dbfa74b7cc
Illumos dtrace issues: 3519 DTrace fails to resolve const types from fbt 3520 dtrace internal error -- token type 316 is not a valid D compilation token 3521 clean up dtrace unit tests
1120 lines
30 KiB
C
1120 lines
30 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2012 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <strings.h>
|
|
#include <stdlib.h>
|
|
#include <limits.h>
|
|
#include <alloca.h>
|
|
#include <assert.h>
|
|
|
|
#include <dt_decl.h>
|
|
#include <dt_parser.h>
|
|
#include <dt_module.h>
|
|
#include <dt_impl.h>
|
|
|
|
static dt_decl_t *
|
|
dt_decl_check(dt_decl_t *ddp)
|
|
{
|
|
if (ddp->dd_kind == CTF_K_UNKNOWN)
|
|
return (ddp); /* nothing to check if the type is not yet set */
|
|
|
|
if (ddp->dd_name != NULL && strcmp(ddp->dd_name, "char") == 0 &&
|
|
(ddp->dd_attr & (DT_DA_SHORT | DT_DA_LONG | DT_DA_LONGLONG))) {
|
|
xyerror(D_DECL_CHARATTR, "invalid type declaration: short and "
|
|
"long may not be used with char type\n");
|
|
}
|
|
|
|
if (ddp->dd_name != NULL && strcmp(ddp->dd_name, "void") == 0 &&
|
|
(ddp->dd_attr & (DT_DA_SHORT | DT_DA_LONG | DT_DA_LONGLONG |
|
|
(DT_DA_SIGNED | DT_DA_UNSIGNED)))) {
|
|
xyerror(D_DECL_VOIDATTR, "invalid type declaration: attributes "
|
|
"may not be used with void type\n");
|
|
}
|
|
|
|
if (ddp->dd_kind != CTF_K_INTEGER &&
|
|
(ddp->dd_attr & (DT_DA_SIGNED | DT_DA_UNSIGNED))) {
|
|
xyerror(D_DECL_SIGNINT, "invalid type declaration: signed and "
|
|
"unsigned may only be used with integer type\n");
|
|
}
|
|
|
|
if (ddp->dd_kind != CTF_K_INTEGER && ddp->dd_kind != CTF_K_FLOAT &&
|
|
(ddp->dd_attr & (DT_DA_LONG | DT_DA_LONGLONG))) {
|
|
xyerror(D_DECL_LONGINT, "invalid type declaration: long and "
|
|
"long long may only be used with integer or "
|
|
"floating-point type\n");
|
|
}
|
|
|
|
return (ddp);
|
|
}
|
|
|
|
dt_decl_t *
|
|
dt_decl_alloc(ushort_t kind, char *name)
|
|
{
|
|
dt_decl_t *ddp = malloc(sizeof (dt_decl_t));
|
|
|
|
if (ddp == NULL)
|
|
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
|
|
|
|
ddp->dd_kind = kind;
|
|
ddp->dd_attr = 0;
|
|
ddp->dd_ctfp = NULL;
|
|
ddp->dd_type = CTF_ERR;
|
|
ddp->dd_name = name;
|
|
ddp->dd_node = NULL;
|
|
ddp->dd_next = NULL;
|
|
|
|
return (ddp);
|
|
}
|
|
|
|
void
|
|
dt_decl_free(dt_decl_t *ddp)
|
|
{
|
|
dt_decl_t *ndp;
|
|
|
|
for (; ddp != NULL; ddp = ndp) {
|
|
ndp = ddp->dd_next;
|
|
free(ddp->dd_name);
|
|
dt_node_list_free(&ddp->dd_node);
|
|
free(ddp);
|
|
}
|
|
}
|
|
|
|
void
|
|
dt_decl_reset(void)
|
|
{
|
|
dt_scope_t *dsp = &yypcb->pcb_dstack;
|
|
dt_decl_t *ddp = dsp->ds_decl;
|
|
|
|
while (ddp->dd_next != NULL) {
|
|
dsp->ds_decl = ddp->dd_next;
|
|
ddp->dd_next = NULL;
|
|
dt_decl_free(ddp);
|
|
ddp = dsp->ds_decl;
|
|
}
|
|
}
|
|
|
|
dt_decl_t *
|
|
dt_decl_push(dt_decl_t *ddp)
|
|
{
|
|
dt_scope_t *dsp = &yypcb->pcb_dstack;
|
|
dt_decl_t *top = dsp->ds_decl;
|
|
|
|
if (top != NULL &&
|
|
top->dd_kind == CTF_K_UNKNOWN && top->dd_name == NULL) {
|
|
top->dd_kind = CTF_K_INTEGER;
|
|
(void) dt_decl_check(top);
|
|
}
|
|
|
|
assert(ddp->dd_next == NULL);
|
|
ddp->dd_next = top;
|
|
dsp->ds_decl = ddp;
|
|
|
|
return (ddp);
|
|
}
|
|
|
|
dt_decl_t *
|
|
dt_decl_pop(void)
|
|
{
|
|
dt_scope_t *dsp = &yypcb->pcb_dstack;
|
|
dt_decl_t *ddp = dt_decl_top();
|
|
|
|
dsp->ds_decl = NULL;
|
|
free(dsp->ds_ident);
|
|
dsp->ds_ident = NULL;
|
|
dsp->ds_ctfp = NULL;
|
|
dsp->ds_type = CTF_ERR;
|
|
dsp->ds_class = DT_DC_DEFAULT;
|
|
dsp->ds_enumval = -1;
|
|
|
|
return (ddp);
|
|
}
|
|
|
|
dt_decl_t *
|
|
dt_decl_pop_param(char **idp)
|
|
{
|
|
dt_scope_t *dsp = &yypcb->pcb_dstack;
|
|
|
|
if (dsp->ds_class != DT_DC_DEFAULT && dsp->ds_class != DT_DC_REGISTER) {
|
|
xyerror(D_DECL_PARMCLASS, "inappropriate storage class "
|
|
"for function or associative array parameter\n");
|
|
}
|
|
|
|
if (idp != NULL && dt_decl_top() != NULL) {
|
|
*idp = dsp->ds_ident;
|
|
