(rhs);
|
|
int64_t lzero, rzero;
|
|
|
|
if (lsum < rsum)
|
|
return (DT_LESSTHAN);
|
|
|
|
if (lsum > rsum)
|
|
return (DT_GREATERTHAN);
|
|
|
|
/*
|
|
* If they're both equal, then we will compare based on the weights at
|
|
* zero. If the weights at zero are equal (or if zero is not within
|
|
* the range of the linear quantization), then this will be judged a
|
|
* tie and will be resolved based on the key comparison.
|
|
*/
|
|
lzero = dt_aggregate_lquantizedzero(lhs);
|
|
rzero = dt_aggregate_lquantizedzero(rhs);
|
|
|
|
if (lzero < rzero)
|
|
return (DT_LESSTHAN);
|
|
|
|
if (lzero > rzero)
|
|
return (DT_GREATERTHAN);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dt_aggregate_llquantize(int64_t *existing, int64_t *new, size_t size)
|
|
{
|
|
int i;
|
|
|
|
for (i = 1; i < size / sizeof (int64_t); i++)
|
|
existing[i] = existing[i] + new[i];
|
|
}
|
|
|
|
static long double
|
|
dt_aggregate_llquantizedsum(int64_t *llquanta)
|
|
{
|
|
int64_t arg = *llquanta++;
|
|
uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
|
|
uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
|
|
uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
|
|
uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
|
|
int bin = 0, order;
|
|
int64_t value = 1, next, step;
|
|
long double total;
|
|
|
|
assert(nsteps >= factor);
|
|
assert(nsteps % factor == 0);
|
|
|
|
for (order = 0; order < low; order++)
|
|
value *= factor;
|
|
|
|
total = (long double)llquanta[bin++] * (long double)(value - 1);
|
|
|
|
next = value * factor;
|
|
step = next > nsteps ? next / nsteps : 1;
|
|
|
|
while (order <= high) {
|
|
assert(value < next);
|
|
total += (long double)llquanta[bin++] * (long double)(value);
|
|
|
|
if ((value += step) != next)
|
|
continue;
|
|
|
|
next = value * factor;
|
|
step = next > nsteps ? next / nsteps : 1;
|
|
order++;
|
|
}
|
|
|
|
return (total + (long double)llquanta[bin] * (long double)value);
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_llquantizedcmp(int64_t *lhs, int64_t *rhs)
|
|
{
|
|
long double lsum = dt_aggregate_llquantizedsum(lhs);
|
|
long double rsum = dt_aggregate_llquantizedsum(rhs);
|
|
int64_t lzero, rzero;
|
|
|
|
if (lsum < rsum)
|
|
return (DT_LESSTHAN);
|
|
|
|
if (lsum > rsum)
|
|
return (DT_GREATERTHAN);
|
|
|
|
/*
|
|
* If they're both equal, then we will compare based on the weights at
|
|
* zero. If the weights at zero are equal, then this will be judged a
|
|
* tie and will be resolved based on the key comparison.
|
|
*/
|
|
lzero = lhs[1];
|
|
rzero = rhs[1];
|
|
|
|
if (lzero < rzero)
|
|
return (DT_LESSTHAN);
|
|
|
|
if (lzero > rzero)
|
|
return (DT_GREATERTHAN);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_quantizedcmp(int64_t *lhs, int64_t *rhs)
|
|
{
|
|
int nbuckets = DTRACE_QUANTIZE_NBUCKETS, i;
|
|
long double ltotal = 0, rtotal = 0;
|
|
int64_t lzero, rzero;
|
|
|
|
for (i = 0; i < nbuckets; i++) {
|
|
int64_t bucketval = DTRACE_QUANTIZE_BUCKETVAL(i);
|
|
|
|
if (bucketval == 0) {
|
|
lzero = lhs[i];
|
|
rzero = rhs[i];
|
|
}
|
|
|
|
ltotal += (long double)bucketval * (long double)lhs[i];
|
|
rtotal += (long double)bucketval * (long double)rhs[i];
|
|
}
|
|
|
|
if (ltotal < rtotal)
|
|
return (DT_LESSTHAN);
|
|
|
|
if (ltotal > rtotal)
|
|
return (DT_GREATERTHAN);
|
|
|
|
/*
|
|
* If they're both equal, then we will compare based on the weights at
|
|
* zero. If the weights at zero are equal, then this will be judged a
|
|
* tie and will be resolved based on the key comparison.
|
|
*/
|
|
if (lzero < rzero)
|
|
return (DT_LESSTHAN);
|
|
|
|
if (lzero > rzero)
|
|
return (DT_GREATERTHAN);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dt_aggregate_usym(dtrace_hdl_t *dtp, uint64_t *data)
|
|
{
|
|
uint64_t pid = data[0];
|
|
uint64_t *pc = &data[1];
|
|
struct ps_prochandle *P;
|
|
GElf_Sym sym;
|
|
|
|
if (dtp->dt_vector != NULL)
|
|
return;
|
|
|
|
if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL)
|
|
return;
|
|
|
|
dt_proc_lock(dtp, P);
|
|
|
|
if (Plookup_by_addr(P, *pc, NULL, 0, &sym) == 0)
|
|
*pc = sym.st_value;
|
|
|
|
dt_proc_unlock(dtp, P);
|
|
dt_proc_release(dtp, P);
|
|
}
|
|
|
|
static void
|
|
dt_aggregate_umod(dtrace_hdl_t *dtp, uint64_t *data)
|
|
{
|
|
uint64_t pid = data[0];
|
|
uint64_t *pc = &data[1];
|
|
struct ps_prochandle *P;
|
|
const prmap_t *map;
|
|
|
|
if (dtp->dt_vector != NULL)
|
|
return;
|
|
|
|
if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL)
|
|
return;
|
|
|
|
dt_proc_lock(dtp, P);
|
|
|
|
if ((map = Paddr_to_map(P, *pc)) != NULL)
|
|
*pc = map->pr_vaddr;
|
|
|
|
dt_proc_unlock(dtp, P);
|
|
dt_proc_release(dtp, P);
|
|
}
|
|
|
|
static void
|
|
dt_aggregate_sym(dtrace_hdl_t *dtp, uint64_t *data)
|
|
{
|
|
GElf_Sym sym;
|
|
uint64_t *pc = data;
|
|
|
|
if (dtrace_lookup_by_addr(dtp, *pc, &sym, NULL) == 0)
|
|
*pc = sym.st_value;
|
|
}
|
|
|
|
static void
|
|
dt_aggregate_mod(dtrace_hdl_t *dtp, uint64_t *data)
|
|
{
|
|
uint64_t *pc = data;
|
|
dt_module_t *dmp;
|
|
|
|
if (dtp->dt_vector != NULL) {
|
|
/*
|
|
* We don't have a way of just getting the module for a
|
|
* vectored open, and it doesn't seem to be worth defining
|
|
* one. This means that use of mod() won't get true
|
|
* aggregation in the postmortem case (some modules may
|
|
* appear more than once in aggregation output). It seems
|
|
* unlikely that anyone will ever notice or care...
|
|
*/
|
|
return;
|
|
}
|
|
|
|
for (dmp = dt_list_next(&dtp->dt_modlist); dmp != NULL;
|
|
dmp = dt_list_next(dmp)) {
|
|
if (*pc - dmp->dm_text_va < dmp->dm_text_size) {
|
|
*pc = dmp->dm_text_va;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static dtrace_aggvarid_t
|
|
dt_aggregate_aggvarid(dt_ahashent_t *ent)
|
|
{
|
|
dtrace_aggdesc_t *agg = ent->dtahe_data.dtada_desc;
|
|
caddr_t data = ent->dtahe_data.dtada_data;
|
|
dtrace_recdesc_t *rec = agg->dtagd_rec;
|
|
|
|
/*
|
|
* First, we'll check the variable ID in the aggdesc. If it's valid,
|
|
* we'll return it. If not, we'll use the compiler-generated ID
|
|
* present as the first record.
