freebsd-skq/sys/dev/bce/if_bce.c
glebius 4248847477 Use CSUM_BITS instead of incorrect copy.
Sponsored by:	Nginx, Inc.
2014-09-03 08:28:16 +00:00

11609 lines
370 KiB
C

/*-
* Copyright (c) 2006-2014 QLogic Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* The following controllers are supported by this driver:
* BCM5706C A2, A3
* BCM5706S A2, A3
* BCM5708C B1, B2
* BCM5708S B1, B2
* BCM5709C A1, C0
* BCM5709S A1, C0
* BCM5716C C0
* BCM5716S C0
*
* The following controllers are not supported by this driver:
* BCM5706C A0, A1 (pre-production)
* BCM5706S A0, A1 (pre-production)
* BCM5708C A0, B0 (pre-production)
* BCM5708S A0, B0 (pre-production)
* BCM5709C A0 B0, B1, B2 (pre-production)
* BCM5709S A0, B0, B1, B2 (pre-production)
*/
#include "opt_bce.h"
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/lock.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/queue.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include "miidevs.h"
#include <dev/mii/brgphyreg.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include "miibus_if.h"
#include <dev/bce/if_bcereg.h>
#include <dev/bce/if_bcefw.h>
/****************************************************************************/
/* BCE Debug Options */
/****************************************************************************/
#ifdef BCE_DEBUG
u32 bce_debug = BCE_WARN;
/* 0 = Never */
/* 1 = 1 in 2,147,483,648 */
/* 256 = 1 in 8,388,608 */
/* 2048 = 1 in 1,048,576 */
/* 65536 = 1 in 32,768 */
/* 1048576 = 1 in 2,048 */
/* 268435456 = 1 in 8 */
/* 536870912 = 1 in 4 */
/* 1073741824 = 1 in 2 */
/* Controls how often the l2_fhdr frame error check will fail. */
int l2fhdr_error_sim_control = 0;
/* Controls how often the unexpected attention check will fail. */
int unexpected_attention_sim_control = 0;
/* Controls how often to simulate an mbuf allocation failure. */
int mbuf_alloc_failed_sim_control = 0;
/* Controls how often to simulate a DMA mapping failure. */
int dma_map_addr_failed_sim_control = 0;
/* Controls how often to simulate a bootcode failure. */
int bootcode_running_failure_sim_control = 0;
#endif
/****************************************************************************/
/* PCI Device ID Table */
/* */
/* Used by bce_probe() to identify the devices supported by this driver. */
/****************************************************************************/
#define BCE_DEVDESC_MAX 64
static const struct bce_type bce_devs[] = {
/* BCM5706C Controllers and OEM boards. */
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3101,
"HP NC370T Multifunction Gigabit Server Adapter" },
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3106,
"HP NC370i Multifunction Gigabit Server Adapter" },
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3070,
"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x1709,
"HP NC371i Multifunction Gigabit Server Adapter" },
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706, PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM5706 1000Base-T" },
/* BCM5706S controllers and OEM boards. */
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
"HP NC370F Multifunction Gigabit Server Adapter" },
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM5706 1000Base-SX" },
/* BCM5708C controllers and OEM boards. */
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7037,
"HP NC373T PCIe Multifunction Gig Server Adapter" },
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7038,
"HP NC373i Multifunction Gigabit Server Adapter" },
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7045,
"HP NC374m PCIe Multifunction Adapter" },
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM5708 1000Base-T" },
/* BCM5708S controllers and OEM boards. */
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x1706,
"HP NC373m Multifunction Gigabit Server Adapter" },
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703b,
"HP NC373i Multifunction Gigabit Server Adapter" },
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703d,
"HP NC373F PCIe Multifunc Giga Server Adapter" },
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM5708 1000Base-SX" },
/* BCM5709C controllers and OEM boards. */
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7055,
"HP NC382i DP Multifunction Gigabit Server Adapter" },
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7059,
"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709, PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM5709 1000Base-T" },
/* BCM5709S controllers and OEM boards. */
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x171d,
"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x7056,
"HP NC382i DP Multifunction Gigabit Server Adapter" },
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM5709 1000Base-SX" },
/* BCM5716 controllers and OEM boards. */
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716, PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM5716 1000Base-T" },
{ 0, 0, 0, 0, NULL }
};
/****************************************************************************/
/* Supported Flash NVRAM device data. */
/****************************************************************************/
static const struct flash_spec flash_table[] =
{
#define BUFFERED_FLAGS (BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
#define NONBUFFERED_FLAGS (BCE_NV_WREN)
/* Slow EEPROM */
{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
"EEPROM - slow"},
/* Expansion entry 0001 */
{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 0001"},
/* Saifun SA25F010 (non-buffered flash) */
/* strap, cfg1, & write1 need updates */
{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
"Non-buffered flash (128kB)"},
/* Saifun SA25F020 (non-buffered flash) */
/* strap, cfg1, & write1 need updates */
{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
"Non-buffered flash (256kB)"},
/* Expansion entry 0100 */
{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 0100"},
/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
"Entry 0101: ST M45PE10 (128kB non-bufferred)"},
/* Entry 0110: ST M45PE20 (non-buffered flash)*/
{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
"Entry 0110: ST M45PE20 (256kB non-bufferred)"},
/* Saifun SA25F005 (non-buffered flash) */
/* strap, cfg1, & write1 need updates */
{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
"Non-buffered flash (64kB)"},
/* Fast EEPROM */
{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
"EEPROM - fast"},
/* Expansion entry 1001 */
{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1001"},
/* Expansion entry 1010 */
{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1010"},
/* ATMEL AT45DB011B (buffered flash) */
{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
"Buffered flash (128kB)"},
/* Expansion entry 1100 */
{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1100"},
/* Expansion entry 1101 */
{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1101"},
/* Ateml Expansion entry 1110 */
{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1110 (Atmel)"},
/* ATMEL AT45DB021B (buffered flash) */
{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
"Buffered flash (256kB)"},
};
/*
* The BCM5709 controllers transparently handle the
* differences between Atmel 264 byte pages and all
* flash devices which use 256 byte pages, so no
* logical-to-physical mapping is required in the
* driver.
*/
static const struct flash_spec flash_5709 = {
.flags = BCE_NV_BUFFERED,
.page_bits = BCM5709_FLASH_PAGE_BITS,
.page_size = BCM5709_FLASH_PAGE_SIZE,
.addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
.total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
.name = "5709/5716 buffered flash (256kB)",
};
/****************************************************************************/
/* FreeBSD device entry points. */
/****************************************************************************/
static int bce_probe (device_t);
static int bce_attach (device_t);
static int bce_detach (device_t);
static int bce_shutdown (device_t);
/****************************************************************************/
/* BCE Debug Data Structure Dump Routines */
/****************************************************************************/
#ifdef BCE_DEBUG
static u32 bce_reg_rd (struct bce_softc *, u32);
static void bce_reg_wr (struct bce_softc *, u32, u32);
static void bce_reg_wr16 (struct bce_softc *, u32, u16);
static u32 bce_ctx_rd (struct bce_softc *, u32, u32);
static void bce_dump_enet (struct bce_softc *, struct mbuf *);
static void bce_dump_mbuf (struct bce_softc *, struct mbuf *);
static void bce_dump_tx_mbuf_chain (struct bce_softc *, u16, int);
static void bce_dump_rx_mbuf_chain (struct bce_softc *, u16, int);
static void bce_dump_pg_mbuf_chain (struct bce_softc *, u16, int);
static void bce_dump_txbd (struct bce_softc *,
int, struct tx_bd *);
static void bce_dump_rxbd (struct bce_softc *,
int, struct rx_bd *);
static void bce_dump_pgbd (struct bce_softc *,
int, struct rx_bd *);
static void bce_dump_l2fhdr (struct bce_softc *,
int, struct l2_fhdr *);
static void bce_dump_ctx (struct bce_softc *, u16);
static void bce_dump_ftqs (struct bce_softc *);
static void bce_dump_tx_chain (struct bce_softc *, u16, int);
static void bce_dump_rx_bd_chain (struct bce_softc *, u16, int);
static void bce_dump_pg_chain (struct bce_softc *, u16, int);
static void bce_dump_status_block (struct bce_softc *);
static void bce_dump_stats_block (struct bce_softc *);
static void bce_dump_driver_state (struct bce_softc *);
static void bce_dump_hw_state (struct bce_softc *);
static void bce_dump_shmem_state (struct bce_softc *);
static void bce_dump_mq_regs (struct bce_softc *);
static void bce_dump_bc_state (struct bce_softc *);
static void bce_dump_txp_state (struct bce_softc *, int);
static void bce_dump_rxp_state (struct bce_softc *, int);
static void bce_dump_tpat_state (struct bce_softc *, int);
static void bce_dump_cp_state (struct bce_softc *, int);
static void bce_dump_com_state (struct bce_softc *, int);
static void bce_dump_rv2p_state (struct bce_softc *);
static void bce_breakpoint (struct bce_softc *);
#endif /*BCE_DEBUG */
/****************************************************************************/
/* BCE Register/Memory Access Routines */
/****************************************************************************/
static u32 bce_reg_rd_ind (struct bce_softc *, u32);
static void bce_reg_wr_ind (struct bce_softc *, u32, u32);
static void bce_shmem_wr (struct bce_softc *, u32, u32);
static u32 bce_shmem_rd (struct bce_softc *, u32);
static void bce_ctx_wr (struct bce_softc *, u32, u32, u32);
static int bce_miibus_read_reg (device_t, int, int);
static int bce_miibus_write_reg (device_t, int, int, int);
static void bce_miibus_statchg (device_t);
#ifdef BCE_DEBUG
static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
#ifdef BCE_NVRAM_WRITE_SUPPORT
static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
#endif
#endif
/****************************************************************************/
/* BCE NVRAM Access Routines */
/****************************************************************************/
static int bce_acquire_nvram_lock (struct bce_softc *);
static int bce_release_nvram_lock (struct bce_softc *);
static void bce_enable_nvram_access(struct bce_softc *);
static void bce_disable_nvram_access(struct bce_softc *);
static int bce_nvram_read_dword (struct bce_softc *, u32, u8 *, u32);
static int bce_init_nvram (struct bce_softc *);
static int bce_nvram_read (struct bce_softc *, u32, u8 *, int);
static int bce_nvram_test (struct bce_softc *);
#ifdef BCE_NVRAM_WRITE_SUPPORT
static int bce_enable_nvram_write (struct bce_softc *);
static void bce_disable_nvram_write(struct bce_softc *);
static int bce_nvram_erase_page (struct bce_softc *, u32);
static int bce_nvram_write_dword (struct bce_softc *, u32, u8 *, u32);
static int bce_nvram_write (struct bce_softc *, u32, u8 *, int);
#endif
/****************************************************************************/
/* */
/****************************************************************************/
static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
static void bce_get_media (struct bce_softc *);
static void bce_init_media (struct bce_softc *);
static u32 bce_get_rphy_link (struct bce_softc *);
static void bce_dma_map_addr (void *, bus_dma_segment_t *, int, int);
static int bce_dma_alloc (device_t);
static void bce_dma_free (struct bce_softc *);
static void bce_release_resources (struct bce_softc *);
/****************************************************************************/
/* BCE Firmware Synchronization and Load */
/****************************************************************************/
static void bce_fw_cap_init (struct bce_softc *);
static int bce_fw_sync (struct bce_softc *, u32);
static void bce_load_rv2p_fw (struct bce_softc *, const u32 *, u32,
u32);
static void bce_load_cpu_fw (struct bce_softc *,
struct cpu_reg *, struct fw_info *);
static void bce_start_cpu (struct bce_softc *, struct cpu_reg *);
static void bce_halt_cpu (struct bce_softc *, struct cpu_reg *);
static void bce_start_rxp_cpu (struct bce_softc *);
static void bce_init_rxp_cpu (struct bce_softc *);
static void bce_init_txp_cpu (struct bce_softc *);
static void bce_init_tpat_cpu (struct bce_softc *);
static void bce_init_cp_cpu (struct bce_softc *);
static void bce_init_com_cpu (struct bce_softc *);
static void bce_init_cpus (struct bce_softc *);
static void bce_print_adapter_info (struct bce_softc *);
static void bce_probe_pci_caps (device_t, struct bce_softc *);
static void bce_stop (struct bce_softc *);
static int bce_reset (struct bce_softc *, u32);
static int bce_chipinit (struct bce_softc *);
static int bce_blockinit (struct bce_softc *);
static int bce_init_tx_chain (struct bce_softc *);
static void bce_free_tx_chain (struct bce_softc *);
static int bce_get_rx_buf (struct bce_softc *, u16, u16, u32 *);
static int bce_init_rx_chain (struct bce_softc *);
static void bce_fill_rx_chain (struct bce_softc *);
static void bce_free_rx_chain (struct bce_softc *);
static int bce_get_pg_buf (struct bce_softc *, u16, u16);
static int bce_init_pg_chain (struct bce_softc *);
static void bce_fill_pg_chain (struct bce_softc *);
static void bce_free_pg_chain (struct bce_softc *);
static struct mbuf *bce_tso_setup (struct bce_softc *,
struct mbuf **, u16 *);
static int bce_tx_encap (struct bce_softc *, struct mbuf **);
static void bce_start_locked (struct ifnet *);
static void bce_start (struct ifnet *);
static int bce_ioctl (struct ifnet *, u_long, caddr_t);
static void bce_watchdog (struct bce_softc *);
static int bce_ifmedia_upd (struct ifnet *);
static int bce_ifmedia_upd_locked (struct ifnet *);
static void bce_ifmedia_sts (struct ifnet *, struct ifmediareq *);
static void bce_ifmedia_sts_rphy (struct bce_softc *, struct ifmediareq *);
static void bce_init_locked (struct bce_softc *);
static void bce_init (void *);
static void bce_mgmt_init_locked (struct bce_softc *sc);
static int bce_init_ctx (struct bce_softc *);
static void bce_get_mac_addr (struct bce_softc *);
static void bce_set_mac_addr (struct bce_softc *);
static void bce_phy_intr (struct bce_softc *);
static inline u16 bce_get_hw_rx_cons (struct bce_softc *);
static void bce_rx_intr (struct bce_softc *);
static void bce_tx_intr (struct bce_softc *);
static void bce_disable_intr (struct bce_softc *);
static void bce_enable_intr (struct bce_softc *, int);
static void bce_intr (void *);
static void bce_set_rx_mode (struct bce_softc *);
static void bce_stats_update (struct bce_softc *);
static void bce_tick (void *);
static void bce_pulse (void *);
static void bce_add_sysctls (struct bce_softc *);
/****************************************************************************/
/* FreeBSD device dispatch table. */
/****************************************************************************/
static device_method_t bce_methods[] = {
/* Device interface (device_if.h) */
DEVMETHOD(device_probe, bce_probe),
DEVMETHOD(device_attach, bce_attach),
DEVMETHOD(device_detach, bce_detach),
DEVMETHOD(device_shutdown, bce_shutdown),
/* Supported by device interface but not used here. */
/* DEVMETHOD(device_identify, bce_identify), */
/* DEVMETHOD(device_suspend, bce_suspend), */
/* DEVMETHOD(device_resume, bce_resume), */
/* DEVMETHOD(device_quiesce, bce_quiesce), */
/* MII interface (miibus_if.h) */
DEVMETHOD(miibus_readreg, bce_miibus_read_reg),
DEVMETHOD(miibus_writereg, bce_miibus_write_reg),
DEVMETHOD(miibus_statchg, bce_miibus_statchg),
/* Supported by MII interface but not used here. */
/* DEVMETHOD(miibus_linkchg, bce_miibus_linkchg), */
/* DEVMETHOD(miibus_mediainit, bce_miibus_mediainit), */
DEVMETHOD_END
};
static driver_t bce_driver = {
"bce",
bce_methods,
sizeof(struct bce_softc)
};
static devclass_t bce_devclass;
MODULE_DEPEND(bce, pci, 1, 1, 1);
MODULE_DEPEND(bce, ether, 1, 1, 1);
MODULE_DEPEND(bce, miibus, 1, 1, 1);
DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, NULL, NULL);
DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
/****************************************************************************/
/* Tunable device values */
/****************************************************************************/
static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
/* Allowable values are TRUE or FALSE */
static int bce_verbose = TRUE;
SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
"Verbose output enable/disable");
/* Allowable values are TRUE or FALSE */
static int bce_tso_enable = TRUE;
SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
"TSO Enable/Disable");
/* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
/* ToDo: Add MSI-X support. */
static int bce_msi_enable = 1;
SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
"MSI-X|MSI|INTx selector");
/* Allowable values are 1, 2, 4, 8. */
static int bce_rx_pages = DEFAULT_RX_PAGES;
SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
"Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
/* Allowable values are 1, 2, 4, 8. */
static int bce_tx_pages = DEFAULT_TX_PAGES;
SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
"Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
/* Allowable values are TRUE or FALSE. */
static int bce_hdr_split = TRUE;
SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
"Frame header/payload splitting Enable/Disable");
/* Allowable values are TRUE or FALSE. */
static int bce_strict_rx_mtu = FALSE;
SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN,
&bce_strict_rx_mtu, 0,
"Enable/Disable strict RX frame size checking");
/* Allowable values are 0 ... 100 */
#ifdef BCE_DEBUG
/* Generate 1 interrupt for every transmit completion. */
static int bce_tx_quick_cons_trip_int = 1;
#else
/* Generate 1 interrupt for every 20 transmit completions. */
static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
#endif
SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
&bce_tx_quick_cons_trip_int, 0,
"Transmit BD trip point during interrupts");
/* Allowable values are 0 ... 100 */
/* Generate 1 interrupt for every transmit completion. */
#ifdef BCE_DEBUG
static int bce_tx_quick_cons_trip = 1;
#else
/* Generate 1 interrupt for every 20 transmit completions. */
static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
#endif
SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
&bce_tx_quick_cons_trip, 0,
"Transmit BD trip point");
/* Allowable values are 0 ... 100 */
#ifdef BCE_DEBUG
/* Generate an interrupt if 0us have elapsed since the last TX completion. */
static int bce_tx_ticks_int = 0;
#else
/* Generate an interrupt if 80us have elapsed since the last TX completion. */
static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
#endif
SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
&bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
/* Allowable values are 0 ... 100 */
#ifdef BCE_DEBUG
/* Generate an interrupt if 0us have elapsed since the last TX completion. */
static int bce_tx_ticks = 0;
#else
/* Generate an interrupt if 80us have elapsed since the last TX completion. */
static int bce_tx_ticks = DEFAULT_TX_TICKS;
#endif
SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
&bce_tx_ticks, 0, "Transmit ticks count");
/* Allowable values are 1 ... 100 */
#ifdef BCE_DEBUG
/* Generate 1 interrupt for every received frame. */
static int bce_rx_quick_cons_trip_int = 1;
#else
/* Generate 1 interrupt for every 6 received frames. */
static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
#endif
SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
&bce_rx_quick_cons_trip_int, 0,
"Receive BD trip point duirng interrupts");
/* Allowable values are 1 ... 100 */
#ifdef BCE_DEBUG
/* Generate 1 interrupt for every received frame. */
static int bce_rx_quick_cons_trip = 1;
#else
/* Generate 1 interrupt for every 6 received frames. */
static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
#endif
SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
&bce_rx_quick_cons_trip, 0,
"Receive BD trip point");
/* Allowable values are 0 ... 100 */
#ifdef BCE_DEBUG
/* Generate an int. if 0us have elapsed since the last received frame. */
static int bce_rx_ticks_int = 0;
#else
/* Generate an int. if 18us have elapsed since the last received frame. */
static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
#endif
SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
&bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
/* Allowable values are 0 ... 100 */
#ifdef BCE_DEBUG
/* Generate an int. if 0us have elapsed since the last received frame. */
static int bce_rx_ticks = 0;
#else
/* Generate an int. if 18us have elapsed since the last received frame. */
static int bce_rx_ticks = DEFAULT_RX_TICKS;
#endif
SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
&bce_rx_ticks, 0, "Receive ticks count");
/****************************************************************************/
/* Device probe function. */
/* */
/* Compares the device to the driver's list of supported devices and */
/* reports back to the OS whether this is the right driver for the device. */
/* */
/* Returns: */
/* BUS_PROBE_DEFAULT on success, positive value on failure. */
/****************************************************************************/
static int
bce_probe(device_t dev)
{
const struct bce_type *t;
struct bce_softc *sc;
char *descbuf;
u16 vid = 0, did = 0, svid = 0, sdid = 0;
t = bce_devs;
sc = device_get_softc(dev);
sc->bce_unit = device_get_unit(dev);
sc->bce_dev = dev;
/* Get the data for the device to be probed. */
vid = pci_get_vendor(dev);
did = pci_get_device(dev);
svid = pci_get_subvendor(dev);
sdid = pci_get_subdevice(dev);
DBPRINT(sc, BCE_EXTREME_LOAD,
"%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
"SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
/* Look through the list of known devices for a match. */
while(t->bce_name != NULL) {
if ((vid == t->bce_vid) && (did == t->bce_did) &&
((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
if (descbuf == NULL)
return(ENOMEM);
/* Print out the device identity. */
snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
t->bce_name, (((pci_read_config(dev,
PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
(pci_read_config(dev, PCIR_REVID, 4) & 0xf));
device_set_desc_copy(dev, descbuf);
free(descbuf, M_TEMP);
return(BUS_PROBE_DEFAULT);
}
t++;
}
return(ENXIO);
}
/****************************************************************************/
/* PCI Capabilities Probe Function. */
/* */
/* Walks the PCI capabiites list for the device to find what features are */
/* supported. */
/* */
/* Returns: */
/* None. */
/****************************************************************************/
static void
bce_print_adapter_info(struct bce_softc *sc)
{
int i = 0;
DBENTER(BCE_VERBOSE_LOAD);
if (bce_verbose || bootverbose) {
BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
/* Bus info. */
if (sc->bce_flags & BCE_PCIE_FLAG) {
printf("Bus (PCIe x%d, ", sc->link_width);
switch (sc->link_speed) {
case 1: printf("2.5Gbps); "); break;
case 2: printf("5Gbps); "); break;
default: printf("Unknown link speed); ");
}
} else {
printf("Bus (PCI%s, %s, %dMHz); ",
((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
"32-bit" : "64-bit"), sc->bus_speed_mhz);
}
/* Firmware version and device features. */
printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
sc->bce_bc_ver, sc->rx_pages, sc->tx_pages,
(bce_hdr_split == TRUE ? sc->pg_pages: 0));
if (bce_hdr_split == TRUE) {
printf("SPLT");
i++;
}
if (sc->bce_flags & BCE_USING_MSI_FLAG) {
if (i > 0) printf("|");
printf("MSI"); i++;
}
if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
if (i > 0) printf("|");
printf("MSI-X"); i++;
}
if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
if (i > 0) printf("|");
printf("2.5G"); i++;
}
if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
if (i > 0) printf("|");
printf("Remote PHY(%s)",
sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
"FIBER" : "TP"); i++;
}
if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
if (i > 0) printf("|");
printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
} else {
printf(")\n");
}
printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
sc->bce_rx_quick_cons_trip_int,
sc->bce_rx_quick_cons_trip,
sc->bce_rx_ticks_int,
sc->bce_rx_ticks,
sc->bce_tx_quick_cons_trip_int,
sc->bce_tx_quick_cons_trip,
sc->bce_tx_ticks_int,
sc->bce_tx_ticks);
}
DBEXIT(BCE_VERBOSE_LOAD);
}
/****************************************************************************/
/* PCI Capabilities Probe Function. */
/* */
/* Walks the PCI capabiites list for the device to find what features are */
/* supported. */
/* */
/* Returns: */
/* None. */
/****************************************************************************/
static void
bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
{
u32 reg;
DBENTER(BCE_VERBOSE_LOAD);
/* Check if PCI-X capability is enabled. */
if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
if (reg != 0)
sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
}
/* Check if PCIe capability is enabled. */
if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
if (reg != 0) {
u16 link_status = pci_read_config(dev, reg + 0x12, 2);
DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
"0x%08X\n", link_status);
sc->link_speed = link_status & 0xf;
sc->link_width = (link_status >> 4) & 0x3f;
sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
sc->bce_flags |= BCE_PCIE_FLAG;
}
}
/* Check if MSI capability is enabled. */
if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
if (reg != 0)
sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
}
/* Check if MSI-X capability is enabled. */
if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
if (reg != 0)
sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
}
DBEXIT(BCE_VERBOSE_LOAD);
}
/****************************************************************************/
/* Load and validate user tunable settings. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_set_tunables(struct bce_softc *sc)
{
/* Set sysctl values for RX page count. */
switch (bce_rx_pages) {
case 1:
/* fall-through */
case 2:
/* fall-through */
case 4:
/* fall-through */
case 8:
sc->rx_pages = bce_rx_pages;
break;
default:
sc->rx_pages = DEFAULT_RX_PAGES;
BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
"hw.bce.rx_pages! Setting default of %d.\n",
__FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
}
/* ToDo: Consider allowing user setting for pg_pages. */
sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
/* Set sysctl values for TX page count. */
switch (bce_tx_pages) {
case 1:
/* fall-through */
case 2:
/* fall-through */
case 4:
/* fall-through */
case 8:
sc->tx_pages = bce_tx_pages;
break;
default:
sc->tx_pages = DEFAULT_TX_PAGES;
BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
"hw.bce.tx_pages! Setting default of %d.\n",
__FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
}
/*
* Validate the TX trip point (i.e. the number of
* TX completions before a status block update is
* generated and an interrupt is asserted.
*/
if (bce_tx_quick_cons_trip_int <= 100) {
sc->bce_tx_quick_cons_trip_int =
bce_tx_quick_cons_trip_int;
} else {
BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
"hw.bce.tx_quick_cons_trip_int! Setting default of %d.\n",
__FILE__, __LINE__, bce_tx_quick_cons_trip_int,
DEFAULT_TX_QUICK_CONS_TRIP_INT);
sc->bce_tx_quick_cons_trip_int =
DEFAULT_TX_QUICK_CONS_TRIP_INT;
}
if (bce_tx_quick_cons_trip <= 100) {
sc->bce_tx_quick_cons_trip =
bce_tx_quick_cons_trip;
} else {
BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
"hw.bce.tx_quick_cons_trip! Setting default of %d.\n",
__FILE__, __LINE__, bce_tx_quick_cons_trip,
DEFAULT_TX_QUICK_CONS_TRIP);
sc->bce_tx_quick_cons_trip =
DEFAULT_TX_QUICK_CONS_TRIP;
}
/*
* Validate the TX ticks count (i.e. the maximum amount
* of time to wait after the last TX completion has
* occurred before a status block update is generated
* and an interrupt is asserted.
*/
if (bce_tx_ticks_int <= 100) {
sc->bce_tx_ticks_int =
bce_tx_ticks_int;
} else {
BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
"hw.bce.tx_ticks_int! Setting default of %d.\n",
__FILE__, __LINE__, bce_tx_ticks_int,
DEFAULT_TX_TICKS_INT);
sc->bce_tx_ticks_int =
DEFAULT_TX_TICKS_INT;
}
if (bce_tx_ticks <= 100) {
sc->bce_tx_ticks =
bce_tx_ticks;
} else {
BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
"hw.bce.tx_ticks! Setting default of %d.\n",
__FILE__, __LINE__, bce_tx_ticks,
DEFAULT_TX_TICKS);
sc->bce_tx_ticks =
DEFAULT_TX_TICKS;
}
/*
* Validate the RX trip point (i.e. the number of
* RX frames received before a status block update is
* generated and an interrupt is asserted.
*/
if (bce_rx_quick_cons_trip_int <= 100) {
sc->bce_rx_quick_cons_trip_int =
bce_rx_quick_cons_trip_int;
} else {
BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
"hw.bce.rx_quick_cons_trip_int! Setting default of %d.\n",
__FILE__, __LINE__, bce_rx_quick_cons_trip_int,
DEFAULT_RX_QUICK_CONS_TRIP_INT);
sc->bce_rx_quick_cons_trip_int =
DEFAULT_RX_QUICK_CONS_TRIP_INT;
}
if (bce_rx_quick_cons_trip <= 100) {
sc->bce_rx_quick_cons_trip =
bce_rx_quick_cons_trip;
} else {
BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
"hw.bce.rx_quick_cons_trip! Setting default of %d.\n",
__FILE__, __LINE__, bce_rx_quick_cons_trip,
DEFAULT_RX_QUICK_CONS_TRIP);
sc->bce_rx_quick_cons_trip =
DEFAULT_RX_QUICK_CONS_TRIP;
}
/*
* Validate the RX ticks count (i.e. the maximum amount
* of time to wait after the last RX frame has been
* received before a status block update is generated
* and an interrupt is asserted.