dsp->ds_ident = NULL;
|
|
}
|
|
|
|
return (dt_decl_pop());
|
|
}
|
|
|
|
dt_decl_t *
|
|
dt_decl_top(void)
|
|
{
|
|
dt_decl_t *ddp = yypcb->pcb_dstack.ds_decl;
|
|
|
|
if (ddp == NULL)
|
|
longjmp(yypcb->pcb_jmpbuf, EDT_NODECL);
|
|
|
|
if (ddp->dd_kind == CTF_K_UNKNOWN && ddp->dd_name == NULL) {
|
|
ddp->dd_kind = CTF_K_INTEGER;
|
|
(void) dt_decl_check(ddp);
|
|
}
|
|
|
|
return (ddp);
|
|
}
|
|
|
|
dt_decl_t *
|
|
dt_decl_ident(char *name)
|
|
{
|
|
dt_scope_t *dsp = &yypcb->pcb_dstack;
|
|
dt_decl_t *ddp = dsp->ds_decl;
|
|
|
|
if (dsp->ds_ident != NULL) {
|
|
free(name);
|
|
xyerror(D_DECL_IDENT, "old-style declaration or "
|
|
"incorrect type specified\n");
|
|
}
|
|
|
|
dsp->ds_ident = name;
|
|
|
|
if (ddp == NULL)
|
|
ddp = dt_decl_push(dt_decl_alloc(CTF_K_UNKNOWN, NULL));
|
|
|
|
return (ddp);
|
|
}
|
|
|
|
void
|
|
dt_decl_class(dt_dclass_t class)
|
|
{
|
|
dt_scope_t *dsp = &yypcb->pcb_dstack;
|
|
|
|
if (dsp->ds_class != DT_DC_DEFAULT) {
|
|
xyerror(D_DECL_CLASS, "only one storage class allowed "
|
|
"in a declaration\n");
|
|
}
|
|
|
|
dsp->ds_class = class;
|
|
}
|
|
|
|
/*
|
|
* Set the kind and name of the current declaration. If none is allocated,
|
|
* make a new decl and push it on to the top of our stack. If the name or kind
|
|
* is already set for the current decl, then we need to fail this declaration.
|
|
* This can occur because too many types were given (e.g. "int int"), etc.
|
|
*/
|
|
dt_decl_t *
|
|
dt_decl_spec(ushort_t kind, char *name)
|
|
{
|
|
dt_decl_t *ddp = yypcb->pcb_dstack.ds_decl;
|
|
|
|
if (ddp == NULL)
|
|
return (dt_decl_push(dt_decl_alloc(kind, name)));
|
|
|
|
/*
|
|
* If we already have a type name specified and we see another type
|
|
* name, this is an error if the declaration is a typedef. If the
|
|
* declaration is not a typedef, then the user may be trying to declare
|
|
* a variable whose name has been returned by lex as a TNAME token:
|
|
* call dt_decl_ident() as if the grammar's IDENT rule was matched.
|
|
*/
|
|
if (ddp->dd_name != NULL && kind == CTF_K_TYPEDEF) {
|
|
if (yypcb->pcb_dstack.ds_class != DT_DC_TYPEDEF)
|
|
return (dt_decl_ident(name));
|
|
xyerror(D_DECL_IDRED, "identifier redeclared: %s\n", name);
|
|
}
|
|
|
|
if (ddp->dd_name != NULL || ddp->dd_kind != CTF_K_UNKNOWN)
|
|
xyerror(D_DECL_COMBO, "invalid type combination\n");
|
|
|
|
ddp->dd_kind = kind;
|
|
ddp->dd_name = name;
|
|
|
|
return (dt_decl_check(ddp));
|
|
}
|
|
|
|
dt_decl_t *
|
|
dt_decl_attr(ushort_t attr)
|
|
{
|
|
dt_decl_t *ddp = yypcb->pcb_dstack.ds_decl;
|
|
|
|
if (ddp == NULL) {
|
|
ddp = dt_decl_push(dt_decl_alloc(CTF_K_UNKNOWN, NULL));
|
|
ddp->dd_attr = attr;
|
|
return (ddp);
|
|
}
|
|
|
|
if (attr == DT_DA_LONG && (ddp->dd_attr & DT_DA_LONG)) {
|
|
ddp->dd_attr &= ~DT_DA_LONG;
|
|
attr = DT_DA_LONGLONG;
|
|
}
|
|
|
|
ddp->dd_attr |= attr;
|
|
return (dt_decl_check(ddp));
|
|
}
|
|
|
|
/*
|
|
* Examine the list of formal parameters 'flist' and determine if the formal
|
|
* name fnp->dn_string is defined in this list (B_TRUE) or not (B_FALSE).
|
|
* If 'fnp' is in 'flist', do not search beyond 'fnp' itself in 'flist'.
|
|
*/
|
|
static int
|
|
dt_decl_protoform(dt_node_t *fnp, dt_node_t *flist)
|
|
{
|
|
dt_node_t *dnp;
|
|
|
|
for (dnp = flist; dnp != fnp && dnp != NULL; dnp = dnp->dn_list) {
|
|
if (dnp->dn_string != NULL &&
|
|
strcmp(dnp->dn_string, fnp->dn_string) == 0)
|
|
return (B_TRUE);
|
|
}
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Common code for parsing array, function, and probe definition prototypes.
|
|
* The prototype node list is specified as 'plist'. The formal prototype
|
|
* against which to compare the prototype is specified as 'flist'. If plist
|
|
* and flist are the same, we require that named parameters are unique. If
|
|
* plist and flist are different, we require that named parameters in plist
|
|
* match a name that is present in flist.
