41adcc32e9
References: https://www.illumos.org/issues/3021 https://www.illumos.org/issues/3022 https://www.illumos.org/issues/3023 https://www.illumos.org/issues/3024 https://www.illumos.org/issues/3025 https://www.illumos.org/issues/3026 Obtained from: ssh://anonhg@hg.illumos.org/illumos-gate
1148 lines
34 KiB
C
1148 lines
34 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2012 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* DTrace Process Control
|
|
*
|
|
* This file provides a set of routines that permit libdtrace and its clients
|
|
* to create and grab process handles using libproc, and to share these handles
|
|
* between library mechanisms that need libproc access, such as ustack(), and
|
|
* client mechanisms that need libproc access, such as dtrace(1M) -c and -p.
|
|
* The library provides several mechanisms in the libproc control layer:
|
|
*
|
|
* Reference Counting: The library code and client code can independently grab
|
|
* the same process handles without interfering with one another. Only when
|
|
* the reference count drops to zero and the handle is not being cached (see
|
|
* below for more information on caching) will Prelease() be called on it.
|
|
*
|
|
* Handle Caching: If a handle is grabbed PGRAB_RDONLY (e.g. by ustack()) and
|
|
* the reference count drops to zero, the handle is not immediately released.
|
|
* Instead, libproc handles are maintained on dph_lrulist in order from most-
|
|
* recently accessed to least-recently accessed. Idle handles are maintained
|
|
* until a pre-defined LRU cache limit is exceeded, permitting repeated calls
|
|
* to ustack() to avoid the overhead of releasing and re-grabbing processes.
|
|
*
|
|
* Process Control: For processes that are grabbed for control (~PGRAB_RDONLY)
|
|
* or created by dt_proc_create(), a control thread is created to provide
|
|
* callbacks on process exit and symbol table caching on dlopen()s.
|
|
*
|
|
* MT-Safety: Libproc is not MT-Safe, so dt_proc_lock() and dt_proc_unlock()
|
|
* are provided to synchronize access to the libproc handle between libdtrace
|
|
* code and client code and the control thread's use of the ps_prochandle.
|
|
*
|
|
* NOTE: MT-Safety is NOT provided for libdtrace itself, or for use of the
|
|
* dtrace_proc_grab/dtrace_proc_create mechanisms. Like all exported libdtrace
|
|
* calls, these are assumed to be MT-Unsafe. MT-Safety is ONLY provided for
|
|
* synchronization between libdtrace control threads and the client thread.
|
|
*
|
|
* The ps_prochandles themselves are maintained along with a dt_proc_t struct
|
|
* in a hash table indexed by PID. This provides basic locking and reference
|
|
* counting. The dt_proc_t is also maintained in LRU order on dph_lrulist.
|
|
* The dph_lrucnt and dph_lrulim count the number of cacheable processes and
|
|
* the current limit on the number of actively cached entries.
|
|
*
|
|
* The control thread for a process establishes breakpoints at the rtld_db
|
|
* locations of interest, updates mappings and symbol tables at these points,
|
|
* and handles exec and fork (by always following the parent). The control
|
|
* thread automatically exits when the process dies or control is lost.
|
|
*
|
|
* A simple notification mechanism is provided for libdtrace clients using
|
|
* dtrace_handle_proc() for notification of PS_UNDEAD or PS_LOST events. If
|
|
* such an event occurs, the dt_proc_t itself is enqueued on a notification
|
|
* list and the control thread broadcasts to dph_cv. dtrace_sleep() will wake
|
|
* up using this condition and will then call the client handler as necessary.
|
|
*/
|
|
|
|
#include <sys/wait.h>
|
|
#include <sys/lwp.h>
|
|
#include <strings.h>
|
|
#include <signal.h>
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
|
|
#include <dt_proc.h>
|
|
#include <dt_pid.h>
|
|
#include <dt_impl.h>
|
|
|
|
#define IS_SYS_EXEC(w) (w == SYS_execve)
|
|
#define IS_SYS_FORK(w) (w == SYS_vfork || w == SYS_forksys)
|
|
|
|
static dt_bkpt_t *
|
|
dt_proc_bpcreate(dt_proc_t *dpr, uintptr_t addr, dt_bkpt_f *func, void *data)
|
|
{
|
|
struct ps_prochandle *P = dpr->dpr_proc;
|
|
dt_bkpt_t *dbp;
|
|
|
|
assert(MUTEX_HELD(&dpr->dpr_lock));
|
|
|
|
if ((dbp = dt_zalloc(dpr->dpr_hdl, sizeof (dt_bkpt_t))) != NULL) {
|
|
dbp->dbp_func = func;
|
|
dbp->dbp_data = data;
|
|
dbp->dbp_addr = addr;
|
|
|
|
if (Psetbkpt(P, dbp->dbp_addr, &dbp->dbp_instr) == 0)
|
|
dbp->dbp_active = B_TRUE;
|
|
|
|
dt_list_append(&dpr->dpr_bps, dbp);
|
|
}
|
|
|
|
return (dbp);
|
|
}
|
|
|
|
static void
|
|
dt_proc_bpdestroy(dt_proc_t *dpr, int delbkpts)
|
|
{
|
|
int state = Pstate(dpr->dpr_proc);
|
|
dt_bkpt_t *dbp, *nbp;
|
|
|
|
assert(MUTEX_HELD(&dpr->dpr_lock));
|
|
|
|
for (dbp = dt_list_next(&dpr->dpr_bps); dbp != NULL; dbp = nbp) {
|
|
if (delbkpts && dbp->dbp_active &&
|
|
state != PS_LOST && state != PS_UNDEAD) {
|
|
(void) Pdelbkpt(dpr->dpr_proc,
|
|
dbp->dbp_addr, dbp->dbp_instr);
|
|
}
|
|
nbp = dt_list_next(dbp);
|
|
dt_list_delete(&dpr->dpr_bps, dbp);
|
|
dt_free(dpr->dpr_hdl, dbp);
|
|
}
|
|
}
|
|
|
|
static void
|
|
dt_proc_bpmatch(dtrace_hdl_t *dtp, dt_proc_t *dpr)
|
|
{
|
|
const lwpstatus_t *psp = &Pstatus(dpr->dpr_proc)->pr_lwp;