|
|
*/
|
|
if (agg->dtagd_varid != DTRACE_AGGVARIDNONE)
|
|
return (agg->dtagd_varid);
|
|
|
|
agg->dtagd_varid = *((dtrace_aggvarid_t *)(uintptr_t)(data +
|
|
rec->dtrd_offset));
|
|
|
|
return (agg->dtagd_varid);
|
|
}
|
|
|
|
|
|
static int
|
|
dt_aggregate_snap_cpu(dtrace_hdl_t *dtp, processorid_t cpu)
|
|
{
|
|
dtrace_epid_t id;
|
|
uint64_t hashval;
|
|
size_t offs, roffs, size, ndx;
|
|
int i, j, rval;
|
|
caddr_t addr, data;
|
|
dtrace_recdesc_t *rec;
|
|
dt_aggregate_t *agp = &dtp->dt_aggregate;
|
|
dtrace_aggdesc_t *agg;
|
|
dt_ahash_t *hash = &agp->dtat_hash;
|
|
dt_ahashent_t *h;
|
|
dtrace_bufdesc_t b = agp->dtat_buf, *buf = &b;
|
|
dtrace_aggdata_t *aggdata;
|
|
int flags = agp->dtat_flags;
|
|
|
|
buf->dtbd_cpu = cpu;
|
|
|
|
if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, buf) == -1) {
|
|
if (errno == ENOENT) {
|
|
/*
|
|
* If that failed with ENOENT, it may be because the
|
|
* CPU was unconfigured. This is okay; we'll just
|
|
* do nothing but return success.
|
|
*/
|
|
return (0);
|
|
}
|
|
|
|
return (dt_set_errno(dtp, errno));
|
|
}
|
|
|
|
if (buf->dtbd_drops != 0) {
|
|
if (dt_handle_cpudrop(dtp, cpu,
|
|
DTRACEDROP_AGGREGATION, buf->dtbd_drops) == -1)
|
|
return (-1);
|
|
}
|
|
|
|
if (buf->dtbd_size == 0)
|
|
return (0);
|
|
|
|
if (hash->dtah_hash == NULL) {
|
|
size_t size;
|
|
|
|
hash->dtah_size = DTRACE_AHASHSIZE;
|
|
size = hash->dtah_size * sizeof (dt_ahashent_t *);
|
|
|
|
if ((hash->dtah_hash = malloc(size)) == NULL)
|
|
return (dt_set_errno(dtp, EDT_NOMEM));
|
|
|
|
bzero(hash->dtah_hash, size);
|
|
}
|
|
|
|
for (offs = 0; offs < buf->dtbd_size; ) {
|
|
/*
|
|
* We're guaranteed to have an ID.
|
|
*/
|
|
id = *((dtrace_epid_t *)((uintptr_t)buf->dtbd_data +
|
|
(uintptr_t)offs));
|
|
|
|
if (id == DTRACE_AGGIDNONE) {
|
|
/*
|
|
* This is filler to assure proper alignment of the
|
|
* next record; we simply ignore it.
|
|
*/
|
|
offs += sizeof (id);
|
|
continue;
|
|
}
|
|
|
|
if ((rval = dt_aggid_lookup(dtp, id, &agg)) != 0)
|
|
return (rval);
|
|
|
|
addr = buf->dtbd_data + offs;
|
|
size = agg->dtagd_size;
|
|
hashval = 0;
|
|
|
|
for (j = 0; j < agg->dtagd_nrecs - 1; j++) {
|
|
rec = &agg->dtagd_rec[j];
|
|
roffs = rec->dtrd_offset;
|
|
|
|
switch (rec->dtrd_action) {
|
|
case DTRACEACT_USYM:
|
|
dt_aggregate_usym(dtp,
|
|
/* LINTED - alignment */
|
|
(uint64_t *)&addr[roffs]);
|
|
break;
|
|
|
|
case DTRACEACT_UMOD:
|
|
dt_aggregate_umod(dtp,
|
|
/* LINTED - alignment */
|
|
(uint64_t *)&addr[roffs]);
|
|
break;
|
|
|
|
case DTRACEACT_SYM:
|
|
/* LINTED - alignment */
|
|
dt_aggregate_sym(dtp, (uint64_t *)&addr[roffs]);
|
|
break;
|
|
|
|
case DTRACEACT_MOD:
|
|
/* LINTED - alignment */
|
|
dt_aggregate_mod(dtp, (uint64_t *)&addr[roffs]);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
for (i = 0; i < rec->dtrd_size; i++)
|
|
hashval += addr[roffs + i];
|
|
}
|
|
|
|
ndx = hashval % hash->dtah_size;
|
|
|
|
for (h = hash->dtah_hash[ndx]; h != NULL; h = h->dtahe_next) {
|
|
if (h->dtahe_hashval != hashval)
|
|
continue;
|
|
|
|
if (h->dtahe_size != size)
|
|
continue;
|
|
|
|
aggdata = &h->dtahe_data;
|
|
data = aggdata->dtada_data;
|
|
|
|
for (j = 0; j < agg->dtagd_nrecs - 1; j++) {
|
|
rec = &agg->dtagd_rec[j];
|
|
roffs = rec->dtrd_offset;
|
|
|
|
for (i = 0; i < rec->dtrd_size; i++)
|
|
if (addr[roffs + i] != data[roffs + i])
|
|
goto hashnext;
|
|
}
|
|
|
|
/*
|
|
* We found it. Now we need to apply the aggregating
|
|
* action on the data here.
|
|
*/
|
|
rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
|
|
roffs = rec->dtrd_offset;
|
|
/* LINTED - alignment */
|
|
h->dtahe_aggregate((int64_t *)&data[roffs],
|
|
/* LINTED - alignment */
|
|
(int64_t *)&addr[roffs], rec->dtrd_size);
|
|
|
|
/*
|
|
* If we're keeping per CPU data, apply the aggregating
|
|
* action there as well.
|
|
*/
|
|
if (aggdata->dtada_percpu != NULL) {
|
|
data = aggdata->dtada_percpu[cpu];
|
|
|
|
/* LINTED - alignment */
|
|
h->dtahe_aggregate((int64_t *)data,
|
|
/* LINTED - alignment */
|
|
(int64_t *)&addr[roffs], rec->dtrd_size);
|
|
}
|
|
|
|
goto bufnext;
|
|
hashnext:
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If we're here, we couldn't find an entry for this record.