|
|
*/
|
|
int
|
|
dt_decl_prototype(dt_node_t *plist,
|
|
dt_node_t *flist, const char *kind, uint_t flags)
|
|
{
|
|
char n[DT_TYPE_NAMELEN];
|
|
int is_void, v = 0, i = 1;
|
|
int form = plist != flist;
|
|
dt_node_t *dnp;
|
|
|
|
for (dnp = plist; dnp != NULL; dnp = dnp->dn_list, i++) {
|
|
|
|
if (dnp->dn_type == CTF_ERR && !(flags & DT_DP_VARARGS)) {
|
|
dnerror(dnp, D_DECL_PROTO_VARARGS, "%s prototype may "
|
|
"not use a variable-length argument list\n", kind);
|
|
}
|
|
|
|
if (dt_node_is_dynamic(dnp) && !(flags & DT_DP_DYNAMIC)) {
|
|
dnerror(dnp, D_DECL_PROTO_TYPE, "%s prototype may not "
|
|
"use parameter of type %s: %s, parameter #%d\n",
|
|
kind, dt_node_type_name(dnp, n, sizeof (n)),
|
|
dnp->dn_string ? dnp->dn_string : "(anonymous)", i);
|
|
}
|
|
|
|
is_void = dt_node_is_void(dnp);
|
|
v += is_void;
|
|
|
|
if (is_void && !(flags & DT_DP_VOID)) {
|
|
dnerror(dnp, D_DECL_PROTO_TYPE, "%s prototype may not "
|
|
"use parameter of type %s: %s, parameter #%d\n",
|
|
kind, dt_node_type_name(dnp, n, sizeof (n)),
|
|
dnp->dn_string ? dnp->dn_string : "(anonymous)", i);
|
|
}
|
|
|
|
if (is_void && dnp->dn_string != NULL) {
|
|
dnerror(dnp, D_DECL_PROTO_NAME, "void parameter may "
|
|
"not have a name: %s\n", dnp->dn_string);
|
|
}
|
|
|
|
if (dnp->dn_string != NULL &&
|
|
dt_decl_protoform(dnp, flist) != form) {
|
|
dnerror(dnp, D_DECL_PROTO_FORM, "parameter is "
|
|
"%s declared in %s prototype: %s, parameter #%d\n",
|
|
form ? "not" : "already", kind, dnp->dn_string, i);
|
|
}
|
|
|
|
if (dnp->dn_string == NULL &&
|
|
!is_void && !(flags & DT_DP_ANON)) {
|
|
dnerror(dnp, D_DECL_PROTO_NAME, "parameter declaration "
|
|
"requires a name: parameter #%d\n", i);
|
|
}
|
|
}
|
|
|
|
if (v != 0 && plist->dn_list != NULL)
|
|
xyerror(D_DECL_PROTO_VOID, "void must be sole parameter\n");
|
|
|
|
return (v ? 0 : i - 1); /* return zero if sole parameter is 'void' */
|
|
}
|
|
|
|
dt_decl_t *
|
|
dt_decl_array(dt_node_t *dnp)
|
|
{
|
|
dt_decl_t *ddp = dt_decl_push(dt_decl_alloc(CTF_K_ARRAY, NULL));
|
|
dt_scope_t *dsp = &yypcb->pcb_dstack;
|
|
dt_decl_t *ndp = ddp;
|
|
|
|
/*
|
|
* After pushing the array on to the decl stack, scan ahead for multi-
|
|
* dimensional array declarations and push the current decl to the
|
|
* bottom to match the resulting CTF type tree and data layout. Refer
|
|
* to the comments in dt_decl_type() and ISO C 6.5.2.1 for more info.
|
|
*/
|
|
while (ndp->dd_next != NULL && ndp->dd_next->dd_kind == CTF_K_ARRAY)
|
|
ndp = ndp->dd_next; /* skip to bottom-most array declaration */
|
|
|
|
if (ndp != ddp) {
|
|
if (dnp != NULL && dnp->dn_kind == DT_NODE_TYPE) {
|
|
xyerror(D_DECL_DYNOBJ,
|
|
"cannot declare array of associative arrays\n");
|
|
}
|
|
dsp->ds_decl = ddp->dd_next;
|
|
ddp->dd_next = ndp->dd_next;
|
|
ndp->dd_next = ddp;
|
|
}
|
|
|
|
if (ddp->dd_next->dd_name != NULL &&
|
|
strcmp(ddp->dd_next->dd_name, "void") == 0)
|
|
xyerror(D_DECL_VOIDOBJ, "cannot declare array of void\n");
|
|
|
|
if (dnp != NULL && dnp->dn_kind != DT_NODE_TYPE) {
|
|
dnp = ddp->dd_node = dt_node_cook(dnp, DT_IDFLG_REF);
|
|
|
|
if (dt_node_is_posconst(dnp) == 0) {
|
|
xyerror(D_DECL_ARRSUB, "positive integral constant "
|
|
"expression or tuple signature expected as "
|
|
"array declaration subscript\n");
|
|
}
|
|
|
|
if (dnp->dn_value > UINT_MAX)
|
|
xyerror(D_DECL_ARRBIG, "array dimension too big\n");
|
|
|
|
} else if (dnp != NULL) {
|
|
ddp->dd_node = dnp;
|
|
(void) dt_decl_prototype(dnp, dnp, "array", DT_DP_ANON);
|
|
}
|
|
|
|
return (ddp);
|
|
}
|
|
|
|
/*
|
|
* When a function is declared, we need to fudge the decl stack a bit if the
|
|
* declaration uses the function pointer (*)() syntax. In this case, the
|
|
* dt_decl_func() call occurs *after* the dt_decl_ptr() call, even though the
|
|
* resulting type is "pointer to function". To make the pointer land on top,
|
|
* we check to see if 'pdp' is non-NULL and a pointer. If it is, we search
|
|
* backward for a decl tagged with DT_DA_PAREN, and if one is found, the func
|
|
* decl is inserted behind this node in the decl list instead of at the top.
|
|
* In all cases, the func decl's dd_next pointer is set to the decl chain
|
|
* for the function's return type and the function parameter list is discarded.