|
|
dt_bkpt_t *dbp;
|
|
|
|
assert(MUTEX_HELD(&dpr->dpr_lock));
|
|
|
|
for (dbp = dt_list_next(&dpr->dpr_bps);
|
|
dbp != NULL; dbp = dt_list_next(dbp)) {
|
|
if (psp->pr_reg[R_PC] == dbp->dbp_addr)
|
|
break;
|
|
}
|
|
|
|
if (dbp == NULL) {
|
|
dt_dprintf("pid %d: spurious breakpoint wakeup for %lx\n",
|
|
(int)dpr->dpr_pid, (ulong_t)psp->pr_reg[R_PC]);
|
|
return;
|
|
}
|
|
|
|
dt_dprintf("pid %d: hit breakpoint at %lx (%lu)\n",
|
|
(int)dpr->dpr_pid, (ulong_t)dbp->dbp_addr, ++dbp->dbp_hits);
|
|
|
|
dbp->dbp_func(dtp, dpr, dbp->dbp_data);
|
|
(void) Pxecbkpt(dpr->dpr_proc, dbp->dbp_instr);
|
|
}
|
|
|
|
static void
|
|
dt_proc_bpenable(dt_proc_t *dpr)
|
|
{
|
|
dt_bkpt_t *dbp;
|
|
|
|
assert(MUTEX_HELD(&dpr->dpr_lock));
|
|
|
|
for (dbp = dt_list_next(&dpr->dpr_bps);
|
|
dbp != NULL; dbp = dt_list_next(dbp)) {
|
|
if (!dbp->dbp_active && Psetbkpt(dpr->dpr_proc,
|
|
dbp->dbp_addr, &dbp->dbp_instr) == 0)
|
|
dbp->dbp_active = B_TRUE;
|
|
}
|
|
|
|
dt_dprintf("breakpoints enabled\n");
|
|
}
|
|
|
|
static void
|
|
dt_proc_bpdisable(dt_proc_t *dpr)
|
|
{
|
|
dt_bkpt_t *dbp;
|
|
|
|
assert(MUTEX_HELD(&dpr->dpr_lock));
|
|
|
|
for (dbp = dt_list_next(&dpr->dpr_bps);
|
|
dbp != NULL; dbp = dt_list_next(dbp)) {
|
|
if (dbp->dbp_active && Pdelbkpt(dpr->dpr_proc,
|
|
dbp->dbp_addr, dbp->dbp_instr) == 0)
|
|
dbp->dbp_active = B_FALSE;
|
|
}
|
|
|
|
dt_dprintf("breakpoints disabled\n");
|
|
}
|
|
|
|
static void
|
|
dt_proc_notify(dtrace_hdl_t *dtp, dt_proc_hash_t *dph, dt_proc_t *dpr,
|
|
const char *msg)
|
|
{
|
|
dt_proc_notify_t *dprn = dt_alloc(dtp, sizeof (dt_proc_notify_t));
|
|
|
|
if (dprn == NULL) {
|
|
dt_dprintf("failed to allocate notification for %d %s\n",
|
|
(int)dpr->dpr_pid, msg);
|
|
} else {
|
|
dprn->dprn_dpr = dpr;
|
|
if (msg == NULL)
|
|
dprn->dprn_errmsg[0] = '\0';
|
|
else
|
|
(void) strlcpy(dprn->dprn_errmsg, msg,
|
|
sizeof (dprn->dprn_errmsg));
|
|
|
|
(void) pthread_mutex_lock(&dph->dph_lock);
|
|
|
|
dprn->dprn_next = dph->dph_notify;
|
|
dph->dph_notify = dprn;
|
|
|
|
(void) pthread_cond_broadcast(&dph->dph_cv);
|
|
(void) pthread_mutex_unlock(&dph->dph_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check to see if the control thread was requested to stop when the victim
|
|
* process reached a particular event (why) rather than continuing the victim.
|
|
* If 'why' is set in the stop mask, we wait on dpr_cv for dt_proc_continue().
|
|
* If 'why' is not set, this function returns immediately and does nothing.
|
|
*/
|
|
static void
|
|
dt_proc_stop(dt_proc_t *dpr, uint8_t why)
|
|
{
|
|
assert(MUTEX_HELD(&dpr->dpr_lock));
|
|
assert(why != DT_PROC_STOP_IDLE);
|
|
|
|
if (dpr->dpr_stop & why) {
|
|
dpr->dpr_stop |= DT_PROC_STOP_IDLE;
|
|
dpr->dpr_stop &= ~why;
|
|
|
|
(void) pthread_cond_broadcast(&dpr->dpr_cv);
|
|
|
|
/*
|
|
* We disable breakpoints while stopped to preserve the
|
|
* integrity of the program text for both our own disassembly
|
|
* and that of the kernel.
|
|
*/
|
|
dt_proc_bpdisable(dpr);
|
|
|
|
while (dpr->dpr_stop & DT_PROC_STOP_IDLE)
|
|
(void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
|
|
|
|
dt_proc_bpenable(dpr);
|
|
}
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dt_proc_bpmain(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *fname)
|
|
{
|
|
dt_dprintf("pid %d: breakpoint at %s()\n", (int)dpr->dpr_pid, fname);
|
|
dt_proc_stop(dpr, DT_PROC_STOP_MAIN);
|
|
}
|
|
|
|
static void
|
|
dt_proc_rdevent(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *evname)
|
|
{
|
|
rd_event_msg_t rdm;
|
|
rd_err_e err;
|
|
|
|
if ((err = rd_event_getmsg(dpr->dpr_rtld, &rdm)) != RD_OK) {
|
|
dt_dprintf("pid %d: failed to get %s event message: %s\n",
|
|
(int)dpr->dpr_pid, evname, rd_errstr(err));
|
|
return;
|
|
}
|
|
|
|
dt_dprintf("pid %d: rtld event %s type=%d state %d\n",
|
|
(int)dpr->dpr_pid, evname, rdm.type, rdm.u.state);
|
|
|
|
switch (rdm.type) {
|
|
case RD_DLACTIVITY:
|
|
if (rdm.u.state != RD_CONSISTENT)
|
|
break;
|
|
|
|
Pupdate_syms(dpr->dpr_proc);
|
|
if (dt_pid_create_probes_module(dtp, dpr) != 0)
|
|
dt_proc_notify(dtp, dtp->dt_procs, dpr,
|
|
dpr->dpr_errmsg);
|
|
|
|
break;
|
|
case RD_PREINIT:
|
|
Pupdate_syms(dpr->dpr_proc);
|
|
dt_proc_stop(dpr, DT_PROC_STOP_PREINIT);
|
|
break;
|
|
case RD_POSTINIT:
|
|
Pupdate_syms(dpr->dpr_proc);
|
|
dt_proc_stop(dpr, DT_PROC_STOP_POSTINIT);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
dt_proc_rdwatch(dt_proc_t *dpr, rd_event_e event, const char *evname)
|
|
{
|
|
rd_notify_t rdn;
|
|
rd_err_e err;
|
|
|
|
if ((err = rd_event_addr(dpr->dpr_rtld, event, &rdn)) != RD_OK) {
|
|
dt_dprintf("pid %d: failed to get event address for %s: %s\n",
|
|
(int)dpr->dpr_pid, evname, rd_errstr(err));
|
|
return;
|
|
}
|
|
|
|
if (rdn.type != RD_NOTIFY_BPT) {
|
|
dt_dprintf("pid %d: event %s has unexpected type %d\n",
|
|
(int)dpr->dpr_pid, evname, rdn.type);
|
|
return;
|
|
}
|
|
|
|
(void) dt_proc_bpcreate(dpr, rdn.u.bptaddr,
|
|
(dt_bkpt_f *)dt_proc_rdevent, (void *)evname);
|
|
}
|
|
|
|
/*
|
|
* Common code for enabling events associated with the run-time linker after
|
|
* attaching to a process or after a victim process completes an exec(2).