|
|
*/
|
|
if ((h = malloc(sizeof (dt_ahashent_t))) == NULL)
|
|
return (dt_set_errno(dtp, EDT_NOMEM));
|
|
bzero(h, sizeof (dt_ahashent_t));
|
|
aggdata = &h->dtahe_data;
|
|
|
|
if ((aggdata->dtada_data = malloc(size)) == NULL) {
|
|
free(h);
|
|
return (dt_set_errno(dtp, EDT_NOMEM));
|
|
}
|
|
|
|
bcopy(addr, aggdata->dtada_data, size);
|
|
aggdata->dtada_size = size;
|
|
aggdata->dtada_desc = agg;
|
|
aggdata->dtada_handle = dtp;
|
|
(void) dt_epid_lookup(dtp, agg->dtagd_epid,
|
|
&aggdata->dtada_edesc, &aggdata->dtada_pdesc);
|
|
aggdata->dtada_normal = 1;
|
|
|
|
h->dtahe_hashval = hashval;
|
|
h->dtahe_size = size;
|
|
(void) dt_aggregate_aggvarid(h);
|
|
|
|
rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
|
|
|
|
if (flags & DTRACE_A_PERCPU) {
|
|
int max_cpus = agp->dtat_maxcpu;
|
|
caddr_t *percpu = malloc(max_cpus * sizeof (caddr_t));
|
|
|
|
if (percpu == NULL) {
|
|
free(aggdata->dtada_data);
|
|
free(h);
|
|
return (dt_set_errno(dtp, EDT_NOMEM));
|
|
}
|
|
|
|
for (j = 0; j < max_cpus; j++) {
|
|
percpu[j] = malloc(rec->dtrd_size);
|
|
|
|
if (percpu[j] == NULL) {
|
|
while (--j >= 0)
|
|
free(percpu[j]);
|
|
|
|
free(aggdata->dtada_data);
|
|
free(h);
|
|
return (dt_set_errno(dtp, EDT_NOMEM));
|
|
}
|
|
|
|
if (j == cpu) {
|
|
bcopy(&addr[rec->dtrd_offset],
|
|
percpu[j], rec->dtrd_size);
|
|
} else {
|
|
bzero(percpu[j], rec->dtrd_size);
|
|
}
|
|
}
|
|
|
|
aggdata->dtada_percpu = percpu;
|
|
}
|
|
|
|
switch (rec->dtrd_action) {
|
|
case DTRACEAGG_MIN:
|
|
h->dtahe_aggregate = dt_aggregate_min;
|
|
break;
|
|
|
|
case DTRACEAGG_MAX:
|
|
h->dtahe_aggregate = dt_aggregate_max;
|
|
break;
|
|
|
|
case DTRACEAGG_LQUANTIZE:
|
|
h->dtahe_aggregate = dt_aggregate_lquantize;
|
|
break;
|
|
|
|
case DTRACEAGG_LLQUANTIZE:
|
|
h->dtahe_aggregate = dt_aggregate_llquantize;
|
|
break;
|
|
|
|
case DTRACEAGG_COUNT:
|
|
case DTRACEAGG_SUM:
|
|
case DTRACEAGG_AVG:
|
|
case DTRACEAGG_STDDEV:
|
|
case DTRACEAGG_QUANTIZE:
|
|
h->dtahe_aggregate = dt_aggregate_count;
|
|
break;
|
|
|
|
default:
|
|
return (dt_set_errno(dtp, EDT_BADAGG));
|
|
}
|
|
|
|
if (hash->dtah_hash[ndx] != NULL)
|
|
hash->dtah_hash[ndx]->dtahe_prev = h;
|
|
|
|
h->dtahe_next = hash->dtah_hash[ndx];
|
|
hash->dtah_hash[ndx] = h;
|
|
|
|
if (hash->dtah_all != NULL)
|
|
hash->dtah_all->dtahe_prevall = h;
|
|
|
|
h->dtahe_nextall = hash->dtah_all;
|
|
hash->dtah_all = h;
|
|
bufnext:
|
|
offs += agg->dtagd_size;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
dtrace_aggregate_snap(dtrace_hdl_t *dtp)
|
|
{
|
|
int i, rval;
|
|
dt_aggregate_t *agp = &dtp->dt_aggregate;
|
|
hrtime_t now = gethrtime();
|
|
dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_AGGRATE];
|
|
|
|
if (dtp->dt_lastagg != 0) {
|
|
if (now - dtp->dt_lastagg < interval)
|
|
return (0);
|
|
|
|
dtp->dt_lastagg += interval;
|
|
} else {
|
|
dtp->dt_lastagg = now;
|
|
}
|
|
|
|
if (!dtp->dt_active)
|
|
return (dt_set_errno(dtp, EINVAL));
|
|
|
|
if (agp->dtat_buf.dtbd_size == 0)
|
|
return (0);
|
|
|
|
for (i = 0; i < agp->dtat_ncpus; i++) {
|
|
if (rval = dt_aggregate_snap_cpu(dtp, agp->dtat_cpus[i]))
|
|
return (rval);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_hashcmp(const void *lhs, const void *rhs)
|
|
{
|
|
dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
|
|
dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
|
|
dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
|
|
dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
|
|
|
|
if (lagg->dtagd_nrecs < ragg->dtagd_nrecs)
|
|
return (DT_LESSTHAN);
|
|
|
|
if (lagg->dtagd_nrecs > ragg->dtagd_nrecs)
|
|
return (DT_GREATERTHAN);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_varcmp(const void *lhs, const void *rhs)
|
|
{
|
|
dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
|
|
dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
|
|
dtrace_aggvarid_t lid, rid;
|
|
|
|
lid = dt_aggregate_aggvarid(lh);
|
|
rid = dt_aggregate_aggvarid(rh);
|
|
|
|
if (lid < rid)
|
|
return (DT_LESSTHAN);
|
|
|
|
if (lid > rid)
|
|
return (DT_GREATERTHAN);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_keycmp(const void *lhs, const void *rhs)
|
|
{
|
|
dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
|
|
dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
|
|
dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
|
|
dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
|
|
dtrace_recdesc_t *lrec, *rrec;
|
|
char *ldata, *rdata;
|
|
int rval, i, j, keypos, nrecs;
|
|
|
|
if ((rval = dt_aggregate_hashcmp(lhs, rhs)) != 0)
|
|
return (rval);
|
|
|
|
nrecs = lagg->dtagd_nrecs - 1;
|
|
assert(nrecs == ragg->dtagd_nrecs - 1);
|
|
|
|
keypos = dt_keypos + 1 >= nrecs ? 0 : dt_keypos;
|
|
|
|
for (i = 1; i < nrecs; i++) {
|
|
uint64_t lval, rval;
|
|
int ndx = i + keypos;
|
|
|
|
if (ndx >= nrecs)
|
|
ndx = ndx - nrecs + 1;
|
|
|
|
lrec = &lagg->dtagd_rec[ndx];
|
|
rrec = &ragg->dtagd_rec[ndx];
|
|
|
|
ldata = lh->dtahe_data.dtada_data + lrec->dtrd_offset;
|
|
rdata = rh->dtahe_data.dtada_data + rrec->dtrd_offset;
|
|
|
|
if (lrec->dtrd_size < rrec->dtrd_size)
|
|
return (DT_LESSTHAN);
|
|
|
|
if (lrec->dtrd_size > rrec->dtrd_size)
|
|
return (DT_GREATERTHAN);
|
|
|
|
switch (lrec->dtrd_size) {
|
|
case sizeof (uint64_t):
|
|
/* LINTED - alignment */
|
|
lval = *((uint64_t *)ldata);
|
|
/* LINTED - alignment */
|
|
rval = *((uint64_t *)rdata);
|
|
break;
|
|
|
|
case sizeof (uint32_t):
|
|
/* LINTED - alignment */
|
|
lval = *((uint32_t *)ldata);
|
|
/* LINTED - alignment */
|
|
rval = *((uint32_t *)rdata);
|
|
break;
|
|
|
|
case sizeof (uint16_t):
|
|
/* LINTED - alignment */
|
|
lval = *((uint16_t *)ldata);
|
|
/* LINTED - alignment */
|
|
rval = *((uint16_t *)rdata);
|
|
break;
|
|
|
|
case sizeof (uint8_t):
|
|
lval = *((uint8_t *)ldata);
|
|
rval = *((uint8_t *)rdata);
|
|
break;
|
|
|
|
default:
|
|
switch (lrec->dtrd_action) {
|
|
case DTRACEACT_UMOD:
|
|
case DTRACEACT_UADDR:
|
|
case DTRACEACT_USYM:
|
|
for (j = 0; j < 2; j++) {
|
|
/* LINTED - alignment */
|
|
lval = ((uint64_t *)ldata)[j];
|
|
/* LINTED - alignment */
|
|
rval = ((uint64_t *)rdata)[j];
|
|
|
|
if (lval < rval)
|
|
return (DT_LESSTHAN);
|
|
|
|
if (lval > rval)
|
|
return (DT_GREATERTHAN);
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
for (j = 0; j < lrec->dtrd_size; j++) {
|
|
lval = ((uint8_t *)ldata)[j];
|
|
rval = ((uint8_t *)rdata)[j];
|
|
|
|
if (lval < rval)