|
|
*/
|
|
dt_decl_t *
|
|
dt_decl_func(dt_decl_t *pdp, dt_node_t *dnp)
|
|
{
|
|
dt_decl_t *ddp = dt_decl_alloc(CTF_K_FUNCTION, NULL);
|
|
|
|
ddp->dd_node = dnp;
|
|
|
|
(void) dt_decl_prototype(dnp, dnp, "function",
|
|
DT_DP_VARARGS | DT_DP_VOID | DT_DP_ANON);
|
|
|
|
if (pdp == NULL || pdp->dd_kind != CTF_K_POINTER)
|
|
return (dt_decl_push(ddp));
|
|
|
|
while (pdp->dd_next != NULL && !(pdp->dd_next->dd_attr & DT_DA_PAREN))
|
|
pdp = pdp->dd_next;
|
|
|
|
if (pdp->dd_next == NULL)
|
|
return (dt_decl_push(ddp));
|
|
|
|
ddp->dd_next = pdp->dd_next;
|
|
pdp->dd_next = ddp;
|
|
|
|
return (pdp);
|
|
}
|
|
|
|
dt_decl_t *
|
|
dt_decl_ptr(void)
|
|
{
|
|
return (dt_decl_push(dt_decl_alloc(CTF_K_POINTER, NULL)));
|
|
}
|
|
|
|
dt_decl_t *
|
|
dt_decl_sou(uint_t kind, char *name)
|
|
{
|
|
dt_decl_t *ddp = dt_decl_spec(kind, name);
|
|
char n[DT_TYPE_NAMELEN];
|
|
ctf_file_t *ctfp;
|
|
ctf_id_t type;
|
|
uint_t flag;
|
|
|
|
if (yypcb->pcb_idepth != 0)
|
|
ctfp = yypcb->pcb_hdl->dt_cdefs->dm_ctfp;
|
|
else
|
|
ctfp = yypcb->pcb_hdl->dt_ddefs->dm_ctfp;
|
|
|
|
if (yypcb->pcb_dstack.ds_next != NULL)
|
|
flag = CTF_ADD_NONROOT;
|
|
else
|
|
flag = CTF_ADD_ROOT;
|
|
|
|
(void) snprintf(n, sizeof (n), "%s %s",
|
|
kind == CTF_K_STRUCT ? "struct" : "union",
|
|
name == NULL ? "(anon)" : name);
|
|
|
|
if (name != NULL && (type = ctf_lookup_by_name(ctfp, n)) != CTF_ERR &&
|
|
ctf_type_kind(ctfp, type) != CTF_K_FORWARD)
|
|
xyerror(D_DECL_TYPERED, "type redeclared: %s\n", n);
|
|
|
|
if (kind == CTF_K_STRUCT)
|
|
type = ctf_add_struct(ctfp, flag, name);
|
|
else
|
|
type = ctf_add_union(ctfp, flag, name);
|
|
|
|
if (type == CTF_ERR || ctf_update(ctfp) == CTF_ERR) {
|
|
xyerror(D_UNKNOWN, "failed to define %s: %s\n",
|
|
n, ctf_errmsg(ctf_errno(ctfp)));
|
|
}
|
|
|
|
ddp->dd_ctfp = ctfp;
|
|
ddp->dd_type = type;
|
|
|
|
dt_scope_push(ctfp, type);
|
|
return (ddp);
|
|
}
|
|
|
|
void
|
|
dt_decl_member(dt_node_t *dnp)
|
|
{
|
|
dt_scope_t *dsp = yypcb->pcb_dstack.ds_next;
|
|
dt_decl_t *ddp = yypcb->pcb_dstack.ds_decl;
|
|
char *ident = yypcb->pcb_dstack.ds_ident;
|
|
|
|
const char *idname = ident ? ident : "(anon)";
|
|
char n[DT_TYPE_NAMELEN];
|
|
|
|
dtrace_typeinfo_t dtt;
|
|
ctf_encoding_t cte;
|
|
ctf_id_t base;
|
|
uint_t kind;
|
|
ssize_t size;
|
|
|
|
if (dsp == NULL)
|
|
longjmp(yypcb->pcb_jmpbuf, EDT_NOSCOPE);
|
|
|
|
if (ddp == NULL)
|
|
longjmp(yypcb->pcb_jmpbuf, EDT_NODECL);
|
|
|
|
if (dnp == NULL && ident == NULL)
|
|
xyerror(D_DECL_MNAME, "member declaration requires a name\n");
|
|
|
|
if (ddp->dd_kind == CTF_K_UNKNOWN && ddp->dd_name == NULL) {
|
|
ddp->dd_kind = CTF_K_INTEGER;
|
|
(void) dt_decl_check(ddp);
|
|
}
|
|
|
|
if (dt_decl_type(ddp, &dtt) != 0)
|
|
longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER);
|
|
|
|
if (ident != NULL && strchr(ident, '`') != NULL) {
|
|
xyerror(D_DECL_SCOPE, "D scoping operator may not be used "
|
|
"in a member name (%s)\n", ident);
|
|
}
|
|
|
|
if (dtt.dtt_ctfp == DT_DYN_CTFP(yypcb->pcb_hdl) &&
|
|
dtt.dtt_type == DT_DYN_TYPE(yypcb->pcb_hdl)) {
|
|
xyerror(D_DECL_DYNOBJ,
|
|
"cannot have dynamic member: %s\n", ident);
|
|
}
|
|
|
|
base = ctf_type_resolve(dtt.dtt_ctfp, dtt.dtt_type);
|
|
kind = ctf_type_kind(dtt.dtt_ctfp, base);
|
|
size = ctf_type_size(dtt.dtt_ctfp, base);
|
|
|
|
if (kind == CTF_K_FORWARD || ((kind == CTF_K_STRUCT ||
|
|
kind == CTF_K_UNION) && size == 0)) {
|
|
xyerror(D_DECL_INCOMPLETE, "incomplete struct/union/enum %s: "
|
|
"%s\n", dt_type_name(dtt.dtt_ctfp, dtt.dtt_type,
|
|
n, sizeof (n)), ident);
|
|
}
|
|
|
|
if (size == 0)
|
|
xyerror(D_DECL_VOIDOBJ, "cannot have void member: %s\n", ident);
|
|
|
|
/*
|
|
* If a bit-field qualifier was part of the member declaration, create
|
|
* a new integer type of the same name and attributes as the base type
|
|
* and size equal to the specified number of bits. We reset 'dtt' to
|
|
* refer to this new bit-field type and continue on to add the member.
|
|
*/
|
|
if (dnp != NULL) {
|
|
dnp = dt_node_cook(dnp, DT_IDFLG_REF);
|
|
|
|
/*
|
|
* A bit-field member with no declarator is permitted to have
|
|
* size zero and indicates that no more fields are to be packed
|
|
* into the current storage unit. We ignore these directives
|
|
* as the underlying ctf code currently does so for all fields.