*/
if (bce_rx_ticks_int <= 100) {
sc->bce_rx_ticks_int = bce_rx_ticks_int;
} else {
BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
"hw.bce.rx_ticks_int! Setting default of %d.\n",
__FILE__, __LINE__, bce_rx_ticks_int,
DEFAULT_RX_TICKS_INT);
sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
}
if (bce_rx_ticks <= 100) {
sc->bce_rx_ticks = bce_rx_ticks;
} else {
BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
"hw.bce.rx_ticks! Setting default of %d.\n",
__FILE__, __LINE__, bce_rx_ticks,
DEFAULT_RX_TICKS);
sc->bce_rx_ticks = DEFAULT_RX_TICKS;
}
/* Disabling both RX ticks and RX trips will prevent interrupts. */
if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
"hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
__FILE__, __LINE__);
sc->bce_rx_ticks = DEFAULT_RX_TICKS;
sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
}
/* Disabling both TX ticks and TX trips will prevent interrupts. */
if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
"hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
__FILE__, __LINE__);
sc->bce_tx_ticks = DEFAULT_TX_TICKS;
sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
}
}
/****************************************************************************/
/* Device attach function. */
/* */
/* Allocates device resources, performs secondary chip identification, */
/* resets and initializes the hardware, and initializes driver instance */
/* variables. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_attach(device_t dev)
{
struct bce_softc *sc;
struct ifnet *ifp;
u32 val;
int count, error, rc = 0, rid;
sc = device_get_softc(dev);
sc->bce_dev = dev;
DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
sc->bce_unit = device_get_unit(dev);
/* Set initial device and PHY flags */
sc->bce_flags = 0;
sc->bce_phy_flags = 0;
bce_set_tunables(sc);
pci_enable_busmaster(dev);
/* Allocate PCI memory resources. */
rid = PCIR_BAR(0);
sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&rid, RF_ACTIVE);
if (sc->bce_res_mem == NULL) {
BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
__FILE__, __LINE__);
rc = ENXIO;
goto bce_attach_fail;
}
/* Get various resource handles. */
sc->bce_btag = rman_get_bustag(sc->bce_res_mem);
sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
bce_probe_pci_caps(dev, sc);
rid = 1;
count = 0;
#if 0
/* Try allocating MSI-X interrupts. */
if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
(bce_msi_enable >= 2) &&
((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&rid, RF_ACTIVE)) != NULL)) {
msi_needed = count = 1;
if (((error = pci_alloc_msix(dev, &count)) != 0) ||
(count != msi_needed)) {
BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
"Received = %d, error = %d\n", __FILE__, __LINE__,
msi_needed, count, error);
count = 0;
pci_release_msi(dev);
bus_release_resource(dev, SYS_RES_MEMORY, rid,
sc->bce_res_irq);
sc->bce_res_irq = NULL;
} else {
DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
__FUNCTION__);
sc->bce_flags |= BCE_USING_MSIX_FLAG;
}
}
#endif
/* Try allocating a MSI interrupt. */
if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
(bce_msi_enable >= 1) && (count == 0)) {
count = 1;
if ((error = pci_alloc_msi(dev, &count)) != 0) {
BCE_PRINTF("%s(%d): MSI allocation failed! "
"error = %d\n", __FILE__, __LINE__, error);
count = 0;
pci_release_msi(dev);
} else {
DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
"interrupt.\n", __FUNCTION__);
sc->bce_flags |= BCE_USING_MSI_FLAG;
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
rid = 1;
}
}
/* Try allocating a legacy interrupt. */
if (count == 0) {
DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
__FUNCTION__);
rid = 0;
}
sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE));
/* Report any IRQ allocation errors. */
if (sc->bce_res_irq == NULL) {
BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
__FILE__, __LINE__);
rc = ENXIO;
goto bce_attach_fail;
}
/* Initialize mutex for the current device instance. */
BCE_LOCK_INIT(sc, device_get_nameunit(dev));
/*
* Configure byte swap and enable indirect register access.
* Rely on CPU to do target byte swapping on big endian systems.
* Access to registers outside of PCI configurtion space are not
* valid until this is done.
*/
pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
/* Save ASIC revsion info. */
sc->bce_chipid = REG_RD(sc, BCE_MISC_ID);
/* Weed out any non-production controller revisions. */
switch(BCE_CHIP_ID(sc)) {
case BCE_CHIP_ID_5706_A0:
case BCE_CHIP_ID_5706_A1:
case BCE_CHIP_ID_5708_A0:
case BCE_CHIP_ID_5708_B0:
case BCE_CHIP_ID_5709_A0:
case BCE_CHIP_ID_5709_B0:
case BCE_CHIP_ID_5709_B1:
case BCE_CHIP_ID_5709_B2:
BCE_PRINTF("%s(%d): Unsupported controller "
"revision (%c%d)!\n", __FILE__, __LINE__,
(((pci_read_config(dev, PCIR_REVID, 4) &
0xf0) >> 4) + 'A'), (pci_read_config(dev,
PCIR_REVID, 4) & 0xf));
rc = ENODEV;
goto bce_attach_fail;
}
/*
* The embedded PCIe to PCI-X bridge (EPB)
* in the 5708 cannot address memory above
* 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
*/
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
else
sc->max_bus_addr = BUS_SPACE_MAXADDR;
/*
* Find the base address for shared memory access.
* Newer versions of bootcode use a signature and offset
* while older versions use a fixed address.
*/
val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
/* Multi-port devices use different offsets in shared memory. */
sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
(pci_get_function(sc->bce_dev) << 2));
else
sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
__FUNCTION__, sc->bce_shmem_base);
/* Fetch the bootcode revision. */
val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
for (int i = 0, j = 0; i < 3; i++) {
u8 num;
num = (u8) (val >> (24 - (i * 8)));
for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
if (num >= k || !skip0 || k == 1) {
sc->bce_bc_ver[j++] = (num / k) + '0';
skip0 = 0;
}
}
if (i != 2)
sc->bce_bc_ver[j++] = '.';
}
/* Check if any management firwmare is enabled. */
val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
/* Allow time for firmware to enter the running state. */
for (int i = 0; i < 30; i++) {
val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
if (val & BCE_CONDITION_MFW_RUN_MASK)
break;
DELAY(10000);
}
/* Check if management firmware is running. */
val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
val &= BCE_CONDITION_MFW_RUN_MASK;
if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
(val != BCE_CONDITION_MFW_RUN_NONE)) {
u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
int i = 0;
/* Read the management firmware version string. */
for (int j = 0; j < 3; j++) {
val = bce_reg_rd_ind(sc, addr + j * 4);
val = bswap32(val);
memcpy(&sc->bce_mfw_ver[i], &val, 4);
i += 4;
}
} else {
/* May cause firmware synchronization timeouts. */
BCE_PRINTF("%s(%d): Management firmware enabled "
"but not running!\n", __FILE__, __LINE__);
strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
/* ToDo: Any action the driver should take? */
}
}
/* Get PCI bus information (speed and type). */
val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
u32 clkreg;
sc->bce_flags |= BCE_PCIX_FLAG;
clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
switch (clkreg) {
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
sc->bus_speed_mhz = 133;
break;
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
sc->bus_speed_mhz = 100;
break;
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
sc->bus_speed_mhz = 66;
break;
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
sc->bus_speed_mhz = 50;
break;
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
sc->bus_speed_mhz = 33;
break;
}
} else {
if (val & BCE_PCICFG_MISC_STATUS_M66EN)
sc->bus_speed_mhz = 66;
else
sc->bus_speed_mhz = 33;
}
if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
sc->bce_flags |= BCE_PCI_32BIT_FLAG;
/* Find the media type for the adapter. */
bce_get_media(sc);
/* Reset controller and announce to bootcode that driver is present. */
if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
BCE_PRINTF("%s(%d): Controller reset failed!\n",
__FILE__, __LINE__);
rc = ENXIO;
goto bce_attach_fail;
}
/* Initialize the controller. */
if (bce_chipinit(sc)) {
BCE_PRINTF("%s(%d): Controller initialization failed!\n",
__FILE__, __LINE__);
rc = ENXIO;
goto bce_attach_fail;
}
/* Perform NVRAM test. */
if (bce_nvram_test(sc)) {
BCE_PRINTF("%s(%d): NVRAM test failed!\n",
__FILE__, __LINE__);
rc = ENXIO;
goto bce_attach_fail;
}
/* Fetch the permanent Ethernet MAC address. */
bce_get_mac_addr(sc);
/* Update statistics once every second. */
sc->bce_stats_ticks = 1000000 & 0xffff00;
/* Store data needed by PHY driver for backplane applications */
sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
sc->bce_port_hw_cfg = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
/* Allocate DMA memory resources. */
if (bce_dma_alloc(dev)) {
BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
__FILE__, __LINE__);
rc = ENXIO;
goto bce_attach_fail;
}
/* Allocate an ifnet structure. */
ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
BCE_PRINTF("%s(%d): Interface allocation failed!\n",
__FILE__, __LINE__);
rc = ENXIO;
goto bce_attach_fail;
}
/* Initialize the ifnet interface. */
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = bce_ioctl;
ifp->if_start = bce_start;
ifp->if_init = bce_init;
ifp->if_mtu = ETHERMTU;
if (bce_tso_enable) {
ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
IFCAP_VLAN_HWTSO;
} else {
ifp->if_hwassist = BCE_IF_HWASSIST;
ifp->if_capabilities = BCE_IF_CAPABILITIES;
}
#if __FreeBSD_version >= 800505
/*
* Introducing IFCAP_LINKSTATE didn't bump __FreeBSD_version
* so it's approximate value.
*/
if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
ifp->if_capabilities |= IFCAP_LINKSTATE;
#endif
ifp->if_capenable = ifp->if_capabilities;
/*
* Assume standard mbuf sizes for buffer allocation.
* This may change later if the MTU size is set to
* something other than 1500.
*/
bce_get_rx_buffer_sizes(sc,
(ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
/* Recalculate our buffer allocation sizes. */
ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
ifp->if_baudrate = IF_Mbps(2500ULL);
else
ifp->if_baudrate = IF_Mbps(1000);
/* Handle any special PHY initialization for SerDes PHYs. */
bce_init_media(sc);
if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
bce_ifmedia_sts);
/*
* We can't manually override remote PHY's link and assume
* PHY port configuration(Fiber or TP) is not changed after
* device attach. This may not be correct though.
*/
if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
ifmedia_add(&sc->bce_ifmedia,
IFM_ETHER | IFM_2500_SX, 0, NULL);
ifmedia_add(&sc->bce_ifmedia,
IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
}
ifmedia_add(&sc->bce_ifmedia,
IFM_ETHER | IFM_1000_SX, 0, NULL);
ifmedia_add(&sc->bce_ifmedia,
IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
} else {
ifmedia_add(&sc->bce_ifmedia,
IFM_ETHER | IFM_10_T, 0, NULL);
ifmedia_add(&sc->bce_ifmedia,
IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
ifmedia_add(&sc->bce_ifmedia,
IFM_ETHER | IFM_100_TX, 0, NULL);
ifmedia_add(&sc->bce_ifmedia,
IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
ifmedia_add(&sc->bce_ifmedia,
IFM_ETHER | IFM_1000_T, 0, NULL);
ifmedia_add(&sc->bce_ifmedia,
IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
}
ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
} else {
/* MII child bus by attaching the PHY. */
rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
MII_OFFSET_ANY, MIIF_DOPAUSE);
if (rc != 0) {
BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
__LINE__);
goto bce_attach_fail;
}
}
/* Attach to the Ethernet interface list. */
ether_ifattach(ifp, sc->eaddr);
#if __FreeBSD_version < 500000
callout_init(&sc->bce_tick_callout);
callout_init(&sc->bce_pulse_callout);
#else
callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
#endif
/* Hookup IRQ last. */
rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, bce_intr, sc, &sc->bce_intrhand);
if (rc) {
BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
__FILE__, __LINE__);
bce_detach(dev);
goto bce_attach_exit;
}
/*
* At this point we've acquired all the resources
* we need to run so there's no turning back, we're
* cleared for launch.
*/
/* Print some important debugging info. */
DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
/* Add the supported sysctls to the kernel. */
bce_add_sysctls(sc);
BCE_LOCK(sc);
/*
* The chip reset earlier notified the bootcode that
* a driver is present. We now need to start our pulse
* routine so that the bootcode is reminded that we're
* still running.
*/
bce_pulse(sc);
bce_mgmt_init_locked(sc);
BCE_UNLOCK(sc);
/* Finally, print some useful adapter info */
bce_print_adapter_info(sc);
DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
__FUNCTION__, sc);
goto bce_attach_exit;
bce_attach_fail:
bce_release_resources(sc);
bce_attach_exit:
DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
return(rc);
}
/****************************************************************************/
/* Device detach function. */
/* */
/* Stops the controller, resets the controller, and releases resources. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_detach(device_t dev)
{
struct bce_softc *sc = device_get_softc(dev);
struct ifnet *ifp;
u32 msg;
DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
ifp = sc->bce_ifp;
/* Stop and reset the controller. */
BCE_LOCK(sc);
/* Stop the pulse so the bootcode can go to driver absent state. */
callout_stop(&sc->bce_pulse_callout);
bce_stop(sc);
if (sc->bce_flags & BCE_NO_WOL_FLAG)
msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
else
msg = BCE_DRV_MSG_CODE_UNLOAD;
bce_reset(sc, msg);
BCE_UNLOCK(sc);
ether_ifdetach(ifp);
/* If we have a child device on the MII bus remove it too. */
if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
ifmedia_removeall(&sc->bce_ifmedia);
else {
bus_generic_detach(dev);
device_delete_child(dev, sc->bce_miibus);
}
/* Release all remaining resources. */
bce_release_resources(sc);
DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
return(0);
}
/****************************************************************************/
/* Device shutdown function. */
/* */
/* Stops and resets the controller. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_shutdown(device_t dev)
{
struct bce_softc *sc = device_get_softc(dev);
u32 msg;
DBENTER(BCE_VERBOSE);
BCE_LOCK(sc);
bce_stop(sc);
if (sc->bce_flags & BCE_NO_WOL_FLAG)
msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
else
msg = BCE_DRV_MSG_CODE_UNLOAD;
bce_reset(sc, msg);
BCE_UNLOCK(sc);
DBEXIT(BCE_VERBOSE);
return (0);
}
#ifdef BCE_DEBUG
/****************************************************************************/
/* Register read. */
/* */
/* Returns: */
/* The value of the register. */
/****************************************************************************/
static u32
bce_reg_rd(struct bce_softc *sc, u32 offset)
{
u32 val = REG_RD(sc, offset);
DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
__FUNCTION__, offset, val);
return val;
}
/****************************************************************************/
/* Register write (16 bit). */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
{
DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
__FUNCTION__, offset, val);
REG_WR16(sc, offset, val);
}
/****************************************************************************/
/* Register write. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
{
DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
__FUNCTION__, offset, val);
REG_WR(sc, offset, val);
}
#endif
/****************************************************************************/
/* Indirect register read. */
/* */
/* Reads NetXtreme II registers using an index/data register pair in PCI */
/* configuration space. Using this mechanism avoids issues with posted */
/* reads but is much slower than memory-mapped I/O. */
/* */
/* Returns: */
/* The value of the register. */
/****************************************************************************/
static u32
bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
{
device_t dev;
dev = sc->bce_dev;
pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
#ifdef BCE_DEBUG
{
u32 val;
val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
__FUNCTION__, offset, val);
return val;
}
#else
return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
#endif
}
/****************************************************************************/
/* Indirect register write. */
/* */
/* Writes NetXtreme II registers using an index/data register pair in PCI */
/* configuration space. Using this mechanism avoids issues with posted */
/* writes but is muchh slower than memory-mapped I/O. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
{
device_t dev;
dev = sc->bce_dev;
DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
__FUNCTION__, offset, val);
pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
}
/****************************************************************************/
/* Shared memory write. */
/* */
/* Writes NetXtreme II shared memory region. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
{
DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X to "
"0x%08X\n", __FUNCTION__, val, offset);
bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
}
/****************************************************************************/
/* Shared memory read. */
/* */
/* Reads NetXtreme II shared memory region. */
/* */
/* Returns: */
/* The 32 bit value read. */
/****************************************************************************/
static u32
bce_shmem_rd(struct bce_softc *sc, u32 offset)
{
u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
"0x%08X\n", __FUNCTION__, val, offset);
return val;
}
#ifdef BCE_DEBUG
/****************************************************************************/
/* Context memory read. */
/* */
/* The NetXtreme II controller uses context memory to track connection */
/* information for L2 and higher network protocols. */
/* */
/* Returns: */
/* The requested 32 bit value of context memory. */
/****************************************************************************/
static u32
bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
{
u32 idx, offset, retry_cnt = 5, val;
DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
"address: 0x%08X.\n", __FUNCTION__, cid_addr));
offset = ctx_offset + cid_addr;
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
for (idx = 0; idx < retry_cnt; idx++) {
val = REG_RD(sc, BCE_CTX_CTX_CTRL);
if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
break;
DELAY(5);
}
if (val & BCE_CTX_CTX_CTRL_READ_REQ)
BCE_PRINTF("%s(%d); Unable to read CTX memory: "
"cid_addr = 0x%08X, offset = 0x%08X!\n",
__FILE__, __LINE__, cid_addr, ctx_offset);
val = REG_RD(sc, BCE_CTX_CTX_DATA);
} else {
REG_WR(sc, BCE_CTX_DATA_ADR, offset);
val = REG_RD(sc, BCE_CTX_DATA);
}
DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
return(val);
}
#endif
/****************************************************************************/
/* Context memory write. */
/* */
/* The NetXtreme II controller uses context memory to track connection */
/* information for L2 and higher network protocols. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
{
u32 idx, offset = ctx_offset + cid_addr;
u32 val, retry_cnt = 5;
DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
__FUNCTION__, cid_addr));
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
for (idx = 0; idx < retry_cnt; idx++) {
val = REG_RD(sc, BCE_CTX_CTX_CTRL);
if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
break;
DELAY(5);
}
if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
BCE_PRINTF("%s(%d); Unable to write CTX memory: "
"cid_addr = 0x%08X, offset = 0x%08X!\n",
__FILE__, __LINE__, cid_addr, ctx_offset);
} else {
REG_WR(sc, BCE_CTX_DATA_ADR, offset);
REG_WR(sc, BCE_CTX_DATA, ctx_val);
}
}
/****************************************************************************/
/* PHY register read. */
/* */
/* Implements register reads on the MII bus. */
/* */
/* Returns: */
/* The value of the register. */
/****************************************************************************/
static int
bce_miibus_read_reg(device_t dev, int phy, int reg)
{
struct bce_softc *sc;
u32 val;
int i;
sc = device_get_softc(dev);
/*
* The 5709S PHY is an IEEE Clause 45 PHY
* with special mappings to work with IEEE
* Clause 22 register accesses.
*/
if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
reg += 0x10;
}
if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
REG_RD(sc, BCE_EMAC_MDIO_MODE);
DELAY(40);
}
val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
BCE_EMAC_MDIO_COMM_START_BUSY;
REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
DELAY(10);
val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
DELAY(5);
val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
val &= BCE_EMAC_MDIO_COMM_DATA;
break;
}
}
if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
"reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
val = 0x0;
} else {
val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
}
if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
REG_RD(sc, BCE_EMAC_MDIO_MODE);
DELAY(40);
}
DB_PRINT_PHY_REG(reg, val);
return (val & 0xffff);
}
/****************************************************************************/
/* PHY register write. */
/* */
/* Implements register writes on the MII bus. */
/* */
/* Returns: */
/* The value of the register. */
/****************************************************************************/
static int
bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
{
struct bce_softc *sc;
u32 val1;
int i;
sc = device_get_softc(dev);
DB_PRINT_PHY_REG(reg, val);
/*
* The 5709S PHY is an IEEE Clause 45 PHY
* with special mappings to work with IEEE
* Clause 22 register accesses.
*/
if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
reg += 0x10;
}
if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
REG_RD(sc, BCE_EMAC_MDIO_MODE);
DELAY(40);
}
val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
DELAY(10);
val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
DELAY(5);
break;
}
}
if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
BCE_PRINTF("%s(%d): PHY write timeout!\n",
__FILE__, __LINE__);
if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
REG_RD(sc, BCE_EMAC_MDIO_MODE);
DELAY(40);
}
return 0;
}
/****************************************************************************/
/* MII bus status change. */
/* */
/* Called by the MII bus driver when the PHY establishes link to set the */
/* MAC interface registers. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_miibus_statchg(device_t dev)
{
struct bce_softc *sc;
struct mii_data *mii;
struct ifmediareq ifmr;
int media_active, media_status, val;
sc = device_get_softc(dev);
DBENTER(BCE_VERBOSE_PHY);
if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
bzero(&ifmr, sizeof(ifmr));
bce_ifmedia_sts_rphy(sc, &ifmr);
media_active = ifmr.ifm_active;
media_status = ifmr.ifm_status;
} else {
mii = device_get_softc(sc->bce_miibus);
media_active = mii->mii_media_active;
media_status = mii->mii_media_status;
}
/* Ignore invalid media status. */
if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
(IFM_ACTIVE | IFM_AVALID))
goto bce_miibus_statchg_exit;
val = REG_RD(sc, BCE_EMAC_MODE);
val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
BCE_EMAC_MODE_25G);
/* Set MII or GMII interface based on the PHY speed. */
switch (IFM_SUBTYPE(media_active)) {
case IFM_10_T:
if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
DBPRINT(sc, BCE_INFO_PHY,
"Enabling 10Mb interface.\n");
val |= BCE_EMAC_MODE_PORT_MII_10;
break;
}
/* fall-through */
case IFM_100_TX:
DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
val |= BCE_EMAC_MODE_PORT_MII;
break;
case IFM_2500_SX:
DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
val |= BCE_EMAC_MODE_25G;
/* fall-through */
case IFM_1000_T:
case IFM_1000_SX:
DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
val |= BCE_EMAC_MODE_PORT_GMII;
break;
default:
DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
"default GMII interface.\n");
val |= BCE_EMAC_MODE_PORT_GMII;
}
/* Set half or full duplex based on PHY settings. */
if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
DBPRINT(sc, BCE_INFO_PHY,
"Setting Half-Duplex interface.\n");
val |= BCE_EMAC_MODE_HALF_DUPLEX;
} else
DBPRINT(sc, BCE_INFO_PHY,
"Setting Full-Duplex interface.\n");
REG_WR(sc, BCE_EMAC_MODE, val);
if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
DBPRINT(sc, BCE_INFO_PHY,
"%s(): Enabling RX flow control.\n", __FUNCTION__);
BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL;
} else {
DBPRINT(sc, BCE_INFO_PHY,
"%s(): Disabling RX flow control.\n", __FUNCTION__);
BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL;
}
if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
DBPRINT(sc, BCE_INFO_PHY,
"%s(): Enabling TX flow control.\n", __FUNCTION__);
BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
} else {
DBPRINT(sc, BCE_INFO_PHY,
"%s(): Disabling TX flow control.\n", __FUNCTION__);
BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
}
/* ToDo: Update watermarks in bce_init_rx_context(). */
bce_miibus_statchg_exit:
DBEXIT(BCE_VERBOSE_PHY);
}
/****************************************************************************/
/* Acquire NVRAM lock. */
/* */
/* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
/* for use by the driver. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_acquire_nvram_lock(struct bce_softc *sc)
{
u32 val;
int j, rc = 0;
DBENTER(BCE_VERBOSE_NVRAM);
/* Request access to the flash interface. */
REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
val = REG_RD(sc, BCE_NVM_SW_ARB);
if (val & BCE_NVM_SW_ARB_ARB_ARB2)
break;
DELAY(5);
}
if (j >= NVRAM_TIMEOUT_COUNT) {
DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
rc = EBUSY;
}
DBEXIT(BCE_VERBOSE_NVRAM);
return (rc);
}
/****************************************************************************/
/* Release NVRAM lock. */
/* */
/* When the caller is finished accessing NVRAM the lock must be released. */
/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
/* for use by the driver. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_release_nvram_lock(struct bce_softc *sc)
{
u32 val;
int j, rc = 0;
DBENTER(BCE_VERBOSE_NVRAM);
/*
* Relinquish nvram interface.
*/
REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
val = REG_RD(sc, BCE_NVM_SW_ARB);
if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
break;
DELAY(5);
}
if (j >= NVRAM_TIMEOUT_COUNT) {
DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
rc = EBUSY;
}
DBEXIT(BCE_VERBOSE_NVRAM);
return (rc);
}
#ifdef BCE_NVRAM_WRITE_SUPPORT
/****************************************************************************/
/* Enable NVRAM write access. */
/* */
/* Before writing to NVRAM the caller must enable NVRAM writes. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_enable_nvram_write(struct bce_softc *sc)
{
u32 val;
int rc = 0;
DBENTER(BCE_VERBOSE_NVRAM);
val = REG_RD(sc, BCE_MISC_CFG);
REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
int j;
REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
DELAY(5);
val = REG_RD(sc, BCE_NVM_COMMAND);
if (val & BCE_NVM_COMMAND_DONE)
break;
}
if (j >= NVRAM_TIMEOUT_COUNT) {
DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
rc = EBUSY;
}
}
DBENTER(BCE_VERBOSE_NVRAM);
return (rc);
}
/****************************************************************************/
/* Disable NVRAM write access. */
/* */
/* When the caller is finished writing to NVRAM write access must be */
/* disabled. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_disable_nvram_write(struct bce_softc *sc)
{
u32 val;
DBENTER(BCE_VERBOSE_NVRAM);
val = REG_RD(sc, BCE_MISC_CFG);
REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
DBEXIT(BCE_VERBOSE_NVRAM);
}
#endif
/****************************************************************************/
/* Enable NVRAM access. */
/* */
/* Before accessing NVRAM for read or write operations the caller must */
/* enabled NVRAM access. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_enable_nvram_access(struct bce_softc *sc)
{
u32 val;
DBENTER(BCE_VERBOSE_NVRAM);
val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
/* Enable both bits, even on read. */
REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
DBEXIT(BCE_VERBOSE_NVRAM);
}
/****************************************************************************/
/* Disable NVRAM access. */
/* */
/* When the caller is finished accessing NVRAM access must be disabled. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_disable_nvram_access(struct bce_softc *sc)
{
u32 val;
DBENTER(BCE_VERBOSE_NVRAM);
val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
/* Disable both bits, even after read. */
REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
DBEXIT(BCE_VERBOSE_NVRAM);
}
#ifdef BCE_NVRAM_WRITE_SUPPORT
/****************************************************************************/
/* Erase NVRAM page before writing. */
/* */
/* Non-buffered flash parts require that a page be erased before it is */
/* written. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
{
u32 cmd;
int j, rc = 0;
DBENTER(BCE_VERBOSE_NVRAM);
/* Buffered flash doesn't require an erase. */
if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
goto bce_nvram_erase_page_exit;
/* Build an erase command. */
cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
BCE_NVM_COMMAND_DOIT;
/*
* Clear the DONE bit separately, set the NVRAM adress to erase,
* and issue the erase command.
*/
REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
REG_WR(sc, BCE_NVM_COMMAND, cmd);
/* Wait for completion. */
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
u32 val;
DELAY(5);
val = REG_RD(sc, BCE_NVM_COMMAND);
if (val & BCE_NVM_COMMAND_DONE)
break;
}
if (j >= NVRAM_TIMEOUT_COUNT) {
DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
rc = EBUSY;
}
bce_nvram_erase_page_exit:
DBEXIT(BCE_VERBOSE_NVRAM);
return (rc);
}
#endif /* BCE_NVRAM_WRITE_SUPPORT */
/****************************************************************************/
/* Read a dword (32 bits) from NVRAM. */
/* */
/* Read a 32 bit word from NVRAM. The caller is assumed to have already */
/* obtained the NVRAM lock and enabled the controller for NVRAM access. */
/* */
/* Returns: */
/* 0 on success and the 32 bit value read, positive value on failure. */
/****************************************************************************/
static int
bce_nvram_read_dword(struct bce_softc *sc,
u32 offset, u8 *ret_val, u32 cmd_flags)
{
u32 cmd;
int i, rc = 0;
DBENTER(BCE_EXTREME_NVRAM);
/* Build the command word. */
cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
/* Calculate the offset for buffered flash if translation is used. */
if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
offset = ((offset / sc->bce_flash_info->page_size) <<
sc->bce_flash_info->page_bits) +
(offset % sc->bce_flash_info->page_size);
}
/*
* Clear the DONE bit separately, set the address to read,
* and issue the read.
*/
REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
REG_WR(sc, BCE_NVM_COMMAND, cmd);
/* Wait for completion. */
for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
u32 val;
DELAY(5);
val = REG_RD(sc, BCE_NVM_COMMAND);
if (val & BCE_NVM_COMMAND_DONE) {
val = REG_RD(sc, BCE_NVM_READ);
val = bce_be32toh(val);
memcpy(ret_val, &val, 4);
break;
}
}
/* Check for errors. */
if (i >= NVRAM_TIMEOUT_COUNT) {
BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
"offset 0x%08X!\n", __FILE__, __LINE__, offset);
rc = EBUSY;
}
DBEXIT(BCE_EXTREME_NVRAM);
return(rc);
}
#ifdef BCE_NVRAM_WRITE_SUPPORT
/****************************************************************************/
/* Write a dword (32 bits) to NVRAM. */
/* */
/* Write a 32 bit word to NVRAM. The caller is assumed to have already */
/* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
/* enabled NVRAM write access. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
u32 cmd_flags)
{
u32 cmd, val32;
int j, rc = 0;
DBENTER(BCE_VERBOSE_NVRAM);
/* Build the command word. */
cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
/* Calculate the offset for buffered flash if translation is used. */
if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
offset = ((offset / sc->bce_flash_info->page_size) <<
sc->bce_flash_info->page_bits) +
(offset % sc->bce_flash_info->page_size);
}
/*
* Clear the DONE bit separately, convert NVRAM data to big-endian,
* set the NVRAM address to write, and issue the write command
*/
REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
memcpy(&val32, val, 4);
val32 = htobe32(val32);
REG_WR(sc, BCE_NVM_WRITE, val32);
REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
REG_WR(sc, BCE_NVM_COMMAND, cmd);
/* Wait for completion. */
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
DELAY(5);
if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
break;
}
if (j >= NVRAM_TIMEOUT_COUNT) {
BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
"offset 0x%08X\n", __FILE__, __LINE__, offset);
rc = EBUSY;
}
DBEXIT(BCE_VERBOSE_NVRAM);
return (rc);
}
#endif /* BCE_NVRAM_WRITE_SUPPORT */
/****************************************************************************/
/* Initialize NVRAM access. */
/* */
/* Identify the NVRAM device in use and prepare the NVRAM interface to */
/* access that device. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_init_nvram(struct bce_softc *sc)
{
u32 val;
int j, entry_count, rc = 0;
const struct flash_spec *flash;
DBENTER(BCE_VERBOSE_NVRAM);
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
sc->bce_flash_info = &flash_5709;
goto bce_init_nvram_get_flash_size;
}
/* Determine the selected interface. */
val = REG_RD(sc, BCE_NVM_CFG1);
entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
/*
* Flash reconfiguration is required to support additional
* NVRAM devices not directly supported in hardware.
* Check if the flash interface was reconfigured
* by the bootcode.