|
|
return (DT_LESSTHAN);
|
|
|
|
if (lval > rval)
|
|
return (DT_GREATERTHAN);
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
if (lval < rval)
|
|
return (DT_LESSTHAN);
|
|
|
|
if (lval > rval)
|
|
return (DT_GREATERTHAN);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_valcmp(const void *lhs, const void *rhs)
|
|
{
|
|
dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
|
|
dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
|
|
dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
|
|
dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
|
|
caddr_t ldata = lh->dtahe_data.dtada_data;
|
|
caddr_t rdata = rh->dtahe_data.dtada_data;
|
|
dtrace_recdesc_t *lrec, *rrec;
|
|
int64_t *laddr, *raddr;
|
|
int rval;
|
|
|
|
assert(lagg->dtagd_nrecs == ragg->dtagd_nrecs);
|
|
|
|
lrec = &lagg->dtagd_rec[lagg->dtagd_nrecs - 1];
|
|
rrec = &ragg->dtagd_rec[ragg->dtagd_nrecs - 1];
|
|
|
|
assert(lrec->dtrd_action == rrec->dtrd_action);
|
|
|
|
laddr = (int64_t *)(uintptr_t)(ldata + lrec->dtrd_offset);
|
|
raddr = (int64_t *)(uintptr_t)(rdata + rrec->dtrd_offset);
|
|
|
|
switch (lrec->dtrd_action) {
|
|
case DTRACEAGG_AVG:
|
|
rval = dt_aggregate_averagecmp(laddr, raddr);
|
|
break;
|
|
|
|
case DTRACEAGG_STDDEV:
|
|
rval = dt_aggregate_stddevcmp(laddr, raddr);
|
|
break;
|
|
|
|
case DTRACEAGG_QUANTIZE:
|
|
rval = dt_aggregate_quantizedcmp(laddr, raddr);
|
|
break;
|
|
|
|
case DTRACEAGG_LQUANTIZE:
|
|
rval = dt_aggregate_lquantizedcmp(laddr, raddr);
|
|
break;
|
|
|
|
case DTRACEAGG_LLQUANTIZE:
|
|
rval = dt_aggregate_llquantizedcmp(laddr, raddr);
|
|
break;
|
|
|
|
case DTRACEAGG_COUNT:
|
|
case DTRACEAGG_SUM:
|
|
case DTRACEAGG_MIN:
|
|
case DTRACEAGG_MAX:
|
|
rval = dt_aggregate_countcmp(laddr, raddr);
|
|
break;
|
|
|
|
default:
|
|
assert(0);
|
|
}
|
|
|
|
return (rval);
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_valkeycmp(const void *lhs, const void *rhs)
|
|
{
|
|
int rval;
|
|
|
|
if ((rval = dt_aggregate_valcmp(lhs, rhs)) != 0)
|
|
return (rval);
|
|
|
|
/*
|
|
* If we're here, the values for the two aggregation elements are
|
|
* equal. We already know that the key layout is the same for the two
|
|
* elements; we must now compare the keys themselves as a tie-breaker.
|
|
*/
|
|
return (dt_aggregate_keycmp(lhs, rhs));
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_keyvarcmp(const void *lhs, const void *rhs)
|
|
{
|
|
int rval;
|
|
|
|
if ((rval = dt_aggregate_keycmp(lhs, rhs)) != 0)
|
|
return (rval);
|
|
|
|
return (dt_aggregate_varcmp(lhs, rhs));
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_varkeycmp(const void *lhs, const void *rhs)
|
|
{
|
|
int rval;
|
|
|
|
if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0)
|
|
return (rval);
|
|
|
|
return (dt_aggregate_keycmp(lhs, rhs));
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_valvarcmp(const void *lhs, const void *rhs)
|
|
{
|
|
int rval;
|
|
|
|
if ((rval = dt_aggregate_valkeycmp(lhs, rhs)) != 0)
|
|
return (rval);
|
|
|
|
return (dt_aggregate_varcmp(lhs, rhs));
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_varvalcmp(const void *lhs, const void *rhs)
|
|
{
|
|
int rval;
|
|
|
|
if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0)
|
|
return (rval);
|
|
|
|
return (dt_aggregate_valkeycmp(lhs, rhs));
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_keyvarrevcmp(const void *lhs, const void *rhs)
|
|
{
|
|
return (dt_aggregate_keyvarcmp(rhs, lhs));
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_varkeyrevcmp(const void *lhs, const void *rhs)
|
|
{
|
|
return (dt_aggregate_varkeycmp(rhs, lhs));
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_valvarrevcmp(const void *lhs, const void *rhs)
|
|
{
|
|
return (dt_aggregate_valvarcmp(rhs, lhs));
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_varvalrevcmp(const void *lhs, const void *rhs)
|
|
{
|
|
return (dt_aggregate_varvalcmp(rhs, lhs));
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_bundlecmp(const void *lhs, const void *rhs)
|
|
{
|
|
dt_ahashent_t **lh = *((dt_ahashent_t ***)lhs);
|
|
dt_ahashent_t **rh = *((dt_ahashent_t ***)rhs);
|
|
int i, rval;
|
|
|
|
if (dt_keysort) {
|
|
/*
|
|
* If we're sorting on keys, we need to scan until we find the
|
|
* last entry -- that's the representative key. (The order of
|
|
* the bundle is values followed by key to accommodate the
|
|
* default behavior of sorting by value.) If the keys are
|
|
* equal, we'll fall into the value comparison loop, below.
|
|
*/
|
|
for (i = 0; lh[i + 1] != NULL; i++)
|
|
continue;
|
|
|
|
assert(i != 0);
|
|
assert(rh[i + 1] == NULL);
|
|
|
|
if ((rval = dt_aggregate_keycmp(&lh[i], &rh[i])) != 0)
|
|
return (rval);
|
|
}
|
|
|
|
for (i = 0; ; i++) {
|
|
if (lh[i + 1] == NULL) {
|
|
/*
|
|
* All of the values are equal; if we're sorting on
|
|
* keys, then we're only here because the keys were
|
|
* found to be equal and these records are therefore
|
|
* equal. If we're not sorting on keys, we'll use the
|
|
* key comparison from the representative key as the
|
|
* tie-breaker.
|
|
*/
|
|
if (dt_keysort)
|
|
return (0);
|
|
|
|
assert(i != 0);
|
|
assert(rh[i + 1] == NULL);
|
|
return (dt_aggregate_keycmp(&lh[i], &rh[i]));
|
|
} else {
|
|
if ((rval = dt_aggregate_valcmp(&lh[i], &rh[i])) != 0)
|
|
return (rval);
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
dt_aggregate_go(dtrace_hdl_t *dtp)
|
|
{
|
|
dt_aggregate_t *agp = &dtp->dt_aggregate;
|
|
dtrace_optval_t size, cpu;
|
|
dtrace_bufdesc_t *buf = &agp->dtat_buf;
|
|
int rval, i;
|
|
|
|
assert(agp->dtat_maxcpu == 0);
|
|
assert(agp->dtat_ncpu == 0);
|
|
assert(agp->dtat_cpus == NULL);
|
|
|
|
agp->dtat_maxcpu = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
|
|
agp->dtat_ncpu = dt_sysconf(dtp, _SC_NPROCESSORS_MAX);
|
|
agp->dtat_cpus = malloc(agp->dtat_ncpu * sizeof (processorid_t));
|
|
|
|
if (agp->dtat_cpus == NULL)
|
|
return (dt_set_errno(dtp, EDT_NOMEM));
|
|
|
|
/*
|
|
* Use the aggregation buffer size as reloaded from the kernel.
|
|
*/
|
|
size = dtp->dt_options[DTRACEOPT_AGGSIZE];
|
|
|
|
rval = dtrace_getopt(dtp, "aggsize", &size);
|
|
assert(rval == 0);
|
|
|
|
if (size == 0 || size == DTRACEOPT_UNSET)
|
|
return (0);
|
|
|
|
buf = &agp->dtat_buf;
|
|
buf->dtbd_size = size;
|
|
|
|
if ((buf->dtbd_data = malloc(buf->dtbd_size)) == NULL)
|
|
return (dt_set_errno(dtp, EDT_NOMEM));
|
|
|
|
/*
|
|
* Now query for the CPUs enabled.