|
|
*/
|
|
if (ident == NULL && dnp->dn_kind == DT_NODE_INT &&
|
|
dnp->dn_value == 0) {
|
|
dt_node_free(dnp);
|
|
goto done;
|
|
}
|
|
|
|
if (dt_node_is_posconst(dnp) == 0) {
|
|
xyerror(D_DECL_BFCONST, "positive integral constant "
|
|
"expression expected as bit-field size\n");
|
|
}
|
|
|
|
if (ctf_type_kind(dtt.dtt_ctfp, base) != CTF_K_INTEGER ||
|
|
ctf_type_encoding(dtt.dtt_ctfp, base, &cte) == CTF_ERR ||
|
|
IS_VOID(cte)) {
|
|
xyerror(D_DECL_BFTYPE, "invalid type for "
|
|
"bit-field: %s\n", idname);
|
|
}
|
|
|
|
if (dnp->dn_value > cte.cte_bits) {
|
|
xyerror(D_DECL_BFSIZE, "bit-field too big "
|
|
"for type: %s\n", idname);
|
|
}
|
|
|
|
cte.cte_offset = 0;
|
|
cte.cte_bits = (uint_t)dnp->dn_value;
|
|
|
|
dtt.dtt_type = ctf_add_integer(dsp->ds_ctfp,
|
|
CTF_ADD_NONROOT, ctf_type_name(dtt.dtt_ctfp,
|
|
dtt.dtt_type, n, sizeof (n)), &cte);
|
|
|
|
if (dtt.dtt_type == CTF_ERR ||
|
|
ctf_update(dsp->ds_ctfp) == CTF_ERR) {
|
|
xyerror(D_UNKNOWN, "failed to create type for "
|
|
"member '%s': %s\n", idname,
|
|
ctf_errmsg(ctf_errno(dsp->ds_ctfp)));
|
|
}
|
|
|
|
dtt.dtt_ctfp = dsp->ds_ctfp;
|
|
dt_node_free(dnp);
|
|
}
|
|
|
|
/*
|
|
* If the member type is not defined in the same CTF container as the
|
|
* one associated with the current scope (i.e. the container for the
|
|
* struct or union itself) or its parent, copy the member type into
|
|
* this container and reset dtt to refer to the copied type.
|
|
*/
|
|
if (dtt.dtt_ctfp != dsp->ds_ctfp &&
|
|
dtt.dtt_ctfp != ctf_parent_file(dsp->ds_ctfp)) {
|
|
|
|
dtt.dtt_type = ctf_add_type(dsp->ds_ctfp,
|
|
dtt.dtt_ctfp, dtt.dtt_type);
|
|
dtt.dtt_ctfp = dsp->ds_ctfp;
|
|
|
|
if (dtt.dtt_type == CTF_ERR ||
|
|
ctf_update(dtt.dtt_ctfp) == CTF_ERR) {
|
|
xyerror(D_UNKNOWN, "failed to copy type of '%s': %s\n",
|
|
idname, ctf_errmsg(ctf_errno(dtt.dtt_ctfp)));
|
|
}
|
|
}
|
|
|
|
if (ctf_add_member(dsp->ds_ctfp, dsp->ds_type,
|
|
ident, dtt.dtt_type) == CTF_ERR) {
|
|
xyerror(D_UNKNOWN, "failed to define member '%s': %s\n",
|
|
idname, ctf_errmsg(ctf_errno(dsp->ds_ctfp)));
|
|
}
|
|
|
|
done:
|
|
free(ident);
|
|
yypcb->pcb_dstack.ds_ident = NULL;
|
|
dt_decl_reset();
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
dt_decl_hasmembers(const char *name, int value, void *private)
|
|
{
|
|
return (1); /* abort search and return true if a member exists */
|
|
}
|
|
|
|
dt_decl_t *
|
|
dt_decl_enum(char *name)
|
|
{
|
|
dt_decl_t *ddp = dt_decl_spec(CTF_K_ENUM, name);
|
|
char n[DT_TYPE_NAMELEN];
|
|
ctf_file_t *ctfp;
|
|
ctf_id_t type;
|
|
uint_t flag;
|
|
|
|
if (yypcb->pcb_idepth != 0)
|
|
ctfp = yypcb->pcb_hdl->dt_cdefs->dm_ctfp;
|
|
else
|
|
ctfp = yypcb->pcb_hdl->dt_ddefs->dm_ctfp;
|
|
|
|
if (yypcb->pcb_dstack.ds_next != NULL)
|
|
flag = CTF_ADD_NONROOT;
|
|
else
|
|
flag = CTF_ADD_ROOT;
|
|
|
|
(void) snprintf(n, sizeof (n), "enum %s", name ? name : "(anon)");
|
|
|
|
if (name != NULL && (type = ctf_lookup_by_name(ctfp, n)) != CTF_ERR) {
|
|
if (ctf_enum_iter(ctfp, type, dt_decl_hasmembers, NULL))
|
|
xyerror(D_DECL_TYPERED, "type redeclared: %s\n", n);
|
|
} else if ((type = ctf_add_enum(ctfp, flag, name)) == CTF_ERR) {
|
|
xyerror(D_UNKNOWN, "failed to define %s: %s\n",
|
|
n, ctf_errmsg(ctf_errno(ctfp)));
|
|
}
|
|
|
|
ddp->dd_ctfp = ctfp;
|
|
ddp->dd_type = type;
|
|
|
|
dt_scope_push(ctfp, type);
|
|
return (ddp);
|
|
}
|
|
|
|
void
|
|
dt_decl_enumerator(char *s, dt_node_t *dnp)
|
|
{
|
|
dt_scope_t *dsp = yypcb->pcb_dstack.ds_next;
|
|
dtrace_hdl_t *dtp = yypcb->pcb_hdl;
|
|
|
|
dt_idnode_t *inp;
|
|
dt_ident_t *idp;
|
|
char *name;
|
|
int value;
|
|
|
|
name = strdupa(s);
|
|
free(s);
|
|
|
|
if (dsp == NULL)
|
|
longjmp(yypcb->pcb_jmpbuf, EDT_NOSCOPE);
|
|
|
|
assert(dsp->ds_decl->dd_kind == CTF_K_ENUM);
|
|
value = dsp->ds_enumval + 1; /* default is previous value plus one */
|
|
|
|
if (strchr(name, '`') != NULL) {
|
|
xyerror(D_DECL_SCOPE, "D scoping operator may not be used in "
|
|
"an enumerator name (%s)\n", name);
|
|
}
|
|
|
|
/*
|
|
* If the enumerator is being assigned a value, cook and check the node
|
|
* and then free it after we get the value. We also permit references
|
|
* to identifiers which are previously defined enumerators in the type.