*/
if (val & 0x40000000) {
/* Flash interface reconfigured by bootcode. */
DBPRINT(sc,BCE_INFO_LOAD,
"bce_init_nvram(): Flash WAS reconfigured.\n");
for (j = 0, flash = &flash_table[0]; j < entry_count;
j++, flash++) {
if ((val & FLASH_BACKUP_STRAP_MASK) ==
(flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
sc->bce_flash_info = flash;
break;
}
}
} else {
/* Flash interface not yet reconfigured. */
u32 mask;
DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
__FUNCTION__);
if (val & (1 << 23))
mask = FLASH_BACKUP_STRAP_MASK;
else
mask = FLASH_STRAP_MASK;
/* Look for the matching NVRAM device configuration data. */
for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
/* Check if the device matches any of the known devices. */
if ((val & mask) == (flash->strapping & mask)) {
/* Found a device match. */
sc->bce_flash_info = flash;
/* Request access to the flash interface. */
if ((rc = bce_acquire_nvram_lock(sc)) != 0)
return rc;
/* Reconfigure the flash interface. */
bce_enable_nvram_access(sc);
REG_WR(sc, BCE_NVM_CFG1, flash->config1);
REG_WR(sc, BCE_NVM_CFG2, flash->config2);
REG_WR(sc, BCE_NVM_CFG3, flash->config3);
REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
bce_disable_nvram_access(sc);
bce_release_nvram_lock(sc);
break;
}
}
}
/* Check if a matching device was found. */
if (j == entry_count) {
sc->bce_flash_info = NULL;
BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
__FILE__, __LINE__);
DBEXIT(BCE_VERBOSE_NVRAM);
return (ENODEV);
}
bce_init_nvram_get_flash_size:
/* Write the flash config data to the shared memory interface. */
val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
if (val)
sc->bce_flash_size = val;
else
sc->bce_flash_size = sc->bce_flash_info->total_size;
DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
__FUNCTION__, sc->bce_flash_info->name,
sc->bce_flash_info->total_size);
DBEXIT(BCE_VERBOSE_NVRAM);
return rc;
}
/****************************************************************************/
/* Read an arbitrary range of data from NVRAM. */
/* */
/* Prepares the NVRAM interface for access and reads the requested data */
/* into the supplied buffer. */
/* */
/* Returns: */
/* 0 on success and the data read, positive value on failure. */
/****************************************************************************/
static int
bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
int buf_size)
{
int rc = 0;
u32 cmd_flags, offset32, len32, extra;
DBENTER(BCE_VERBOSE_NVRAM);
if (buf_size == 0)
goto bce_nvram_read_exit;
/* Request access to the flash interface. */
if ((rc = bce_acquire_nvram_lock(sc)) != 0)
goto bce_nvram_read_exit;
/* Enable access to flash interface */
bce_enable_nvram_access(sc);
len32 = buf_size;
offset32 = offset;
extra = 0;
cmd_flags = 0;
if (offset32 & 3) {
u8 buf[4];
u32 pre_len;
offset32 &= ~3;
pre_len = 4 - (offset & 3);
if (pre_len >= len32) {
pre_len = len32;
cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
}
else {
cmd_flags = BCE_NVM_COMMAND_FIRST;
}
rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
if (rc)
return rc;
memcpy(ret_buf, buf + (offset & 3), pre_len);
offset32 += 4;
ret_buf += pre_len;
len32 -= pre_len;
}
if (len32 & 3) {
extra = 4 - (len32 & 3);
len32 = (len32 + 4) & ~3;
}
if (len32 == 4) {
u8 buf[4];
if (cmd_flags)
cmd_flags = BCE_NVM_COMMAND_LAST;
else
cmd_flags = BCE_NVM_COMMAND_FIRST |
BCE_NVM_COMMAND_LAST;
rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
memcpy(ret_buf, buf, 4 - extra);
}
else if (len32 > 0) {
u8 buf[4];
/* Read the first word. */
if (cmd_flags)
cmd_flags = 0;
else
cmd_flags = BCE_NVM_COMMAND_FIRST;
rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
/* Advance to the next dword. */
offset32 += 4;
ret_buf += 4;
len32 -= 4;
while (len32 > 4 && rc == 0) {
rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
/* Advance to the next dword. */
offset32 += 4;
ret_buf += 4;
len32 -= 4;
}
if (rc)
goto bce_nvram_read_locked_exit;
cmd_flags = BCE_NVM_COMMAND_LAST;
rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
memcpy(ret_buf, buf, 4 - extra);
}
bce_nvram_read_locked_exit:
/* Disable access to flash interface and release the lock. */
bce_disable_nvram_access(sc);
bce_release_nvram_lock(sc);
bce_nvram_read_exit:
DBEXIT(BCE_VERBOSE_NVRAM);
return rc;
}
#ifdef BCE_NVRAM_WRITE_SUPPORT
/****************************************************************************/
/* Write an arbitrary range of data from NVRAM. */
/* */
/* Prepares the NVRAM interface for write access and writes the requested */
/* data from the supplied buffer. The caller is responsible for */
/* calculating any appropriate CRCs. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
int buf_size)
{
u32 written, offset32, len32;
u8 *buf, start[4], end[4];
int rc = 0;
int align_start, align_end;
DBENTER(BCE_VERBOSE_NVRAM);
buf = data_buf;
offset32 = offset;
len32 = buf_size;
align_start = align_end = 0;
if ((align_start = (offset32 & 3))) {
offset32 &= ~3;
len32 += align_start;
if ((rc = bce_nvram_read(sc, offset32, start, 4)))
goto bce_nvram_write_exit;
}
if (len32 & 3) {
if ((len32 > 4) || !align_start) {
align_end = 4 - (len32 & 3);
len32 += align_end;
if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
end, 4))) {
goto bce_nvram_write_exit;
}
}
}
if (align_start || align_end) {
buf = malloc(len32, M_DEVBUF, M_NOWAIT);
if (buf == 0) {
rc = ENOMEM;
goto bce_nvram_write_exit;
}
if (align_start) {
memcpy(buf, start, 4);
}
if (align_end) {
memcpy(buf + len32 - 4, end, 4);
}
memcpy(buf + align_start, data_buf, buf_size);
}
written = 0;
while ((written < len32) && (rc == 0)) {
u32 page_start, page_end, data_start, data_end;
u32 addr, cmd_flags;
int i;
u8 flash_buffer[264];
/* Find the page_start addr */
page_start = offset32 + written;
page_start -= (page_start % sc->bce_flash_info->page_size);
/* Find the page_end addr */
page_end = page_start + sc->bce_flash_info->page_size;
/* Find the data_start addr */
data_start = (written == 0) ? offset32 : page_start;
/* Find the data_end addr */
data_end = (page_end > offset32 + len32) ?
(offset32 + len32) : page_end;
/* Request access to the flash interface. */
if ((rc = bce_acquire_nvram_lock(sc)) != 0)
goto bce_nvram_write_exit;
/* Enable access to flash interface */
bce_enable_nvram_access(sc);
cmd_flags = BCE_NVM_COMMAND_FIRST;
if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
int j;
/* Read the whole page into the buffer
* (non-buffer flash only) */
for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
if (j == (sc->bce_flash_info->page_size - 4)) {
cmd_flags |= BCE_NVM_COMMAND_LAST;
}
rc = bce_nvram_read_dword(sc,
page_start + j,
&flash_buffer[j],
cmd_flags);
if (rc)
goto bce_nvram_write_locked_exit;
cmd_flags = 0;
}
}
/* Enable writes to flash interface (unlock write-protect) */
if ((rc = bce_enable_nvram_write(sc)) != 0)
goto bce_nvram_write_locked_exit;
/* Erase the page */
if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
goto bce_nvram_write_locked_exit;
/* Re-enable the write again for the actual write */
bce_enable_nvram_write(sc);
/* Loop to write back the buffer data from page_start to
* data_start */
i = 0;
if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
for (addr = page_start; addr < data_start;
addr += 4, i += 4) {
rc = bce_nvram_write_dword(sc, addr,
&flash_buffer[i], cmd_flags);
if (rc != 0)
goto bce_nvram_write_locked_exit;
cmd_flags = 0;
}
}
/* Loop to write the new data from data_start to data_end */
for (addr = data_start; addr < data_end; addr += 4, i++) {
if ((addr == page_end - 4) ||
((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
(addr == data_end - 4))) {
cmd_flags |= BCE_NVM_COMMAND_LAST;
}
rc = bce_nvram_write_dword(sc, addr, buf,
cmd_flags);
if (rc != 0)
goto bce_nvram_write_locked_exit;
cmd_flags = 0;
buf += 4;
}
/* Loop to write back the buffer data from data_end
* to page_end */
if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
for (addr = data_end; addr < page_end;
addr += 4, i += 4) {
if (addr == page_end-4) {
cmd_flags = BCE_NVM_COMMAND_LAST;
}
rc = bce_nvram_write_dword(sc, addr,
&flash_buffer[i], cmd_flags);
if (rc != 0)
goto bce_nvram_write_locked_exit;
cmd_flags = 0;
}
}
/* Disable writes to flash interface (lock write-protect) */
bce_disable_nvram_write(sc);
/* Disable access to flash interface */
bce_disable_nvram_access(sc);
bce_release_nvram_lock(sc);
/* Increment written */
written += data_end - data_start;
}
goto bce_nvram_write_exit;
bce_nvram_write_locked_exit:
bce_disable_nvram_write(sc);
bce_disable_nvram_access(sc);
bce_release_nvram_lock(sc);
bce_nvram_write_exit:
if (align_start || align_end)
free(buf, M_DEVBUF);
DBEXIT(BCE_VERBOSE_NVRAM);
return (rc);
}
#endif /* BCE_NVRAM_WRITE_SUPPORT */
/****************************************************************************/
/* Verifies that NVRAM is accessible and contains valid data. */
/* */
/* Reads the configuration data from NVRAM and verifies that the CRC is */
/* correct. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_nvram_test(struct bce_softc *sc)
{
u32 buf[BCE_NVRAM_SIZE / 4];
u8 *data = (u8 *) buf;
int rc = 0;
u32 magic, csum;
DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
/*
* Check that the device NVRAM is valid by reading
* the magic value at offset 0.
*/
if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
__FILE__, __LINE__);
goto bce_nvram_test_exit;
}
/*
* Verify that offset 0 of the NVRAM contains
* a valid magic number.
*/
magic = bce_be32toh(buf[0]);
if (magic != BCE_NVRAM_MAGIC) {
rc = ENODEV;
BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
"Expected: 0x%08X, Found: 0x%08X\n",
__FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
goto bce_nvram_test_exit;
}
/*
* Verify that the device NVRAM includes valid
* configuration data.
*/
if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
BCE_PRINTF("%s(%d): Unable to read manufacturing "
"Information from NVRAM!\n", __FILE__, __LINE__);
goto bce_nvram_test_exit;
}
csum = ether_crc32_le(data, 0x100);
if (csum != BCE_CRC32_RESIDUAL) {
rc = ENODEV;
BCE_PRINTF("%s(%d): Invalid manufacturing information "
"NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
__FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
goto bce_nvram_test_exit;
}
csum = ether_crc32_le(data + 0x100, 0x100);
if (csum != BCE_CRC32_RESIDUAL) {
rc = ENODEV;
BCE_PRINTF("%s(%d): Invalid feature configuration "
"information NVRAM CRC! Expected: 0x%08X, "
"Found: 08%08X\n", __FILE__, __LINE__,
BCE_CRC32_RESIDUAL, csum);
}
bce_nvram_test_exit:
DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
return rc;
}
/****************************************************************************/
/* Calculates the size of the buffers to allocate based on the MTU. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
{
DBENTER(BCE_VERBOSE_LOAD);
/* Use a single allocation type when header splitting enabled. */
if (bce_hdr_split == TRUE) {
sc->rx_bd_mbuf_alloc_size = MHLEN;
/* Make sure offset is 16 byte aligned for hardware. */
sc->rx_bd_mbuf_align_pad =
roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
sc->rx_bd_mbuf_align_pad;
} else {
if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
ETHER_CRC_LEN) > MCLBYTES) {
/* Setup for jumbo RX buffer allocations. */
sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
sc->rx_bd_mbuf_align_pad =
roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
sc->rx_bd_mbuf_data_len =
sc->rx_bd_mbuf_alloc_size -
sc->rx_bd_mbuf_align_pad;
} else {
/* Setup for standard RX buffer allocations. */
sc->rx_bd_mbuf_alloc_size = MCLBYTES;
sc->rx_bd_mbuf_align_pad =
roundup2(MCLBYTES, 16) - MCLBYTES;
sc->rx_bd_mbuf_data_len =
sc->rx_bd_mbuf_alloc_size -
sc->rx_bd_mbuf_align_pad;
}
}
// DBPRINT(sc, BCE_INFO_LOAD,
DBPRINT(sc, BCE_WARN,
"%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
"rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
sc->rx_bd_mbuf_align_pad);
DBEXIT(BCE_VERBOSE_LOAD);
}
/****************************************************************************/
/* Identifies the current media type of the controller and sets the PHY */
/* address. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_get_media(struct bce_softc *sc)
{
u32 val;
DBENTER(BCE_VERBOSE_PHY);
/* Assume PHY address for copper controllers. */
sc->bce_phy_addr = 1;
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
u32 strap;
/*
* The BCM5709S is software configurable
* for Copper or SerDes operation.
*/
if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
"for copper.\n");
goto bce_get_media_exit;
} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
"for dual media.\n");
sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
goto bce_get_media_exit;
}
if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
strap = (val &
BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
else
strap = (val &
BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
if (pci_get_function(sc->bce_dev) == 0) {
switch (strap) {
case 0x4:
case 0x5:
case 0x6:
DBPRINT(sc, BCE_INFO_LOAD,
"BCM5709 s/w configured for SerDes.\n");
sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
break;
default:
DBPRINT(sc, BCE_INFO_LOAD,
"BCM5709 s/w configured for Copper.\n");
break;
}
} else {
switch (strap) {
case 0x1:
case 0x2:
case 0x4:
DBPRINT(sc, BCE_INFO_LOAD,
"BCM5709 s/w configured for SerDes.\n");
sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
break;
default:
DBPRINT(sc, BCE_INFO_LOAD,
"BCM5709 s/w configured for Copper.\n");
break;
}
}
} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
sc->bce_flags |= BCE_NO_WOL_FLAG;
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
/* 5708S/09S/16S use a separate PHY for SerDes. */
sc->bce_phy_addr = 2;
val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
sc->bce_phy_flags |=
BCE_PHY_2_5G_CAPABLE_FLAG;
DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
"capable adapter\n");
}
}
} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
bce_get_media_exit:
DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
"Using PHY address %d.\n", sc->bce_phy_addr);
DBEXIT(BCE_VERBOSE_PHY);
}
/****************************************************************************/
/* Performs PHY initialization required before MII drivers access the */
/* device. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_init_media(struct bce_softc *sc)
{
if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
/*
* Configure 5709S/5716S PHYs to use traditional IEEE
* Clause 22 method. Otherwise we have no way to attach
* the PHY in mii(4) layer. PHY specific configuration
* is done in mii layer.
*/
/* Select auto-negotiation MMD of the PHY. */
bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
}
}
/****************************************************************************/
/* Free any DMA memory owned by the driver. */
/* */
/* Scans through each data structre that requires DMA memory and frees */
/* the memory if allocated. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_dma_free(struct bce_softc *sc)
{
int i;
DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
/* Free, unmap, and destroy the status block. */
if (sc->status_block_paddr != 0) {
bus_dmamap_unload(
sc->status_tag,
sc->status_map);
sc->status_block_paddr = 0;
}
if (sc->status_block != NULL) {
bus_dmamem_free(
sc->status_tag,
sc->status_block,
sc->status_map);
sc->status_block = NULL;
}
if (sc->status_tag != NULL) {
bus_dma_tag_destroy(sc->status_tag);
sc->status_tag = NULL;
}
/* Free, unmap, and destroy the statistics block. */
if (sc->stats_block_paddr != 0) {
bus_dmamap_unload(
sc->stats_tag,
sc->stats_map);
sc->stats_block_paddr = 0;
}
if (sc->stats_block != NULL) {
bus_dmamem_free(
sc->stats_tag,
sc->stats_block,
sc->stats_map);
sc->stats_block = NULL;
}
if (sc->stats_tag != NULL) {
bus_dma_tag_destroy(sc->stats_tag);
sc->stats_tag = NULL;
}
/* Free, unmap and destroy all context memory pages. */
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
for (i = 0; i < sc->ctx_pages; i++ ) {
if (sc->ctx_paddr[i] != 0) {
bus_dmamap_unload(
sc->ctx_tag,
sc->ctx_map[i]);
sc->ctx_paddr[i] = 0;
}
if (sc->ctx_block[i] != NULL) {
bus_dmamem_free(
sc->ctx_tag,
sc->ctx_block[i],
sc->ctx_map[i]);
sc->ctx_block[i] = NULL;
}
}
/* Destroy the context memory tag. */
if (sc->ctx_tag != NULL) {
bus_dma_tag_destroy(sc->ctx_tag);
sc->ctx_tag = NULL;
}
}
/* Free, unmap and destroy all TX buffer descriptor chain pages. */
for (i = 0; i < sc->tx_pages; i++ ) {
if (sc->tx_bd_chain_paddr[i] != 0) {
bus_dmamap_unload(
sc->tx_bd_chain_tag,
sc->tx_bd_chain_map[i]);
sc->tx_bd_chain_paddr[i] = 0;
}
if (sc->tx_bd_chain[i] != NULL) {
bus_dmamem_free(
sc->tx_bd_chain_tag,
sc->tx_bd_chain[i],
sc->tx_bd_chain_map[i]);
sc->tx_bd_chain[i] = NULL;
}
}
/* Destroy the TX buffer descriptor tag. */
if (sc->tx_bd_chain_tag != NULL) {
bus_dma_tag_destroy(sc->tx_bd_chain_tag);
sc->tx_bd_chain_tag = NULL;
}
/* Free, unmap and destroy all RX buffer descriptor chain pages. */
for (i = 0; i < sc->rx_pages; i++ ) {
if (sc->rx_bd_chain_paddr[i] != 0) {
bus_dmamap_unload(
sc->rx_bd_chain_tag,
sc->rx_bd_chain_map[i]);
sc->rx_bd_chain_paddr[i] = 0;
}
if (sc->rx_bd_chain[i] != NULL) {
bus_dmamem_free(
sc->rx_bd_chain_tag,
sc->rx_bd_chain[i],
sc->rx_bd_chain_map[i]);
sc->rx_bd_chain[i] = NULL;
}
}
/* Destroy the RX buffer descriptor tag. */
if (sc->rx_bd_chain_tag != NULL) {
bus_dma_tag_destroy(sc->rx_bd_chain_tag);
sc->rx_bd_chain_tag = NULL;
}
/* Free, unmap and destroy all page buffer descriptor chain pages. */
if (bce_hdr_split == TRUE) {
for (i = 0; i < sc->pg_pages; i++ ) {
if (sc->pg_bd_chain_paddr[i] != 0) {
bus_dmamap_unload(
sc->pg_bd_chain_tag,
sc->pg_bd_chain_map[i]);
sc->pg_bd_chain_paddr[i] = 0;
}
if (sc->pg_bd_chain[i] != NULL) {
bus_dmamem_free(
sc->pg_bd_chain_tag,
sc->pg_bd_chain[i],
sc->pg_bd_chain_map[i]);
sc->pg_bd_chain[i] = NULL;
}
}
/* Destroy the page buffer descriptor tag. */
if (sc->pg_bd_chain_tag != NULL) {
bus_dma_tag_destroy(sc->pg_bd_chain_tag);
sc->pg_bd_chain_tag = NULL;
}
}
/* Unload and destroy the TX mbuf maps. */
for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
if (sc->tx_mbuf_map[i] != NULL) {
bus_dmamap_unload(sc->tx_mbuf_tag,
sc->tx_mbuf_map[i]);
bus_dmamap_destroy(sc->tx_mbuf_tag,
sc->tx_mbuf_map[i]);
sc->tx_mbuf_map[i] = NULL;
}
}
/* Destroy the TX mbuf tag. */
if (sc->tx_mbuf_tag != NULL) {
bus_dma_tag_destroy(sc->tx_mbuf_tag);
sc->tx_mbuf_tag = NULL;
}
/* Unload and destroy the RX mbuf maps. */
for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
if (sc->rx_mbuf_map[i] != NULL) {
bus_dmamap_unload(sc->rx_mbuf_tag,
sc->rx_mbuf_map[i]);
bus_dmamap_destroy(sc->rx_mbuf_tag,
sc->rx_mbuf_map[i]);
sc->rx_mbuf_map[i] = NULL;
}
}
/* Destroy the RX mbuf tag. */
if (sc->rx_mbuf_tag != NULL) {
bus_dma_tag_destroy(sc->rx_mbuf_tag);
sc->rx_mbuf_tag = NULL;
}
/* Unload and destroy the page mbuf maps. */
if (bce_hdr_split == TRUE) {
for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
if (sc->pg_mbuf_map[i] != NULL) {
bus_dmamap_unload(sc->pg_mbuf_tag,
sc->pg_mbuf_map[i]);
bus_dmamap_destroy(sc->pg_mbuf_tag,
sc->pg_mbuf_map[i]);
sc->pg_mbuf_map[i] = NULL;
}
}
/* Destroy the page mbuf tag. */
if (sc->pg_mbuf_tag != NULL) {
bus_dma_tag_destroy(sc->pg_mbuf_tag);
sc->pg_mbuf_tag = NULL;
}
}
/* Destroy the parent tag */
if (sc->parent_tag != NULL) {
bus_dma_tag_destroy(sc->parent_tag);
sc->parent_tag = NULL;
}
DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
}
/****************************************************************************/
/* Get DMA memory from the OS. */
/* */
/* Validates that the OS has provided DMA buffers in response to a */
/* bus_dmamap_load() call and saves the physical address of those buffers. */
/* When the callback is used the OS will return 0 for the mapping function */
/* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any */
/* failures back to the caller. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *busaddr = arg;
KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
__FUNCTION__, nseg));
/* Simulate a mapping failure. */
DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
error = ENOMEM);
/* ToDo: How to increment debug sim_count variable here? */
/* Check for an error and signal the caller that an error occurred. */
if (error) {
*busaddr = 0;
} else {
*busaddr = segs->ds_addr;
}
}
/****************************************************************************/
/* Allocate any DMA memory needed by the driver. */
/* */
/* Allocates DMA memory needed for the various global structures needed by */
/* hardware. */
/* */
/* Memory alignment requirements: */
/* +-----------------+----------+----------+----------+----------+ */
/* | | 5706 | 5708 | 5709 | 5716 | */
/* +-----------------+----------+----------+----------+----------+ */
/* |Status Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */
/* |Statistics Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */
/* |RX Buffers | 16 bytes | 16 bytes | 16 bytes | 16 bytes | */
/* |PG Buffers | none | none | none | none | */
/* |TX Buffers | none | none | none | none | */
/* |Chain Pages(1) | 4KiB | 4KiB | 4KiB | 4KiB | */
/* |Context Memory | | | | | */
/* +-----------------+----------+----------+----------+----------+ */
/* */
/* (1) Must align with CPU page size (BCM_PAGE_SZIE). */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_dma_alloc(device_t dev)
{
struct bce_softc *sc;
int i, error, rc = 0;
bus_size_t max_size, max_seg_size;
int max_segments;
sc = device_get_softc(dev);
DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
/*
* Allocate the parent bus DMA tag appropriate for PCI.
*/
if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
&sc->parent_tag)) {
BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
/*
* Create a DMA tag for the status block, allocate and clear the
* memory, map the memory into DMA space, and fetch the physical
* address of the block.
*/
if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
NULL, NULL, BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
0, NULL, NULL, &sc->status_tag)) {
BCE_PRINTF("%s(%d): Could not allocate status block "
"DMA tag!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->status_map)) {
BCE_PRINTF("%s(%d): Could not allocate status block "
"DMA memory!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
error = bus_dmamap_load(sc->status_tag, sc->status_map,
sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
&sc->status_block_paddr, BUS_DMA_NOWAIT);
if (error || sc->status_block_paddr == 0) {
BCE_PRINTF("%s(%d): Could not map status block "
"DMA memory!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
__FUNCTION__, (uintmax_t) sc->status_block_paddr);
/*
* Create a DMA tag for the statistics block, allocate and clear the
* memory, map the memory into DMA space, and fetch the physical
* address of the block.
*/
if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
NULL, NULL, BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
0, NULL, NULL, &sc->stats_tag)) {
BCE_PRINTF("%s(%d): Could not allocate statistics block "
"DMA tag!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
BCE_PRINTF("%s(%d): Could not allocate statistics block "
"DMA memory!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
&sc->stats_block_paddr, BUS_DMA_NOWAIT);
if (error || sc->stats_block_paddr == 0) {
BCE_PRINTF("%s(%d): Could not map statistics block "
"DMA memory!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
__FUNCTION__, (uintmax_t) sc->stats_block_paddr);
/* BCM5709 uses host memory as cache for context memory. */
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
if (sc->ctx_pages == 0)
sc->ctx_pages = 1;
DBRUNIF((sc->ctx_pages > 512),
BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
__FILE__, __LINE__, sc->ctx_pages));
/*
* Create a DMA tag for the context pages,
* allocate and clear the memory, map the
* memory into DMA space, and fetch the
* physical address of the block.
*/
if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
NULL, NULL, BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
0, NULL, NULL, &sc->ctx_tag)) {
BCE_PRINTF("%s(%d): Could not allocate CTX "
"DMA tag!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
for (i = 0; i < sc->ctx_pages; i++) {
if(bus_dmamem_alloc(sc->ctx_tag,
(void **)&sc->ctx_block[i],
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->ctx_map[i])) {
BCE_PRINTF("%s(%d): Could not allocate CTX "
"DMA memory!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
&sc->ctx_paddr[i], BUS_DMA_NOWAIT);
if (error || sc->ctx_paddr[i] == 0) {
BCE_PRINTF("%s(%d): Could not map CTX "
"DMA memory!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
"= 0x%jX\n", __FUNCTION__, i,
(uintmax_t) sc->ctx_paddr[i]);
}
}
/*
* Create a DMA tag for the TX buffer descriptor chain,
* allocate and clear the memory, and fetch the
* physical address of the block.
*/
if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
NULL, NULL, &sc->tx_bd_chain_tag)) {
BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
"chain DMA tag!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
for (i = 0; i < sc->tx_pages; i++) {
if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
(void **)&sc->tx_bd_chain[i],
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->tx_bd_chain_map[i])) {
BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
"chain DMA memory!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
error = bus_dmamap_load(sc->tx_bd_chain_tag,
sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
&sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
if (error || sc->tx_bd_chain_paddr[i] == 0) {
BCE_PRINTF("%s(%d): Could not map TX descriptor "
"chain DMA memory!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
"0x%jX\n", __FUNCTION__, i,
(uintmax_t) sc->tx_bd_chain_paddr[i]);
}
/* Check the required size before mapping to conserve resources. */
if (bce_tso_enable) {
max_size = BCE_TSO_MAX_SIZE;
max_segments = BCE_MAX_SEGMENTS;
max_seg_size = BCE_TSO_MAX_SEG_SIZE;
} else {
max_size = MCLBYTES * BCE_MAX_SEGMENTS;
max_segments = BCE_MAX_SEGMENTS;
max_seg_size = MCLBYTES;
}
/* Create a DMA tag for TX mbufs. */
if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
max_segments, max_seg_size, 0, NULL, NULL, &sc->tx_mbuf_tag)) {
BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
/* Create DMA maps for the TX mbufs clusters. */
for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
&sc->tx_mbuf_map[i])) {
BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
"map!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
}
/*
* Create a DMA tag for the RX buffer descriptor chain,
* allocate and clear the memory, and fetch the physical
* address of the blocks.
*/
if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
sc->max_bus_addr, NULL, NULL,
BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
0, NULL, NULL, &sc->rx_bd_chain_tag)) {
BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
"DMA tag!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
for (i = 0; i < sc->rx_pages; i++) {
if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
(void **)&sc->rx_bd_chain[i],
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->rx_bd_chain_map[i])) {
BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
"chain DMA memory!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
error = bus_dmamap_load(sc->rx_bd_chain_tag,
sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
&sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
if (error || sc->rx_bd_chain_paddr[i] == 0) {
BCE_PRINTF("%s(%d): Could not map RX descriptor "
"chain DMA memory!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
"0x%jX\n", __FUNCTION__, i,
(uintmax_t) sc->rx_bd_chain_paddr[i]);
}
/*
* Create a DMA tag for RX mbufs.
*/
if (bce_hdr_split == TRUE)
max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
MCLBYTES : sc->rx_bd_mbuf_alloc_size);
else
max_size = MJUM9BYTES;
DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
"(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size);
if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
/* Create DMA maps for the RX mbuf clusters. */
for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
&sc->rx_mbuf_map[i])) {
BCE_PRINTF("%s(%d): Unable to create RX mbuf "
"DMA map!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
}
if (bce_hdr_split == TRUE) {
/*
* Create a DMA tag for the page buffer descriptor chain,
* allocate and clear the memory, and fetch the physical
* address of the blocks.
*/
if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
NULL, NULL, BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
0, NULL, NULL, &sc->pg_bd_chain_tag)) {
BCE_PRINTF("%s(%d): Could not allocate page descriptor "
"chain DMA tag!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
for (i = 0; i < sc->pg_pages; i++) {
if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
(void **)&sc->pg_bd_chain[i],
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->pg_bd_chain_map[i])) {
BCE_PRINTF("%s(%d): Could not allocate page "
"descriptor chain DMA memory!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
error = bus_dmamap_load(sc->pg_bd_chain_tag,
sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
&sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
if (error || sc->pg_bd_chain_paddr[i] == 0) {
BCE_PRINTF("%s(%d): Could not map page descriptor "
"chain DMA memory!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
"0x%jX\n", __FUNCTION__, i,
(uintmax_t) sc->pg_bd_chain_paddr[i]);
}
/*
* Create a DMA tag for page mbufs.