|
|
*/
|
|
static void
|
|
dt_proc_attach(dt_proc_t *dpr, int exec)
|
|
{
|
|
const pstatus_t *psp = Pstatus(dpr->dpr_proc);
|
|
rd_err_e err;
|
|
GElf_Sym sym;
|
|
|
|
assert(MUTEX_HELD(&dpr->dpr_lock));
|
|
|
|
if (exec) {
|
|
if (psp->pr_lwp.pr_errno != 0)
|
|
return; /* exec failed: nothing needs to be done */
|
|
|
|
dt_proc_bpdestroy(dpr, B_FALSE);
|
|
Preset_maps(dpr->dpr_proc);
|
|
}
|
|
|
|
if ((dpr->dpr_rtld = Prd_agent(dpr->dpr_proc)) != NULL &&
|
|
(err = rd_event_enable(dpr->dpr_rtld, B_TRUE)) == RD_OK) {
|
|
dt_proc_rdwatch(dpr, RD_PREINIT, "RD_PREINIT");
|
|
dt_proc_rdwatch(dpr, RD_POSTINIT, "RD_POSTINIT");
|
|
dt_proc_rdwatch(dpr, RD_DLACTIVITY, "RD_DLACTIVITY");
|
|
} else {
|
|
dt_dprintf("pid %d: failed to enable rtld events: %s\n",
|
|
(int)dpr->dpr_pid, dpr->dpr_rtld ? rd_errstr(err) :
|
|
"rtld_db agent initialization failed");
|
|
}
|
|
|
|
Pupdate_maps(dpr->dpr_proc);
|
|
|
|
if (Pxlookup_by_name(dpr->dpr_proc, LM_ID_BASE,
|
|
"a.out", "main", &sym, NULL) == 0) {
|
|
(void) dt_proc_bpcreate(dpr, (uintptr_t)sym.st_value,
|
|
(dt_bkpt_f *)dt_proc_bpmain, "a.out`main");
|
|
} else {
|
|
dt_dprintf("pid %d: failed to find a.out`main: %s\n",
|
|
(int)dpr->dpr_pid, strerror(errno));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Wait for a stopped process to be set running again by some other debugger.
|
|
* This is typically not required by /proc-based debuggers, since the usual
|
|
* model is that one debugger controls one victim. But DTrace, as usual, has
|
|
* its own needs: the stop() action assumes that prun(1) or some other tool
|
|
* will be applied to resume the victim process. This could be solved by
|
|
* adding a PCWRUN directive to /proc, but that seems like overkill unless
|
|
* other debuggers end up needing this functionality, so we implement a cheap
|
|
* equivalent to PCWRUN using the set of existing kernel mechanisms.
|
|
*
|
|
* Our intent is really not just to wait for the victim to run, but rather to
|
|
* wait for it to run and then stop again for a reason other than the current
|
|
* PR_REQUESTED stop. Since PCWSTOP/Pstopstatus() can be applied repeatedly
|
|
* to a stopped process and will return the same result without affecting the
|
|
* victim, we can just perform these operations repeatedly until Pstate()
|
|
* changes, the representative LWP ID changes, or the stop timestamp advances.
|
|
* dt_proc_control() will then rediscover the new state and continue as usual.
|
|
* When the process is still stopped in the same exact state, we sleep for a
|
|
* brief interval before waiting again so as not to spin consuming CPU cycles.
|
|
*/
|
|
static void
|
|
dt_proc_waitrun(dt_proc_t *dpr)
|
|
{
|
|
struct ps_prochandle *P = dpr->dpr_proc;
|
|
const lwpstatus_t *psp = &Pstatus(P)->pr_lwp;
|
|
|
|
int krflag = psp->pr_flags & (PR_KLC | PR_RLC);
|
|
timestruc_t tstamp = psp->pr_tstamp;
|
|
lwpid_t lwpid = psp->pr_lwpid;
|
|
|
|
const long wstop = PCWSTOP;
|
|
int pfd = Pctlfd(P);
|
|
|
|
assert(MUTEX_HELD(&dpr->dpr_lock));
|
|
assert(psp->pr_flags & PR_STOPPED);
|
|
assert(Pstate(P) == PS_STOP);
|
|
|
|
/*
|
|
* While we are waiting for the victim to run, clear PR_KLC and PR_RLC
|
|
* so that if the libdtrace client is killed, the victim stays stopped.
|
|
* dt_proc_destroy() will also observe this and perform PRELEASE_HANG.
|
|
*/
|
|
(void) Punsetflags(P, krflag);
|
|
Psync(P);
|
|
|
|
(void) pthread_mutex_unlock(&dpr->dpr_lock);
|
|
|
|
while (!dpr->dpr_quit) {
|
|
if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR)
|
|
continue; /* check dpr_quit and continue waiting */
|
|
|
|
(void) pthread_mutex_lock(&dpr->dpr_lock);
|
|
(void) Pstopstatus(P, PCNULL, 0);
|
|
psp = &Pstatus(P)->pr_lwp;
|
|
|
|
/*
|
|
* If we've reached a new state, found a new representative, or
|
|
* the stop timestamp has changed, restore PR_KLC/PR_RLC to its
|
|
* original setting and then return with dpr_lock held.