|
|
*/
|
|
if (dnp != NULL) {
|
|
if (dnp->dn_kind != DT_NODE_IDENT || ctf_enum_value(
|
|
dsp->ds_ctfp, dsp->ds_type, dnp->dn_string, &value) != 0) {
|
|
dnp = dt_node_cook(dnp, DT_IDFLG_REF);
|
|
|
|
if (dnp->dn_kind != DT_NODE_INT) {
|
|
xyerror(D_DECL_ENCONST, "enumerator '%s' must "
|
|
"be assigned to an integral constant "
|
|
"expression\n", name);
|
|
}
|
|
|
|
if ((intmax_t)dnp->dn_value > INT_MAX ||
|
|
(intmax_t)dnp->dn_value < INT_MIN) {
|
|
xyerror(D_DECL_ENOFLOW, "enumerator '%s' value "
|
|
"overflows INT_MAX (%d)\n", name, INT_MAX);
|
|
}
|
|
|
|
value = (int)dnp->dn_value;
|
|
}
|
|
dt_node_free(dnp);
|
|
}
|
|
|
|
if (ctf_add_enumerator(dsp->ds_ctfp, dsp->ds_type,
|
|
name, value) == CTF_ERR || ctf_update(dsp->ds_ctfp) == CTF_ERR) {
|
|
xyerror(D_UNKNOWN, "failed to define enumerator '%s': %s\n",
|
|
name, ctf_errmsg(ctf_errno(dsp->ds_ctfp)));
|
|
}
|
|
|
|
dsp->ds_enumval = value; /* save most recent value */
|
|
|
|
/*
|
|
* If the enumerator name matches an identifier in the global scope,
|
|
* flag this as an error. We only do this for "D" enumerators to
|
|
* prevent "C" header file enumerators from conflicting with the ever-
|
|
* growing list of D built-in global variables and inlines. If a "C"
|
|
* enumerator conflicts with a global identifier, we add the enumerator
|
|
* but do not insert a corresponding inline (i.e. the D variable wins).
|
|
*/
|
|
if (dt_idstack_lookup(&yypcb->pcb_globals, name) != NULL) {
|
|
if (dsp->ds_ctfp == dtp->dt_ddefs->dm_ctfp) {
|
|
xyerror(D_DECL_IDRED,
|
|
"identifier redeclared: %s\n", name);
|
|
} else
|
|
return;
|
|
}
|
|
|
|
dt_dprintf("add global enumerator %s = %d\n", name, value);
|
|
|
|
idp = dt_idhash_insert(dtp->dt_globals, name, DT_IDENT_ENUM,
|
|
DT_IDFLG_INLINE | DT_IDFLG_REF, 0, _dtrace_defattr, 0,
|
|
&dt_idops_inline, NULL, dtp->dt_gen);
|
|
|
|
if (idp == NULL)
|
|
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
|
|
|
|
yyintprefix = 0;
|
|
yyintsuffix[0] = '\0';
|
|
yyintdecimal = 0;
|
|
|
|
dnp = dt_node_int(value);
|
|
dt_node_type_assign(dnp, dsp->ds_ctfp, dsp->ds_type);
|
|
|
|
if ((inp = malloc(sizeof (dt_idnode_t))) == NULL)
|
|
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
|
|
|
|
/*
|
|
* Remove the INT node from the node allocation list and store it in
|
|
* din_list and din_root so it persists with and is freed by the ident.
|
|
*/
|
|
assert(yypcb->pcb_list == dnp);
|
|
yypcb->pcb_list = dnp->dn_link;
|
|
dnp->dn_link = NULL;
|
|
|
|
bzero(inp, sizeof (dt_idnode_t));
|
|
inp->din_list = dnp;
|
|
inp->din_root = dnp;
|
|
|
|
idp->di_iarg = inp;
|
|
idp->di_ctfp = dsp->ds_ctfp;
|
|
idp->di_type = dsp->ds_type;
|
|
}
|
|
|
|
/*
|
|
* Look up the type corresponding to the specified decl stack. The scoping of
|
|
* the underlying type names is handled by dt_type_lookup(). We build up the
|
|
* name from the specified string and prefixes and then lookup the type. If
|
|
* we fail, an errmsg is saved and the caller must abort with EDT_COMPILER.
|
|
*/
|
|
int
|
|
dt_decl_type(dt_decl_t *ddp, dtrace_typeinfo_t *tip)
|
|
{
|
|
dtrace_hdl_t *dtp = yypcb->pcb_hdl;
|
|
|
|
dt_module_t *dmp;
|
|
ctf_arinfo_t r;
|
|
ctf_id_t type;
|
|
|
|
char n[DT_TYPE_NAMELEN];
|
|
uint_t flag;
|
|
char *name;
|
|
int rv;
|
|
|
|
/*
|
|
* Based on our current #include depth and decl stack depth, determine
|
|
* which dynamic CTF module and scope to use when adding any new types.
|
|
*/
|
|
dmp = yypcb->pcb_idepth ? dtp->dt_cdefs : dtp->dt_ddefs;
|
|
flag = yypcb->pcb_dstack.ds_next ? CTF_ADD_NONROOT : CTF_ADD_ROOT;
|
|
|
|
/*
|
|
* If we have already cached a CTF type for this decl, then we just
|
|
* return the type information for the cached type.
|
|
*/
|
|
if (ddp->dd_ctfp != NULL &&
|
|
(dmp = dt_module_lookup_by_ctf(dtp, ddp->dd_ctfp)) != NULL) {
|
|
tip->dtt_object = dmp->dm_name;
|
|
tip->dtt_ctfp = ddp->dd_ctfp;
|
|
tip->dtt_type = ddp->dd_type;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Currently CTF treats all function pointers identically. We cache a
|
|
* representative ID of kind CTF_K_FUNCTION and just return that type.
|
|
* If we want to support full function declarations, dd_next refers to
|
|
* the declaration of the function return type, and the parameter list
|
|
* should be parsed and hung off a new pointer inside of this decl.