*/
if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
BCE_PRINTF("%s(%d): Could not allocate page mbuf "
"DMA tag!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
/* Create DMA maps for the page mbuf clusters. */
for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
&sc->pg_mbuf_map[i])) {
BCE_PRINTF("%s(%d): Unable to create page mbuf "
"DMA map!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
}
}
bce_dma_alloc_exit:
DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
return(rc);
}
/****************************************************************************/
/* Release all resources used by the driver. */
/* */
/* Releases all resources acquired by the driver including interrupts, */
/* interrupt handler, interfaces, mutexes, and DMA memory. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_release_resources(struct bce_softc *sc)
{
device_t dev;
DBENTER(BCE_VERBOSE_RESET);
dev = sc->bce_dev;
bce_dma_free(sc);
if (sc->bce_intrhand != NULL) {
DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
}
if (sc->bce_res_irq != NULL) {
DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
bus_release_resource(dev, SYS_RES_IRQ,
rman_get_rid(sc->bce_res_irq), sc->bce_res_irq);
}
if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
pci_release_msi(dev);
}
if (sc->bce_res_mem != NULL) {
DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
sc->bce_res_mem);
}
if (sc->bce_ifp != NULL) {
DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
if_free(sc->bce_ifp);
}
if (mtx_initialized(&sc->bce_mtx))
BCE_LOCK_DESTROY(sc);
DBEXIT(BCE_VERBOSE_RESET);
}
/****************************************************************************/
/* Firmware synchronization. */
/* */
/* Before performing certain events such as a chip reset, synchronize with */
/* the firmware first. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_fw_sync(struct bce_softc *sc, u32 msg_data)
{
int i, rc = 0;
u32 val;
DBENTER(BCE_VERBOSE_RESET);
/* Don't waste any time if we've timed out before. */
if (sc->bce_fw_timed_out == TRUE) {
rc = EBUSY;
goto bce_fw_sync_exit;
}
/* Increment the message sequence number. */
sc->bce_fw_wr_seq++;
msg_data |= sc->bce_fw_wr_seq;
DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
"0x%08X\n", msg_data);
/* Send the message to the bootcode driver mailbox. */
bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
/* Wait for the bootcode to acknowledge the message. */
for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
/* Check for a response in the bootcode firmware mailbox. */
val = bce_shmem_rd(sc, BCE_FW_MB);
if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
break;
DELAY(1000);
}
/* If we've timed out, tell bootcode that we've stopped waiting. */
if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
"msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
msg_data &= ~BCE_DRV_MSG_CODE;
msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
sc->bce_fw_timed_out = TRUE;
rc = EBUSY;
}
bce_fw_sync_exit:
DBEXIT(BCE_VERBOSE_RESET);
return (rc);
}
/****************************************************************************/
/* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code,
u32 rv2p_code_len, u32 rv2p_proc)
{
int i;
u32 val;
DBENTER(BCE_VERBOSE_RESET);
/* Set the page size used by RV2P. */
if (rv2p_proc == RV2P_PROC2) {
BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
}
for (i = 0; i < rv2p_code_len; i += 8) {
REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
rv2p_code++;
REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
rv2p_code++;
if (rv2p_proc == RV2P_PROC1) {
val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
}
else {
val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
}
}
/* Reset the processor, un-stall is done later. */
if (rv2p_proc == RV2P_PROC1) {
REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
}
else {
REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
}
DBEXIT(BCE_VERBOSE_RESET);
}
/****************************************************************************/
/* Load RISC processor firmware. */
/* */
/* Loads firmware from the file if_bcefw.h into the scratchpad memory */
/* associated with a particular processor. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
struct fw_info *fw)
{
u32 offset;
DBENTER(BCE_VERBOSE_RESET);
bce_halt_cpu(sc, cpu_reg);
/* Load the Text area. */
offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
if (fw->text) {
int j;
for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
REG_WR_IND(sc, offset, fw->text[j]);
}
}
/* Load the Data area. */
offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
if (fw->data) {
int j;
for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
REG_WR_IND(sc, offset, fw->data[j]);
}
}
/* Load the SBSS area. */
offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
if (fw->sbss) {
int j;
for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
REG_WR_IND(sc, offset, fw->sbss[j]);
}
}
/* Load the BSS area. */
offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
if (fw->bss) {
int j;
for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
REG_WR_IND(sc, offset, fw->bss[j]);
}
}
/* Load the Read-Only area. */
offset = cpu_reg->spad_base +
(fw->rodata_addr - cpu_reg->mips_view_base);
if (fw->rodata) {
int j;
for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
REG_WR_IND(sc, offset, fw->rodata[j]);
}
}
/* Clear the pre-fetch instruction and set the FW start address. */
REG_WR_IND(sc, cpu_reg->inst, 0);
REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
DBEXIT(BCE_VERBOSE_RESET);
}
/****************************************************************************/
/* Starts the RISC processor. */
/* */
/* Assumes the CPU starting address has already been set. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
{
u32 val;
DBENTER(BCE_VERBOSE_RESET);
/* Start the CPU. */
val = REG_RD_IND(sc, cpu_reg->mode);
val &= ~cpu_reg->mode_value_halt;
REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
REG_WR_IND(sc, cpu_reg->mode, val);
DBEXIT(BCE_VERBOSE_RESET);
}
/****************************************************************************/
/* Halts the RISC processor. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
{
u32 val;
DBENTER(BCE_VERBOSE_RESET);
/* Halt the CPU. */
val = REG_RD_IND(sc, cpu_reg->mode);
val |= cpu_reg->mode_value_halt;
REG_WR_IND(sc, cpu_reg->mode, val);
REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
DBEXIT(BCE_VERBOSE_RESET);
}
/****************************************************************************/
/* Initialize the RX CPU. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_start_rxp_cpu(struct bce_softc *sc)
{
struct cpu_reg cpu_reg;
DBENTER(BCE_VERBOSE_RESET);
cpu_reg.mode = BCE_RXP_CPU_MODE;
cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
cpu_reg.state = BCE_RXP_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BCE_RXP_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
bce_start_cpu(sc, &cpu_reg);
DBEXIT(BCE_VERBOSE_RESET);
}
/****************************************************************************/
/* Initialize the RX CPU. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_init_rxp_cpu(struct bce_softc *sc)
{
struct cpu_reg cpu_reg;
struct fw_info fw;
DBENTER(BCE_VERBOSE_RESET);
cpu_reg.mode = BCE_RXP_CPU_MODE;
cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
cpu_reg.state = BCE_RXP_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BCE_RXP_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
fw.ver_major = bce_RXP_b09FwReleaseMajor;
fw.ver_minor = bce_RXP_b09FwReleaseMinor;
fw.ver_fix = bce_RXP_b09FwReleaseFix;
fw.start_addr = bce_RXP_b09FwStartAddr;
fw.text_addr = bce_RXP_b09FwTextAddr;
fw.text_len = bce_RXP_b09FwTextLen;
fw.text_index = 0;
fw.text = bce_RXP_b09FwText;
fw.data_addr = bce_RXP_b09FwDataAddr;
fw.data_len = bce_RXP_b09FwDataLen;
fw.data_index = 0;
fw.data = bce_RXP_b09FwData;
fw.sbss_addr = bce_RXP_b09FwSbssAddr;
fw.sbss_len = bce_RXP_b09FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bce_RXP_b09FwSbss;
fw.bss_addr = bce_RXP_b09FwBssAddr;
fw.bss_len = bce_RXP_b09FwBssLen;
fw.bss_index = 0;
fw.bss = bce_RXP_b09FwBss;
fw.rodata_addr = bce_RXP_b09FwRodataAddr;
fw.rodata_len = bce_RXP_b09FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bce_RXP_b09FwRodata;
} else {
fw.ver_major = bce_RXP_b06FwReleaseMajor;
fw.ver_minor = bce_RXP_b06FwReleaseMinor;
fw.ver_fix = bce_RXP_b06FwReleaseFix;
fw.start_addr = bce_RXP_b06FwStartAddr;
fw.text_addr = bce_RXP_b06FwTextAddr;
fw.text_len = bce_RXP_b06FwTextLen;
fw.text_index = 0;
fw.text = bce_RXP_b06FwText;
fw.data_addr = bce_RXP_b06FwDataAddr;
fw.data_len = bce_RXP_b06FwDataLen;
fw.data_index = 0;
fw.data = bce_RXP_b06FwData;
fw.sbss_addr = bce_RXP_b06FwSbssAddr;
fw.sbss_len = bce_RXP_b06FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bce_RXP_b06FwSbss;
fw.bss_addr = bce_RXP_b06FwBssAddr;
fw.bss_len = bce_RXP_b06FwBssLen;
fw.bss_index = 0;
fw.bss = bce_RXP_b06FwBss;
fw.rodata_addr = bce_RXP_b06FwRodataAddr;
fw.rodata_len = bce_RXP_b06FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bce_RXP_b06FwRodata;
}
DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
bce_load_cpu_fw(sc, &cpu_reg, &fw);
/* Delay RXP start until initialization is complete. */
DBEXIT(BCE_VERBOSE_RESET);
}
/****************************************************************************/
/* Initialize the TX CPU. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_init_txp_cpu(struct bce_softc *sc)
{
struct cpu_reg cpu_reg;
struct fw_info fw;
DBENTER(BCE_VERBOSE_RESET);
cpu_reg.mode = BCE_TXP_CPU_MODE;
cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
cpu_reg.state = BCE_TXP_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BCE_TXP_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
fw.ver_major = bce_TXP_b09FwReleaseMajor;
fw.ver_minor = bce_TXP_b09FwReleaseMinor;
fw.ver_fix = bce_TXP_b09FwReleaseFix;
fw.start_addr = bce_TXP_b09FwStartAddr;
fw.text_addr = bce_TXP_b09FwTextAddr;
fw.text_len = bce_TXP_b09FwTextLen;
fw.text_index = 0;
fw.text = bce_TXP_b09FwText;
fw.data_addr = bce_TXP_b09FwDataAddr;
fw.data_len = bce_TXP_b09FwDataLen;
fw.data_index = 0;
fw.data = bce_TXP_b09FwData;
fw.sbss_addr = bce_TXP_b09FwSbssAddr;
fw.sbss_len = bce_TXP_b09FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bce_TXP_b09FwSbss;
fw.bss_addr = bce_TXP_b09FwBssAddr;
fw.bss_len = bce_TXP_b09FwBssLen;
fw.bss_index = 0;
fw.bss = bce_TXP_b09FwBss;
fw.rodata_addr = bce_TXP_b09FwRodataAddr;
fw.rodata_len = bce_TXP_b09FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bce_TXP_b09FwRodata;
} else {
fw.ver_major = bce_TXP_b06FwReleaseMajor;
fw.ver_minor = bce_TXP_b06FwReleaseMinor;
fw.ver_fix = bce_TXP_b06FwReleaseFix;
fw.start_addr = bce_TXP_b06FwStartAddr;
fw.text_addr = bce_TXP_b06FwTextAddr;
fw.text_len = bce_TXP_b06FwTextLen;
fw.text_index = 0;
fw.text = bce_TXP_b06FwText;
fw.data_addr = bce_TXP_b06FwDataAddr;
fw.data_len = bce_TXP_b06FwDataLen;
fw.data_index = 0;
fw.data = bce_TXP_b06FwData;
fw.sbss_addr = bce_TXP_b06FwSbssAddr;
fw.sbss_len = bce_TXP_b06FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bce_TXP_b06FwSbss;
fw.bss_addr = bce_TXP_b06FwBssAddr;
fw.bss_len = bce_TXP_b06FwBssLen;
fw.bss_index = 0;
fw.bss = bce_TXP_b06FwBss;
fw.rodata_addr = bce_TXP_b06FwRodataAddr;
fw.rodata_len = bce_TXP_b06FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bce_TXP_b06FwRodata;
}
DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
bce_load_cpu_fw(sc, &cpu_reg, &fw);
bce_start_cpu(sc, &cpu_reg);
DBEXIT(BCE_VERBOSE_RESET);
}
/****************************************************************************/
/* Initialize the TPAT CPU. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_init_tpat_cpu(struct bce_softc *sc)
{
struct cpu_reg cpu_reg;
struct fw_info fw;
DBENTER(BCE_VERBOSE_RESET);
cpu_reg.mode = BCE_TPAT_CPU_MODE;
cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
cpu_reg.state = BCE_TPAT_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BCE_TPAT_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
fw.ver_major = bce_TPAT_b09FwReleaseMajor;
fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
fw.ver_fix = bce_TPAT_b09FwReleaseFix;
fw.start_addr = bce_TPAT_b09FwStartAddr;
fw.text_addr = bce_TPAT_b09FwTextAddr;
fw.text_len = bce_TPAT_b09FwTextLen;
fw.text_index = 0;
fw.text = bce_TPAT_b09FwText;
fw.data_addr = bce_TPAT_b09FwDataAddr;
fw.data_len = bce_TPAT_b09FwDataLen;
fw.data_index = 0;
fw.data = bce_TPAT_b09FwData;
fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
fw.sbss_len = bce_TPAT_b09FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bce_TPAT_b09FwSbss;
fw.bss_addr = bce_TPAT_b09FwBssAddr;
fw.bss_len = bce_TPAT_b09FwBssLen;
fw.bss_index = 0;
fw.bss = bce_TPAT_b09FwBss;
fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
fw.rodata_len = bce_TPAT_b09FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bce_TPAT_b09FwRodata;
} else {
fw.ver_major = bce_TPAT_b06FwReleaseMajor;
fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
fw.ver_fix = bce_TPAT_b06FwReleaseFix;
fw.start_addr = bce_TPAT_b06FwStartAddr;
fw.text_addr = bce_TPAT_b06FwTextAddr;
fw.text_len = bce_TPAT_b06FwTextLen;
fw.text_index = 0;
fw.text = bce_TPAT_b06FwText;
fw.data_addr = bce_TPAT_b06FwDataAddr;
fw.data_len = bce_TPAT_b06FwDataLen;
fw.data_index = 0;
fw.data = bce_TPAT_b06FwData;
fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
fw.sbss_len = bce_TPAT_b06FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bce_TPAT_b06FwSbss;
fw.bss_addr = bce_TPAT_b06FwBssAddr;
fw.bss_len = bce_TPAT_b06FwBssLen;
fw.bss_index = 0;
fw.bss = bce_TPAT_b06FwBss;
fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
fw.rodata_len = bce_TPAT_b06FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bce_TPAT_b06FwRodata;
}
DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
bce_load_cpu_fw(sc, &cpu_reg, &fw);
bce_start_cpu(sc, &cpu_reg);
DBEXIT(BCE_VERBOSE_RESET);
}
/****************************************************************************/
/* Initialize the CP CPU. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_init_cp_cpu(struct bce_softc *sc)
{
struct cpu_reg cpu_reg;
struct fw_info fw;
DBENTER(BCE_VERBOSE_RESET);
cpu_reg.mode = BCE_CP_CPU_MODE;
cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
cpu_reg.state = BCE_CP_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BCE_CP_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
fw.ver_major = bce_CP_b09FwReleaseMajor;
fw.ver_minor = bce_CP_b09FwReleaseMinor;
fw.ver_fix = bce_CP_b09FwReleaseFix;
fw.start_addr = bce_CP_b09FwStartAddr;
fw.text_addr = bce_CP_b09FwTextAddr;
fw.text_len = bce_CP_b09FwTextLen;
fw.text_index = 0;
fw.text = bce_CP_b09FwText;
fw.data_addr = bce_CP_b09FwDataAddr;
fw.data_len = bce_CP_b09FwDataLen;
fw.data_index = 0;
fw.data = bce_CP_b09FwData;
fw.sbss_addr = bce_CP_b09FwSbssAddr;
fw.sbss_len = bce_CP_b09FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bce_CP_b09FwSbss;
fw.bss_addr = bce_CP_b09FwBssAddr;
fw.bss_len = bce_CP_b09FwBssLen;
fw.bss_index = 0;
fw.bss = bce_CP_b09FwBss;
fw.rodata_addr = bce_CP_b09FwRodataAddr;
fw.rodata_len = bce_CP_b09FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bce_CP_b09FwRodata;
} else {
fw.ver_major = bce_CP_b06FwReleaseMajor;
fw.ver_minor = bce_CP_b06FwReleaseMinor;
fw.ver_fix = bce_CP_b06FwReleaseFix;
fw.start_addr = bce_CP_b06FwStartAddr;
fw.text_addr = bce_CP_b06FwTextAddr;
fw.text_len = bce_CP_b06FwTextLen;
fw.text_index = 0;
fw.text = bce_CP_b06FwText;
fw.data_addr = bce_CP_b06FwDataAddr;
fw.data_len = bce_CP_b06FwDataLen;
fw.data_index = 0;
fw.data = bce_CP_b06FwData;
fw.sbss_addr = bce_CP_b06FwSbssAddr;
fw.sbss_len = bce_CP_b06FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bce_CP_b06FwSbss;
fw.bss_addr = bce_CP_b06FwBssAddr;
fw.bss_len = bce_CP_b06FwBssLen;
fw.bss_index = 0;
fw.bss = bce_CP_b06FwBss;
fw.rodata_addr = bce_CP_b06FwRodataAddr;
fw.rodata_len = bce_CP_b06FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bce_CP_b06FwRodata;
}
DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
bce_load_cpu_fw(sc, &cpu_reg, &fw);
bce_start_cpu(sc, &cpu_reg);
DBEXIT(BCE_VERBOSE_RESET);
}
/****************************************************************************/
/* Initialize the COM CPU. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_init_com_cpu(struct bce_softc *sc)
{
struct cpu_reg cpu_reg;
struct fw_info fw;
DBENTER(BCE_VERBOSE_RESET);
cpu_reg.mode = BCE_COM_CPU_MODE;
cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
cpu_reg.state = BCE_COM_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BCE_COM_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
fw.ver_major = bce_COM_b09FwReleaseMajor;
fw.ver_minor = bce_COM_b09FwReleaseMinor;
fw.ver_fix = bce_COM_b09FwReleaseFix;
fw.start_addr = bce_COM_b09FwStartAddr;
fw.text_addr = bce_COM_b09FwTextAddr;
fw.text_len = bce_COM_b09FwTextLen;
fw.text_index = 0;
fw.text = bce_COM_b09FwText;
fw.data_addr = bce_COM_b09FwDataAddr;
fw.data_len = bce_COM_b09FwDataLen;
fw.data_index = 0;
fw.data = bce_COM_b09FwData;
fw.sbss_addr = bce_COM_b09FwSbssAddr;
fw.sbss_len = bce_COM_b09FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bce_COM_b09FwSbss;
fw.bss_addr = bce_COM_b09FwBssAddr;
fw.bss_len = bce_COM_b09FwBssLen;
fw.bss_index = 0;
fw.bss = bce_COM_b09FwBss;
fw.rodata_addr = bce_COM_b09FwRodataAddr;
fw.rodata_len = bce_COM_b09FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bce_COM_b09FwRodata;
} else {
fw.ver_major = bce_COM_b06FwReleaseMajor;
fw.ver_minor = bce_COM_b06FwReleaseMinor;
fw.ver_fix = bce_COM_b06FwReleaseFix;
fw.start_addr = bce_COM_b06FwStartAddr;
fw.text_addr = bce_COM_b06FwTextAddr;
fw.text_len = bce_COM_b06FwTextLen;
fw.text_index = 0;
fw.text = bce_COM_b06FwText;
fw.data_addr = bce_COM_b06FwDataAddr;
fw.data_len = bce_COM_b06FwDataLen;
fw.data_index = 0;
fw.data = bce_COM_b06FwData;
fw.sbss_addr = bce_COM_b06FwSbssAddr;
fw.sbss_len = bce_COM_b06FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bce_COM_b06FwSbss;
fw.bss_addr = bce_COM_b06FwBssAddr;
fw.bss_len = bce_COM_b06FwBssLen;
fw.bss_index = 0;
fw.bss = bce_COM_b06FwBss;
fw.rodata_addr = bce_COM_b06FwRodataAddr;
fw.rodata_len = bce_COM_b06FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bce_COM_b06FwRodata;
}
DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
bce_load_cpu_fw(sc, &cpu_reg, &fw);
bce_start_cpu(sc, &cpu_reg);
DBEXIT(BCE_VERBOSE_RESET);
}
/****************************************************************************/
/* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs. */
/* */
/* Loads the firmware for each CPU and starts the CPU. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_init_cpus(struct bce_softc *sc)
{
DBENTER(BCE_VERBOSE_RESET);
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
} else {
bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
}
} else {
bce_load_rv2p_fw(sc, bce_rv2p_proc1,
sizeof(bce_rv2p_proc1), RV2P_PROC1);
bce_load_rv2p_fw(sc, bce_rv2p_proc2,
sizeof(bce_rv2p_proc2), RV2P_PROC2);
}
bce_init_rxp_cpu(sc);
bce_init_txp_cpu(sc);
bce_init_tpat_cpu(sc);
bce_init_com_cpu(sc);
bce_init_cp_cpu(sc);
DBEXIT(BCE_VERBOSE_RESET);
}
/****************************************************************************/
/* Initialize context memory. */
/* */
/* Clears the memory associated with each Context ID (CID). */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static int
bce_init_ctx(struct bce_softc *sc)
{
u32 offset, val, vcid_addr;
int i, j, rc, retry_cnt;
rc = 0;
DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
retry_cnt = CTX_INIT_RETRY_COUNT;
DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
/*
* BCM5709 context memory may be cached
* in host memory so prepare the host memory
* for access.
*/
val = BCE_CTX_COMMAND_ENABLED |
BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
val |= (BCM_PAGE_BITS - 8) << 16;
REG_WR(sc, BCE_CTX_COMMAND, val);
/* Wait for mem init command to complete. */
for (i = 0; i < retry_cnt; i++) {
val = REG_RD(sc, BCE_CTX_COMMAND);
if (!(val & BCE_CTX_COMMAND_MEM_INIT))
break;
DELAY(2);
}
if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
BCE_PRINTF("%s(): Context memory initialization failed!\n",
__FUNCTION__);
rc = EBUSY;
goto init_ctx_fail;
}
for (i = 0; i < sc->ctx_pages; i++) {
/* Set the physical address of the context memory. */
REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
BCE_ADDR_HI(sc->ctx_paddr[i]));
REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
/* Verify the context memory write was successful. */
for (j = 0; j < retry_cnt; j++) {
val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
if ((val &
BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
break;
DELAY(5);
}
if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
BCE_PRINTF("%s(): Failed to initialize "
"context page %d!\n", __FUNCTION__, i);
rc = EBUSY;
goto init_ctx_fail;
}
}
} else {
DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
/*
* For the 5706/5708, context memory is local to
* the controller, so initialize the controller
* context memory.
*/
vcid_addr = GET_CID_ADDR(96);
while (vcid_addr) {
vcid_addr -= PHY_CTX_SIZE;
REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
CTX_WR(sc, 0x00, offset, 0);
}
REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
}
}
init_ctx_fail:
DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
return (rc);
}
/****************************************************************************/
/* Fetch the permanent MAC address of the controller. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_get_mac_addr(struct bce_softc *sc)
{
u32 mac_lo = 0, mac_hi = 0;
DBENTER(BCE_VERBOSE_RESET);
/*
* The NetXtreme II bootcode populates various NIC
* power-on and runtime configuration items in a
* shared memory area. The factory configured MAC
* address is available from both NVRAM and the
* shared memory area so we'll read the value from
* shared memory for speed.
*/
mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
if ((mac_lo == 0) && (mac_hi == 0)) {
BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
__FILE__, __LINE__);
} else {
sc->eaddr[0] = (u_char)(mac_hi >> 8);
sc->eaddr[1] = (u_char)(mac_hi >> 0);
sc->eaddr[2] = (u_char)(mac_lo >> 24);
sc->eaddr[3] = (u_char)(mac_lo >> 16);
sc->eaddr[4] = (u_char)(mac_lo >> 8);
sc->eaddr[5] = (u_char)(mac_lo >> 0);
}
DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
"address = %6D\n", sc->eaddr, ":");
DBEXIT(BCE_VERBOSE_RESET);
}
/****************************************************************************/
/* Program the MAC address. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_set_mac_addr(struct bce_softc *sc)
{
u32 val;
u8 *mac_addr = sc->eaddr;
/* ToDo: Add support for setting multiple MAC addresses. */
DBENTER(BCE_VERBOSE_RESET);
DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
"%6D\n", sc->eaddr, ":");
val = (mac_addr[0] << 8) | mac_addr[1];
REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
(mac_addr[4] << 8) | mac_addr[5];
REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
DBEXIT(BCE_VERBOSE_RESET);
}
/****************************************************************************/
/* Stop the controller. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_stop(struct bce_softc *sc)
{
struct ifnet *ifp;
DBENTER(BCE_VERBOSE_RESET);
BCE_LOCK_ASSERT(sc);
ifp = sc->bce_ifp;
callout_stop(&sc->bce_tick_callout);
/* Disable the transmit/receive blocks. */
REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
DELAY(20);
bce_disable_intr(sc);
/* Free RX buffers. */
if (bce_hdr_split == TRUE) {
bce_free_pg_chain(sc);
}
bce_free_rx_chain(sc);
/* Free TX buffers. */
bce_free_tx_chain(sc);
sc->watchdog_timer = 0;
sc->bce_link_up = FALSE;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
DBEXIT(BCE_VERBOSE_RESET);
}
static int
bce_reset(struct bce_softc *sc, u32 reset_code)
{
u32 emac_mode_save, val;
int i, rc = 0;
static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
DBENTER(BCE_VERBOSE_RESET);
DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
__FUNCTION__, reset_code);
/*
* If ASF/IPMI is operational, then the EMAC Mode register already
* contains appropriate values for the link settings that have
* been auto-negotiated. Resetting the chip will clobber those
* values. Save the important bits so we can restore them after
* the reset.
*/
emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
/* Wait for pending PCI transactions to complete. */
REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
DELAY(5);
/* Disable DMA */
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
}
/* Assume bootcode is running. */
sc->bce_fw_timed_out = FALSE;
sc->bce_drv_cardiac_arrest = FALSE;
/* Give the firmware a chance to prepare for the reset. */
rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
if (rc)
goto bce_reset_exit;
/* Set a firmware reminder that this is a soft reset. */
bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
/* Dummy read to force the chip to complete all current transactions. */
val = REG_RD(sc, BCE_MISC_ID);
/* Chip reset. */
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
REG_RD(sc, BCE_MISC_COMMAND);
DELAY(5);
val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
} else {
val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
/* Allow up to 30us for reset to complete. */
for (i = 0; i < 10; i++) {
val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
break;
}
DELAY(10);
}
/* Check that reset completed successfully. */
if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
BCE_PRINTF("%s(%d): Reset failed!\n",
__FILE__, __LINE__);
rc = EBUSY;
goto bce_reset_exit;
}
}
/* Make sure byte swapping is properly configured. */
val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
if (val != 0x01020304) {
BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
__FILE__, __LINE__);
rc = ENODEV;
goto bce_reset_exit;
}
/* Just completed a reset, assume that firmware is running again. */
sc->bce_fw_timed_out = FALSE;
sc->bce_drv_cardiac_arrest = FALSE;
/* Wait for the firmware to finish its initialization. */
rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
if (rc)
BCE_PRINTF("%s(%d): Firmware did not complete "
"initialization!\n", __FILE__, __LINE__);
/* Get firmware capabilities. */
bce_fw_cap_init(sc);
bce_reset_exit:
/* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
if (reset_code == BCE_DRV_MSG_CODE_RESET) {
val = REG_RD(sc, BCE_EMAC_MODE);
val = (val & ~emac_mode_mask) | emac_mode_save;
REG_WR(sc, BCE_EMAC_MODE, val);
}
DBEXIT(BCE_VERBOSE_RESET);
return (rc);
}
static int
bce_chipinit(struct bce_softc *sc)
{
u32 val;
int rc = 0;
DBENTER(BCE_VERBOSE_RESET);
bce_disable_intr(sc);
/*
* Initialize DMA byte/word swapping, configure the number of DMA
* channels and PCI clock compensation delay.
*/
val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
BCE_DMA_CONFIG_DATA_WORD_SWAP |
#if BYTE_ORDER == BIG_ENDIAN
BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
#endif
BCE_DMA_CONFIG_CNTL_WORD_SWAP |
DMA_READ_CHANS << 12 |
DMA_WRITE_CHANS << 16;
val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
/*
* This setting resolves a problem observed on certain Intel PCI
* chipsets that cannot handle multiple outstanding DMA operations.
* See errata E9_5706A1_65.
*/
if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
(BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
!(sc->bce_flags & BCE_PCIX_FLAG))
val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
REG_WR(sc, BCE_DMA_CONFIG, val);
/* Enable the RX_V2P and Context state machines before access. */
REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
/* Initialize context mapping and zero out the quick contexts. */
if ((rc = bce_init_ctx(sc)) != 0)
goto bce_chipinit_exit;
/* Initialize the on-boards CPUs */
bce_init_cpus(sc);
/* Enable management frames (NC-SI) to flow to the MCP. */
if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
}
/* Prepare NVRAM for access. */
if ((rc = bce_init_nvram(sc)) != 0)
goto bce_chipinit_exit;
/* Set the kernel bypass block size */
val = REG_RD(sc, BCE_MQ_CONFIG);
val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
/* Enable bins used on the 5709. */
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
val |= BCE_MQ_CONFIG_HALT_DIS;
}
REG_WR(sc, BCE_MQ_CONFIG, val);
val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
/* Set the page size and clear the RV2P processor stall bits. */
val = (BCM_PAGE_BITS - 8) << 24;
REG_WR(sc, BCE_RV2P_CONFIG, val);
/* Configure page size. */
val = REG_RD(sc, BCE_TBDR_CONFIG);
val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
REG_WR(sc, BCE_TBDR_CONFIG, val);
/* Set the perfect match control register to default. */
REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
bce_chipinit_exit:
DBEXIT(BCE_VERBOSE_RESET);
return(rc);
}
/****************************************************************************/
/* Initialize the controller in preparation to send/receive traffic. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_blockinit(struct bce_softc *sc)
{
u32 reg, val;
int rc = 0;
DBENTER(BCE_VERBOSE_RESET);
/* Load the hardware default MAC address. */
bce_set_mac_addr(sc);
/* Set the Ethernet backoff seed value */
val = sc->eaddr[0] + (sc->eaddr[1] << 8) +
(sc->eaddr[2] << 16) + (sc->eaddr[3] ) +
(sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
sc->last_status_idx = 0;
sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
/* Set up link change interrupt generation. */
REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
/* Program the physical address of the status block. */
REG_WR(sc, BCE_HC_STATUS_ADDR_L,
BCE_ADDR_LO(sc->status_block_paddr));
REG_WR(sc, BCE_HC_STATUS_ADDR_H,
BCE_ADDR_HI(sc->status_block_paddr));
/* Program the physical address of the statistics block. */
REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
BCE_ADDR_LO(sc->stats_block_paddr));
REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
BCE_ADDR_HI(sc->stats_block_paddr));
/*
* Program various host coalescing parameters.