|
|
*/
|
|
if (Pstate(P) != PS_STOP || psp->pr_lwpid != lwpid ||
|
|
bcmp(&psp->pr_tstamp, &tstamp, sizeof (tstamp)) != 0) {
|
|
(void) Psetflags(P, krflag);
|
|
Psync(P);
|
|
return;
|
|
}
|
|
|
|
(void) pthread_mutex_unlock(&dpr->dpr_lock);
|
|
(void) poll(NULL, 0, MILLISEC / 2);
|
|
}
|
|
|
|
(void) pthread_mutex_lock(&dpr->dpr_lock);
|
|
}
|
|
|
|
typedef struct dt_proc_control_data {
|
|
dtrace_hdl_t *dpcd_hdl; /* DTrace handle */
|
|
dt_proc_t *dpcd_proc; /* proccess to control */
|
|
} dt_proc_control_data_t;
|
|
|
|
/*
|
|
* Main loop for all victim process control threads. We initialize all the
|
|
* appropriate /proc control mechanisms, and then enter a loop waiting for
|
|
* the process to stop on an event or die. We process any events by calling
|
|
* appropriate subroutines, and exit when the victim dies or we lose control.
|
|
*
|
|
* The control thread synchronizes the use of dpr_proc with other libdtrace
|
|
* threads using dpr_lock. We hold the lock for all of our operations except
|
|
* waiting while the process is running: this is accomplished by writing a
|
|
* PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. If the
|
|
* libdtrace client wishes to exit or abort our wait, SIGCANCEL can be used.
|
|
*/
|
|
static void *
|
|
dt_proc_control(void *arg)
|
|
{
|
|
dt_proc_control_data_t *datap = arg;
|
|
dtrace_hdl_t *dtp = datap->dpcd_hdl;
|
|
dt_proc_t *dpr = datap->dpcd_proc;
|
|
dt_proc_hash_t *dph = dtp->dt_procs;
|
|
struct ps_prochandle *P = dpr->dpr_proc;
|
|
|
|
int pfd = Pctlfd(P);
|
|
int pid = dpr->dpr_pid;
|
|
|
|
const long wstop = PCWSTOP;
|
|
int notify = B_FALSE;
|
|
|
|
/*
|
|
* We disable the POSIX thread cancellation mechanism so that the
|
|
* client program using libdtrace can't accidentally cancel our thread.
|
|
* dt_proc_destroy() uses SIGCANCEL explicitly to simply poke us out
|
|
* of PCWSTOP with EINTR, at which point we will see dpr_quit and exit.
|
|
*/
|
|
(void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);
|
|
|
|
/*
|
|
* Set up the corresponding process for tracing by libdtrace. We want
|
|
* to be able to catch breakpoints and efficiently single-step over
|
|
* them, and we need to enable librtld_db to watch libdl activity.
|
|
*/
|
|
(void) pthread_mutex_lock(&dpr->dpr_lock);
|
|
|
|
(void) Punsetflags(P, PR_ASYNC); /* require synchronous mode */
|
|
(void) Psetflags(P, PR_BPTADJ); /* always adjust eip on x86 */
|
|
(void) Punsetflags(P, PR_FORK); /* do not inherit on fork */
|
|
|
|
(void) Pfault(P, FLTBPT, B_TRUE); /* always trace breakpoints */
|
|
(void) Pfault(P, FLTTRACE, B_TRUE); /* always trace single-step */
|
|
|
|
/*
|
|
* We must trace exit from exec() system calls so that if the exec is
|
|
* successful, we can reset our breakpoints and re-initialize libproc.
|
|
*/
|
|
(void) Psysexit(P, SYS_execve, B_TRUE);
|
|
|
|
/*
|
|
* We must trace entry and exit for fork() system calls in order to
|
|
* disable our breakpoints temporarily during the fork. We do not set
|
|
* the PR_FORK flag, so if fork succeeds the child begins executing and
|
|
* does not inherit any other tracing behaviors or a control thread.
|
|
*/
|
|
(void) Psysentry(P, SYS_vfork, B_TRUE);
|
|
(void) Psysexit(P, SYS_vfork, B_TRUE);
|
|
(void) Psysentry(P, SYS_forksys, B_TRUE);
|
|
(void) Psysexit(P, SYS_forksys, B_TRUE);
|
|
|
|
Psync(P); /* enable all /proc changes */
|
|
dt_proc_attach(dpr, B_FALSE); /* enable rtld breakpoints */
|
|
|
|
/*
|
|
* If PR_KLC is set, we created the process; otherwise we grabbed it.
|
|
* Check for an appropriate stop request and wait for dt_proc_continue.
|
|
*/
|
|
if (Pstatus(P)->pr_flags & PR_KLC)
|
|
dt_proc_stop(dpr, DT_PROC_STOP_CREATE);
|
|
else
|
|
dt_proc_stop(dpr, DT_PROC_STOP_GRAB);
|
|
|
|
if (Psetrun(P, 0, 0) == -1) {
|
|
dt_dprintf("pid %d: failed to set running: %s\n",
|
|
(int)dpr->dpr_pid, strerror(errno));
|
|
}
|
|
|
|
(void) pthread_mutex_unlock(&dpr->dpr_lock);
|
|
|
|
/*
|
|
* Wait for the process corresponding to this control thread to stop,
|
|
* process the event, and then set it running again. We want to sleep
|
|
* with dpr_lock *unheld* so that other parts of libdtrace can use the
|
|
* ps_prochandle in the meantime (e.g. ustack()). To do this, we write
|
|
* a PCWSTOP directive directly to the underlying /proc/<pid>/ctl file.
|
|
* Once the process stops, we wake up, grab dpr_lock, and then call
|
|
* Pwait() (which will return immediately) and do our processing.
|
|
*/
|
|
while (!dpr->dpr_quit) {
|
|
const lwpstatus_t *psp;
|
|
|
|
if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR)
|
|
continue; /* check dpr_quit and continue waiting */
|
|
|
|
(void) pthread_mutex_lock(&dpr->dpr_lock);
|
|
pwait_locked:
|
|
if (Pstopstatus(P, PCNULL, 0) == -1 && errno == EINTR) {
|
|
(void) pthread_mutex_unlock(&dpr->dpr_lock);
|
|
continue; /* check dpr_quit and continue waiting */
|
|
}
|
|
|
|
switch (Pstate(P)) {
|
|
case PS_STOP:
|
|
psp = &Pstatus(P)->pr_lwp;
|
|
|
|
dt_dprintf("pid %d: proc stopped showing %d/%d\n",
|
|
pid, psp->pr_why, psp->pr_what);
|
|
|
|
/*
|
|
* If the process stops showing PR_REQUESTED, then the
|
|
* DTrace stop() action was applied to it or another
|
|
* debugging utility (e.g. pstop(1)) asked it to stop.
