freebsd-skq/sys/libkern/arc4random.c
cem 0c0ad482a0 arc4random(9): Integrate with RANDOM_FENESTRASX push-reseed
There is no functional change for the existing Fortuna random(4)
implementation, which remains the default in GENERIC.

In the FenestrasX model, when the root CSPRNG is reseeded from pools due to
an (infrequent) timer, child CSPRNGs can cheaply detect this condition and
reseed.  To do so, they just need to track an additional 64-bit value in the
associated state, and compare it against the root seed version (generation)
on random reads.

This revision integrates arc4random(9) into that model without substantially
changing the design or implementation of arc4random(9).  The motivation is
that arc4random(9) is immediately reseeded when the backing random(4)
implementation has additional entropy.  This is arguably most important
during boot, when fenestrasX is reseeding at 1, 3, 9, 27, etc., second
intervals.  Today, arc4random(9) has a hardcoded 300 second reseed window.
Without this mechanism, if arc4random(9) gets weak entropy during initial
seed (and arc4random(9) is used early in boot, so this is quite possible),
it may continue to emit poorly seeded output for 5 minutes.  The FenestrasX
push-reseed scheme corrects consumers, like arc4random(9), as soon as
possible.

Reviewed by:	markm
Approved by:	csprng (markm)
Differential Revision:	https://reviews.freebsd.org/D22838
2020-10-10 21:48:06 +00:00