|
|
*/
|
|
if (ddp->dd_kind == CTF_K_FUNCTION) {
|
|
tip->dtt_object = dtp->dt_ddefs->dm_name;
|
|
tip->dtt_ctfp = DT_FUNC_CTFP(dtp);
|
|
tip->dtt_type = DT_FUNC_TYPE(dtp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If the decl is a pointer, resolve the rest of the stack by calling
|
|
* dt_decl_type() recursively and then compute a pointer to the result.
|
|
* Similar to the code above, we return a cached id for function ptrs.
|
|
*/
|
|
if (ddp->dd_kind == CTF_K_POINTER) {
|
|
if (ddp->dd_next->dd_kind == CTF_K_FUNCTION) {
|
|
tip->dtt_object = dtp->dt_ddefs->dm_name;
|
|
tip->dtt_ctfp = DT_FPTR_CTFP(dtp);
|
|
tip->dtt_type = DT_FPTR_TYPE(dtp);
|
|
return (0);
|
|
}
|
|
|
|
if ((rv = dt_decl_type(ddp->dd_next, tip)) == 0 &&
|
|
(rv = dt_type_pointer(tip)) != 0) {
|
|
xywarn(D_UNKNOWN, "cannot find type: %s*: %s\n",
|
|
dt_type_name(tip->dtt_ctfp, tip->dtt_type,
|
|
n, sizeof (n)), ctf_errmsg(dtp->dt_ctferr));
|
|
}
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* If the decl is an array, we must find the base type and then call
|
|
* dt_decl_type() recursively and then build an array of the result.
|
|
* The C and D multi-dimensional array syntax requires that consecutive
|
|
* array declarations be processed from right-to-left (i.e. top-down
|
|
* from the perspective of the declaration stack). For example, an
|
|
* array declaration such as int x[3][5] is stored on the stack as:
|
|
*
|
|
* (bottom) NULL <- ( INT "int" ) <- ( ARR [3] ) <- ( ARR [5] ) (top)
|
|
*
|
|
* but means that x is declared to be an array of 3 objects each of
|
|
* which is an array of 5 integers, or in CTF representation:
|
|
*
|
|
* type T1:( content=int, nelems=5 ) type T2:( content=T1, nelems=3 )
|
|
*
|
|
* For more details, refer to K&R[5.7] and ISO C 6.5.2.1. Rather than
|
|
* overcomplicate the implementation of dt_decl_type(), we push array
|
|
* declarations down into the stack in dt_decl_array(), above, so that
|
|
* by the time dt_decl_type() is called, the decl stack looks like:
|
|
*
|
|
* (bottom) NULL <- ( INT "int" ) <- ( ARR [5] ) <- ( ARR [3] ) (top)
|
|
*
|
|
* which permits a straightforward recursive descent of the decl stack
|
|
* to build the corresponding CTF type tree in the appropriate order.
|
|
*/
|
|
if (ddp->dd_kind == CTF_K_ARRAY) {
|
|
/*
|
|
* If the array decl has a parameter list associated with it,
|
|
* this is an associative array declaration: return <DYN>.
|
|
*/
|
|
if (ddp->dd_node != NULL &&
|
|
ddp->dd_node->dn_kind == DT_NODE_TYPE) {
|
|
tip->dtt_object = dtp->dt_ddefs->dm_name;
|
|
tip->dtt_ctfp = DT_DYN_CTFP(dtp);
|
|
tip->dtt_type = DT_DYN_TYPE(dtp);
|
|
return (0);
|
|
}
|
|
|
|
if ((rv = dt_decl_type(ddp->dd_next, tip)) != 0)
|
|
return (rv);
|
|
|
|
/*
|
|
* If the array base type is not defined in the target
|
|
* container or its parent, copy the type to the target
|
|
* container and reset dtt_ctfp and dtt_type to the copy.
|
|
*/
|
|
if (tip->dtt_ctfp != dmp->dm_ctfp &&
|
|
tip->dtt_ctfp != ctf_parent_file(dmp->dm_ctfp)) {
|
|
|
|
tip->dtt_type = ctf_add_type(dmp->dm_ctfp,
|
|
tip->dtt_ctfp, tip->dtt_type);
|
|
tip->dtt_ctfp = dmp->dm_ctfp;
|
|
|
|
if (tip->dtt_type == CTF_ERR ||
|
|
ctf_update(tip->dtt_ctfp) == CTF_ERR) {
|
|
xywarn(D_UNKNOWN, "failed to copy type: %s\n",
|
|
ctf_errmsg(ctf_errno(tip->dtt_ctfp)));
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The array index type is irrelevant in C and D: just set it
|
|
* to "long" for all array types that we create on-the-fly.
|
|
*/
|
|
r.ctr_contents = tip->dtt_type;
|
|
r.ctr_index = ctf_lookup_by_name(tip->dtt_ctfp, "long");
|
|
r.ctr_nelems = ddp->dd_node ?
|
|
(uint_t)ddp->dd_node->dn_value : 0;
|
|
|
|
tip->dtt_object = dmp->dm_name;
|
|
tip->dtt_ctfp = dmp->dm_ctfp;
|
|
tip->dtt_type = ctf_add_array(dmp->dm_ctfp, CTF_ADD_ROOT, &r);
|
|
|
|
if (tip->dtt_type == CTF_ERR ||
|
|
ctf_update(tip->dtt_ctfp) == CTF_ERR) {
|
|
xywarn(D_UNKNOWN, "failed to create array type: %s\n",
|
|
ctf_errmsg(ctf_errno(tip->dtt_ctfp)));
|
|
return (-1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Allocate space for the type name and enough space for the maximum
|
|
* additional text ("unsigned long long \0" requires 20 more bytes).