|
|
* In either case, the user's intention is for the
|
|
* process to remain stopped until another external
|
|
* mechanism (e.g. prun(1)) is applied. So instead of
|
|
* setting the process running ourself, we wait for
|
|
* someone else to do so. Once that happens, we return
|
|
* to our normal loop waiting for an event of interest.
|
|
*/
|
|
if (psp->pr_why == PR_REQUESTED) {
|
|
dt_proc_waitrun(dpr);
|
|
(void) pthread_mutex_unlock(&dpr->dpr_lock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the process stops showing one of the events that
|
|
* we are tracing, perform the appropriate response.
|
|
* Note that we ignore PR_SUSPENDED, PR_CHECKPOINT, and
|
|
* PR_JOBCONTROL by design: if one of these conditions
|
|
* occurs, we will fall through to Psetrun() but the
|
|
* process will remain stopped in the kernel by the
|
|
* corresponding mechanism (e.g. job control stop).
|
|
*/
|
|
if (psp->pr_why == PR_FAULTED && psp->pr_what == FLTBPT)
|
|
dt_proc_bpmatch(dtp, dpr);
|
|
else if (psp->pr_why == PR_SYSENTRY &&
|
|
IS_SYS_FORK(psp->pr_what))
|
|
dt_proc_bpdisable(dpr);
|
|
else if (psp->pr_why == PR_SYSEXIT &&
|
|
IS_SYS_FORK(psp->pr_what))
|
|
dt_proc_bpenable(dpr);
|
|
else if (psp->pr_why == PR_SYSEXIT &&
|
|
IS_SYS_EXEC(psp->pr_what))
|
|
dt_proc_attach(dpr, B_TRUE);
|
|
break;
|
|
|
|
case PS_LOST:
|
|
if (Preopen(P) == 0)
|
|
goto pwait_locked;
|
|
|
|
dt_dprintf("pid %d: proc lost: %s\n",
|
|
pid, strerror(errno));
|
|
|
|
dpr->dpr_quit = B_TRUE;
|
|
notify = B_TRUE;
|
|
break;
|
|
|
|
case PS_UNDEAD:
|
|
dt_dprintf("pid %d: proc died\n", pid);
|
|
dpr->dpr_quit = B_TRUE;
|
|
notify = B_TRUE;
|
|
break;
|
|
}
|
|
|
|
if (Pstate(P) != PS_UNDEAD && Psetrun(P, 0, 0) == -1) {
|
|
dt_dprintf("pid %d: failed to set running: %s\n",
|
|
(int)dpr->dpr_pid, strerror(errno));
|
|
}
|
|
|
|
(void) pthread_mutex_unlock(&dpr->dpr_lock);
|
|
}
|
|
|
|
/*
|
|
* If the control thread detected PS_UNDEAD or PS_LOST, then enqueue
|
|
* the dt_proc_t structure on the dt_proc_hash_t notification list.
|
|
*/
|
|
if (notify)
|
|
dt_proc_notify(dtp, dph, dpr, NULL);
|
|
|
|
/*
|
|
* Destroy and remove any remaining breakpoints, set dpr_done and clear
|
|
* dpr_tid to indicate the control thread has exited, and notify any
|
|
* waiting thread in dt_proc_destroy() that we have succesfully exited.
|
|
*/
|
|
(void) pthread_mutex_lock(&dpr->dpr_lock);
|
|
|
|
dt_proc_bpdestroy(dpr, B_TRUE);
|
|
dpr->dpr_done = B_TRUE;
|
|
dpr->dpr_tid = 0;
|
|
|
|
(void) pthread_cond_broadcast(&dpr->dpr_cv);
|
|
(void) pthread_mutex_unlock(&dpr->dpr_lock);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*PRINTFLIKE3*/
|
|
static struct ps_prochandle *
|
|
dt_proc_error(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *format, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, format);
|
|
dt_set_errmsg(dtp, NULL, NULL, NULL, 0, format, ap);
|
|
va_end(ap);
|
|
|
|
if (dpr->dpr_proc != NULL)
|
|
Prelease(dpr->dpr_proc, 0);
|
|
|
|
dt_free(dtp, dpr);
|
|
(void) dt_set_errno(dtp, EDT_COMPILER);
|
|
return (NULL);
|
|
}
|
|
|
|
dt_proc_t *
|
|
dt_proc_lookup(dtrace_hdl_t *dtp, struct ps_prochandle *P, int remove)
|
|
{
|
|
dt_proc_hash_t *dph = dtp->dt_procs;
|
|
pid_t pid = Pstatus(P)->pr_pid;
|
|
dt_proc_t *dpr, **dpp = &dph->dph_hash[pid & (dph->dph_hashlen - 1)];
|
|
|
|
for (dpr = *dpp; dpr != NULL; dpr = dpr->dpr_hash) {
|
|
if (dpr->dpr_pid == pid)
|
|
break;
|
|
else
|
|
dpp = &dpr->dpr_hash;
|
|
}
|
|
|
|
assert(dpr != NULL);
|
|
assert(dpr->dpr_proc == P);
|
|
|
|
if (remove)
|
|
*dpp = dpr->dpr_hash; /* remove from pid hash chain */
|
|
|
|
return (dpr);
|
|
}
|
|
|
|
static void
|
|
dt_proc_destroy(dtrace_hdl_t *dtp, struct ps_prochandle *P)
|
|
{
|
|
dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
|
|
dt_proc_hash_t *dph = dtp->dt_procs;
|
|
dt_proc_notify_t *npr, **npp;
|
|
int rflag;
|
|
|
|
assert(dpr != NULL);
|
|
|
|
/*
|
|
* If neither PR_KLC nor PR_RLC is set, then the process is stopped by
|
|
* an external debugger and we were waiting in dt_proc_waitrun().
|
|
* Leave the process in this condition using PRELEASE_HANG.