254 lines
6.9 KiB
C

/*-
* Copyright (c) 2017 The FreeBSD Foundation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/libkern.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/random.h>
#include <sys/smp.h>
#include <sys/time.h>
#include <machine/cpu.h>
#include <crypto/chacha20/chacha.h>
#include <crypto/sha2/sha256.h>
#include <dev/random/randomdev.h>
#ifdef RANDOM_FENESTRASX
#include <dev/random/fenestrasX/fx_pub.h>
#endif
#define CHACHA20_RESEED_BYTES 65536
#define CHACHA20_RESEED_SECONDS 300
#define CHACHA20_KEYBYTES 32
#define CHACHA20_BUFFER_SIZE 64
CTASSERT(CHACHA20_KEYBYTES*8 >= CHACHA_MINKEYLEN);
#ifndef RANDOM_FENESTRASX
int arc4rand_iniseed_state = ARC4_ENTR_NONE;
#endif
MALLOC_DEFINE(M_CHACHA20RANDOM, "chacha20random", "chacha20random structures");
struct chacha20_s {
struct mtx mtx;
int numbytes;
time_t t_reseed;
u_int8_t m_buffer[CHACHA20_BUFFER_SIZE];
struct chacha_ctx ctx;
#ifdef RANDOM_FENESTRASX
uint64_t seed_version;
#endif
} __aligned(CACHE_LINE_SIZE);
static struct chacha20_s *chacha20inst = NULL;
#define CHACHA20_FOREACH(_chacha20) \
for (_chacha20 = &chacha20inst[0]; \
_chacha20 <= &chacha20inst[mp_maxid]; \
_chacha20++)
/*
* Mix up the current context.
*/
static void
chacha20_randomstir(struct chacha20_s *chacha20)
{
struct timeval tv_now;
u_int8_t key[CHACHA20_KEYBYTES];
#ifdef RANDOM_FENESTRASX
uint64_t seed_version;
#else
if (__predict_false(random_bypass_before_seeding && !is_random_seeded())) {
SHA256_CTX ctx;
uint64_t cc;
uint32_t fver;
if (!arc4random_bypassed_before_seeding) {
arc4random_bypassed_before_seeding = true;
if (!random_bypass_disable_warnings)
printf("arc4random: WARNING: initial seeding "
"bypassed the cryptographic random device "
"because it was not yet seeded and the "
"knob 'bypass_before_seeding' was "
"enabled.\n");
}
/* Last ditch effort to inject something in a bad condition. */
cc = get_cyclecount();
SHA256_Init(&ctx);
SHA256_Update(&ctx, key, sizeof(key));
SHA256_Update(&ctx, &cc, sizeof(cc));
fver = __FreeBSD_version;
SHA256_Update(&ctx, &fver, sizeof(fver));
_Static_assert(sizeof(key) == SHA256_DIGEST_LENGTH,
"make sure 256 bits is still 256 bits");
SHA256_Final(key, &ctx);
} else {
#endif
#ifdef RANDOM_FENESTRASX
read_random_key(key, CHACHA20_KEYBYTES, &seed_version);
#else
/*
* If the loader(8) did not have an entropy stash from the
* previous shutdown to load, then we will block. The answer is
* to make sure there is an entropy stash at shutdown time.
*
* On the other hand, if the random_bypass_before_seeding knob
* was set and we landed in this branch, we know this won't
* block because we know the random device is seeded.
*/
read_random(key, CHACHA20_KEYBYTES);
}
#endif
getmicrouptime(&tv_now);
mtx_lock(&chacha20->mtx);
chacha_keysetup(&chacha20->ctx, key, CHACHA20_KEYBYTES*8);
chacha_ivsetup(&chacha20->ctx, (u_char *)&tv_now.tv_sec, (u_char *)&tv_now.tv_usec);
/* Reset for next reseed cycle. */
chacha20->t_reseed = tv_now.tv_sec + CHACHA20_RESEED_SECONDS;
chacha20->numbytes = 0;
#ifdef RANDOM_FENESTRASX
chacha20->seed_version = seed_version;
#endif
mtx_unlock(&chacha20->mtx);
}
/*
* Initialize the contexts.
*/
static void
chacha20_init(void)
{
struct chacha20_s *chacha20;
chacha20inst = malloc((mp_maxid + 1) * sizeof(struct chacha20_s),
M_CHACHA20RANDOM, M_NOWAIT | M_ZERO);
KASSERT(chacha20inst != NULL, ("chacha20_init: memory allocation error"));
CHACHA20_FOREACH(chacha20) {
mtx_init(&chacha20->mtx, "chacha20_mtx", NULL, MTX_DEF);
chacha20->t_reseed = -1;
chacha20->numbytes = 0;
explicit_bzero(chacha20->m_buffer, CHACHA20_BUFFER_SIZE);
explicit_bzero(&chacha20->ctx, sizeof(chacha20->ctx));
}
}
SYSINIT(chacha20, SI_SUB_LOCK, SI_ORDER_ANY, chacha20_init, NULL);
static void
chacha20_uninit(void)
{
struct chacha20_s *chacha20;
CHACHA20_FOREACH(chacha20)
mtx_destroy(&chacha20->mtx);
free(chacha20inst, M_CHACHA20RANDOM);
}
SYSUNINIT(chacha20, SI_SUB_LOCK, SI_ORDER_ANY, chacha20_uninit, NULL);
/*
* MPSAFE
*/
void
arc4rand(void *ptr, u_int len, int reseed)
{
struct chacha20_s *chacha20;
struct timeval tv;
u_int length;
u_int8_t *p;
#ifdef RANDOM_FENESTRASX
if (__predict_false(reseed))
#else
if (__predict_false(reseed ||
(arc4rand_iniseed_state == ARC4_ENTR_HAVE &&
atomic_cmpset_int(&arc4rand_iniseed_state, ARC4_ENTR_HAVE, ARC4_ENTR_SEED))))
#endif
CHACHA20_FOREACH(chacha20)
chacha20_randomstir(chacha20);
getmicrouptime(&tv);
chacha20 = &chacha20inst[curcpu];
/* We may get unlucky and be migrated off this CPU, but that is expected to be infrequent */
if ((chacha20->numbytes > CHACHA20_RESEED_BYTES) || (tv.tv_sec > chacha20->t_reseed))
chacha20_randomstir(chacha20);
mtx_lock(&chacha20->mtx);
#ifdef RANDOM_FENESTRASX
if (__predict_false(
atomic_load_acq_64(&fxrng_root_generation) != chacha20->seed_version
)) {
mtx_unlock(&chacha20->mtx);
chacha20_randomstir(chacha20);
mtx_lock(&chacha20->mtx);
}
#endif
p = ptr;
while (len) {
length = MIN(CHACHA20_BUFFER_SIZE, len);
chacha_encrypt_bytes(&chacha20->ctx, chacha20->m_buffer, p, length);
p += length;
len -= length;
chacha20->numbytes += length;
if (chacha20->numbytes > CHACHA20_RESEED_BYTES) {
mtx_unlock(&chacha20->mtx);
chacha20_randomstir(chacha20);
mtx_lock(&chacha20->mtx);
}
}
mtx_unlock(&chacha20->mtx);
}
uint32_t
arc4random(void)
{
uint32_t ret;
arc4rand(&ret, sizeof(ret), 0);
return ret;
}
void
arc4random_buf(void *ptr, size_t len)
{
arc4rand(ptr, len, 0);
}