* Trip points control how many BDs should be ready before generating
* an interrupt while ticks control how long a BD can sit in the chain
* before generating an interrupt.
*/
REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
(sc->bce_tx_quick_cons_trip_int << 16) |
sc->bce_tx_quick_cons_trip);
REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
(sc->bce_rx_quick_cons_trip_int << 16) |
sc->bce_rx_quick_cons_trip);
REG_WR(sc, BCE_HC_TX_TICKS,
(sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
REG_WR(sc, BCE_HC_RX_TICKS,
(sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00);
REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
/* Not used for L2. */
REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0);
REG_WR(sc, BCE_HC_COM_TICKS, 0);
REG_WR(sc, BCE_HC_CMD_TICKS, 0);
/* Configure the Host Coalescing block. */
val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
BCE_HC_CONFIG_COLLECT_STATS;
#if 0
/* ToDo: Add MSI-X support. */
if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
BCE_HC_SB_CONFIG_1;
REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
BCE_HC_SB_CONFIG_1_ONE_SHOT);
REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
(sc->tx_quick_cons_trip_int << 16) |
sc->tx_quick_cons_trip);
REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
(sc->tx_ticks_int << 16) | sc->tx_ticks);
val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
}
/*
* Tell the HC block to automatically set the
* INT_MASK bit after an MSI/MSI-X interrupt
* is generated so the driver doesn't have to.
*/
if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
val |= BCE_HC_CONFIG_ONE_SHOT;
/* Set the MSI-X status blocks to 128 byte boundaries. */
if (sc->bce_flags & BCE_USING_MSIX_FLAG)
val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
#endif
REG_WR(sc, BCE_HC_CONFIG, val);
/* Clear the internal statistics counters. */
REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
/* Verify that bootcode is running. */
reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
__FILE__, __LINE__);
reg = 0);
if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
BCE_DEV_INFO_SIGNATURE_MAGIC) {
BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
"Expected: 08%08X\n", __FILE__, __LINE__,
(reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
BCE_DEV_INFO_SIGNATURE_MAGIC);
rc = ENODEV;
goto bce_blockinit_exit;
}
/* Enable DMA */
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
}
/* Allow bootcode to apply additional fixes before enabling MAC. */
rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
BCE_DRV_MSG_CODE_RESET);
/* Enable link state change interrupt generation. */
REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
/* Enable the RXP. */
bce_start_rxp_cpu(sc);
/* Disable management frames (NC-SI) from flowing to the MCP. */
if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
}
/* Enable all remaining blocks in the MAC. */
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
BCE_MISC_ENABLE_DEFAULT_XI);
else
REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
BCE_MISC_ENABLE_DEFAULT);
REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
DELAY(20);
/* Save the current host coalescing block settings. */
sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
bce_blockinit_exit:
DBEXIT(BCE_VERBOSE_RESET);
return (rc);
}
/****************************************************************************/
/* Encapsulate an mbuf into the rx_bd chain. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq)
{
bus_dma_segment_t segs[1];
struct mbuf *m_new = NULL;
struct rx_bd *rxbd;
int nsegs, error, rc = 0;
#ifdef BCE_DEBUG
u16 debug_chain_prod = chain_prod;
#endif
DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
/* Make sure the inputs are valid. */
DBRUNIF((chain_prod > MAX_RX_BD_ALLOC),
BCE_PRINTF("%s(%d): RX producer out of range: "
"0x%04X > 0x%04X\n", __FILE__, __LINE__,
chain_prod, (u16)MAX_RX_BD_ALLOC));
DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
"chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
prod, chain_prod, *prod_bseq);
/* Update some debug statistic counters */
DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
sc->rx_low_watermark = sc->free_rx_bd);
DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
sc->rx_empty_count++);
/* Simulate an mbuf allocation failure. */
DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
sc->mbuf_alloc_failed_count++;
sc->mbuf_alloc_failed_sim_count++;
rc = ENOBUFS;
goto bce_get_rx_buf_exit);
/* This is a new mbuf allocation. */
if (bce_hdr_split == TRUE)
MGETHDR(m_new, M_NOWAIT, MT_DATA);
else
m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
sc->rx_bd_mbuf_alloc_size);
if (m_new == NULL) {
sc->mbuf_alloc_failed_count++;
rc = ENOBUFS;
goto bce_get_rx_buf_exit;
}
DBRUN(sc->debug_rx_mbuf_alloc++);
/* Make sure we have a valid packet header. */
M_ASSERTPKTHDR(m_new);
/* Initialize the mbuf size and pad if necessary for alignment. */
m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
m_adj(m_new, sc->rx_bd_mbuf_align_pad);
/* ToDo: Consider calling m_fragment() to test error handling. */
/* Map the mbuf cluster into device memory. */
error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag,
sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
/* Handle any mapping errors. */
if (error) {
BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
"chain (%d)!\n", __FILE__, __LINE__, error);
sc->dma_map_addr_rx_failed_count++;
m_freem(m_new);
DBRUN(sc->debug_rx_mbuf_alloc--);
rc = ENOBUFS;
goto bce_get_rx_buf_exit;
}
/* All mbufs must map to a single segment. */
KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
__FUNCTION__, nsegs));
/* Setup the rx_bd for the segment. */
rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr));
rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr));
rxbd->rx_bd_len = htole32(segs[0].ds_len);
rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
*prod_bseq += segs[0].ds_len;
/* Save the mbuf and update our counter. */
sc->rx_mbuf_ptr[chain_prod] = m_new;
sc->free_rx_bd -= nsegs;
DBRUNMSG(BCE_INSANE_RECV,
bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
"chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod,
chain_prod, *prod_bseq);
bce_get_rx_buf_exit:
DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
return(rc);
}
/****************************************************************************/
/* Encapsulate an mbuf cluster into the page chain. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx)
{
bus_dma_segment_t segs[1];
struct mbuf *m_new = NULL;
struct rx_bd *pgbd;
int error, nsegs, rc = 0;
#ifdef BCE_DEBUG
u16 debug_prod_idx = prod_idx;
#endif
DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
/* Make sure the inputs are valid. */
DBRUNIF((prod_idx > MAX_PG_BD_ALLOC),
BCE_PRINTF("%s(%d): page producer out of range: "
"0x%04X > 0x%04X\n", __FILE__, __LINE__,
prod_idx, (u16)MAX_PG_BD_ALLOC));
DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
"chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx);
/* Update counters if we've hit a new low or run out of pages. */
DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
sc->pg_low_watermark = sc->free_pg_bd);
DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
/* Simulate an mbuf allocation failure. */
DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
sc->mbuf_alloc_failed_count++;
sc->mbuf_alloc_failed_sim_count++;
rc = ENOBUFS;
goto bce_get_pg_buf_exit);
/* This is a new mbuf allocation. */
m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
if (m_new == NULL) {
sc->mbuf_alloc_failed_count++;
rc = ENOBUFS;
goto bce_get_pg_buf_exit;
}
DBRUN(sc->debug_pg_mbuf_alloc++);
m_new->m_len = MCLBYTES;
/* ToDo: Consider calling m_fragment() to test error handling. */
/* Map the mbuf cluster into device memory. */
error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag,
sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
/* Handle any mapping errors. */
if (error) {
BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
__FILE__, __LINE__);
m_freem(m_new);
DBRUN(sc->debug_pg_mbuf_alloc--);
rc = ENOBUFS;
goto bce_get_pg_buf_exit;
}
/* All mbufs must map to a single segment. */
KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
__FUNCTION__, nsegs));
/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
/*
* The page chain uses the same rx_bd data structure
* as the receive chain but doesn't require a byte sequence (bseq).
*/
pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)];
pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr));
pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr));
pgbd->rx_bd_len = htole32(MCLBYTES);
pgbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
/* Save the mbuf and update our counter. */
sc->pg_mbuf_ptr[prod_idx] = m_new;
sc->free_pg_bd--;
DBRUNMSG(BCE_INSANE_RECV,
bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
"prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx);
bce_get_pg_buf_exit:
DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
return(rc);
}
/****************************************************************************/
/* Initialize the TX context memory. */
/* */
/* Returns: */
/* Nothing */
/****************************************************************************/
static void
bce_init_tx_context(struct bce_softc *sc)
{
u32 val;
DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
/* Initialize the context ID for an L2 TX chain. */
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
/* Set the CID type to support an L2 connection. */
val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
CTX_WR(sc, GET_CID_ADDR(TX_CID),
BCE_L2CTX_TX_CMD_TYPE_XI, val);
/* Point the hardware to the first page in the chain. */
val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
CTX_WR(sc, GET_CID_ADDR(TX_CID),
BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
CTX_WR(sc, GET_CID_ADDR(TX_CID),
BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
} else {
/* Set the CID type to support an L2 connection. */
val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
/* Point the hardware to the first page in the chain. */
val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
CTX_WR(sc, GET_CID_ADDR(TX_CID),
BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
CTX_WR(sc, GET_CID_ADDR(TX_CID),
BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
}
DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
}
/****************************************************************************/
/* Allocate memory and initialize the TX data structures. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_init_tx_chain(struct bce_softc *sc)
{
struct tx_bd *txbd;
int i, rc = 0;
DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
/* Set the initial TX producer/consumer indices. */
sc->tx_prod = 0;
sc->tx_cons = 0;
sc->tx_prod_bseq = 0;
sc->used_tx_bd = 0;
sc->max_tx_bd = USABLE_TX_BD_ALLOC;
DBRUN(sc->tx_hi_watermark = 0);
DBRUN(sc->tx_full_count = 0);
/*
* The NetXtreme II supports a linked-list structre called
* a Buffer Descriptor Chain (or BD chain). A BD chain
* consists of a series of 1 or more chain pages, each of which
* consists of a fixed number of BD entries.
* The last BD entry on each page is a pointer to the next page
* in the chain, and the last pointer in the BD chain
* points back to the beginning of the chain.
*/
/* Set the TX next pointer chain entries. */
for (i = 0; i < sc->tx_pages; i++) {
int j;
txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
/* Check if we've reached the last page. */
if (i == (sc->tx_pages - 1))
j = 0;
else
j = i + 1;
txbd->tx_bd_haddr_hi =
htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
txbd->tx_bd_haddr_lo =
htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
}
bce_init_tx_context(sc);
DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
return(rc);
}
/****************************************************************************/
/* Free memory and clear the TX data structures. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_free_tx_chain(struct bce_softc *sc)
{
int i;
DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
if (sc->tx_mbuf_ptr[i] != NULL) {
if (sc->tx_mbuf_map[i] != NULL)
bus_dmamap_sync(sc->tx_mbuf_tag,
sc->tx_mbuf_map[i],
BUS_DMASYNC_POSTWRITE);
m_freem(sc->tx_mbuf_ptr[i]);
sc->tx_mbuf_ptr[i] = NULL;
DBRUN(sc->debug_tx_mbuf_alloc--);
}
}
/* Clear each TX chain page. */
for (i = 0; i < sc->tx_pages; i++)
bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
sc->used_tx_bd = 0;
/* Check if we lost any mbufs in the process. */
DBRUNIF((sc->debug_tx_mbuf_alloc),
BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
"from tx chain!\n", __FILE__, __LINE__,
sc->debug_tx_mbuf_alloc));
DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
}
/****************************************************************************/
/* Initialize the RX context memory. */
/* */
/* Returns: */
/* Nothing */
/****************************************************************************/
static void
bce_init_rx_context(struct bce_softc *sc)
{
u32 val;
DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
/* Init the type, size, and BD cache levels for the RX context. */
val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
(0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
/*
* Set the level for generating pause frames
* when the number of available rx_bd's gets
* too low (the low watermark) and the level
* when pause frames can be stopped (the high
* watermark).
*/
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
u32 lo_water, hi_water;
if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
} else {
lo_water = 0;
}
if (lo_water >= USABLE_RX_BD_ALLOC) {
lo_water = 0;
}
hi_water = USABLE_RX_BD_ALLOC / 4;
if (hi_water <= lo_water) {
lo_water = 0;
}
lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
if (hi_water > 0xf)
hi_water = 0xf;
else if (hi_water == 0)
lo_water = 0;
val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
(hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
}
CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
val = REG_RD(sc, BCE_MQ_MAP_L2_5);
REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
}
/* Point the hardware to the first page in the chain. */
val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
}
/****************************************************************************/
/* Allocate memory and initialize the RX data structures. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_init_rx_chain(struct bce_softc *sc)
{
struct rx_bd *rxbd;
int i, rc = 0;
DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
BCE_VERBOSE_CTX);
/* Initialize the RX producer and consumer indices. */
sc->rx_prod = 0;
sc->rx_cons = 0;
sc->rx_prod_bseq = 0;
sc->free_rx_bd = USABLE_RX_BD_ALLOC;
sc->max_rx_bd = USABLE_RX_BD_ALLOC;
/* Initialize the RX next pointer chain entries. */
for (i = 0; i < sc->rx_pages; i++) {
int j;
rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
/* Check if we've reached the last page. */
if (i == (sc->rx_pages - 1))
j = 0;
else
j = i + 1;
/* Setup the chain page pointers. */
rxbd->rx_bd_haddr_hi =
htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
rxbd->rx_bd_haddr_lo =
htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
}
/* Fill up the RX chain. */
bce_fill_rx_chain(sc);
DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
DBRUN(sc->rx_empty_count = 0);
for (i = 0; i < sc->rx_pages; i++) {
bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
bce_init_rx_context(sc);
DBRUNMSG(BCE_EXTREME_RECV,
bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
BCE_VERBOSE_CTX);
/* ToDo: Are there possible failure modes here? */
return(rc);
}
/****************************************************************************/
/* Add mbufs to the RX chain until its full or an mbuf allocation error */
/* occurs. */
/* */
/* Returns: */
/* Nothing */
/****************************************************************************/
static void
bce_fill_rx_chain(struct bce_softc *sc)
{
u16 prod, prod_idx;
u32 prod_bseq;
DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
BCE_VERBOSE_CTX);
/* Get the RX chain producer indices. */
prod = sc->rx_prod;
prod_bseq = sc->rx_prod_bseq;
/* Keep filling the RX chain until it's full. */
while (sc->free_rx_bd > 0) {
prod_idx = RX_CHAIN_IDX(prod);
if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) {
/* Bail out if we can't add an mbuf to the chain. */
break;
}
prod = NEXT_RX_BD(prod);
}
/* Save the RX chain producer indices. */
sc->rx_prod = prod;
sc->rx_prod_bseq = prod_bseq;
/* We should never end up pointing to a next page pointer. */
DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
__FUNCTION__, rx_prod));
/* Write the mailbox and tell the chip about the waiting rx_bd's. */
REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod);
REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq);
DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
BCE_VERBOSE_CTX);
}
/****************************************************************************/
/* Free memory and clear the RX data structures. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_free_rx_chain(struct bce_softc *sc)
{
int i;
DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
/* Free any mbufs still in the RX mbuf chain. */
for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
if (sc->rx_mbuf_ptr[i] != NULL) {
if (sc->rx_mbuf_map[i] != NULL)
bus_dmamap_sync(sc->rx_mbuf_tag,
sc->rx_mbuf_map[i],
BUS_DMASYNC_POSTREAD);
m_freem(sc->rx_mbuf_ptr[i]);
sc->rx_mbuf_ptr[i] = NULL;
DBRUN(sc->debug_rx_mbuf_alloc--);
}
}
/* Clear each RX chain page. */
for (i = 0; i < sc->rx_pages; i++)
if (sc->rx_bd_chain[i] != NULL)
bzero((char *)sc->rx_bd_chain[i],
BCE_RX_CHAIN_PAGE_SZ);
sc->free_rx_bd = sc->max_rx_bd;
/* Check if we lost any mbufs in the process. */
DBRUNIF((sc->debug_rx_mbuf_alloc),
BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
__FUNCTION__, sc->debug_rx_mbuf_alloc));
DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
}
/****************************************************************************/
/* Allocate memory and initialize the page data structures. */
/* Assumes that bce_init_rx_chain() has not already been called. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_init_pg_chain(struct bce_softc *sc)
{
struct rx_bd *pgbd;
int i, rc = 0;
u32 val;
DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
BCE_VERBOSE_CTX);
/* Initialize the page producer and consumer indices. */
sc->pg_prod = 0;
sc->pg_cons = 0;
sc->free_pg_bd = USABLE_PG_BD_ALLOC;
sc->max_pg_bd = USABLE_PG_BD_ALLOC;
DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
DBRUN(sc->pg_empty_count = 0);
/* Initialize the page next pointer chain entries. */
for (i = 0; i < sc->pg_pages; i++) {
int j;
pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
/* Check if we've reached the last page. */
if (i == (sc->pg_pages - 1))
j = 0;
else
j = i + 1;
/* Setup the chain page pointers. */
pgbd->rx_bd_haddr_hi =
htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
pgbd->rx_bd_haddr_lo =
htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
}
/* Setup the MQ BIN mapping for host_pg_bidx. */
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
/* Configure the rx_bd and page chain mbuf cluster size. */
val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES;
CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
/* Configure the context reserved for jumbo support. */
CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
BCE_L2CTX_RX_RBDC_JUMBO_KEY);
/* Point the hardware to the first page in the page chain. */
val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
/* Fill up the page chain. */
bce_fill_pg_chain(sc);
for (i = 0; i < sc->pg_pages; i++) {
bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
DBRUNMSG(BCE_EXTREME_RECV,
bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
BCE_VERBOSE_CTX);
return(rc);
}
/****************************************************************************/
/* Add mbufs to the page chain until its full or an mbuf allocation error */
/* occurs. */
/* */
/* Returns: */
/* Nothing */
/****************************************************************************/
static void
bce_fill_pg_chain(struct bce_softc *sc)
{
u16 prod, prod_idx;
DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
BCE_VERBOSE_CTX);
/* Get the page chain prodcuer index. */
prod = sc->pg_prod;
/* Keep filling the page chain until it's full. */
while (sc->free_pg_bd > 0) {
prod_idx = PG_CHAIN_IDX(prod);
if (bce_get_pg_buf(sc, prod, prod_idx)) {
/* Bail out if we can't add an mbuf to the chain. */
break;
}
prod = NEXT_PG_BD(prod);
}
/* Save the page chain producer index. */
sc->pg_prod = prod;
DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
__FUNCTION__, pg_prod));
/*
* Write the mailbox and tell the chip about
* the new rx_bd's in the page chain.
*/
REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
prod);
DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
BCE_VERBOSE_CTX);
}
/****************************************************************************/
/* Free memory and clear the RX data structures. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_free_pg_chain(struct bce_softc *sc)
{
int i;
DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
/* Free any mbufs still in the mbuf page chain. */
for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
if (sc->pg_mbuf_ptr[i] != NULL) {
if (sc->pg_mbuf_map[i] != NULL)
bus_dmamap_sync(sc->pg_mbuf_tag,
sc->pg_mbuf_map[i],
BUS_DMASYNC_POSTREAD);
m_freem(sc->pg_mbuf_ptr[i]);
sc->pg_mbuf_ptr[i] = NULL;
DBRUN(sc->debug_pg_mbuf_alloc--);
}
}
/* Clear each page chain pages. */
for (i = 0; i < sc->pg_pages; i++)
bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
sc->free_pg_bd = sc->max_pg_bd;
/* Check if we lost any mbufs in the process. */
DBRUNIF((sc->debug_pg_mbuf_alloc),
BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
__FUNCTION__, sc->debug_pg_mbuf_alloc));
DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
}
static u32
bce_get_rphy_link(struct bce_softc *sc)
{
u32 advertise, link;
int fdpx;
advertise = 0;
fdpx = 0;
if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
else
link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
if (link & BCE_NETLINK_ANEG_ENB)
advertise |= BCE_NETLINK_ANEG_ENB;
if (link & BCE_NETLINK_SPEED_10HALF)
advertise |= BCE_NETLINK_SPEED_10HALF;
if (link & BCE_NETLINK_SPEED_10FULL) {
advertise |= BCE_NETLINK_SPEED_10FULL;
fdpx++;
}
if (link & BCE_NETLINK_SPEED_100HALF)
advertise |= BCE_NETLINK_SPEED_100HALF;
if (link & BCE_NETLINK_SPEED_100FULL) {
advertise |= BCE_NETLINK_SPEED_100FULL;
fdpx++;
}
if (link & BCE_NETLINK_SPEED_1000HALF)
advertise |= BCE_NETLINK_SPEED_1000HALF;
if (link & BCE_NETLINK_SPEED_1000FULL) {
advertise |= BCE_NETLINK_SPEED_1000FULL;
fdpx++;
}
if (link & BCE_NETLINK_SPEED_2500HALF)
advertise |= BCE_NETLINK_SPEED_2500HALF;
if (link & BCE_NETLINK_SPEED_2500FULL) {
advertise |= BCE_NETLINK_SPEED_2500FULL;
fdpx++;
}
if (fdpx)
advertise |= BCE_NETLINK_FC_PAUSE_SYM |
BCE_NETLINK_FC_PAUSE_ASYM;
if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
advertise |= BCE_NETLINK_PHY_APP_REMOTE |
BCE_NETLINK_ETH_AT_WIRESPEED;
return (advertise);
}
/****************************************************************************/
/* Set media options. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_ifmedia_upd(struct ifnet *ifp)
{
struct bce_softc *sc = ifp->if_softc;
int error;
DBENTER(BCE_VERBOSE);
BCE_LOCK(sc);
error = bce_ifmedia_upd_locked(ifp);
BCE_UNLOCK(sc);
DBEXIT(BCE_VERBOSE);
return (error);
}
/****************************************************************************/
/* Set media options. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static int
bce_ifmedia_upd_locked(struct ifnet *ifp)
{
struct bce_softc *sc = ifp->if_softc;
struct mii_data *mii;
struct mii_softc *miisc;
struct ifmedia *ifm;
u32 link;
int error, fdx;
DBENTER(BCE_VERBOSE_PHY);
error = 0;
BCE_LOCK_ASSERT(sc);
sc->bce_link_up = FALSE;
if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
ifm = &sc->bce_ifmedia;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
link = 0;
fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
switch(IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
/*
* Check advertised link of remote PHY by reading
* BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
* Always use the same link type of remote PHY.
*/
link = bce_get_rphy_link(sc);
break;
case IFM_2500_SX:
if ((sc->bce_phy_flags &
(BCE_PHY_REMOTE_PORT_FIBER_FLAG |
BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
return (EINVAL);
/*
* XXX
* Have to enable forced 2.5Gbps configuration.
*/
if (fdx != 0)
link |= BCE_NETLINK_SPEED_2500FULL;
else
link |= BCE_NETLINK_SPEED_2500HALF;
break;
case IFM_1000_SX:
if ((sc->bce_phy_flags &
BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
return (EINVAL);
/*
* XXX
* Have to disable 2.5Gbps configuration.
*/
if (fdx != 0)
link = BCE_NETLINK_SPEED_1000FULL;
else
link = BCE_NETLINK_SPEED_1000HALF;
break;
case IFM_1000_T:
if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
return (EINVAL);
if (fdx != 0)
link = BCE_NETLINK_SPEED_1000FULL;
else
link = BCE_NETLINK_SPEED_1000HALF;
break;
case IFM_100_TX:
if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
return (EINVAL);
if (fdx != 0)
link = BCE_NETLINK_SPEED_100FULL;
else
link = BCE_NETLINK_SPEED_100HALF;
break;
case IFM_10_T:
if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
return (EINVAL);
if (fdx != 0)
link = BCE_NETLINK_SPEED_10FULL;
else
link = BCE_NETLINK_SPEED_10HALF;
break;
default:
return (EINVAL);
}
if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
/*
* XXX
* Advertise pause capability for full-duplex media.
*/
if (fdx != 0)
link |= BCE_NETLINK_FC_PAUSE_SYM |
BCE_NETLINK_FC_PAUSE_ASYM;
if ((sc->bce_phy_flags &
BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
link |= BCE_NETLINK_PHY_APP_REMOTE |
BCE_NETLINK_ETH_AT_WIRESPEED;
}
bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
} else {
mii = device_get_softc(sc->bce_miibus);
/* Make sure the MII bus has been enumerated. */
if (mii) {
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
}
}
DBEXIT(BCE_VERBOSE_PHY);
return (error);
}
static void
bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
{
struct ifnet *ifp;
u32 link;
ifp = sc->bce_ifp;
BCE_LOCK_ASSERT(sc);
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
link = bce_shmem_rd(sc, BCE_LINK_STATUS);
/* XXX Handle heart beat status? */
if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
ifmr->ifm_status |= IFM_ACTIVE;
else {
ifmr->ifm_active |= IFM_NONE;
ifp->if_baudrate = 0;
return;
}
switch (link & BCE_LINK_STATUS_SPEED_MASK) {
case BCE_LINK_STATUS_10HALF:
ifmr->ifm_active |= IFM_10_T | IFM_HDX;
ifp->if_baudrate = IF_Mbps(10UL);
break;
case BCE_LINK_STATUS_10FULL:
ifmr->ifm_active |= IFM_10_T | IFM_FDX;
ifp->if_baudrate = IF_Mbps(10UL);
break;
case BCE_LINK_STATUS_100HALF:
ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
ifp->if_baudrate = IF_Mbps(100UL);
break;
case BCE_LINK_STATUS_100FULL:
ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
ifp->if_baudrate = IF_Mbps(100UL);
break;
case BCE_LINK_STATUS_1000HALF:
if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
else
ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
ifp->if_baudrate = IF_Mbps(1000UL);
break;
case BCE_LINK_STATUS_1000FULL:
if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
else
ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
ifp->if_baudrate = IF_Mbps(1000UL);
break;
case BCE_LINK_STATUS_2500HALF:
if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
ifmr->ifm_active |= IFM_NONE;
return;
} else
ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
ifp->if_baudrate = IF_Mbps(2500UL);
break;
case BCE_LINK_STATUS_2500FULL:
if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
ifmr->ifm_active |= IFM_NONE;
return;
} else
ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
ifp->if_baudrate = IF_Mbps(2500UL);
break;
default:
ifmr->ifm_active |= IFM_NONE;
return;
}
if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
ifmr->ifm_active |= IFM_ETH_RXPAUSE;
if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
ifmr->ifm_active |= IFM_ETH_TXPAUSE;
}
/****************************************************************************/
/* Reports current media status. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct bce_softc *sc = ifp->if_softc;
struct mii_data *mii;
DBENTER(BCE_VERBOSE_PHY);
BCE_LOCK(sc);
if ((ifp->if_flags & IFF_UP) == 0) {
BCE_UNLOCK(sc);
return;
}
if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
bce_ifmedia_sts_rphy(sc, ifmr);
else {
mii = device_get_softc(sc->bce_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
BCE_UNLOCK(sc);
DBEXIT(BCE_VERBOSE_PHY);
}
/****************************************************************************/
/* Handles PHY generated interrupt events. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_phy_intr(struct bce_softc *sc)
{
u32 new_link_state, old_link_state;
DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
DBRUN(sc->phy_interrupts++);
new_link_state = sc->status_block->status_attn_bits &
STATUS_ATTN_BITS_LINK_STATE;
old_link_state = sc->status_block->status_attn_bits_ack &
STATUS_ATTN_BITS_LINK_STATE;
/* Handle any changes if the link state has changed. */
if (new_link_state != old_link_state) {
/* Update the status_attn_bits_ack field. */
if (new_link_state) {
REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
STATUS_ATTN_BITS_LINK_STATE);
DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
__FUNCTION__);
} else {
REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
STATUS_ATTN_BITS_LINK_STATE);
DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
__FUNCTION__);
}
if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
if (new_link_state) {
if (bootverbose)
if_printf(sc->bce_ifp, "link UP\n");
if_link_state_change(sc->bce_ifp,
LINK_STATE_UP);
} else {
if (bootverbose)
if_printf(sc->bce_ifp, "link DOWN\n");
if_link_state_change(sc->bce_ifp,
LINK_STATE_DOWN);
}
}
/*
* Assume link is down and allow
* tick routine to update the state
* based on the actual media state.