|
|
*/
|
|
rval = dtrace_getopt(dtp, "cpu", &cpu);
|
|
assert(rval == 0 && cpu != DTRACEOPT_UNSET);
|
|
|
|
if (cpu != DTRACE_CPUALL) {
|
|
assert(cpu < agp->dtat_ncpu);
|
|
agp->dtat_cpus[agp->dtat_ncpus++] = (processorid_t)cpu;
|
|
|
|
return (0);
|
|
}
|
|
|
|
agp->dtat_ncpus = 0;
|
|
for (i = 0; i < agp->dtat_maxcpu; i++) {
|
|
if (dt_status(dtp, i) == -1)
|
|
continue;
|
|
|
|
agp->dtat_cpus[agp->dtat_ncpus++] = i;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dt_aggwalk_rval(dtrace_hdl_t *dtp, dt_ahashent_t *h, int rval)
|
|
{
|
|
dt_aggregate_t *agp = &dtp->dt_aggregate;
|
|
dtrace_aggdata_t *data;
|
|
dtrace_aggdesc_t *aggdesc;
|
|
dtrace_recdesc_t *rec;
|
|
int i;
|
|
|
|
switch (rval) {
|
|
case DTRACE_AGGWALK_NEXT:
|
|
break;
|
|
|
|
case DTRACE_AGGWALK_CLEAR: {
|
|
uint32_t size, offs = 0;
|
|
|
|
aggdesc = h->dtahe_data.dtada_desc;
|
|
rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
|
|
size = rec->dtrd_size;
|
|
data = &h->dtahe_data;
|
|
|
|
if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) {
|
|
offs = sizeof (uint64_t);
|
|
size -= sizeof (uint64_t);
|
|
}
|
|
|
|
bzero(&data->dtada_data[rec->dtrd_offset] + offs, size);
|
|
|
|
if (data->dtada_percpu == NULL)
|
|
break;
|
|
|
|
for (i = 0; i < dtp->dt_aggregate.dtat_maxcpu; i++)
|
|
bzero(data->dtada_percpu[i] + offs, size);
|
|
break;
|
|
}
|
|
|
|
case DTRACE_AGGWALK_ERROR:
|
|
/*
|
|
* We assume that errno is already set in this case.
|
|
*/
|
|
return (dt_set_errno(dtp, errno));
|
|
|
|
case DTRACE_AGGWALK_ABORT:
|
|
return (dt_set_errno(dtp, EDT_DIRABORT));
|
|
|
|
case DTRACE_AGGWALK_DENORMALIZE:
|
|
h->dtahe_data.dtada_normal = 1;
|
|
return (0);
|
|
|
|
case DTRACE_AGGWALK_NORMALIZE:
|
|
if (h->dtahe_data.dtada_normal == 0) {
|
|
h->dtahe_data.dtada_normal = 1;
|
|
return (dt_set_errno(dtp, EDT_BADRVAL));
|
|
}
|
|
|
|
return (0);
|
|
|
|
case DTRACE_AGGWALK_REMOVE: {
|
|
dtrace_aggdata_t *aggdata = &h->dtahe_data;
|
|
int i, max_cpus = agp->dtat_maxcpu;
|
|
|
|
/*
|
|
* First, remove this hash entry from its hash chain.
|
|
*/
|
|
if (h->dtahe_prev != NULL) {
|
|
h->dtahe_prev->dtahe_next = h->dtahe_next;
|
|
} else {
|
|
dt_ahash_t *hash = &agp->dtat_hash;
|
|
size_t ndx = h->dtahe_hashval % hash->dtah_size;
|
|
|
|
assert(hash->dtah_hash[ndx] == h);
|
|
hash->dtah_hash[ndx] = h->dtahe_next;
|
|
}
|
|
|
|
if (h->dtahe_next != NULL)
|
|
h->dtahe_next->dtahe_prev = h->dtahe_prev;
|
|
|
|
/*
|
|
* Now remove it from the list of all hash entries.
|
|
*/
|
|
if (h->dtahe_prevall != NULL) {
|
|
h->dtahe_prevall->dtahe_nextall = h->dtahe_nextall;
|
|
} else {
|
|
dt_ahash_t *hash = &agp->dtat_hash;
|
|
|
|
assert(hash->dtah_all == h);
|
|
hash->dtah_all = h->dtahe_nextall;
|
|
}
|
|
|
|
if (h->dtahe_nextall != NULL)
|
|
h->dtahe_nextall->dtahe_prevall = h->dtahe_prevall;
|
|
|
|
/*
|
|
* We're unlinked. We can safely destroy the data.
|
|
*/
|
|
if (aggdata->dtada_percpu != NULL) {
|
|
for (i = 0; i < max_cpus; i++)
|
|
free(aggdata->dtada_percpu[i]);
|
|
free(aggdata->dtada_percpu);
|
|
}
|
|
|
|
free(aggdata->dtada_data);
|
|
free(h);
|
|
|
|
return (0);
|
|
}
|
|
|
|
default:
|
|
return (dt_set_errno(dtp, EDT_BADRVAL));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
dt_aggregate_qsort(dtrace_hdl_t *dtp, void *base, size_t nel, size_t width,
|
|
int (*compar)(const void *, const void *))
|
|
{
|
|
int rev = dt_revsort, key = dt_keysort, keypos = dt_keypos;
|
|
dtrace_optval_t keyposopt = dtp->dt_options[DTRACEOPT_AGGSORTKEYPOS];
|
|
|
|
dt_revsort = (dtp->dt_options[DTRACEOPT_AGGSORTREV] != DTRACEOPT_UNSET);
|
|
dt_keysort = (dtp->dt_options[DTRACEOPT_AGGSORTKEY] != DTRACEOPT_UNSET);
|
|
|
|
if (keyposopt != DTRACEOPT_UNSET && keyposopt <= INT_MAX) {
|
|
dt_keypos = (int)keyposopt;
|
|
} else {
|
|
dt_keypos = 0;
|
|
}
|
|
|
|
if (compar == NULL) {
|
|
if (!dt_keysort) {
|
|
compar = dt_aggregate_varvalcmp;
|
|
} else {
|
|
compar = dt_aggregate_varkeycmp;
|
|
}
|
|
}
|
|
|
|
qsort(base, nel, width, compar);
|
|
|
|
dt_revsort = rev;
|
|
dt_keysort = key;
|
|
dt_keypos = keypos;
|
|
}
|
|
|
|
int
|
|
dtrace_aggregate_walk(dtrace_hdl_t *dtp, dtrace_aggregate_f *func, void *arg)
|
|
{
|
|
dt_ahashent_t *h, *next;
|
|
dt_ahash_t *hash = &dtp->dt_aggregate.dtat_hash;
|
|
|
|
for (h = hash->dtah_all; h != NULL; h = next) {
|
|
/*
|
|
* dt_aggwalk_rval() can potentially remove the current hash
|
|
* entry; we need to load the next hash entry before calling
|
|
* into it.
|
|
*/
|
|
next = h->dtahe_nextall;
|
|
|
|
if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1)
|
|
return (-1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dt_aggregate_walk_sorted(dtrace_hdl_t *dtp,
|
|
dtrace_aggregate_f *func, void *arg,
|
|
int (*sfunc)(const void *, const void *))
|
|
{
|
|
dt_aggregate_t *agp = &dtp->dt_aggregate;
|
|
dt_ahashent_t *h, **sorted;
|
|
dt_ahash_t *hash = &agp->dtat_hash;
|
|
size_t i, nentries = 0;
|
|
|
|
for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall)
|
|
nentries++;
|
|
|
|
sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *));
|
|
|
|
if (sorted == NULL)
|
|
return (-1);
|
|
|
|
for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall)
|
|
sorted[i++] = h;
|
|
|
|
(void) pthread_mutex_lock(&dt_qsort_lock);
|
|
|
|
if (sfunc == NULL) {
|
|
dt_aggregate_qsort(dtp, sorted, nentries,
|
|
sizeof (dt_ahashent_t *), NULL);
|
|
} else {
|
|
/*
|
|
* If we've been explicitly passed a sorting function,
|
|
* we'll use that -- ignoring the values of the "aggsortrev",
|
|
* "aggsortkey" and "aggsortkeypos" options.