|
|
*/
|
|
if (!(Pstatus(dpr->dpr_proc)->pr_flags & (PR_KLC | PR_RLC))) {
|
|
dt_dprintf("abandoning pid %d\n", (int)dpr->dpr_pid);
|
|
rflag = PRELEASE_HANG;
|
|
} else if (Pstatus(dpr->dpr_proc)->pr_flags & PR_KLC) {
|
|
dt_dprintf("killing pid %d\n", (int)dpr->dpr_pid);
|
|
rflag = PRELEASE_KILL; /* apply kill-on-last-close */
|
|
} else {
|
|
dt_dprintf("releasing pid %d\n", (int)dpr->dpr_pid);
|
|
rflag = 0; /* apply run-on-last-close */
|
|
}
|
|
|
|
if (dpr->dpr_tid) {
|
|
/*
|
|
* Set the dpr_quit flag to tell the daemon thread to exit. We
|
|
* send it a SIGCANCEL to poke it out of PCWSTOP or any other
|
|
* long-term /proc system call. Our daemon threads have POSIX
|
|
* cancellation disabled, so EINTR will be the only effect. We
|
|
* then wait for dpr_done to indicate the thread has exited.
|
|
*
|
|
* We can't use pthread_kill() to send SIGCANCEL because the
|
|
* interface forbids it and we can't use pthread_cancel()
|
|
* because with cancellation disabled it won't actually
|
|
* send SIGCANCEL to the target thread, so we use _lwp_kill()
|
|
* to do the job. This is all built on evil knowledge of
|
|
* the details of the cancellation mechanism in libc.
|
|
*/
|
|
(void) pthread_mutex_lock(&dpr->dpr_lock);
|
|
dpr->dpr_quit = B_TRUE;
|
|
(void) _lwp_kill(dpr->dpr_tid, SIGCANCEL);
|
|
|
|
/*
|
|
* If the process is currently idling in dt_proc_stop(), re-
|
|
* enable breakpoints and poke it into running again.
|
|
*/
|
|
if (dpr->dpr_stop & DT_PROC_STOP_IDLE) {
|
|
dt_proc_bpenable(dpr);
|
|
dpr->dpr_stop &= ~DT_PROC_STOP_IDLE;
|
|
(void) pthread_cond_broadcast(&dpr->dpr_cv);
|
|
}
|
|
|
|
while (!dpr->dpr_done)
|
|
(void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
|
|
|
|
(void) pthread_mutex_unlock(&dpr->dpr_lock);
|
|
}
|
|
|
|
/*
|
|
* Before we free the process structure, remove this dt_proc_t from the
|
|
* lookup hash, and then walk the dt_proc_hash_t's notification list
|
|
* and remove this dt_proc_t if it is enqueued.
|
|
*/
|
|
(void) pthread_mutex_lock(&dph->dph_lock);
|
|
(void) dt_proc_lookup(dtp, P, B_TRUE);
|
|
npp = &dph->dph_notify;
|
|
|
|
while ((npr = *npp) != NULL) {
|
|
if (npr->dprn_dpr == dpr) {
|
|
*npp = npr->dprn_next;
|
|
dt_free(dtp, npr);
|
|
} else {
|
|
npp = &npr->dprn_next;
|
|
}
|
|
}
|
|
|
|
(void) pthread_mutex_unlock(&dph->dph_lock);
|
|
|
|
/*
|
|
* Remove the dt_proc_list from the LRU list, release the underlying
|
|
* libproc handle, and free our dt_proc_t data structure.
|
|
*/
|
|
if (dpr->dpr_cacheable) {
|
|
assert(dph->dph_lrucnt != 0);
|
|
dph->dph_lrucnt--;
|
|
}
|
|
|
|
dt_list_delete(&dph->dph_lrulist, dpr);
|
|
Prelease(dpr->dpr_proc, rflag);
|
|
dt_free(dtp, dpr);
|
|
}
|
|
|
|
static int
|
|
dt_proc_create_thread(dtrace_hdl_t *dtp, dt_proc_t *dpr, uint_t stop)
|
|
{
|
|
dt_proc_control_data_t data;
|
|
sigset_t nset, oset;
|
|
pthread_attr_t a;
|
|
int err;
|
|
|
|
(void) pthread_mutex_lock(&dpr->dpr_lock);
|
|
dpr->dpr_stop |= stop; /* set bit for initial rendezvous */
|
|
|
|
(void) pthread_attr_init(&a);
|
|
(void) pthread_attr_setdetachstate(&a, PTHREAD_CREATE_DETACHED);
|
|
|
|
(void) sigfillset(&nset);
|
|
(void) sigdelset(&nset, SIGABRT); /* unblocked for assert() */
|
|
(void) sigdelset(&nset, SIGCANCEL); /* see dt_proc_destroy() */
|
|
|
|
data.dpcd_hdl = dtp;
|
|
data.dpcd_proc = dpr;
|
|
|
|
(void) pthread_sigmask(SIG_SETMASK, &nset, &oset);
|
|
err = pthread_create(&dpr->dpr_tid, &a, dt_proc_control, &data);
|
|
(void) pthread_sigmask(SIG_SETMASK, &oset, NULL);
|
|
|
|
/*
|
|
* If the control thread was created, then wait on dpr_cv for either
|
|
* dpr_done to be set (the victim died or the control thread failed)
|
|
* or DT_PROC_STOP_IDLE to be set, indicating that the victim is now
|
|
* stopped by /proc and the control thread is at the rendezvous event.
|
|
* On success, we return with the process and control thread stopped:
|
|
* the caller can then apply dt_proc_continue() to resume both.
|
|
*/
|
|
if (err == 0) {
|
|
while (!dpr->dpr_done && !(dpr->dpr_stop & DT_PROC_STOP_IDLE))
|
|
(void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
|
|
|
|
/*
|
|
* If dpr_done is set, the control thread aborted before it
|
|
* reached the rendezvous event. This is either due to PS_LOST
|
|
* or PS_UNDEAD (i.e. the process died). We try to provide a
|
|
* small amount of useful information to help figure it out.