*/
sc->bce_link_up = FALSE;
callout_stop(&sc->bce_tick_callout);
bce_tick(sc);
}
/* Acknowledge the link change interrupt. */
REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
}
/****************************************************************************/
/* Reads the receive consumer value from the status block (skipping over */
/* chain page pointer if necessary). */
/* */
/* Returns: */
/* hw_cons */
/****************************************************************************/
static inline u16
bce_get_hw_rx_cons(struct bce_softc *sc)
{
u16 hw_cons;
rmb();
hw_cons = sc->status_block->status_rx_quick_consumer_index0;
if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
hw_cons++;
return hw_cons;
}
/****************************************************************************/
/* Handles received frame interrupt events. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_rx_intr(struct bce_softc *sc)
{
struct ifnet *ifp = sc->bce_ifp;
struct l2_fhdr *l2fhdr;
struct ether_vlan_header *vh;
unsigned int pkt_len;
u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
u32 status;
unsigned int rem_len;
u16 sw_pg_cons, sw_pg_cons_idx;
DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
DBRUN(sc->interrupts_rx++);
DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
"rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
__FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
/* Prepare the RX chain pages to be accessed by the host CPU. */
for (int i = 0; i < sc->rx_pages; i++)
bus_dmamap_sync(sc->rx_bd_chain_tag,
sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
/* Prepare the page chain pages to be accessed by the host CPU. */
if (bce_hdr_split == TRUE) {
for (int i = 0; i < sc->pg_pages; i++)
bus_dmamap_sync(sc->pg_bd_chain_tag,
sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
}
/* Get the hardware's view of the RX consumer index. */
hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
/* Get working copies of the driver's view of the consumer indices. */
sw_rx_cons = sc->rx_cons;
sw_pg_cons = sc->pg_cons;
/* Update some debug statistics counters */
DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
sc->rx_low_watermark = sc->free_rx_bd);
DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
sc->rx_empty_count++);
/* Scan through the receive chain as long as there is work to do */
/* ToDo: Consider setting a limit on the number of packets processed. */
rmb();
while (sw_rx_cons != hw_rx_cons) {
struct mbuf *m0;
/* Convert the producer/consumer indices to an actual rx_bd index. */
sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
/* Unmap the mbuf from DMA space. */
bus_dmamap_sync(sc->rx_mbuf_tag,
sc->rx_mbuf_map[sw_rx_cons_idx],
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rx_mbuf_tag,
sc->rx_mbuf_map[sw_rx_cons_idx]);
/* Remove the mbuf from the RX chain. */
m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
DBRUN(sc->debug_rx_mbuf_alloc--);
sc->free_rx_bd++;
/*
* Frames received on the NetXteme II are prepended
* with an l2_fhdr structure which provides status
* information about the received frame (including
* VLAN tags and checksum info). The frames are
* also automatically adjusted to word align the IP
* header (i.e. two null bytes are inserted before
* the Ethernet header). As a result the data
* DMA'd by the controller into the mbuf looks
* like this:
*
* +---------+-----+---------------------+-----+
* | l2_fhdr | pad | packet data | FCS |
* +---------+-----+---------------------+-----+
*
* The l2_fhdr needs to be checked and skipped and
* the FCS needs to be stripped before sending the
* packet up the stack.
*/
l2fhdr = mtod(m0, struct l2_fhdr *);
/* Get the packet data + FCS length and the status. */
pkt_len = l2fhdr->l2_fhdr_pkt_len;
status = l2fhdr->l2_fhdr_status;
/*
* Skip over the l2_fhdr and pad, resulting in the
* following data in the mbuf:
* +---------------------+-----+
* | packet data | FCS |
* +---------------------+-----+
*/
m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
/*
* When split header mode is used, an ethernet frame
* may be split across the receive chain and the
* page chain. If that occurs an mbuf cluster must be
* reassembled from the individual mbuf pieces.
*/
if (bce_hdr_split == TRUE) {
/*
* Check whether the received frame fits in a single
* mbuf or not (i.e. packet data + FCS <=
* sc->rx_bd_mbuf_data_len bytes).
*/
if (pkt_len > m0->m_len) {
/*
* The received frame is larger than a single mbuf.
* If the frame was a TCP frame then only the TCP
* header is placed in the mbuf, the remaining
* payload (including FCS) is placed in the page
* chain, the SPLIT flag is set, and the header
* length is placed in the IP checksum field.
* If the frame is not a TCP frame then the mbuf
* is filled and the remaining bytes are placed
* in the page chain.
*/
DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
"packet.\n", __FUNCTION__);
DBRUN(sc->split_header_frames_rcvd++);
/*
* When the page chain is enabled and the TCP
* header has been split from the TCP payload,
* the ip_xsum structure will reflect the length
* of the TCP header, not the IP checksum. Set
* the packet length of the mbuf accordingly.
*/
if (status & L2_FHDR_STATUS_SPLIT) {
m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
DBRUN(sc->split_header_tcp_frames_rcvd++);
}
rem_len = pkt_len - m0->m_len;
/* Pull mbufs off the page chain for any remaining data. */
while (rem_len > 0) {
struct mbuf *m_pg;
sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
/* Remove the mbuf from the page chain. */
m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
DBRUN(sc->debug_pg_mbuf_alloc--);
sc->free_pg_bd++;
/* Unmap the page chain mbuf from DMA space. */
bus_dmamap_sync(sc->pg_mbuf_tag,
sc->pg_mbuf_map[sw_pg_cons_idx],
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->pg_mbuf_tag,
sc->pg_mbuf_map[sw_pg_cons_idx]);
/* Adjust the mbuf length. */
if (rem_len < m_pg->m_len) {
/* The mbuf chain is complete. */
m_pg->m_len = rem_len;
rem_len = 0;
} else {
/* More packet data is waiting. */
rem_len -= m_pg->m_len;
}
/* Concatenate the mbuf cluster to the mbuf. */
m_cat(m0, m_pg);
sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
}
/* Set the total packet length. */
m0->m_pkthdr.len = pkt_len;
} else {
/*
* The received packet is small and fits in a
* single mbuf (i.e. the l2_fhdr + pad + packet +
* FCS <= MHLEN). In other words, the packet is
* 154 bytes or less in size.
*/
DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
"packet.\n", __FUNCTION__);
/* Set the total packet length. */
m0->m_pkthdr.len = m0->m_len = pkt_len;
}
} else
/* Set the total packet length. */
m0->m_pkthdr.len = m0->m_len = pkt_len;
/* Remove the trailing Ethernet FCS. */
m_adj(m0, -ETHER_CRC_LEN);
/* Check that the resulting mbuf chain is valid. */
DBRUN(m_sanity(m0, FALSE));
DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
(m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
BCE_PRINTF("Invalid Ethernet frame size!\n");
m_print(m0, 128));
DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
sc->l2fhdr_error_sim_count++;
status = status | L2_FHDR_ERRORS_PHY_DECODE);
/* Check the received frame for errors. */
if (status & (L2_FHDR_ERRORS_BAD_CRC |
L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) {
/* Log the error and release the mbuf. */
ifp->if_ierrors++;
sc->l2fhdr_error_count++;
m_freem(m0);
m0 = NULL;
goto bce_rx_intr_next_rx;
}
/* Send the packet to the appropriate interface. */
m0->m_pkthdr.rcvif = ifp;
/* Assume no hardware checksum. */
m0->m_pkthdr.csum_flags = 0;
/* Validate the checksum if offload enabled. */
if (ifp->if_capenable & IFCAP_RXCSUM) {
/* Check for an IP datagram. */
if (!(status & L2_FHDR_STATUS_SPLIT) &&
(status & L2_FHDR_STATUS_IP_DATAGRAM)) {
m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
DBRUN(sc->csum_offload_ip++);
/* Check if the IP checksum is valid. */
if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
m0->m_pkthdr.csum_flags |=
CSUM_IP_VALID;
}
/* Check for a valid TCP/UDP frame. */
if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
L2_FHDR_STATUS_UDP_DATAGRAM)) {
/* Check for a good TCP/UDP checksum. */
if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
DBRUN(sc->csum_offload_tcp_udp++);
m0->m_pkthdr.csum_data =
l2fhdr->l2_fhdr_tcp_udp_xsum;
m0->m_pkthdr.csum_flags |=
(CSUM_DATA_VALID
| CSUM_PSEUDO_HDR);
}
}
}
/* Attach the VLAN tag. */
if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
!(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
DBRUN(sc->vlan_tagged_frames_rcvd++);
if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
DBRUN(sc->vlan_tagged_frames_stripped++);
#if __FreeBSD_version < 700000
VLAN_INPUT_TAG(ifp, m0,
l2fhdr->l2_fhdr_vlan_tag, continue);
#else
m0->m_pkthdr.ether_vtag =
l2fhdr->l2_fhdr_vlan_tag;
m0->m_flags |= M_VLANTAG;
#endif
} else {
/*
* bce(4) controllers can't disable VLAN
* tag stripping if management firmware
* (ASF/IPMI/UMP) is running. So we always
* strip VLAN tag and manually reconstruct
* the VLAN frame by appending stripped
* VLAN tag in driver if VLAN tag stripping
* was disabled.
*
* TODO: LLC SNAP handling.
*/
bcopy(mtod(m0, uint8_t *),
mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
ETHER_ADDR_LEN * 2);
m0->m_data -= ETHER_VLAN_ENCAP_LEN;
vh = mtod(m0, struct ether_vlan_header *);
vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
m0->m_len += ETHER_VLAN_ENCAP_LEN;
}
}
/* Increment received packet statistics. */
ifp->if_ipackets++;
bce_rx_intr_next_rx:
sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
/* If we have a packet, pass it up the stack */
if (m0) {
/* Make sure we don't lose our place when we release the lock. */
sc->rx_cons = sw_rx_cons;
sc->pg_cons = sw_pg_cons;
BCE_UNLOCK(sc);
(*ifp->if_input)(ifp, m0);
BCE_LOCK(sc);
/* Recover our place. */
sw_rx_cons = sc->rx_cons;
sw_pg_cons = sc->pg_cons;
}
/* Refresh hw_cons to see if there's new work */
if (sw_rx_cons == hw_rx_cons)
hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
}
/* No new packets. Refill the page chain. */
if (bce_hdr_split == TRUE) {
sc->pg_cons = sw_pg_cons;
bce_fill_pg_chain(sc);
}
/* No new packets. Refill the RX chain. */
sc->rx_cons = sw_rx_cons;
bce_fill_rx_chain(sc);
/* Prepare the page chain pages to be accessed by the NIC. */
for (int i = 0; i < sc->rx_pages; i++)
bus_dmamap_sync(sc->rx_bd_chain_tag,
sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
if (bce_hdr_split == TRUE) {
for (int i = 0; i < sc->pg_pages; i++)
bus_dmamap_sync(sc->pg_bd_chain_tag,
sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
}
DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
"rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
__FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
}
/****************************************************************************/
/* Reads the transmit consumer value from the status block (skipping over */
/* chain page pointer if necessary). */
/* */
/* Returns: */
/* hw_cons */
/****************************************************************************/
static inline u16
bce_get_hw_tx_cons(struct bce_softc *sc)
{
u16 hw_cons;
mb();
hw_cons = sc->status_block->status_tx_quick_consumer_index0;
if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
hw_cons++;
return hw_cons;
}
/****************************************************************************/
/* Handles transmit completion interrupt events. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_tx_intr(struct bce_softc *sc)
{
struct ifnet *ifp = sc->bce_ifp;
u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
DBRUN(sc->interrupts_tx++);
DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
"tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
__FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
BCE_LOCK_ASSERT(sc);
/* Get the hardware's view of the TX consumer index. */
hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
sw_tx_cons = sc->tx_cons;
/* Prevent speculative reads of the status block. */
bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
BUS_SPACE_BARRIER_READ);
/* Cycle through any completed TX chain page entries. */
while (sw_tx_cons != hw_tx_cons) {
#ifdef BCE_DEBUG
struct tx_bd *txbd = NULL;
#endif
sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
DBPRINT(sc, BCE_INFO_SEND,
"%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
"sw_tx_chain_cons = 0x%04X\n",
__FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
BCE_PRINTF("%s(%d): TX chain consumer out of range! "
" 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
(int) MAX_TX_BD_ALLOC);
bce_breakpoint(sc));
DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
[TX_IDX(sw_tx_chain_cons)]);
DBRUNIF((txbd == NULL),
BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
__FILE__, __LINE__, sw_tx_chain_cons);
bce_breakpoint(sc));
DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
/*
* Free the associated mbuf. Remember
* that only the last tx_bd of a packet
* has an mbuf pointer and DMA map.
*/
if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
/* Validate that this is the last tx_bd. */
DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
BCE_PRINTF("%s(%d): tx_bd END flag not set but "
"txmbuf == NULL!\n", __FILE__, __LINE__);
bce_breakpoint(sc));
DBRUNMSG(BCE_INFO_SEND,
BCE_PRINTF("%s(): Unloading map/freeing mbuf "
"from tx_bd[0x%04X]\n", __FUNCTION__,
sw_tx_chain_cons));
/* Unmap the mbuf. */
bus_dmamap_unload(sc->tx_mbuf_tag,
sc->tx_mbuf_map[sw_tx_chain_cons]);
/* Free the mbuf. */
m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
DBRUN(sc->debug_tx_mbuf_alloc--);
ifp->if_opackets++;
}
sc->used_tx_bd--;
sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
/* Refresh hw_cons to see if there's new work. */
hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
/* Prevent speculative reads of the status block. */
bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
BUS_SPACE_BARRIER_READ);
}
/* Clear the TX timeout timer. */
sc->watchdog_timer = 0;
/* Clear the tx hardware queue full flag. */
if (sc->used_tx_bd < sc->max_tx_bd) {
DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
DBPRINT(sc, BCE_INFO_SEND,
"%s(): Open TX chain! %d/%d (used/total)\n",
__FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
sc->tx_cons = sw_tx_cons;
DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
"tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
__FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
}
/****************************************************************************/
/* Disables interrupt generation. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_disable_intr(struct bce_softc *sc)
{
DBENTER(BCE_VERBOSE_INTR);
REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
DBEXIT(BCE_VERBOSE_INTR);
}
/****************************************************************************/
/* Enables interrupt generation. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_enable_intr(struct bce_softc *sc, int coal_now)
{
DBENTER(BCE_VERBOSE_INTR);
REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
/* Force an immediate interrupt (whether there is new data or not). */
if (coal_now)
REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
DBEXIT(BCE_VERBOSE_INTR);
}
/****************************************************************************/
/* Handles controller initialization. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_init_locked(struct bce_softc *sc)
{
struct ifnet *ifp;
u32 ether_mtu = 0;
DBENTER(BCE_VERBOSE_RESET);
BCE_LOCK_ASSERT(sc);
ifp = sc->bce_ifp;
/* Check if the driver is still running and bail out if it is. */
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
goto bce_init_locked_exit;
bce_stop(sc);
if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
BCE_PRINTF("%s(%d): Controller reset failed!\n",
__FILE__, __LINE__);
goto bce_init_locked_exit;
}
if (bce_chipinit(sc)) {
BCE_PRINTF("%s(%d): Controller initialization failed!\n",
__FILE__, __LINE__);
goto bce_init_locked_exit;
}
if (bce_blockinit(sc)) {
BCE_PRINTF("%s(%d): Block initialization failed!\n",
__FILE__, __LINE__);
goto bce_init_locked_exit;
}
/* Load our MAC address. */
bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
bce_set_mac_addr(sc);
if (bce_hdr_split == FALSE)
bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
/*
* Calculate and program the hardware Ethernet MTU
* size. Be generous on the receive if we have room
* and allowed by the user.
*/
if (bce_strict_rx_mtu == TRUE)
ether_mtu = ifp->if_mtu;
else {
if (bce_hdr_split == TRUE) {
if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len + MCLBYTES)
ether_mtu = sc->rx_bd_mbuf_data_len +
MCLBYTES;
else
ether_mtu = ifp->if_mtu;
} else {
if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
ether_mtu = sc->rx_bd_mbuf_data_len;
else
ether_mtu = ifp->if_mtu;
}
}
ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
__FUNCTION__, ether_mtu);
/* Program the mtu, enabling jumbo frame support if necessary. */
if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
else
REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
/* Program appropriate promiscuous/multicast filtering. */
bce_set_rx_mode(sc);
if (bce_hdr_split == TRUE) {
/* Init page buffer descriptor chain. */
bce_init_pg_chain(sc);
}
/* Init RX buffer descriptor chain. */
bce_init_rx_chain(sc);
/* Init TX buffer descriptor chain. */
bce_init_tx_chain(sc);
/* Enable host interrupts. */
bce_enable_intr(sc, 1);
bce_ifmedia_upd_locked(ifp);
/* Let the OS know the driver is up and running. */
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
bce_init_locked_exit:
DBEXIT(BCE_VERBOSE_RESET);
}
/****************************************************************************/
/* Initialize the controller just enough so that any management firmware */
/* running on the device will continue to operate correctly. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_mgmt_init_locked(struct bce_softc *sc)
{
struct ifnet *ifp;
DBENTER(BCE_VERBOSE_RESET);
BCE_LOCK_ASSERT(sc);
/* Bail out if management firmware is not running. */
if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
DBPRINT(sc, BCE_VERBOSE_SPECIAL,
"No management firmware running...\n");
goto bce_mgmt_init_locked_exit;
}
ifp = sc->bce_ifp;
/* Enable all critical blocks in the MAC. */
REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
DELAY(20);
bce_ifmedia_upd_locked(ifp);
bce_mgmt_init_locked_exit:
DBEXIT(BCE_VERBOSE_RESET);
}
/****************************************************************************/
/* Handles controller initialization when called from an unlocked routine. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_init(void *xsc)
{
struct bce_softc *sc = xsc;
DBENTER(BCE_VERBOSE_RESET);
BCE_LOCK(sc);
bce_init_locked(sc);
BCE_UNLOCK(sc);
DBEXIT(BCE_VERBOSE_RESET);
}
/****************************************************************************/
/* Modifies an mbuf for TSO on the hardware. */
/* */
/* Returns: */
/* Pointer to a modified mbuf. */
/****************************************************************************/
static struct mbuf *
bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
{
struct mbuf *m;
struct ether_header *eh;
struct ip *ip;
struct tcphdr *th;
u16 etype;
int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
DBRUN(sc->tso_frames_requested++);
/* Controller may modify mbuf chains. */
if (M_WRITABLE(*m_head) == 0) {
m = m_dup(*m_head, M_NOWAIT);
m_freem(*m_head);
if (m == NULL) {
sc->mbuf_alloc_failed_count++;
*m_head = NULL;
return (NULL);
}
*m_head = m;
}
/*
* For TSO the controller needs two pieces of info,
* the MSS and the IP+TCP options length.
*/
m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
if (m == NULL) {
*m_head = NULL;
return (NULL);
}
eh = mtod(m, struct ether_header *);
etype = ntohs(eh->ether_type);
/* Check for supported TSO Ethernet types (only IPv4 for now) */
switch (etype) {
case ETHERTYPE_IP:
ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
/* TSO only supported for TCP protocol. */
if (ip->ip_p != IPPROTO_TCP) {
BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
__FILE__, __LINE__);
m_freem(*m_head);
*m_head = NULL;
return (NULL);
}
/* Get IP header length in bytes (min 20) */
ip_hlen = ip->ip_hl << 2;
m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
sizeof(struct tcphdr));
if (m == NULL) {
*m_head = NULL;
return (NULL);
}
/* Get the TCP header length in bytes (min 20) */
ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
tcp_hlen = (th->th_off << 2);
/* Make sure all IP/TCP options live in the same buffer. */
m = m_pullup(*m_head, sizeof(struct ether_header)+ ip_hlen +
tcp_hlen);
if (m == NULL) {
*m_head = NULL;
return (NULL);
}
/* Clear IP header length and checksum, will be calc'd by h/w. */
ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
ip_len = ip->ip_len;
ip->ip_len = 0;
ip->ip_sum = 0;
break;
case ETHERTYPE_IPV6:
BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
__FILE__, __LINE__);
m_freem(*m_head);
*m_head = NULL;
return (NULL);
/* NOT REACHED */
default:
BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
__FILE__, __LINE__);
m_freem(*m_head);
*m_head = NULL;
return (NULL);
}
hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
"ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
__FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
tcp_hlen, ip_len);
/* Set the LSO flag in the TX BD */
*flags |= TX_BD_FLAGS_SW_LSO;
/* Set the length of IP + TCP options (in 32 bit words) */
*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
sizeof(struct tcphdr)) >> 2) << 8);
DBRUN(sc->tso_frames_completed++);
return (*m_head);
}
/****************************************************************************/
/* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
/* memory visible to the controller. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/* Modified: */
/* m_head: May be set to NULL if MBUF is excessively fragmented. */
/****************************************************************************/
static int
bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
{
bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
bus_dmamap_t map;
struct tx_bd *txbd = NULL;
struct mbuf *m0;
u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
u32 prod_bseq;
#ifdef BCE_DEBUG
u16 debug_prod;
#endif
int i, error, nsegs, rc = 0;
DBENTER(BCE_VERBOSE_SEND);
/* Make sure we have room in the TX chain. */
if (sc->used_tx_bd >= sc->max_tx_bd)
goto bce_tx_encap_exit;
/* Transfer any checksum offload flags to the bd. */
m0 = *m_head;
if (m0->m_pkthdr.csum_flags) {
if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
m0 = bce_tso_setup(sc, m_head, &flags);
if (m0 == NULL) {
DBRUN(sc->tso_frames_failed++);
goto bce_tx_encap_exit;
}
mss = htole16(m0->m_pkthdr.tso_segsz);
} else {
if (m0->m_pkthdr.csum_flags & CSUM_IP)
flags |= TX_BD_FLAGS_IP_CKSUM;
if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
}
}
/* Transfer any VLAN tags to the bd. */
if (m0->m_flags & M_VLANTAG) {
flags |= TX_BD_FLAGS_VLAN_TAG;
vlan_tag = m0->m_pkthdr.ether_vtag;
}
/* Map the mbuf into DMAable memory. */
prod = sc->tx_prod;
chain_prod = TX_CHAIN_IDX(prod);
map = sc->tx_mbuf_map[chain_prod];
/* Map the mbuf into our DMA address space. */
error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
segs, &nsegs, BUS_DMA_NOWAIT);
/* Check if the DMA mapping was successful */
if (error == EFBIG) {
sc->mbuf_frag_count++;
/* Try to defrag the mbuf. */
m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
if (m0 == NULL) {
/* Defrag was unsuccessful */
m_freem(*m_head);
*m_head = NULL;
sc->mbuf_alloc_failed_count++;
rc = ENOBUFS;
goto bce_tx_encap_exit;
}
/* Defrag was successful, try mapping again */
*m_head = m0;
error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
/* Still getting an error after a defrag. */
if (error == ENOMEM) {
/* Insufficient DMA buffers available. */
sc->dma_map_addr_tx_failed_count++;
rc = error;
goto bce_tx_encap_exit;
} else if (error != 0) {
/* Release it and return an error. */
BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
"TX chain!\n", __FILE__, __LINE__);
m_freem(m0);
*m_head = NULL;
sc->dma_map_addr_tx_failed_count++;
rc = ENOBUFS;
goto bce_tx_encap_exit;
}
} else if (error == ENOMEM) {
/* Insufficient DMA buffers available. */
sc->dma_map_addr_tx_failed_count++;
rc = error;
goto bce_tx_encap_exit;
} else if (error != 0) {
m_freem(m0);
*m_head = NULL;
sc->dma_map_addr_tx_failed_count++;
rc = error;
goto bce_tx_encap_exit;
}
/* Make sure there's room in the chain */
if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
bus_dmamap_unload(sc->tx_mbuf_tag, map);
rc = ENOBUFS;
goto bce_tx_encap_exit;
}
/* prod points to an empty tx_bd at this point. */
prod_bseq = sc->tx_prod_bseq;
#ifdef BCE_DEBUG
debug_prod = chain_prod;
#endif
DBPRINT(sc, BCE_INFO_SEND,
"%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
"prod_bseq = 0x%08X\n",
__FUNCTION__, prod, chain_prod, prod_bseq);
/*
* Cycle through each mbuf segment that makes up
* the outgoing frame, gathering the mapping info
* for that segment and creating a tx_bd for
* the mbuf.
*/
for (i = 0; i < nsegs ; i++) {
chain_prod = TX_CHAIN_IDX(prod);
txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
[TX_IDX(chain_prod)];
txbd->tx_bd_haddr_lo =
htole32(BCE_ADDR_LO(segs[i].ds_addr));
txbd->tx_bd_haddr_hi =
htole32(BCE_ADDR_HI(segs[i].ds_addr));
txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
htole16(segs[i].ds_len);
txbd->tx_bd_vlan_tag = htole16(vlan_tag);
txbd->tx_bd_flags = htole16(flags);
prod_bseq += segs[i].ds_len;
if (i == 0)
txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
prod = NEXT_TX_BD(prod);
}
/* Set the END flag on the last TX buffer descriptor. */
txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
DBRUNMSG(BCE_EXTREME_SEND,
bce_dump_tx_chain(sc, debug_prod, nsegs));
/*
* Ensure that the mbuf pointer for this transmission
* is placed at the array index of the last
* descriptor in this chain. This is done
* because a single map is used for all
* segments of the mbuf and we don't want to
* unload the map before all of the segments
* have been freed.
*/
sc->tx_mbuf_ptr[chain_prod] = m0;
sc->used_tx_bd += nsegs;
/* Update some debug statistic counters */
DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
sc->tx_hi_watermark = sc->used_tx_bd);
DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
DBRUNIF(sc->debug_tx_mbuf_alloc++);
DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
/* prod points to the next free tx_bd at this point. */
sc->tx_prod = prod;
sc->tx_prod_bseq = prod_bseq;
/* Tell the chip about the waiting TX frames. */
REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
bce_tx_encap_exit:
DBEXIT(BCE_VERBOSE_SEND);
return(rc);
}
/****************************************************************************/
/* Main transmit routine when called from another routine with a lock. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_start_locked(struct ifnet *ifp)
{
struct bce_softc *sc = ifp->if_softc;
struct mbuf *m_head = NULL;
int count = 0;
u16 tx_prod, tx_chain_prod;
DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
BCE_LOCK_ASSERT(sc);
/* prod points to the next free tx_bd. */
tx_prod = sc->tx_prod;
tx_chain_prod = TX_CHAIN_IDX(tx_prod);
DBPRINT(sc, BCE_INFO_SEND,
"%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
"tx_prod_bseq = 0x%08X\n",
__FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
/* If there's no link or the transmit queue is empty then just exit. */
if (sc->bce_link_up == FALSE) {
DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
__FUNCTION__);
goto bce_start_locked_exit;
}
if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
__FUNCTION__);
goto bce_start_locked_exit;
}
/*
* Keep adding entries while there is space in the ring.
*/
while (sc->used_tx_bd < sc->max_tx_bd) {
/* Check for any frames to send. */
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
/* Stop when the transmit queue is empty. */
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, place the mbuf back at the
* head of the queue and set the OACTIVE flag
* to wait for the NIC to drain the chain.
*/
if (bce_tx_encap(sc, &m_head)) {
if (m_head != NULL)
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
DBPRINT(sc, BCE_INFO_SEND,
"TX chain is closed for business! Total "
"tx_bd used = %d\n", sc->used_tx_bd);
break;
}
count++;
/* Send a copy of the frame to any BPF listeners. */
ETHER_BPF_MTAP(ifp, m_head);
}
/* Exit if no packets were dequeued. */
if (count == 0) {
DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
"dequeued\n", __FUNCTION__);
goto bce_start_locked_exit;
}
DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
"send queue.\n", __FUNCTION__, count);
/* Set the tx timeout. */
sc->watchdog_timer = BCE_TX_TIMEOUT;
DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
bce_start_locked_exit:
DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
}
/****************************************************************************/
/* Main transmit routine when called from another routine without a lock. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_start(struct ifnet *ifp)
{
struct bce_softc *sc = ifp->if_softc;
DBENTER(BCE_VERBOSE_SEND);
BCE_LOCK(sc);
bce_start_locked(ifp);
BCE_UNLOCK(sc);
DBEXIT(BCE_VERBOSE_SEND);
}
/****************************************************************************/
/* Handles any IOCTL calls from the operating system. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct bce_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int mask, error = 0;
DBENTER(BCE_VERBOSE_MISC);
switch(command) {
/* Set the interface MTU. */
case SIOCSIFMTU:
/* Check that the MTU setting is supported. */
if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
error = EINVAL;
break;
}
DBPRINT(sc, BCE_INFO_MISC,
"SIOCSIFMTU: Changing MTU from %d to %d\n",
(int) ifp->if_mtu, (int) ifr->ifr_mtu);
BCE_LOCK(sc);
ifp->if_mtu = ifr->ifr_mtu;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
bce_init_locked(sc);
}
BCE_UNLOCK(sc);
break;
/* Set interface flags. */
case SIOCSIFFLAGS:
DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
BCE_LOCK(sc);
/* Check if the interface is up. */
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/* Change promiscuous/multicast flags as necessary. */
bce_set_rx_mode(sc);
} else {
/* Start the HW */
bce_init_locked(sc);
}
} else {
/* The interface is down, check if driver is running. */
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
bce_stop(sc);
/* If MFW is running, restart the controller a bit. */
if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
bce_chipinit(sc);
bce_mgmt_init_locked(sc);
}
}
}
BCE_UNLOCK(sc);
break;
/* Add/Delete multicast address */
case SIOCADDMULTI:
case SIOCDELMULTI:
DBPRINT(sc, BCE_VERBOSE_MISC,
"Received SIOCADDMULTI/SIOCDELMULTI\n");
BCE_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
bce_set_rx_mode(sc);
BCE_UNLOCK(sc);
break;
/* Set/Get Interface media */
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
DBPRINT(sc, BCE_VERBOSE_MISC,
"Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
command);
else {
mii = device_get_softc(sc->bce_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
command);
}
break;
/* Set interface capability */
case SIOCSIFCAP:
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
DBPRINT(sc, BCE_INFO_MISC,
"Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
/* Toggle the TX checksum capabilities enable flag. */
if (mask & IFCAP_TXCSUM &&
ifp->if_capabilities & IFCAP_TXCSUM) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if (IFCAP_TXCSUM & ifp->if_capenable)
ifp->if_hwassist |= BCE_IF_HWASSIST;
else
ifp->if_hwassist &= ~BCE_IF_HWASSIST;
}
/* Toggle the RX checksum capabilities enable flag. */
if (mask & IFCAP_RXCSUM &&
ifp->if_capabilities & IFCAP_RXCSUM)
ifp->if_capenable ^= IFCAP_RXCSUM;
/* Toggle the TSO capabilities enable flag. */
if (bce_tso_enable && (mask & IFCAP_TSO4) &&
ifp->if_capabilities & IFCAP_TSO4) {
ifp->if_capenable ^= IFCAP_TSO4;
if (IFCAP_TSO4 & ifp->if_capenable)
ifp->if_hwassist |= CSUM_TSO;
else
ifp->if_hwassist &= ~CSUM_TSO;
}
if (mask & IFCAP_VLAN_HWCSUM &&
ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
/*
* Don't actually disable VLAN tag stripping as
* management firmware (ASF/IPMI/UMP) requires the
* feature. If VLAN tag stripping is disabled driver
* will manually reconstruct the VLAN frame by
* appending stripped VLAN tag.