|
|
*/
|
|
qsort(sorted, nentries, sizeof (dt_ahashent_t *), sfunc);
|
|
}
|
|
|
|
(void) pthread_mutex_unlock(&dt_qsort_lock);
|
|
|
|
for (i = 0; i < nentries; i++) {
|
|
h = sorted[i];
|
|
|
|
if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1) {
|
|
dt_free(dtp, sorted);
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
dt_free(dtp, sorted);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
dtrace_aggregate_walk_sorted(dtrace_hdl_t *dtp,
|
|
dtrace_aggregate_f *func, void *arg)
|
|
{
|
|
return (dt_aggregate_walk_sorted(dtp, func, arg, NULL));
|
|
}
|
|
|
|
int
|
|
dtrace_aggregate_walk_keysorted(dtrace_hdl_t *dtp,
|
|
dtrace_aggregate_f *func, void *arg)
|
|
{
|
|
return (dt_aggregate_walk_sorted(dtp, func,
|
|
arg, dt_aggregate_varkeycmp));
|
|
}
|
|
|
|
int
|
|
dtrace_aggregate_walk_valsorted(dtrace_hdl_t *dtp,
|
|
dtrace_aggregate_f *func, void *arg)
|
|
{
|
|
return (dt_aggregate_walk_sorted(dtp, func,
|
|
arg, dt_aggregate_varvalcmp));
|
|
}
|
|
|
|
int
|
|
dtrace_aggregate_walk_keyvarsorted(dtrace_hdl_t *dtp,
|
|
dtrace_aggregate_f *func, void *arg)
|
|
{
|
|
return (dt_aggregate_walk_sorted(dtp, func,
|
|
arg, dt_aggregate_keyvarcmp));
|
|
}
|
|
|
|
int
|
|
dtrace_aggregate_walk_valvarsorted(dtrace_hdl_t *dtp,
|
|
dtrace_aggregate_f *func, void *arg)
|
|
{
|
|
return (dt_aggregate_walk_sorted(dtp, func,
|
|
arg, dt_aggregate_valvarcmp));
|
|
}
|
|
|
|
int
|
|
dtrace_aggregate_walk_keyrevsorted(dtrace_hdl_t *dtp,
|
|
dtrace_aggregate_f *func, void *arg)
|
|
{
|
|
return (dt_aggregate_walk_sorted(dtp, func,
|
|
arg, dt_aggregate_varkeyrevcmp));
|
|
}
|
|
|
|
int
|
|
dtrace_aggregate_walk_valrevsorted(dtrace_hdl_t *dtp,
|
|
dtrace_aggregate_f *func, void *arg)
|
|
{
|
|
return (dt_aggregate_walk_sorted(dtp, func,
|
|
arg, dt_aggregate_varvalrevcmp));
|
|
}
|
|
|
|
int
|
|
dtrace_aggregate_walk_keyvarrevsorted(dtrace_hdl_t *dtp,
|
|
dtrace_aggregate_f *func, void *arg)
|
|
{
|
|
return (dt_aggregate_walk_sorted(dtp, func,
|
|
arg, dt_aggregate_keyvarrevcmp));
|
|
}
|
|
|
|
int
|
|
dtrace_aggregate_walk_valvarrevsorted(dtrace_hdl_t *dtp,
|
|
dtrace_aggregate_f *func, void *arg)
|
|
{
|
|
return (dt_aggregate_walk_sorted(dtp, func,
|
|
arg, dt_aggregate_valvarrevcmp));
|
|
}
|
|
|
|
int
|
|
dtrace_aggregate_walk_joined(dtrace_hdl_t *dtp, dtrace_aggvarid_t *aggvars,
|
|
int naggvars, dtrace_aggregate_walk_joined_f *func, void *arg)
|
|
{
|
|
dt_aggregate_t *agp = &dtp->dt_aggregate;
|
|
dt_ahashent_t *h, **sorted = NULL, ***bundle, **nbundle;
|
|
const dtrace_aggdata_t **data;
|
|
dt_ahashent_t *zaggdata = NULL;
|
|
dt_ahash_t *hash = &agp->dtat_hash;
|
|
size_t nentries = 0, nbundles = 0, start, zsize = 0, bundlesize;
|
|
dtrace_aggvarid_t max = 0, aggvar;
|
|
int rval = -1, *map, *remap = NULL;
|
|
int i, j;
|
|
dtrace_optval_t sortpos = dtp->dt_options[DTRACEOPT_AGGSORTPOS];
|
|
|
|
/*
|
|
* If the sorting position is greater than the number of aggregation
|
|
* variable IDs, we silently set it to 0.
|
|
*/
|
|
if (sortpos == DTRACEOPT_UNSET || sortpos >= naggvars)
|
|
sortpos = 0;
|
|
|
|
/*
|
|
* First we need to translate the specified aggregation variable IDs
|
|
* into a linear map that will allow us to translate an aggregation
|
|
* variable ID into its position in the specified aggvars.
|
|
*/
|
|
for (i = 0; i < naggvars; i++) {
|
|
if (aggvars[i] == DTRACE_AGGVARIDNONE || aggvars[i] < 0)
|
|
return (dt_set_errno(dtp, EDT_BADAGGVAR));
|
|
|
|
if (aggvars[i] > max)
|
|
max = aggvars[i];
|
|
}
|
|
|
|
if ((map = dt_zalloc(dtp, (max + 1) * sizeof (int))) == NULL)
|
|
return (-1);
|
|
|
|
zaggdata = dt_zalloc(dtp, naggvars * sizeof (dt_ahashent_t));
|
|
|
|
if (zaggdata == NULL)
|
|
goto out;
|
|
|
|
for (i = 0; i < naggvars; i++) {
|
|
int ndx = i + sortpos;
|
|
|
|
if (ndx >= naggvars)
|
|
ndx -= naggvars;
|
|
|
|
aggvar = aggvars[ndx];
|
|
assert(aggvar <= max);
|
|
|
|
if (map[aggvar]) {
|
|
/*
|
|
* We have an aggregation variable that is present
|
|
* more than once in the array of aggregation
|
|
* variables. While it's unclear why one might want
|
|
* to do this, it's legal. To support this construct,
|
|
* we will allocate a remap that will indicate the
|
|
* position from which this aggregation variable
|
|
* should be pulled. (That is, where the remap will
|
|
* map from one position to another.)
|
|
*/
|
|
if (remap == NULL) {
|
|
remap = dt_zalloc(dtp, naggvars * sizeof (int));
|
|
|
|
if (remap == NULL)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Given that the variable is already present, assert
|
|
* that following through the mapping and adjusting
|
|
* for the sort position yields the same aggregation
|
|
* variable ID.
|
|
*/
|
|
assert(aggvars[(map[aggvar] - 1 + sortpos) %
|
|
naggvars] == aggvars[ndx]);
|
|
|
|
remap[i] = map[aggvar];
|
|
continue;
|
|
}
|
|
|
|
map[aggvar] = i + 1;
|
|
}
|
|
|
|
/*
|
|
* We need to take two passes over the data to size our allocation, so
|
|
* we'll use the first pass to also fill in the zero-filled data to be
|
|
* used to properly format a zero-valued aggregation.
|
|
*/
|
|
for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
|
|
dtrace_aggvarid_t id;
|
|
int ndx;
|
|
|
|
if ((id = dt_aggregate_aggvarid(h)) > max || !(ndx = map[id]))
|
|
continue;
|
|
|
|
if (zaggdata[ndx - 1].dtahe_size == 0) {
|
|
zaggdata[ndx - 1].dtahe_size = h->dtahe_size;
|
|
zaggdata[ndx - 1].dtahe_data = h->dtahe_data;
|
|
}
|
|
|
|
nentries++;
|
|
}
|
|
|
|
if (nentries == 0) {
|
|
/*
|
|
* We couldn't find any entries; there is nothing else to do.