|
|
*/
|
|
if (dpr->dpr_done) {
|
|
const psinfo_t *prp = Ppsinfo(dpr->dpr_proc);
|
|
int stat = prp ? prp->pr_wstat : 0;
|
|
int pid = dpr->dpr_pid;
|
|
|
|
if (Pstate(dpr->dpr_proc) == PS_LOST) {
|
|
(void) dt_proc_error(dpr->dpr_hdl, dpr,
|
|
"failed to control pid %d: process exec'd "
|
|
"set-id or unobservable program\n", pid);
|
|
} else if (WIFSIGNALED(stat)) {
|
|
(void) dt_proc_error(dpr->dpr_hdl, dpr,
|
|
"failed to control pid %d: process died "
|
|
"from signal %d\n", pid, WTERMSIG(stat));
|
|
} else {
|
|
(void) dt_proc_error(dpr->dpr_hdl, dpr,
|
|
"failed to control pid %d: process exited "
|
|
"with status %d\n", pid, WEXITSTATUS(stat));
|
|
}
|
|
|
|
err = ESRCH; /* cause grab() or create() to fail */
|
|
}
|
|
} else {
|
|
(void) dt_proc_error(dpr->dpr_hdl, dpr,
|
|
"failed to create control thread for process-id %d: %s\n",
|
|
(int)dpr->dpr_pid, strerror(err));
|
|
}
|
|
|
|
(void) pthread_mutex_unlock(&dpr->dpr_lock);
|
|
(void) pthread_attr_destroy(&a);
|
|
|
|
return (err);
|
|
}
|
|
|
|
struct ps_prochandle *
|
|
dt_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv)
|
|
{
|
|
dt_proc_hash_t *dph = dtp->dt_procs;
|
|
dt_proc_t *dpr;
|
|
int err;
|
|
|
|
if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL)
|
|
return (NULL); /* errno is set for us */
|
|
|
|
(void) pthread_mutex_init(&dpr->dpr_lock, NULL);
|
|
(void) pthread_cond_init(&dpr->dpr_cv, NULL);
|
|
|
|
dpr->dpr_proc = Pxcreate(file, argv, dtp->dt_proc_env, &err, NULL, 0);
|
|
if (dpr->dpr_proc == NULL) {
|
|
return (dt_proc_error(dtp, dpr,
|
|
"failed to execute %s: %s\n", file, Pcreate_error(err)));
|
|
}
|
|
|
|
dpr->dpr_hdl = dtp;
|
|
dpr->dpr_pid = Pstatus(dpr->dpr_proc)->pr_pid;
|
|
|
|
(void) Punsetflags(dpr->dpr_proc, PR_RLC);
|
|
(void) Psetflags(dpr->dpr_proc, PR_KLC);
|
|
|
|
if (dt_proc_create_thread(dtp, dpr, dtp->dt_prcmode) != 0)
|
|
return (NULL); /* dt_proc_error() has been called for us */
|
|
|
|
dpr->dpr_hash = dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)];
|
|
dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)] = dpr;
|
|
dt_list_prepend(&dph->dph_lrulist, dpr);
|
|
|
|
dt_dprintf("created pid %d\n", (int)dpr->dpr_pid);
|
|
dpr->dpr_refs++;
|
|
|
|
return (dpr->dpr_proc);
|
|
}
|
|
|
|
struct ps_prochandle *
|
|
dt_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags, int nomonitor)
|
|
{
|
|
dt_proc_hash_t *dph = dtp->dt_procs;
|
|
uint_t h = pid & (dph->dph_hashlen - 1);
|
|
dt_proc_t *dpr, *opr;
|
|
int err;
|
|
|
|
/*
|
|
* Search the hash table for the pid. If it is already grabbed or
|
|
* created, move the handle to the front of the lrulist, increment
|
|
* the reference count, and return the existing ps_prochandle.
|
|
*/
|
|
for (dpr = dph->dph_hash[h]; dpr != NULL; dpr = dpr->dpr_hash) {
|
|
if (dpr->dpr_pid == pid && !dpr->dpr_stale) {
|
|
/*
|
|
* If the cached handle was opened read-only and
|
|
* this request is for a writeable handle, mark
|
|
* the cached handle as stale and open a new handle.
|
|
* Since it's stale, unmark it as cacheable.
|
|
*/
|
|
if (dpr->dpr_rdonly && !(flags & PGRAB_RDONLY)) {
|
|
dt_dprintf("upgrading pid %d\n", (int)pid);
|
|
dpr->dpr_stale = B_TRUE;
|
|
dpr->dpr_cacheable = B_FALSE;
|
|
dph->dph_lrucnt--;
|
|
break;
|
|
}
|
|
|
|
dt_dprintf("grabbed pid %d (cached)\n", (int)pid);
|
|
dt_list_delete(&dph->dph_lrulist, dpr);
|
|
dt_list_prepend(&dph->dph_lrulist, dpr);
|
|
dpr->dpr_refs++;
|
|
return (dpr->dpr_proc);
|
|
}
|
|
}
|
|
|
|
if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL)
|
|
return (NULL); /* errno is set for us */
|
|
|
|
(void) pthread_mutex_init(&dpr->dpr_lock, NULL);
|
|
(void) pthread_cond_init(&dpr->dpr_cv, NULL);
|
|
|
|
if ((dpr->dpr_proc = Pgrab(pid, flags, &err)) == NULL) {
|
|
return (dt_proc_error(dtp, dpr,
|
|
"failed to grab pid %d: %s\n", (int)pid, Pgrab_error(err)));
|
|
}
|
|
|
|
dpr->dpr_hdl = dtp;
|
|
dpr->dpr_pid = pid;
|
|
|
|
(void) Punsetflags(dpr->dpr_proc, PR_KLC);
|
|
(void) Psetflags(dpr->dpr_proc, PR_RLC);
|
|
|
|
/*
|
|
* If we are attempting to grab the process without a monitor
|
|
* thread, then mark the process cacheable only if it's being
|
|
* grabbed read-only. If we're currently caching more process
|
|
* handles than dph_lrulim permits, attempt to find the
|
|
* least-recently-used handle that is currently unreferenced and
|
|
* release it from the cache. Otherwise we are grabbing the process
|
|
* for control: create a control thread for this process and store
|
|
* its ID in dpr->dpr_tid.