*/
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
== 0)
ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
}
VLAN_CAPABILITIES(ifp);
break;
default:
/* We don't know how to handle the IOCTL, pass it on. */
error = ether_ioctl(ifp, command, data);
break;
}
DBEXIT(BCE_VERBOSE_MISC);
return(error);
}
/****************************************************************************/
/* Transmit timeout handler. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_watchdog(struct bce_softc *sc)
{
uint32_t status;
DBENTER(BCE_EXTREME_SEND);
BCE_LOCK_ASSERT(sc);
status = 0;
/* If the watchdog timer hasn't expired then just exit. */
if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
goto bce_watchdog_exit;
status = REG_RD(sc, BCE_EMAC_RX_STATUS);
/* If pause frames are active then don't reset the hardware. */
if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) {
if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) {
/*
* If link partner has us in XOFF state then wait for
* the condition to clear.
*/
sc->watchdog_timer = BCE_TX_TIMEOUT;
goto bce_watchdog_exit;
} else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 &&
(status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) {
/*
* If we're not currently XOFF'ed but have recently
* been XOFF'd/XON'd then assume that's delaying TX
* this time around.
*/
sc->watchdog_timer = BCE_TX_TIMEOUT;
goto bce_watchdog_exit;
}
/*
* Any other condition is unexpected and the controller
* should be reset.
*/
}
BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
__FILE__, __LINE__);
DBRUNMSG(BCE_INFO,
bce_dump_driver_state(sc);
bce_dump_status_block(sc);
bce_dump_stats_block(sc);
bce_dump_ftqs(sc);
bce_dump_txp_state(sc, 0);
bce_dump_rxp_state(sc, 0);
bce_dump_tpat_state(sc, 0);
bce_dump_cp_state(sc, 0);
bce_dump_com_state(sc, 0));
DBRUN(bce_breakpoint(sc));
sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
bce_init_locked(sc);
sc->bce_ifp->if_oerrors++;
bce_watchdog_exit:
REG_WR(sc, BCE_EMAC_RX_STATUS, status);
DBEXIT(BCE_EXTREME_SEND);
}
/*
* Interrupt handler.
*/
/****************************************************************************/
/* Main interrupt entry point. Verifies that the controller generated the */
/* interrupt and then calls a separate routine for handle the various */
/* interrupt causes (PHY, TX, RX). */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_intr(void *xsc)
{
struct bce_softc *sc;
struct ifnet *ifp;
u32 status_attn_bits;
u16 hw_rx_cons, hw_tx_cons;
sc = xsc;
ifp = sc->bce_ifp;
DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
BCE_LOCK(sc);
DBRUN(sc->interrupts_generated++);
/* Synchnorize before we read from interface's status block */
bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
/*
* If the hardware status block index matches the last value read
* by the driver and we haven't asserted our interrupt then there's
* nothing to do. This may only happen in case of INTx due to the
* interrupt arriving at the CPU before the status block is updated.
*/
if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 &&
sc->status_block->status_idx == sc->last_status_idx &&
(REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
__FUNCTION__);
goto bce_intr_exit;
}
/* Ack the interrupt and stop others from occuring. */
REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
BCE_PCICFG_INT_ACK_CMD_MASK_INT);
/* Check if the hardware has finished any work. */
hw_rx_cons = bce_get_hw_rx_cons(sc);
hw_tx_cons = bce_get_hw_tx_cons(sc);
/* Keep processing data as long as there is work to do. */
for (;;) {
status_attn_bits = sc->status_block->status_attn_bits;
DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
BCE_PRINTF("Simulating unexpected status attention "
"bit set.");
sc->unexpected_attention_sim_count++;
status_attn_bits = status_attn_bits |
STATUS_ATTN_BITS_PARITY_ERROR);
/* Was it a link change interrupt? */
if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
(sc->status_block->status_attn_bits_ack &
STATUS_ATTN_BITS_LINK_STATE)) {
bce_phy_intr(sc);
/* Clear transient updates during link state change. */
REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
BCE_HC_COMMAND_COAL_NOW_WO_INT);
REG_RD(sc, BCE_HC_COMMAND);
}
/* If any other attention is asserted, the chip is toast. */
if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
(sc->status_block->status_attn_bits_ack &
~STATUS_ATTN_BITS_LINK_STATE))) {
sc->unexpected_attention_count++;
BCE_PRINTF("%s(%d): Fatal attention detected: "
"0x%08X\n", __FILE__, __LINE__,
sc->status_block->status_attn_bits);
DBRUNMSG(BCE_FATAL,
if (unexpected_attention_sim_control == 0)
bce_breakpoint(sc));
bce_init_locked(sc);
goto bce_intr_exit;
}
/* Check for any completed RX frames. */
if (hw_rx_cons != sc->hw_rx_cons)
bce_rx_intr(sc);
/* Check for any completed TX frames. */
if (hw_tx_cons != sc->hw_tx_cons)
bce_tx_intr(sc);
/* Save status block index value for the next interrupt. */
sc->last_status_idx = sc->status_block->status_idx;
/*
* Prevent speculative reads from getting
* ahead of the status block.
*/
bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
BUS_SPACE_BARRIER_READ);
/*
* If there's no work left then exit the
* interrupt service routine.
*/
hw_rx_cons = bce_get_hw_rx_cons(sc);
hw_tx_cons = bce_get_hw_tx_cons(sc);
if ((hw_rx_cons == sc->hw_rx_cons) &&
(hw_tx_cons == sc->hw_tx_cons))
break;
}
bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_PREREAD);
/* Re-enable interrupts. */
bce_enable_intr(sc, 0);
/* Handle any frames that arrived while handling the interrupt. */
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
bce_start_locked(ifp);
bce_intr_exit:
BCE_UNLOCK(sc);
DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
}
/****************************************************************************/
/* Programs the various packet receive modes (broadcast and multicast). */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_set_rx_mode(struct bce_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
u32 rx_mode, sort_mode;
int h, i;
DBENTER(BCE_VERBOSE_MISC);
BCE_LOCK_ASSERT(sc);
ifp = sc->bce_ifp;
/* Initialize receive mode default settings. */
rx_mode = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
/*
* ASF/IPMI/UMP firmware requires that VLAN tag stripping
* be enbled.
*/
if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
(!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
/*
* Check for promiscuous, all multicast, or selected
* multicast address filtering.
*/
if (ifp->if_flags & IFF_PROMISC) {
DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
/* Enable promiscuous mode. */
rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
} else if (ifp->if_flags & IFF_ALLMULTI) {
DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
/* Enable all multicast addresses. */
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
0xffffffff);
}
sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
} else {
/* Accept one or more multicast(s). */
DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
}
if_maddr_runlock(ifp);
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
}
/* Only make changes if the recive mode has actually changed. */
if (rx_mode != sc->rx_mode) {
DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
"0x%08X\n", rx_mode);
sc->rx_mode = rx_mode;
REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
}
/* Disable and clear the exisitng sort before enabling a new sort. */
REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
DBEXIT(BCE_VERBOSE_MISC);
}
/****************************************************************************/
/* Called periodically to updates statistics from the controllers */
/* statistics block. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_stats_update(struct bce_softc *sc)
{
struct ifnet *ifp;
struct statistics_block *stats;
DBENTER(BCE_EXTREME_MISC);
ifp = sc->bce_ifp;
bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
stats = (struct statistics_block *) sc->stats_block;
/*
* Certain controllers don't report
* carrier sense errors correctly.
* See errata E11_5708CA0_1165.
*/
if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
!(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
ifp->if_oerrors +=
(u_long) stats->stat_Dot3StatsCarrierSenseErrors;
/*
* Update the sysctl statistics from the
* hardware statistics.
*/
sc->stat_IfHCInOctets =
((u64) stats->stat_IfHCInOctets_hi << 32) +
(u64) stats->stat_IfHCInOctets_lo;
sc->stat_IfHCInBadOctets =
((u64) stats->stat_IfHCInBadOctets_hi << 32) +
(u64) stats->stat_IfHCInBadOctets_lo;
sc->stat_IfHCOutOctets =
((u64) stats->stat_IfHCOutOctets_hi << 32) +
(u64) stats->stat_IfHCOutOctets_lo;
sc->stat_IfHCOutBadOctets =
((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
(u64) stats->stat_IfHCOutBadOctets_lo;
sc->stat_IfHCInUcastPkts =
((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
(u64) stats->stat_IfHCInUcastPkts_lo;
sc->stat_IfHCInMulticastPkts =
((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
(u64) stats->stat_IfHCInMulticastPkts_lo;
sc->stat_IfHCInBroadcastPkts =
((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
(u64) stats->stat_IfHCInBroadcastPkts_lo;
sc->stat_IfHCOutUcastPkts =
((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
(u64) stats->stat_IfHCOutUcastPkts_lo;
sc->stat_IfHCOutMulticastPkts =
((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
(u64) stats->stat_IfHCOutMulticastPkts_lo;
sc->stat_IfHCOutBroadcastPkts =
((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
(u64) stats->stat_IfHCOutBroadcastPkts_lo;
/* ToDo: Preserve counters beyond 32 bits? */
/* ToDo: Read the statistics from auto-clear regs? */
sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
sc->stat_Dot3StatsCarrierSenseErrors =
stats->stat_Dot3StatsCarrierSenseErrors;
sc->stat_Dot3StatsFCSErrors =
stats->stat_Dot3StatsFCSErrors;
sc->stat_Dot3StatsAlignmentErrors =
stats->stat_Dot3StatsAlignmentErrors;
sc->stat_Dot3StatsSingleCollisionFrames =
stats->stat_Dot3StatsSingleCollisionFrames;
sc->stat_Dot3StatsMultipleCollisionFrames =
stats->stat_Dot3StatsMultipleCollisionFrames;
sc->stat_Dot3StatsDeferredTransmissions =
stats->stat_Dot3StatsDeferredTransmissions;
sc->stat_Dot3StatsExcessiveCollisions =
stats->stat_Dot3StatsExcessiveCollisions;
sc->stat_Dot3StatsLateCollisions =
stats->stat_Dot3StatsLateCollisions;
sc->stat_EtherStatsCollisions =
stats->stat_EtherStatsCollisions;
sc->stat_EtherStatsFragments =
stats->stat_EtherStatsFragments;
sc->stat_EtherStatsJabbers =
stats->stat_EtherStatsJabbers;
sc->stat_EtherStatsUndersizePkts =
stats->stat_EtherStatsUndersizePkts;
sc->stat_EtherStatsOversizePkts =
stats->stat_EtherStatsOversizePkts;
sc->stat_EtherStatsPktsRx64Octets =
stats->stat_EtherStatsPktsRx64Octets;
sc->stat_EtherStatsPktsRx65Octetsto127Octets =
stats->stat_EtherStatsPktsRx65Octetsto127Octets;
sc->stat_EtherStatsPktsRx128Octetsto255Octets =
stats->stat_EtherStatsPktsRx128Octetsto255Octets;
sc->stat_EtherStatsPktsRx256Octetsto511Octets =
stats->stat_EtherStatsPktsRx256Octetsto511Octets;
sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
sc->stat_EtherStatsPktsTx64Octets =
stats->stat_EtherStatsPktsTx64Octets;
sc->stat_EtherStatsPktsTx65Octetsto127Octets =
stats->stat_EtherStatsPktsTx65Octetsto127Octets;
sc->stat_EtherStatsPktsTx128Octetsto255Octets =
stats->stat_EtherStatsPktsTx128Octetsto255Octets;
sc->stat_EtherStatsPktsTx256Octetsto511Octets =
stats->stat_EtherStatsPktsTx256Octetsto511Octets;
sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
sc->stat_XonPauseFramesReceived =
stats->stat_XonPauseFramesReceived;
sc->stat_XoffPauseFramesReceived =
stats->stat_XoffPauseFramesReceived;
sc->stat_OutXonSent =
stats->stat_OutXonSent;
sc->stat_OutXoffSent =
stats->stat_OutXoffSent;
sc->stat_FlowControlDone =
stats->stat_FlowControlDone;
sc->stat_MacControlFramesReceived =
stats->stat_MacControlFramesReceived;
sc->stat_XoffStateEntered =
stats->stat_XoffStateEntered;
sc->stat_IfInFramesL2FilterDiscards =
stats->stat_IfInFramesL2FilterDiscards;
sc->stat_IfInRuleCheckerDiscards =
stats->stat_IfInRuleCheckerDiscards;
sc->stat_IfInFTQDiscards =
stats->stat_IfInFTQDiscards;
sc->stat_IfInMBUFDiscards =
stats->stat_IfInMBUFDiscards;
sc->stat_IfInRuleCheckerP4Hit =
stats->stat_IfInRuleCheckerP4Hit;
sc->stat_CatchupInRuleCheckerDiscards =
stats->stat_CatchupInRuleCheckerDiscards;
sc->stat_CatchupInFTQDiscards =
stats->stat_CatchupInFTQDiscards;
sc->stat_CatchupInMBUFDiscards =
stats->stat_CatchupInMBUFDiscards;
sc->stat_CatchupInRuleCheckerP4Hit =
stats->stat_CatchupInRuleCheckerP4Hit;
sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
/*
* Update the interface statistics from the
* hardware statistics.
*/
ifp->if_collisions =
(u_long) sc->stat_EtherStatsCollisions;
/* ToDo: This method loses soft errors. */
ifp->if_ierrors =
(u_long) sc->stat_EtherStatsUndersizePkts +
(u_long) sc->stat_EtherStatsOversizePkts +
(u_long) sc->stat_IfInMBUFDiscards +
(u_long) sc->stat_Dot3StatsAlignmentErrors +
(u_long) sc->stat_Dot3StatsFCSErrors +
(u_long) sc->stat_IfInRuleCheckerDiscards +
(u_long) sc->stat_IfInFTQDiscards +
(u_long) sc->com_no_buffers;
/* ToDo: This method loses soft errors. */
ifp->if_oerrors =
(u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
(u_long) sc->stat_Dot3StatsExcessiveCollisions +
(u_long) sc->stat_Dot3StatsLateCollisions;
/* ToDo: Add additional statistics? */
DBEXIT(BCE_EXTREME_MISC);
}
/****************************************************************************/
/* Periodic function to notify the bootcode that the driver is still */
/* present. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_pulse(void *xsc)
{
struct bce_softc *sc = xsc;
u32 msg;
DBENTER(BCE_EXTREME_MISC);
BCE_LOCK_ASSERT(sc);
/* Tell the firmware that the driver is still running. */
msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
/* Update the bootcode condition. */
sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
/* Report whether the bootcode still knows the driver is running. */
if (bce_verbose || bootverbose) {
if (sc->bce_drv_cardiac_arrest == FALSE) {
if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
sc->bce_drv_cardiac_arrest = TRUE;
BCE_PRINTF("%s(): Warning: bootcode "
"thinks driver is absent! "
"(bc_state = 0x%08X)\n",
__FUNCTION__, sc->bc_state);
}
} else {
/*
* Not supported by all bootcode versions.
* (v5.0.11+ and v5.2.1+) Older bootcode
* will require the driver to reset the
* controller to clear this condition.
*/
if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
sc->bce_drv_cardiac_arrest = FALSE;
BCE_PRINTF("%s(): Bootcode found the "
"driver pulse! (bc_state = 0x%08X)\n",
__FUNCTION__, sc->bc_state);
}
}
}
/* Schedule the next pulse. */
callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
DBEXIT(BCE_EXTREME_MISC);
}
/****************************************************************************/
/* Periodic function to perform maintenance tasks. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_tick(void *xsc)
{
struct bce_softc *sc = xsc;
struct mii_data *mii;
struct ifnet *ifp;
struct ifmediareq ifmr;
ifp = sc->bce_ifp;
DBENTER(BCE_EXTREME_MISC);
BCE_LOCK_ASSERT(sc);
/* Schedule the next tick. */
callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
/* Update the statistics from the hardware statistics block. */
bce_stats_update(sc);
/* Ensure page and RX chains get refilled in low-memory situations. */
if (bce_hdr_split == TRUE)
bce_fill_pg_chain(sc);
bce_fill_rx_chain(sc);
/* Check that chip hasn't hung. */
bce_watchdog(sc);
/* If link is up already up then we're done. */
if (sc->bce_link_up == TRUE)
goto bce_tick_exit;
/* Link is down. Check what the PHY's doing. */
if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
bzero(&ifmr, sizeof(ifmr));
bce_ifmedia_sts_rphy(sc, &ifmr);
if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
sc->bce_link_up = TRUE;
bce_miibus_statchg(sc->bce_dev);
}
} else {
mii = device_get_softc(sc->bce_miibus);
mii_tick(mii);
/* Check if the link has come up. */
if ((mii->mii_media_status & IFM_ACTIVE) &&
(IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
__FUNCTION__);
sc->bce_link_up = TRUE;
if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
(bce_verbose || bootverbose))
BCE_PRINTF("Gigabit link up!\n");
}
}
if (sc->bce_link_up == TRUE) {
/* Now that link is up, handle any outstanding TX traffic. */
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
"pending TX traffic.\n", __FUNCTION__);
bce_start_locked(ifp);
}
}
bce_tick_exit:
DBEXIT(BCE_EXTREME_MISC);
}
static void
bce_fw_cap_init(struct bce_softc *sc)
{
u32 ack, cap, link;
ack = 0;
cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
BCE_FW_CAP_SIGNATURE_MAGIC)
return;
if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
(BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
(cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
link = bce_shmem_rd(sc, BCE_LINK_STATUS);
if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
BCE_FW_CAP_REMOTE_PHY_CAP;
}
if (ack != 0)
bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
}
#ifdef BCE_DEBUG
/****************************************************************************/
/* Allows the driver state to be dumped through the sysctl interface. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
{
int error;
int result;
struct bce_softc *sc;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
sc = (struct bce_softc *)arg1;
bce_dump_driver_state(sc);
}
return error;
}
/****************************************************************************/
/* Allows the hardware state to be dumped through the sysctl interface. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
{
int error;
int result;
struct bce_softc *sc;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
sc = (struct bce_softc *)arg1;
bce_dump_hw_state(sc);
}
return error;
}
/****************************************************************************/
/* Allows the status block to be dumped through the sysctl interface. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
{
int error;
int result;
struct bce_softc *sc;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
sc = (struct bce_softc *)arg1;
bce_dump_status_block(sc);
}
return error;
}
/****************************************************************************/
/* Allows the stats block to be dumped through the sysctl interface. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
{
int error;
int result;
struct bce_softc *sc;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
sc = (struct bce_softc *)arg1;
bce_dump_stats_block(sc);
}
return error;
}
/****************************************************************************/
/* Allows the stat counters to be cleared without unloading/reloading the */
/* driver. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
{
int error;
int result;
struct bce_softc *sc;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
sc = (struct bce_softc *)arg1;
struct statistics_block *stats;
stats = (struct statistics_block *) sc->stats_block;
bzero(stats, sizeof(struct statistics_block));
bus_dmamap_sync(sc->stats_tag, sc->stats_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Clear the internal H/W statistics counters. */
REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
/* Reset the driver maintained statistics. */
sc->interrupts_rx =
sc->interrupts_tx = 0;
sc->tso_frames_requested =
sc->tso_frames_completed =
sc->tso_frames_failed = 0;
sc->rx_empty_count =
sc->tx_full_count = 0;
sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
sc->tx_hi_watermark = 0;
sc->l2fhdr_error_count =
sc->l2fhdr_error_sim_count = 0;
sc->mbuf_alloc_failed_count =
sc->mbuf_alloc_failed_sim_count = 0;
sc->dma_map_addr_rx_failed_count =
sc->dma_map_addr_tx_failed_count = 0;
sc->mbuf_frag_count = 0;
sc->csum_offload_tcp_udp =
sc->csum_offload_ip = 0;
sc->vlan_tagged_frames_rcvd =
sc->vlan_tagged_frames_stripped = 0;
sc->split_header_frames_rcvd =
sc->split_header_tcp_frames_rcvd = 0;
/* Clear firmware maintained statistics. */
REG_WR_IND(sc, 0x120084, 0);
}
return error;
}
/****************************************************************************/
/* Allows the shared memory contents to be dumped through the sysctl . */
/* interface. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
{
int error;
int result;
struct bce_softc *sc;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
sc = (struct bce_softc *)arg1;
bce_dump_shmem_state(sc);
}
return error;
}
/****************************************************************************/
/* Allows the bootcode state to be dumped through the sysctl interface. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
{
int error;
int result;
struct bce_softc *sc;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
sc = (struct bce_softc *)arg1;
bce_dump_bc_state(sc);
}
return error;
}
/****************************************************************************/
/* Provides a sysctl interface to allow dumping the RX BD chain. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
{
int error;
int result;
struct bce_softc *sc;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
sc = (struct bce_softc *)arg1;
bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
}
return error;
}
/****************************************************************************/
/* Provides a sysctl interface to allow dumping the RX MBUF chain. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
{
int error;
int result;
struct bce_softc *sc;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
sc = (struct bce_softc *)arg1;
bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
}
return error;
}
/****************************************************************************/
/* Provides a sysctl interface to allow dumping the TX chain. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
{
int error;
int result;
struct bce_softc *sc;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
sc = (struct bce_softc *)arg1;
bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
}
return error;
}
/****************************************************************************/
/* Provides a sysctl interface to allow dumping the page chain. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
{
int error;
int result;
struct bce_softc *sc;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
sc = (struct bce_softc *)arg1;
bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
}
return error;
}
/****************************************************************************/
/* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in */
/* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
{
struct bce_softc *sc = (struct bce_softc *)arg1;
int error;
u32 result;
u32 val[1];
u8 *data = (u8 *) val;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || (req->newptr == NULL))
return (error);
error = bce_nvram_read(sc, result, data, 4);
BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
return (error);
}
/****************************************************************************/
/* Provides a sysctl interface to allow reading arbitrary registers in the */
/* device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
{
struct bce_softc *sc = (struct bce_softc *)arg1;
int error;
u32 val, result;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || (req->newptr == NULL))
return (error);
/* Make sure the register is accessible. */
if (result < 0x8000) {
val = REG_RD(sc, result);
BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
} else if (result < 0x0280000) {
val = REG_RD_IND(sc, result);
BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
}
return (error);
}
/****************************************************************************/
/* Provides a sysctl interface to allow reading arbitrary PHY registers in */
/* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
{
struct bce_softc *sc;
device_t dev;
int error, result;
u16 val;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || (req->newptr == NULL))
return (error);
/* Make sure the register is accessible. */
if (result < 0x20) {
sc = (struct bce_softc *)arg1;
dev = sc->bce_dev;
val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
}
return (error);
}
/****************************************************************************/
/* Provides a sysctl interface for dumping the nvram contents. */
/* DO NOT ENABLE ON PRODUCTION SYSTEMS! */
/* */
/* Returns: */
/* 0 for success, positive errno for failure. */
/****************************************************************************/
static int
bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
{
struct bce_softc *sc = (struct bce_softc *)arg1;
int error, i;
if (sc->nvram_buf == NULL)
sc->nvram_buf = malloc(sc->bce_flash_size,
M_TEMP, M_ZERO | M_WAITOK);
error = 0;
if (req->oldlen == sc->bce_flash_size) {
for (i = 0; i < sc->bce_flash_size && error == 0; i++)
error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
}
if (error == 0)
error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
return error;
}
#ifdef BCE_NVRAM_WRITE_SUPPORT
/****************************************************************************/
/* Provides a sysctl interface for writing to nvram. */
/* DO NOT ENABLE ON PRODUCTION SYSTEMS! */
/* */
/* Returns: */
/* 0 for success, positive errno for failure. */
/****************************************************************************/
static int
bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
{
struct bce_softc *sc = (struct bce_softc *)arg1;
int error;
if (sc->nvram_buf == NULL)
sc->nvram_buf = malloc(sc->bce_flash_size,
M_TEMP, M_ZERO | M_WAITOK);
else
bzero(sc->nvram_buf, sc->bce_flash_size);
error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
if (error == 0)
return (error);
if (req->newlen == sc->bce_flash_size)
error = bce_nvram_write(sc, 0, sc->nvram_buf,
sc->bce_flash_size);
return error;
}
#endif
/****************************************************************************/
/* Provides a sysctl interface to allow reading a CID. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
{
struct bce_softc *sc;
int error, result;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || (req->newptr == NULL))
return (error);
/* Make sure the register is accessible. */
if (result <= TX_CID) {
sc = (struct bce_softc *)arg1;
bce_dump_ctx(sc, result);
}
return (error);
}
/****************************************************************************/
/* Provides a sysctl interface to forcing the driver to dump state and */
/* enter the debugger. DO NOT ENABLE ON PRODUCTION SYSTEMS! */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
{
int error;
int result;
struct bce_softc *sc;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
sc = (struct bce_softc *)arg1;
bce_breakpoint(sc);
}
return error;
}
#endif
/****************************************************************************/
/* Adds any sysctl parameters for tuning or debugging purposes. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static void
bce_add_sysctls(struct bce_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *children;
DBENTER(BCE_VERBOSE_MISC);
ctx = device_get_sysctl_ctx(sc->bce_dev);
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
#ifdef BCE_DEBUG
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
"l2fhdr_error_sim_control",
CTLFLAG_RW, &l2fhdr_error_sim_control,
0, "Debug control to force l2fhdr errors");
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
"l2fhdr_error_sim_count",
CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
0, "Number of simulated l2_fhdr errors");
#endif
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"l2fhdr_error_count",
CTLFLAG_RD, &sc->l2fhdr_error_count,
0, "Number of l2_fhdr errors");
#ifdef BCE_DEBUG
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
"mbuf_alloc_failed_sim_control",
CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
0, "Debug control to force mbuf allocation failures");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"mbuf_alloc_failed_sim_count",
CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
0, "Number of simulated mbuf cluster allocation failures");
#endif
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"mbuf_alloc_failed_count",
CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
0, "Number of mbuf allocation failures");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"mbuf_frag_count",
CTLFLAG_RD, &sc->mbuf_frag_count,
0, "Number of fragmented mbufs");
#ifdef BCE_DEBUG
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
"dma_map_addr_failed_sim_control",
CTLFLAG_RW, &dma_map_addr_failed_sim_control,
0, "Debug control to force DMA mapping failures");
/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"dma_map_addr_failed_sim_count",
CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
0, "Number of simulated DMA mapping failures");
#endif
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"dma_map_addr_rx_failed_count",
CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
0, "Number of RX DMA mapping failures");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"dma_map_addr_tx_failed_count",
CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
0, "Number of TX DMA mapping failures");
#ifdef BCE_DEBUG
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
"unexpected_attention_sim_control",
CTLFLAG_RW, &unexpected_attention_sim_control,
0, "Debug control to simulate unexpected attentions");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"unexpected_attention_sim_count",
CTLFLAG_RW, &sc->unexpected_attention_sim_count,
0, "Number of simulated unexpected attentions");
#endif
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"unexpected_attention_count",
CTLFLAG_RW, &sc->unexpected_attention_count,
0, "Number of unexpected attentions");
#ifdef BCE_DEBUG
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
"debug_bootcode_running_failure",
CTLFLAG_RW, &bootcode_running_failure_sim_control,
0, "Debug control to force bootcode running failures");
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
"rx_low_watermark",
CTLFLAG_RD, &sc->rx_low_watermark,
0, "Lowest level of free rx_bd's");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"rx_empty_count",
CTLFLAG_RD, &sc->rx_empty_count,
"Number of times the RX chain was empty");
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
"tx_hi_watermark",
CTLFLAG_RD, &sc->tx_hi_watermark,
0, "Highest level of used tx_bd's");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"tx_full_count",
CTLFLAG_RD, &sc->tx_full_count,
"Number of times the TX chain was full");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"tso_frames_requested",
CTLFLAG_RD, &sc->tso_frames_requested,
"Number of TSO frames requested");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"tso_frames_completed",
CTLFLAG_RD, &sc->tso_frames_completed,
"Number of TSO frames completed");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"tso_frames_failed",
CTLFLAG_RD, &sc->tso_frames_failed,
"Number of TSO frames failed");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"csum_offload_ip",
CTLFLAG_RD, &sc->csum_offload_ip,
"Number of IP checksum offload frames");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"csum_offload_tcp_udp",
CTLFLAG_RD, &sc->csum_offload_tcp_udp,
"Number of TCP/UDP checksum offload frames");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"vlan_tagged_frames_rcvd",
CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
"Number of VLAN tagged frames received");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"vlan_tagged_frames_stripped",
CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
"Number of VLAN tagged frames stripped");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"interrupts_rx",
CTLFLAG_RD, &sc->interrupts_rx,
"Number of RX interrupts");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"interrupts_tx",
CTLFLAG_RD, &sc->interrupts_tx,
"Number of TX interrupts");
if (bce_hdr_split == TRUE) {
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"split_header_frames_rcvd",
CTLFLAG_RD, &sc->split_header_frames_rcvd,
"Number of split header frames received");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"split_header_tcp_frames_rcvd",
CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
"Number of split header TCP frames received");
}
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD,
(void *)sc, 0,
bce_sysctl_nvram_dump, "S", "");
#ifdef BCE_NVRAM_WRITE_SUPPORT
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR,
(void *)sc, 0,
bce_sysctl_nvram_write, "S", "");
#endif
#endif /* BCE_DEBUG */
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"stat_IfHcInOctets",
CTLFLAG_RD, &sc->stat_IfHCInOctets,
"Bytes received");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"stat_IfHCInBadOctets",
CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
"Bad bytes received");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"stat_IfHCOutOctets",
CTLFLAG_RD, &sc->stat_IfHCOutOctets,
"Bytes sent");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"stat_IfHCOutBadOctets",
CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
"Bad bytes sent");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"stat_IfHCInUcastPkts",
CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
"Unicast packets received");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"stat_IfHCInMulticastPkts",
CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
"Multicast packets received");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"stat_IfHCInBroadcastPkts",
CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
"Broadcast packets received");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"stat_IfHCOutUcastPkts",
CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
"Unicast packets sent");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"stat_IfHCOutMulticastPkts",
CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
"Multicast packets sent");
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
"stat_IfHCOutBroadcastPkts",
CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
"Broadcast packets sent");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
0, "Internal MAC transmit errors");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_Dot3StatsCarrierSenseErrors",
CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
0, "Carrier sense errors");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_Dot3StatsFCSErrors",
CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
0, "Frame check sequence errors");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_Dot3StatsAlignmentErrors",
CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
0, "Alignment errors");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_Dot3StatsSingleCollisionFrames",
CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
0, "Single Collision Frames");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_Dot3StatsMultipleCollisionFrames",
CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
0, "Multiple Collision Frames");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_Dot3StatsDeferredTransmissions",
CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
0, "Deferred Transmissions");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_Dot3StatsExcessiveCollisions",
CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
0, "Excessive Collisions");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_Dot3StatsLateCollisions",
CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
0, "Late Collisions");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsCollisions",
CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
0, "Collisions");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsFragments",
CTLFLAG_RD, &sc->stat_EtherStatsFragments,
0, "Fragments");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsJabbers",
CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
0, "Jabbers");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsUndersizePkts",
CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
0, "Undersize packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsOversizePkts",
CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
0, "stat_EtherStatsOversizePkts");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsRx64Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
0, "Bytes received in 64 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsRx65Octetsto127Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
0, "Bytes received in 65 to 127 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsRx128Octetsto255Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
0, "Bytes received in 128 to 255 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsRx256Octetsto511Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
0, "Bytes received in 256 to 511 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsRx512Octetsto1023Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
0, "Bytes received in 512 to 1023 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsRx1024Octetsto1522Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