|
|
*/
|
|
rval = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Before we sort the data, we're going to look for any holes in our
|
|
* zero-filled data. This will occur if an aggregation variable that
|
|
* we are being asked to print has not yet been assigned the result of
|
|
* any aggregating action for _any_ tuple. The issue becomes that we
|
|
* would like a zero value to be printed for all columns for this
|
|
* aggregation, but without any record description, we don't know the
|
|
* aggregating action that corresponds to the aggregation variable. To
|
|
* try to find a match, we're simply going to lookup aggregation IDs
|
|
* (which are guaranteed to be contiguous and to start from 1), looking
|
|
* for the specified aggregation variable ID. If we find a match,
|
|
* we'll use that. If we iterate over all aggregation IDs and don't
|
|
* find a match, then we must be an anonymous enabling. (Anonymous
|
|
* enablings can't currently derive either aggregation variable IDs or
|
|
* aggregation variable names given only an aggregation ID.) In this
|
|
* obscure case (anonymous enabling, multiple aggregation printa() with
|
|
* some aggregations not represented for any tuple), our defined
|
|
* behavior is that the zero will be printed in the format of the first
|
|
* aggregation variable that contains any non-zero value.
|
|
*/
|
|
for (i = 0; i < naggvars; i++) {
|
|
if (zaggdata[i].dtahe_size == 0) {
|
|
dtrace_aggvarid_t aggvar;
|
|
|
|
aggvar = aggvars[(i - sortpos + naggvars) % naggvars];
|
|
assert(zaggdata[i].dtahe_data.dtada_data == NULL);
|
|
|
|
for (j = DTRACE_AGGIDNONE + 1; ; j++) {
|
|
dtrace_aggdesc_t *agg;
|
|
dtrace_aggdata_t *aggdata;
|
|
|
|
if (dt_aggid_lookup(dtp, j, &agg) != 0)
|
|
break;
|
|
|
|
if (agg->dtagd_varid != aggvar)
|
|
continue;
|
|
|
|
/*
|
|
* We have our description -- now we need to
|
|
* cons up the zaggdata entry for it.
|
|
*/
|
|
aggdata = &zaggdata[i].dtahe_data;
|
|
aggdata->dtada_size = agg->dtagd_size;
|
|
aggdata->dtada_desc = agg;
|
|
aggdata->dtada_handle = dtp;
|
|
(void) dt_epid_lookup(dtp, agg->dtagd_epid,
|
|
&aggdata->dtada_edesc,
|
|
&aggdata->dtada_pdesc);
|
|
aggdata->dtada_normal = 1;
|
|
zaggdata[i].dtahe_hashval = 0;
|
|
zaggdata[i].dtahe_size = agg->dtagd_size;
|
|
break;
|
|
}
|
|
|
|
if (zaggdata[i].dtahe_size == 0) {
|
|
caddr_t data;
|
|
|
|
/*
|
|
* We couldn't find this aggregation, meaning
|
|
* that we have never seen it before for any
|
|
* tuple _and_ this is an anonymous enabling.
|
|
* That is, we're in the obscure case outlined
|
|
* above. In this case, our defined behavior
|
|
* is to format the data in the format of the
|
|
* first non-zero aggregation -- of which, of
|
|
* course, we know there to be at least one
|
|
* (or nentries would have been zero).
|
|
*/
|
|
for (j = 0; j < naggvars; j++) {
|
|
if (zaggdata[j].dtahe_size != 0)
|
|
break;
|
|
}
|
|
|
|
assert(j < naggvars);
|
|
zaggdata[i] = zaggdata[j];
|
|
|
|
data = zaggdata[i].dtahe_data.dtada_data;
|
|
assert(data != NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now we need to allocate our zero-filled data for use for
|
|
* aggregations that don't have a value corresponding to a given key.
|
|
*/
|
|
for (i = 0; i < naggvars; i++) {
|
|
dtrace_aggdata_t *aggdata = &zaggdata[i].dtahe_data;
|
|
dtrace_aggdesc_t *aggdesc = aggdata->dtada_desc;
|
|
dtrace_recdesc_t *rec;
|
|
uint64_t larg;
|
|
caddr_t zdata;
|
|
|
|
zsize = zaggdata[i].dtahe_size;
|
|
assert(zsize != 0);
|
|
|
|
if ((zdata = dt_zalloc(dtp, zsize)) == NULL) {
|
|
/*
|
|
* If we failed to allocated some zero-filled data, we
|
|
* need to zero out the remaining dtada_data pointers
|
|
* to prevent the wrong data from being freed below.
|
|
*/
|
|
for (j = i; j < naggvars; j++)
|
|
zaggdata[j].dtahe_data.dtada_data = NULL;
|
|
goto out;
|
|
}
|
|
|
|
aggvar = aggvars[(i - sortpos + naggvars) % naggvars];
|
|
|
|
/*
|
|
* First, the easy bit. To maintain compatibility with
|
|
* consumers that pull the compiler-generated ID out of the
|
|
* data, we put that ID at the top of the zero-filled data.
|
|
*/
|
|
rec = &aggdesc->dtagd_rec[0];
|
|
/* LINTED - alignment */
|
|
*((dtrace_aggvarid_t *)(zdata + rec->dtrd_offset)) = aggvar;
|
|
|
|
rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
|
|
|
|
/*
|
|
* Now for the more complicated part. If (and only if) this
|
|
* is an lquantize() aggregating action, zero-filled data is
|
|
* not equivalent to an empty record: we must also get the
|
|
* parameters for the lquantize().
|
|
*/
|
|
if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) {
|
|
if (aggdata->dtada_data != NULL) {
|
|
/*
|
|
* The easier case here is if we actually have
|
|
* some prototype data -- in which case we
|
|
* manually dig it out of the aggregation
|
|
* record.
|
|
*/
|
|
/* LINTED - alignment */
|
|
larg = *((uint64_t *)(aggdata->dtada_data +
|
|
rec->dtrd_offset));
|
|
} else {
|
|
/*
|
|
* We don't have any prototype data. As a
|
|
* result, we know that we _do_ have the
|
|
* compiler-generated information. (If this
|
|
* were an anonymous enabling, all of our
|
|
* zero-filled data would have prototype data
|
|
* -- either directly or indirectly.) So as
|
|
* gross as it is, we'll grovel around in the
|
|
* compiler-generated information to find the
|
|
* lquantize() parameters.
|
|
*/
|
|
dtrace_stmtdesc_t *sdp;
|
|
dt_ident_t *aid;
|
|
dt_idsig_t *isp;
|
|
|
|
sdp = (dtrace_stmtdesc_t *)(uintptr_t)
|
|
aggdesc->dtagd_rec[0].dtrd_uarg;
|
|
aid = sdp->dtsd_aggdata;
|
|
isp = (dt_idsig_t *)aid->di_data;
|
|
assert(isp->dis_auxinfo != 0);
|
|
larg = isp->dis_auxinfo;
|
|
}
|
|
|
|
/* LINTED - alignment */
|
|
*((uint64_t *)(zdata + rec->dtrd_offset)) = larg;
|
|
}
|
|
|
|
aggdata->dtada_data = zdata;
|
|
}
|
|
|
|
/*
|
|
* Now that we've dealt with setting up our zero-filled data, we can
|
|
* allocate our sorted array, and take another pass over the data to
|
|
* fill it.
|
|
*/
|
|
sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *));
|
|
|
|
if (sorted == NULL)
|
|
goto out;
|
|
|
|
for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) {
|
|
dtrace_aggvarid_t id;
|
|
|
|
if ((id = dt_aggregate_aggvarid(h)) > max || !map[id])
|
|
continue;
|
|
|
|
sorted[i++] = h;
|
|
}
|
|
|
|
assert(i == nentries);
|
|
|
|
/*
|
|
* We've loaded our array; now we need to sort by value to allow us
|
|
* to create bundles of like value. We're going to acquire the
|
|
* dt_qsort_lock here, and hold it across all of our subsequent
|
|
* comparison and sorting.
|
|
*/
|
|
(void) pthread_mutex_lock(&dt_qsort_lock);
|
|
|
|
qsort(sorted, nentries, sizeof (dt_ahashent_t *),
|
|
dt_aggregate_keyvarcmp);
|
|
|
|
/*
|
|
* Now we need to go through and create bundles. Because the number
|
|
* of bundles is bounded by the size of the sorted array, we're going
|
|
* to reuse the underlying storage. And note that "bundle" is an
|
|
* array of pointers to arrays of pointers to dt_ahashent_t -- making
|
|
* its type (regrettably) "dt_ahashent_t ***". (Regrettable because
|
|
* '*' -- like '_' and 'X' -- should never appear in triplicate in
|
|
* an ideal world.)