|
|
*/
|
|
name = alloca(ddp->dd_name ? strlen(ddp->dd_name) + 20 : 20);
|
|
name[0] = '\0';
|
|
|
|
switch (ddp->dd_kind) {
|
|
case CTF_K_INTEGER:
|
|
case CTF_K_FLOAT:
|
|
if (ddp->dd_attr & DT_DA_SIGNED)
|
|
(void) strcat(name, "signed ");
|
|
if (ddp->dd_attr & DT_DA_UNSIGNED)
|
|
(void) strcat(name, "unsigned ");
|
|
if (ddp->dd_attr & DT_DA_SHORT)
|
|
(void) strcat(name, "short ");
|
|
if (ddp->dd_attr & DT_DA_LONG)
|
|
(void) strcat(name, "long ");
|
|
if (ddp->dd_attr & DT_DA_LONGLONG)
|
|
(void) strcat(name, "long long ");
|
|
if (ddp->dd_attr == 0 && ddp->dd_name == NULL)
|
|
(void) strcat(name, "int");
|
|
break;
|
|
case CTF_K_STRUCT:
|
|
(void) strcpy(name, "struct ");
|
|
break;
|
|
case CTF_K_UNION:
|
|
(void) strcpy(name, "union ");
|
|
break;
|
|
case CTF_K_ENUM:
|
|
(void) strcpy(name, "enum ");
|
|
break;
|
|
case CTF_K_TYPEDEF:
|
|
break;
|
|
default:
|
|
xywarn(D_UNKNOWN, "internal error -- "
|
|
"bad decl kind %u\n", ddp->dd_kind);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Add dd_name unless a short, long, or long long is explicitly
|
|
* suffixed by int. We use the C/CTF canonical names for integers.
|
|
*/
|
|
if (ddp->dd_name != NULL && (ddp->dd_kind != CTF_K_INTEGER ||
|
|
(ddp->dd_attr & (DT_DA_SHORT | DT_DA_LONG | DT_DA_LONGLONG)) == 0))
|
|
(void) strcat(name, ddp->dd_name);
|
|
|
|
/*
|
|
* Lookup the type. If we find it, we're done. Otherwise create a
|
|
* forward tag for the type if it is a struct, union, or enum. If
|
|
* we can't find it and we can't create a tag, return failure.
|
|
*/
|
|
if ((rv = dt_type_lookup(name, tip)) == 0)
|
|
return (rv);
|
|
|
|
switch (ddp->dd_kind) {
|
|
case CTF_K_STRUCT:
|
|
case CTF_K_UNION:
|
|
case CTF_K_ENUM:
|
|
type = ctf_add_forward(dmp->dm_ctfp, flag,
|
|
ddp->dd_name, ddp->dd_kind);
|
|
break;
|
|
default:
|
|
xywarn(D_UNKNOWN, "failed to resolve type %s: %s\n", name,
|
|
dtrace_errmsg(dtp, dtrace_errno(dtp)));
|
|
return (rv);
|
|
}
|
|
|
|
if (type == CTF_ERR || ctf_update(dmp->dm_ctfp) == CTF_ERR) {
|
|
xywarn(D_UNKNOWN, "failed to add forward tag for %s: %s\n",
|
|
name, ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
|
|
return (-1);
|
|
}
|
|
|
|
ddp->dd_ctfp = dmp->dm_ctfp;
|
|
ddp->dd_type = type;
|
|
|
|
tip->dtt_object = dmp->dm_name;
|
|
tip->dtt_ctfp = dmp->dm_ctfp;
|
|
tip->dtt_type = type;
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
dt_scope_create(dt_scope_t *dsp)
|
|
{
|
|
dsp->ds_decl = NULL;
|
|
dsp->ds_next = NULL;
|
|
dsp->ds_ident = NULL;
|
|
dsp->ds_ctfp = NULL;
|
|
dsp->ds_type = CTF_ERR;
|
|
dsp->ds_class = DT_DC_DEFAULT;
|
|
dsp->ds_enumval = -1;
|
|
}
|
|
|
|
void
|
|
dt_scope_destroy(dt_scope_t *dsp)
|
|
{
|
|
dt_scope_t *nsp;
|
|
|
|
for (; dsp != NULL; dsp = nsp) {
|
|
dt_decl_free(dsp->ds_decl);
|
|
free(dsp->ds_ident);
|
|
nsp = dsp->ds_next;
|
|
if (dsp != &yypcb->pcb_dstack)
|
|
free(dsp);
|
|
}
|
|
}
|
|
|
|
void
|
|
dt_scope_push(ctf_file_t *ctfp, ctf_id_t type)
|
|
{
|
|
dt_scope_t *rsp = &yypcb->pcb_dstack;
|
|
dt_scope_t *dsp = malloc(sizeof (dt_scope_t));
|
|
|
|
if (dsp == NULL)
|
|
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
|
|
|
|
dsp->ds_decl = rsp->ds_decl;
|
|
dsp->ds_next = rsp->ds_next;
|
|
dsp->ds_ident = rsp->ds_ident;
|
|
dsp->ds_ctfp = ctfp;
|
|
dsp->ds_type = type;
|
|
dsp->ds_class = rsp->ds_class;
|
|
dsp->ds_enumval = rsp->ds_enumval;
|
|
|
|
dt_scope_create(rsp);
|
|
rsp->ds_next = dsp;
|
|
}
|
|
|
|
dt_decl_t *
|
|
dt_scope_pop(void)
|
|
{
|
|
dt_scope_t *rsp = &yypcb->pcb_dstack;
|
|
dt_scope_t *dsp = rsp->ds_next;
|
|
|
|
if (dsp == NULL)
|
|
longjmp(yypcb->pcb_jmpbuf, EDT_NOSCOPE);
|
|
|
|
if (dsp->ds_ctfp != NULL && ctf_update(dsp->ds_ctfp) == CTF_ERR) {
|
|
xyerror(D_UNKNOWN, "failed to update type definitions: %s\n",
|
|
ctf_errmsg(ctf_errno(dsp->ds_ctfp)));
|
|
}
|
|
|
|
dt_decl_free(rsp->ds_decl);
|
|
free(rsp->ds_ident);
|
|
|
|
rsp->ds_decl = dsp->ds_decl;
|
|
rsp->ds_next = dsp->ds_next;
|
|
rsp->ds_ident = dsp->ds_ident;
|
|
rsp->ds_ctfp = dsp->ds_ctfp;
|
|
rsp->ds_type = dsp->ds_type;
|
|
rsp->ds_class = dsp->ds_class;
|
|
rsp->ds_enumval = dsp->ds_enumval;
|
|
|
|
free(dsp);
|
|
return (rsp->ds_decl);
|
|
}
|