|
|
*/
|
|
if (nomonitor || (flags & PGRAB_RDONLY)) {
|
|
if (dph->dph_lrucnt >= dph->dph_lrulim) {
|
|
for (opr = dt_list_prev(&dph->dph_lrulist);
|
|
opr != NULL; opr = dt_list_prev(opr)) {
|
|
if (opr->dpr_cacheable && opr->dpr_refs == 0) {
|
|
dt_proc_destroy(dtp, opr->dpr_proc);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (flags & PGRAB_RDONLY) {
|
|
dpr->dpr_cacheable = B_TRUE;
|
|
dpr->dpr_rdonly = B_TRUE;
|
|
dph->dph_lrucnt++;
|
|
}
|
|
|
|
} else if (dt_proc_create_thread(dtp, dpr, DT_PROC_STOP_GRAB) != 0)
|
|
return (NULL); /* dt_proc_error() has been called for us */
|
|
|
|
dpr->dpr_hash = dph->dph_hash[h];
|
|
dph->dph_hash[h] = dpr;
|
|
dt_list_prepend(&dph->dph_lrulist, dpr);
|
|
|
|
dt_dprintf("grabbed pid %d\n", (int)pid);
|
|
dpr->dpr_refs++;
|
|
|
|
return (dpr->dpr_proc);
|
|
}
|
|
|
|
void
|
|
dt_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P)
|
|
{
|
|
dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
|
|
dt_proc_hash_t *dph = dtp->dt_procs;
|
|
|
|
assert(dpr != NULL);
|
|
assert(dpr->dpr_refs != 0);
|
|
|
|
if (--dpr->dpr_refs == 0 &&
|
|
(!dpr->dpr_cacheable || dph->dph_lrucnt > dph->dph_lrulim))
|
|
dt_proc_destroy(dtp, P);
|
|
}
|
|
|
|
void
|
|
dt_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P)
|
|
{
|
|
dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
|
|
|
|
(void) pthread_mutex_lock(&dpr->dpr_lock);
|
|
|
|
if (dpr->dpr_stop & DT_PROC_STOP_IDLE) {
|
|
dpr->dpr_stop &= ~DT_PROC_STOP_IDLE;
|
|
(void) pthread_cond_broadcast(&dpr->dpr_cv);
|
|
}
|
|
|
|
(void) pthread_mutex_unlock(&dpr->dpr_lock);
|
|
}
|
|
|
|
void
|
|
dt_proc_lock(dtrace_hdl_t *dtp, struct ps_prochandle *P)
|
|
{
|
|
dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
|
|
int err = pthread_mutex_lock(&dpr->dpr_lock);
|
|
assert(err == 0); /* check for recursion */
|
|
}
|
|
|
|
void
|
|
dt_proc_unlock(dtrace_hdl_t *dtp, struct ps_prochandle *P)
|
|
{
|
|
dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
|
|
int err = pthread_mutex_unlock(&dpr->dpr_lock);
|
|
assert(err == 0); /* check for unheld lock */
|
|
}
|
|
|
|
void
|
|
dt_proc_init(dtrace_hdl_t *dtp)
|
|
{
|
|
extern char **environ;
|
|
static char *envdef[] = {
|
|
"LD_NOLAZYLOAD=1", /* linker lazy loading hides funcs */
|
|
NULL
|
|
};
|
|
char **p;
|
|
int i;
|
|
|
|
if ((dtp->dt_procs = dt_zalloc(dtp, sizeof (dt_proc_hash_t) +
|
|
sizeof (dt_proc_t *) * _dtrace_pidbuckets - 1)) == NULL)
|
|
return;
|
|
|
|
(void) pthread_mutex_init(&dtp->dt_procs->dph_lock, NULL);
|
|
(void) pthread_cond_init(&dtp->dt_procs->dph_cv, NULL);
|
|
|
|
dtp->dt_procs->dph_hashlen = _dtrace_pidbuckets;
|
|
dtp->dt_procs->dph_lrulim = _dtrace_pidlrulim;
|
|
|
|
|
|
/*
|
|
* Count how big our environment needs to be.
|
|
*/
|
|
for (i = 1, p = environ; *p != NULL; i++, p++)
|
|
continue;
|
|
for (p = envdef; *p != NULL; i++, p++)
|
|
continue;
|
|
|
|
if ((dtp->dt_proc_env = dt_zalloc(dtp, sizeof (char *) * i)) == NULL)
|
|
return;
|
|
|
|
for (i = 0, p = environ; *p != NULL; i++, p++) {
|
|
if ((dtp->dt_proc_env[i] = strdup(*p)) == NULL)
|
|
goto err;
|
|
}
|
|
for (p = envdef; *p != NULL; i++, p++) {
|
|
if ((dtp->dt_proc_env[i] = strdup(*p)) == NULL)
|
|
goto err;
|
|
}
|
|
|
|
return;
|
|
|
|
err:
|
|
while (--i != 0) {
|
|
dt_free(dtp, dtp->dt_proc_env[i]);
|
|
}
|
|
dt_free(dtp, dtp->dt_proc_env);
|
|
dtp->dt_proc_env = NULL;
|
|
}
|
|
|
|
void
|
|
dt_proc_fini(dtrace_hdl_t *dtp)
|
|
{
|
|
dt_proc_hash_t *dph = dtp->dt_procs;
|
|
dt_proc_t *dpr;
|
|
char **p;
|
|
|
|
while ((dpr = dt_list_next(&dph->dph_lrulist)) != NULL)
|
|
dt_proc_destroy(dtp, dpr->dpr_proc);
|
|
|
|
dtp->dt_procs = NULL;
|
|
dt_free(dtp, dph);
|
|
|
|
for (p = dtp->dt_proc_env; *p != NULL; p++)
|
|
dt_free(dtp, *p);
|
|
|
|
dt_free(dtp, dtp->dt_proc_env);
|
|
dtp->dt_proc_env = NULL;
|
|
}
|
|
|
|
struct ps_prochandle *
|
|
dtrace_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv)
|
|
{
|
|
dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
|
|
struct ps_prochandle *P = dt_proc_create(dtp, file, argv);
|
|
|
|
if (P != NULL && idp != NULL && idp->di_id == 0)
|
|
idp->di_id = Pstatus(P)->pr_pid; /* $target = created pid */
|
|
|
|
return (P);
|
|
}
|
|
|
|
struct ps_prochandle *
|
|
dtrace_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags)
|
|
{
|
|
dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
|
|
struct ps_prochandle *P = dt_proc_grab(dtp, pid, flags, 0);
|
|
|
|
if (P != NULL && idp != NULL && idp->di_id == 0)
|
|
idp->di_id = pid; /* $target = grabbed pid */
|
|
|
|
return (P);
|
|
}
|
|
|
|
void
|
|
dtrace_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P)
|
|
{
|
|
dt_proc_release(dtp, P);
|
|
}
|
|
|
|
void
|
|
dtrace_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P)
|
|
{
|
|
dt_proc_continue(dtp, P);
|
|
}
|