|
|
*/
|
|
bundle = (dt_ahashent_t ***)sorted;
|
|
|
|
for (i = 1, start = 0; i <= nentries; i++) {
|
|
if (i < nentries &&
|
|
dt_aggregate_keycmp(&sorted[i], &sorted[i - 1]) == 0)
|
|
continue;
|
|
|
|
/*
|
|
* We have a bundle boundary. Everything from start to
|
|
* (i - 1) belongs in one bundle.
|
|
*/
|
|
assert(i - start <= naggvars);
|
|
bundlesize = (naggvars + 2) * sizeof (dt_ahashent_t *);
|
|
|
|
if ((nbundle = dt_zalloc(dtp, bundlesize)) == NULL) {
|
|
(void) pthread_mutex_unlock(&dt_qsort_lock);
|
|
goto out;
|
|
}
|
|
|
|
for (j = start; j < i; j++) {
|
|
dtrace_aggvarid_t id = dt_aggregate_aggvarid(sorted[j]);
|
|
|
|
assert(id <= max);
|
|
assert(map[id] != 0);
|
|
assert(map[id] - 1 < naggvars);
|
|
assert(nbundle[map[id] - 1] == NULL);
|
|
nbundle[map[id] - 1] = sorted[j];
|
|
|
|
if (nbundle[naggvars] == NULL)
|
|
nbundle[naggvars] = sorted[j];
|
|
}
|
|
|
|
for (j = 0; j < naggvars; j++) {
|
|
if (nbundle[j] != NULL)
|
|
continue;
|
|
|
|
/*
|
|
* Before we assume that this aggregation variable
|
|
* isn't present (and fall back to using the
|
|
* zero-filled data allocated earlier), check the
|
|
* remap. If we have a remapping, we'll drop it in
|
|
* here. Note that we might be remapping an
|
|
* aggregation variable that isn't present for this
|
|
* key; in this case, the aggregation data that we
|
|
* copy will point to the zeroed data.
|
|
*/
|
|
if (remap != NULL && remap[j]) {
|
|
assert(remap[j] - 1 < j);
|
|
assert(nbundle[remap[j] - 1] != NULL);
|
|
nbundle[j] = nbundle[remap[j] - 1];
|
|
} else {
|
|
nbundle[j] = &zaggdata[j];
|
|
}
|
|
}
|
|
|
|
bundle[nbundles++] = nbundle;
|
|
start = i;
|
|
}
|
|
|
|
/*
|
|
* Now we need to re-sort based on the first value.
|
|
*/
|
|
dt_aggregate_qsort(dtp, bundle, nbundles, sizeof (dt_ahashent_t **),
|
|
dt_aggregate_bundlecmp);
|
|
|
|
(void) pthread_mutex_unlock(&dt_qsort_lock);
|
|
|
|
/*
|
|
* We're done! Now we just need to go back over the sorted bundles,
|
|
* calling the function.
|
|
*/
|
|
data = alloca((naggvars + 1) * sizeof (dtrace_aggdata_t *));
|
|
|
|
for (i = 0; i < nbundles; i++) {
|
|
for (j = 0; j < naggvars; j++)
|
|
data[j + 1] = NULL;
|
|
|
|
for (j = 0; j < naggvars; j++) {
|
|
int ndx = j - sortpos;
|
|
|
|
if (ndx < 0)
|
|
ndx += naggvars;
|
|
|
|
assert(bundle[i][ndx] != NULL);
|
|
data[j + 1] = &bundle[i][ndx]->dtahe_data;
|
|
}
|
|
|
|
for (j = 0; j < naggvars; j++)
|
|
assert(data[j + 1] != NULL);
|
|
|
|
/*
|
|
* The representative key is the last element in the bundle.
|
|
* Assert that we have one, and then set it to be the first
|
|
* element of data.
|
|
*/
|
|
assert(bundle[i][j] != NULL);
|
|
data[0] = &bundle[i][j]->dtahe_data;
|
|
|
|
if ((rval = func(data, naggvars + 1, arg)) == -1)
|
|
goto out;
|
|
}
|
|
|
|
rval = 0;
|
|
out:
|
|
for (i = 0; i < nbundles; i++)
|
|
dt_free(dtp, bundle[i]);
|
|
|
|
if (zaggdata != NULL) {
|
|
for (i = 0; i < naggvars; i++)
|
|
dt_free(dtp, zaggdata[i].dtahe_data.dtada_data);
|
|
}
|
|
|
|
dt_free(dtp, zaggdata);
|
|
dt_free(dtp, sorted);
|
|
dt_free(dtp, remap);
|
|
dt_free(dtp, map);
|
|
|
|
return (rval);
|
|
}
|
|
|
|
int
|
|
dtrace_aggregate_print(dtrace_hdl_t *dtp, FILE *fp,
|
|
dtrace_aggregate_walk_f *func)
|
|
{
|
|
dt_print_aggdata_t pd;
|
|
|
|
pd.dtpa_dtp = dtp;
|
|
pd.dtpa_fp = fp;
|
|
pd.dtpa_allunprint = 1;
|
|
|
|
if (func == NULL)
|
|
func = dtrace_aggregate_walk_sorted;
|
|
|
|
if ((*func)(dtp, dt_print_agg, &pd) == -1)
|
|
return (dt_set_errno(dtp, dtp->dt_errno));
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
dtrace_aggregate_clear(dtrace_hdl_t *dtp)
|
|
{
|
|
dt_aggregate_t *agp = &dtp->dt_aggregate;
|
|
dt_ahash_t *hash = &agp->dtat_hash;
|
|
dt_ahashent_t *h;
|
|
dtrace_aggdata_t *data;
|
|
dtrace_aggdesc_t *aggdesc;
|
|
dtrace_recdesc_t *rec;
|
|
int i, max_cpus = agp->dtat_maxcpu;
|
|
|
|
for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
|
|
aggdesc = h->dtahe_data.dtada_desc;
|
|
rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
|
|
data = &h->dtahe_data;
|
|
|
|
bzero(&data->dtada_data[rec->dtrd_offset], rec->dtrd_size);
|
|
|
|
if (data->dtada_percpu == NULL)
|
|
continue;
|
|
|
|
for (i = 0; i < max_cpus; i++)
|
|
bzero(data->dtada_percpu[i], rec->dtrd_size);
|
|
}
|
|
}
|
|
|
|
void
|
|
dt_aggregate_destroy(dtrace_hdl_t *dtp)
|
|
{
|
|
dt_aggregate_t *agp = &dtp->dt_aggregate;
|
|
dt_ahash_t *hash = &agp->dtat_hash;
|
|
dt_ahashent_t *h, *next;
|
|
dtrace_aggdata_t *aggdata;
|
|
int i, max_cpus = agp->dtat_maxcpu;
|
|
|
|
if (hash->dtah_hash == NULL) {
|
|
assert(hash->dtah_all == NULL);
|
|
} else {
|
|
free(hash->dtah_hash);
|
|
|
|
for (h = hash->dtah_all; h != NULL; h = next) {
|
|
next = h->dtahe_nextall;
|
|
|
|
aggdata = &h->dtahe_data;
|
|
|
|
if (aggdata->dtada_percpu != NULL) {
|
|
for (i = 0; i < max_cpus; i++)
|
|
free(aggdata->dtada_percpu[i]);
|
|
free(aggdata->dtada_percpu);
|
|
}
|
|
|
|
free(aggdata->dtada_data);
|
|
free(h);
|
|
}
|
|
|
|
hash->dtah_hash = NULL;
|
|
hash->dtah_all = NULL;
|
|
hash->dtah_size = 0;
|
|
}
|
|
|
|
free(agp->dtat_buf.dtbd_data);
|
|
free(agp->dtat_cpus);
|
|
}
|