0, "Bytes received in 1024 t0 1522 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsRx1523Octetsto9022Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
0, "Bytes received in 1523 to 9022 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsTx64Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
0, "Bytes sent in 64 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsTx65Octetsto127Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
0, "Bytes sent in 65 to 127 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsTx128Octetsto255Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
0, "Bytes sent in 128 to 255 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsTx256Octetsto511Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
0, "Bytes sent in 256 to 511 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsTx512Octetsto1023Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
0, "Bytes sent in 512 to 1023 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsTx1024Octetsto1522Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
0, "Bytes sent in 1024 to 1522 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsTx1523Octetsto9022Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
0, "Bytes sent in 1523 to 9022 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_XonPauseFramesReceived",
CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
0, "XON pause frames receved");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_XoffPauseFramesReceived",
CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
0, "XOFF pause frames received");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_OutXonSent",
CTLFLAG_RD, &sc->stat_OutXonSent,
0, "XON pause frames sent");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_OutXoffSent",
CTLFLAG_RD, &sc->stat_OutXoffSent,
0, "XOFF pause frames sent");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_FlowControlDone",
CTLFLAG_RD, &sc->stat_FlowControlDone,
0, "Flow control done");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_MacControlFramesReceived",
CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
0, "MAC control frames received");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_XoffStateEntered",
CTLFLAG_RD, &sc->stat_XoffStateEntered,
0, "XOFF state entered");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_IfInFramesL2FilterDiscards",
CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
0, "Received L2 packets discarded");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_IfInRuleCheckerDiscards",
CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
0, "Received packets discarded by rule");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_IfInFTQDiscards",
CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
0, "Received packet FTQ discards");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_IfInMBUFDiscards",
CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
0, "Received packets discarded due to lack "
"of controller buffer memory");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_IfInRuleCheckerP4Hit",
CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
0, "Received packets rule checker hits");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_CatchupInRuleCheckerDiscards",
CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
0, "Received packets discarded in Catchup path");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_CatchupInFTQDiscards",
CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
0, "Received packets discarded in FTQ in Catchup path");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_CatchupInMBUFDiscards",
CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
0, "Received packets discarded in controller "
"buffer memory in Catchup path");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_CatchupInRuleCheckerP4Hit",
CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
0, "Received packets rule checker hits in Catchup path");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"com_no_buffers",
CTLFLAG_RD, &sc->com_no_buffers,
0, "Valid packets received but no RX buffers available");
#ifdef BCE_DEBUG
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"driver_state", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_driver_state, "I", "Drive state information");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"hw_state", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_hw_state, "I", "Hardware state information");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"status_block", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_status_block, "I", "Dump status block");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"stats_block", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_stats_block, "I", "Dump statistics block");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"stats_clear", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_stats_clear, "I", "Clear statistics block");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"shmem_state", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_shmem_state, "I", "Shared memory state information");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"bc_state", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_bc_state, "I", "Bootcode state information");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
if (bce_hdr_split == TRUE) {
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_dump_pg_chain, "I", "Dump page chain");
}
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_dump_ctx, "I", "Dump context memory");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"breakpoint", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_breakpoint, "I", "Driver breakpoint");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"reg_read", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_reg_read, "I", "Register read");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"nvram_read", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_nvram_read, "I", "NVRAM read");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"phy_read", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_phy_read, "I", "PHY register read");
#endif
DBEXIT(BCE_VERBOSE_MISC);
}
/****************************************************************************/
/* BCE Debug Routines */
/****************************************************************************/
#ifdef BCE_DEBUG
/****************************************************************************/
/* Freezes the controller to allow for a cohesive state dump. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_freeze_controller(struct bce_softc *sc)
{
u32 val;
val = REG_RD(sc, BCE_MISC_COMMAND);
val |= BCE_MISC_COMMAND_DISABLE_ALL;
REG_WR(sc, BCE_MISC_COMMAND, val);
}
/****************************************************************************/
/* Unfreezes the controller after a freeze operation. This may not always */
/* work and the controller will require a reset! */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_unfreeze_controller(struct bce_softc *sc)
{
u32 val;
val = REG_RD(sc, BCE_MISC_COMMAND);
val |= BCE_MISC_COMMAND_ENABLE_ALL;
REG_WR(sc, BCE_MISC_COMMAND, val);
}
/****************************************************************************/
/* Prints out Ethernet frame information from an mbuf. */
/* */
/* Partially decode an Ethernet frame to look at some important headers. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
{
struct ether_vlan_header *eh;
u16 etype;
int ehlen;
struct ip *ip;
struct tcphdr *th;
struct udphdr *uh;
struct arphdr *ah;
BCE_PRINTF(
"-----------------------------"
" Frame Decode "
"-----------------------------\n");
eh = mtod(m, struct ether_vlan_header *);
/* Handle VLAN encapsulation if present. */
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
etype = ntohs(eh->evl_proto);
ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
} else {
etype = ntohs(eh->evl_encap_proto);
ehlen = ETHER_HDR_LEN;
}
/* ToDo: Add VLAN output. */
BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
switch (etype) {
case ETHERTYPE_IP:
ip = (struct ip *)(m->m_data + ehlen);
BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
"len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
switch (ip->ip_p) {
case IPPROTO_TCP:
th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
"%d bytes, flags = 0x%b, csum = 0x%04X\n",
ntohs(th->th_dport), ntohs(th->th_sport),
(th->th_off << 2), th->th_flags,
"\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
"\02SYN\01FIN", ntohs(th->th_sum));
break;
case IPPROTO_UDP:
uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
"bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
ntohs(uh->uh_sum));
break;
case IPPROTO_ICMP:
BCE_PRINTF("icmp:\n");
break;
default:
BCE_PRINTF("----: Other IP protocol.\n");
}
break;
case ETHERTYPE_IPV6:
BCE_PRINTF("ipv6: No decode supported.\n");
break;
case ETHERTYPE_ARP:
BCE_PRINTF("-arp: ");
ah = (struct arphdr *) (m->m_data + ehlen);
switch (ntohs(ah->ar_op)) {
case ARPOP_REVREQUEST:
printf("reverse ARP request\n");
break;
case ARPOP_REVREPLY:
printf("reverse ARP reply\n");
break;
case ARPOP_REQUEST:
printf("ARP request\n");
break;
case ARPOP_REPLY:
printf("ARP reply\n");
break;
default:
printf("other ARP operation\n");
}
break;
default:
BCE_PRINTF("----: Other protocol.\n");
}
BCE_PRINTF(
"-----------------------------"
"--------------"
"-----------------------------\n");
}
/****************************************************************************/
/* Prints out information about an mbuf. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
{
struct mbuf *mp = m;
if (m == NULL) {
BCE_PRINTF("mbuf: null pointer\n");
return;
}
while (mp) {
BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
"m_data = %p\n", mp, mp->m_len, mp->m_flags,
"\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
if (mp->m_flags & M_PKTHDR) {
BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
"csum_flags = %b\n", mp->m_pkthdr.len,
mp->m_flags, M_FLAG_PRINTF,
mp->m_pkthdr.csum_flags, CSUM_BITS);
}
if (mp->m_flags & M_EXT) {
BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
mp->m_ext.ext_buf, mp->m_ext.ext_size);
switch (mp->m_ext.ext_type) {
case EXT_CLUSTER:
printf("EXT_CLUSTER\n"); break;
case EXT_SFBUF:
printf("EXT_SFBUF\n"); break;
case EXT_JUMBO9:
printf("EXT_JUMBO9\n"); break;
case EXT_JUMBO16:
printf("EXT_JUMBO16\n"); break;
case EXT_PACKET:
printf("EXT_PACKET\n"); break;
case EXT_MBUF:
printf("EXT_MBUF\n"); break;
case EXT_NET_DRV:
printf("EXT_NET_DRV\n"); break;
case EXT_MOD_TYPE:
printf("EXT_MDD_TYPE\n"); break;
case EXT_DISPOSABLE:
printf("EXT_DISPOSABLE\n"); break;
case EXT_EXTREF:
printf("EXT_EXTREF\n"); break;
default:
printf("UNKNOWN\n");
}
}
mp = mp->m_next;
}
}
/****************************************************************************/
/* Prints out the mbufs in the TX mbuf chain. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
{
struct mbuf *m;
BCE_PRINTF(
"----------------------------"
" tx mbuf data "
"----------------------------\n");
for (int i = 0; i < count; i++) {
m = sc->tx_mbuf_ptr[chain_prod];
BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
bce_dump_mbuf(sc, m);
chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
}
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/****************************************************************************/
/* Prints out the mbufs in the RX mbuf chain. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
{
struct mbuf *m;
BCE_PRINTF(
"----------------------------"
" rx mbuf data "
"----------------------------\n");
for (int i = 0; i < count; i++) {
m = sc->rx_mbuf_ptr[chain_prod];
BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
bce_dump_mbuf(sc, m);
chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
}
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/****************************************************************************/
/* Prints out the mbufs in the mbuf page chain. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
{
struct mbuf *m;
BCE_PRINTF(
"----------------------------"
" pg mbuf data "
"----------------------------\n");
for (int i = 0; i < count; i++) {
m = sc->pg_mbuf_ptr[chain_prod];
BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
bce_dump_mbuf(sc, m);
chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
}
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/****************************************************************************/
/* Prints out a tx_bd structure. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
{
int i = 0;
if (idx > MAX_TX_BD_ALLOC)
/* Index out of range. */
BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
/* TX Chain page pointer. */
BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
"pointer\n", idx, txbd->tx_bd_haddr_hi,
txbd->tx_bd_haddr_lo);
else {
/* Normal tx_bd entry. */
BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
"mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
"0x%04X (", idx, txbd->tx_bd_haddr_hi,
txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
if (i>0)
printf("|");
printf("CONN_FAULT");
i++;
}
if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
if (i>0)
printf("|");
printf("TCP_UDP_CKSUM");
i++;
}
if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
if (i>0)
printf("|");
printf("IP_CKSUM");
i++;
}
if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
if (i>0)
printf("|");
printf("VLAN");
i++;
}
if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
if (i>0)
printf("|");
printf("COAL_NOW");
i++;
}
if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
if (i>0)
printf("|");
printf("DONT_GEN_CRC");
i++;
}
if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
if (i>0)
printf("|");
printf("START");
i++;
}
if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
if (i>0)
printf("|");
printf("END");
i++;
}
if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
if (i>0)
printf("|");
printf("LSO");
i++;
}
if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
if (i>0)
printf("|");
printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
}
if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
if (i>0)
printf("|");
printf("SW_FLAGS");
i++;
}
if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
if (i>0)
printf("|");
printf("SNAP)");
} else {
printf(")\n");
}
}
}
/****************************************************************************/
/* Prints out a rx_bd structure. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
{
if (idx > MAX_RX_BD_ALLOC)
/* Index out of range. */
BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
/* RX Chain page pointer. */
BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
"pointer\n", idx, rxbd->rx_bd_haddr_hi,
rxbd->rx_bd_haddr_lo);
else
/* Normal rx_bd entry. */
BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
"0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
rxbd->rx_bd_flags);
}
/****************************************************************************/
/* Prints out a rx_bd structure in the page chain. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
{
if (idx > MAX_PG_BD_ALLOC)
/* Index out of range. */
BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
/* Page Chain page pointer. */
BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
else
/* Normal rx_bd entry. */
BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
"flags = 0x%08X\n", idx,
pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
pgbd->rx_bd_len, pgbd->rx_bd_flags);
}
/****************************************************************************/
/* Prints out a l2_fhdr structure. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
{
BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
"tcp_udp_xsum = 0x%04X\n", idx,
l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
}
/****************************************************************************/
/* Prints out context memory info. (Only useful for CID 0 to 16.) */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_ctx(struct bce_softc *sc, u16 cid)
{
if (cid > TX_CID) {
BCE_PRINTF(" Unknown CID\n");
return;
}
BCE_PRINTF(
"----------------------------"
" CTX Data "
"----------------------------\n");
BCE_PRINTF(" 0x%04X - (CID) Context ID\n", cid);
if (cid == RX_CID) {
BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
"producer index\n",
CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
"byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
BCE_L2CTX_RX_HOST_BSEQ));
BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
"descriptor address\n",
CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
"descriptor address\n",
CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
"index\n", CTX_RD(sc, GET_CID_ADDR(cid),
BCE_L2CTX_RX_NX_BDIDX));
BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
"producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
BCE_L2CTX_RX_HOST_PG_BDIDX));
BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
"buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
BCE_L2CTX_RX_PG_BUF_SIZE));
BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
"chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
"chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
"consumer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
BCE_L2CTX_RX_NX_PG_BDIDX));
} else if (cid == TX_CID) {
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
CTX_RD(sc, GET_CID_ADDR(cid),
BCE_L2CTX_TX_TYPE_XI));
BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
"cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
BCE_L2CTX_TX_CMD_TYPE_XI));
BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
"h/w buffer descriptor address\n",
CTX_RD(sc, GET_CID_ADDR(cid),
BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
"h/w buffer descriptor address\n",
CTX_RD(sc, GET_CID_ADDR(cid),
BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
"host producer index\n",
CTX_RD(sc, GET_CID_ADDR(cid),
BCE_L2CTX_TX_HOST_BIDX_XI));
BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
"host byte sequence\n",
CTX_RD(sc, GET_CID_ADDR(cid),
BCE_L2CTX_TX_HOST_BSEQ_XI));
} else {
BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
CTX_RD(sc, GET_CID_ADDR(cid),
BCE_L2CTX_TX_CMD_TYPE));
BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
"h/w buffer descriptor address\n",
CTX_RD(sc, GET_CID_ADDR(cid),
BCE_L2CTX_TX_TBDR_BHADDR_HI));
BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
"h/w buffer descriptor address\n",
CTX_RD(sc, GET_CID_ADDR(cid),
BCE_L2CTX_TX_TBDR_BHADDR_LO));
BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
"producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
BCE_L2CTX_TX_HOST_BIDX));
BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
"sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
BCE_L2CTX_TX_HOST_BSEQ));
}
}
BCE_PRINTF(
"----------------------------"
" Raw CTX "
"----------------------------\n");
for (int i = 0x0; i < 0x300; i += 0x10) {
BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
CTX_RD(sc, GET_CID_ADDR(cid), i),
CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
}
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/****************************************************************************/
/* Prints out the FTQ data. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_ftqs(struct bce_softc *sc)
{
u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
BCE_PRINTF(
"----------------------------"
" FTQ Data "
"----------------------------\n");
BCE_PRINTF(" FTQ Command Control Depth_Now "
"Max_Depth Valid_Cnt \n");
BCE_PRINTF(" ------- ---------- ---------- ---------- "
"---------- ----------\n");
/* Setup the generic statistic counters for the FTQ valid count. */
val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT << 16) |
(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT << 8) |
(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT << 24) |
(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT << 16) |
(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT << 8) |
(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT << 24) |
(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT << 16) |
(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT << 8) |
(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT << 24) |
(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT << 16) |
(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT << 8) |
(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
/* Input queue to the Receive Lookup state machine */
cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
BCE_PRINTF(" RLUP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
/* Input queue to the Receive Processor */
cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
BCE_PRINTF(" RXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
/* Input queue to the Recevie Processor */
cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
BCE_PRINTF(" RXPC 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
/* Input queue to the Receive Virtual to Physical state machine */
cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
BCE_PRINTF(" RV2PP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
/* Input queue to the Recevie Virtual to Physical state machine */
cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
BCE_PRINTF(" RV2PM 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
/* Input queue to the Receive Virtual to Physical state machine */
cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
BCE_PRINTF(" RV2PT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
/* Input queue to the Receive DMA state machine */
cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
BCE_PRINTF(" RDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
/* Input queue to the Transmit Scheduler state machine */
cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
BCE_PRINTF(" TSCH 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
/* Input queue to the Transmit Buffer Descriptor state machine */
cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
BCE_PRINTF(" TBDR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
/* Input queue to the Transmit Processor */
cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
BCE_PRINTF(" TXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
/* Input queue to the Transmit DMA state machine */
cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
BCE_PRINTF(" TDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
/* Input queue to the Transmit Patch-Up Processor */
cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
BCE_PRINTF(" TPAT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
/* Input queue to the Transmit Assembler state machine */
cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
BCE_PRINTF(" TAS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
/* Input queue to the Completion Processor */
cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
/* Input queue to the Completion Processor */
cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
BCE_PRINTF(" COMT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
/* Input queue to the Completion Processor */
cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
/* Setup the generic statistic counters for the FTQ valid count. */
val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT << 16) |
(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT << 8) |
(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
val = val |
(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
24);
REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
/* Input queue to the Management Control Processor */
cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
BCE_PRINTF(" MCP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
/* Input queue to the Command Processor */
cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
BCE_PRINTF(" CP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
/* Input queue to the Completion Scheduler state machine */
cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
BCE_PRINTF(" CS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
/* Input queue to the RV2P Command Scheduler */
cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
cur_depth = (ctl & 0xFFC00000) >> 22;
max_depth = (ctl & 0x003FF000) >> 12;
valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd, ctl, cur_depth, max_depth, valid_cnt);
}
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/****************************************************************************/
/* Prints out the TX chain. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
{
struct tx_bd *txbd;
/* First some info about the tx_bd chain structure. */
BCE_PRINTF(
"----------------------------"
" tx_bd chain "
"----------------------------\n");
BCE_PRINTF("page size = 0x%08X, tx chain pages = 0x%08X\n",
(u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
(u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
BCE_PRINTF("total tx_bd = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
BCE_PRINTF(
"----------------------------"
" tx_bd data "
"----------------------------\n");
/* Now print out a decoded list of TX buffer descriptors. */
for (int i = 0; i < count; i++) {
txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
bce_dump_txbd(sc, tx_prod, txbd);
tx_prod++;
}
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/****************************************************************************/
/* Prints out the RX chain. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
{
struct rx_bd *rxbd;
/* First some info about the rx_bd chain structure. */
BCE_PRINTF(
"----------------------------"
" rx_bd chain "
"----------------------------\n");
BCE_PRINTF("page size = 0x%08X, rx chain pages = 0x%08X\n",
(u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
(u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
BCE_PRINTF("total rx_bd = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
BCE_PRINTF(
"----------------------------"
" rx_bd data "
"----------------------------\n");
/* Now print out the rx_bd's themselves. */
for (int i = 0; i < count; i++) {
rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
bce_dump_rxbd(sc, rx_prod, rxbd);
rx_prod = RX_CHAIN_IDX(rx_prod + 1);
}
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/****************************************************************************/
/* Prints out the page chain. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
{
struct rx_bd *pgbd;
/* First some info about the page chain structure. */
BCE_PRINTF(
"----------------------------"
" page chain "
"----------------------------\n");
BCE_PRINTF("page size = 0x%08X, pg chain pages = 0x%08X\n",
(u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
(u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
BCE_PRINTF("total pg_bd = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
BCE_PRINTF(
"----------------------------"
" page data "
"----------------------------\n");
/* Now print out the rx_bd's themselves. */
for (int i = 0; i < count; i++) {
pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
bce_dump_pgbd(sc, pg_prod, pgbd);
pg_prod = PG_CHAIN_IDX(pg_prod + 1);
}
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
#define BCE_PRINT_RX_CONS(arg) \
if (sblk->status_rx_quick_consumer_index##arg) \
BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n", \
sblk->status_rx_quick_consumer_index##arg, (u16) \
RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg), \
arg);
#define BCE_PRINT_TX_CONS(arg) \
if (sblk->status_tx_quick_consumer_index##arg) \
BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n", \
sblk->status_tx_quick_consumer_index##arg, (u16) \
TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg), \
arg);
/****************************************************************************/
/* Prints out the status block from host memory. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_status_block(struct bce_softc *sc)
{
struct status_block *sblk;
bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
sblk = sc->status_block;
BCE_PRINTF(
"----------------------------"
" Status Block "
"----------------------------\n");
/* Theses indices are used for normal L2 drivers. */
BCE_PRINTF(" 0x%08X - attn_bits\n",
sblk->status_attn_bits);
BCE_PRINTF(" 0x%08X - attn_bits_ack\n",
sblk->status_attn_bits_ack);
BCE_PRINT_RX_CONS(0);
BCE_PRINT_TX_CONS(0)
BCE_PRINTF(" 0x%04X - status_idx\n", sblk->status_idx);
/* Theses indices are not used for normal L2 drivers. */
BCE_PRINT_RX_CONS(1); BCE_PRINT_RX_CONS(2); BCE_PRINT_RX_CONS(3);
BCE_PRINT_RX_CONS(4); BCE_PRINT_RX_CONS(5); BCE_PRINT_RX_CONS(6);
BCE_PRINT_RX_CONS(7); BCE_PRINT_RX_CONS(8); BCE_PRINT_RX_CONS(9);
BCE_PRINT_RX_CONS(10); BCE_PRINT_RX_CONS(11); BCE_PRINT_RX_CONS(12);
BCE_PRINT_RX_CONS(13); BCE_PRINT_RX_CONS(14); BCE_PRINT_RX_CONS(15);
BCE_PRINT_TX_CONS(1); BCE_PRINT_TX_CONS(2); BCE_PRINT_TX_CONS(3);
if (sblk->status_completion_producer_index ||
sblk->status_cmd_consumer_index)
BCE_PRINTF("com_prod = 0x%08X, cmd_cons = 0x%08X\n",
sblk->status_completion_producer_index,
sblk->status_cmd_consumer_index);
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
#define BCE_PRINT_64BIT_STAT(arg) \
if (sblk->arg##_lo || sblk->arg##_hi) \
BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi, \
sblk->arg##_lo, #arg);
#define BCE_PRINT_32BIT_STAT(arg) \
if (sblk->arg) \
BCE_PRINTF(" 0x%08X : %s\n", \
sblk->arg, #arg);
/****************************************************************************/
/* Prints out the statistics block from host memory. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_stats_block(struct bce_softc *sc)
{
struct statistics_block *sblk;
bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
sblk = sc->stats_block;
BCE_PRINTF(
"---------------"
" Stats Block (All Stats Not Shown Are 0) "
"---------------\n");
BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
BCE_PRINT_32BIT_STAT(
stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
BCE_PRINT_32BIT_STAT(stat_OutXonSent);
BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/****************************************************************************/
/* Prints out a summary of the driver state. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_driver_state(struct bce_softc *sc)
{
u32 val_hi, val_lo;
BCE_PRINTF(
"-----------------------------"
" Driver State "
"-----------------------------\n");
val_hi = BCE_ADDR_HI(sc);
val_lo = BCE_ADDR_LO(sc);
BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
"address\n", val_hi, val_lo);
val_hi = BCE_ADDR_HI(sc->bce_vhandle);
val_lo = BCE_ADDR_LO(sc->bce_vhandle);
BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
"address\n", val_hi, val_lo);
val_hi = BCE_ADDR_HI(sc->status_block);
val_lo = BCE_ADDR_LO(sc->status_block);
BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
"virtual address\n", val_hi, val_lo);
val_hi = BCE_ADDR_HI(sc->stats_block);
val_lo = BCE_ADDR_LO(sc->stats_block);
BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
"virtual address\n", val_hi, val_lo);
val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
"virtual adddress\n", val_hi, val_lo);
val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
"virtual address\n", val_hi, val_lo);
if (bce_hdr_split == TRUE) {
val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
"virtual address\n", val_hi, val_lo);
}
val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
"virtual address\n", val_hi, val_lo);
val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
"virtual address\n", val_hi, val_lo);
if (bce_hdr_split == TRUE) {
val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
"virtual address\n", val_hi, val_lo);
}
BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
"h/w intrs\n",
(long long unsigned int) sc->interrupts_generated);
BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
"rx interrupts handled\n",
(long long unsigned int) sc->interrupts_rx);
BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
"tx interrupts handled\n",
(long long unsigned int) sc->interrupts_tx);
BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
"phy interrupts handled\n",
(long long unsigned int) sc->phy_interrupts);
BCE_PRINTF(" 0x%08X - (sc->last_status_idx) "
"status block index\n", sc->last_status_idx);
BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_prod) tx producer "
"index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
"index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
BCE_PRINTF(" 0x%08X - (sc->tx_prod_bseq) tx producer "
"byte seq index\n", sc->tx_prod_bseq);
BCE_PRINTF(" 0x%08X - (sc->debug_tx_mbuf_alloc) tx "
"mbufs allocated\n", sc->debug_tx_mbuf_alloc);
BCE_PRINTF(" 0x%08X - (sc->used_tx_bd) used "
"tx_bd's\n", sc->used_tx_bd);
BCE_PRINTF(" 0x%04X/0x%04X - (sc->tx_hi_watermark)/"
"(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_prod) rx producer "
"index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
"index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
BCE_PRINTF(" 0x%08X - (sc->rx_prod_bseq) rx producer "
"byte seq index\n", sc->rx_prod_bseq);
BCE_PRINTF(" 0x%04X/0x%04X - (sc->rx_low_watermark)/"
"(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
BCE_PRINTF(" 0x%08X - (sc->debug_rx_mbuf_alloc) rx "
"mbufs allocated\n", sc->debug_rx_mbuf_alloc);
BCE_PRINTF(" 0x%08X - (sc->free_rx_bd) free "
"rx_bd's\n", sc->free_rx_bd);
if (bce_hdr_split == TRUE) {
BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_prod) page producer "
"index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_cons) page consumer "
"index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
BCE_PRINTF(" 0x%08X - (sc->debug_pg_mbuf_alloc) page "
"mbufs allocated\n", sc->debug_pg_mbuf_alloc);
}
BCE_PRINTF(" 0x%08X - (sc->free_pg_bd) free page "
"rx_bd's\n", sc->free_pg_bd);
BCE_PRINTF(" 0x%04X/0x%04X - (sc->pg_low_watermark)/"
"(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
BCE_PRINTF(" 0x%08X - (sc->mbuf_alloc_failed_count) "
"mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
BCE_PRINTF(" 0x%08X - (sc->bce_flags) "
"bce mac flags\n", sc->bce_flags);
BCE_PRINTF(" 0x%08X - (sc->bce_phy_flags) "
"bce phy flags\n", sc->bce_phy_flags);
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/****************************************************************************/
/* Prints out the hardware state through a summary of important register, */
/* followed by a complete register dump. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_hw_state(struct bce_softc *sc)
{
u32 val;
BCE_PRINTF(
"----------------------------"
" Hardware State "
"----------------------------\n");
BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
val, BCE_MISC_ENABLE_STATUS_BITS);
val = REG_RD(sc, BCE_DMA_STATUS);
BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
val, BCE_DMA_STATUS);
val = REG_RD(sc, BCE_CTX_STATUS);
BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
val, BCE_CTX_STATUS);
val = REG_RD(sc, BCE_EMAC_STATUS);
BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
val, BCE_EMAC_STATUS);
val = REG_RD(sc, BCE_RPM_STATUS);
BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
val, BCE_RPM_STATUS);
/* ToDo: Create a #define for this constant. */
val = REG_RD(sc, 0x2004);
BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
val, 0x2004);
val = REG_RD(sc, BCE_RV2P_STATUS);
BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
val, BCE_RV2P_STATUS);
/* ToDo: Create a #define for this constant. */
val = REG_RD(sc, 0x2c04);
BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
val, 0x2c04);
val = REG_RD(sc, BCE_TBDR_STATUS);
BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
val, BCE_TBDR_STATUS);
val = REG_RD(sc, BCE_TDMA_STATUS);
BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
val, BCE_TDMA_STATUS);
val = REG_RD(sc, BCE_HC_STATUS);
BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
val, BCE_HC_STATUS);
val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
val, BCE_TXP_CPU_STATE);
val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
val, BCE_TPAT_CPU_STATE);
val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
val, BCE_RXP_CPU_STATE);
val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
val, BCE_COM_CPU_STATE);
val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
val, BCE_MCP_CPU_STATE);
val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
val, BCE_CP_CPU_STATE);
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
BCE_PRINTF(
"----------------------------"
" Register Dump "
"----------------------------\n");
for (int i = 0x400; i < 0x8000; i += 0x10) {
BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
}
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/****************************************************************************/
/* Prints out the contentst of shared memory which is used for host driver */
/* to bootcode firmware communication. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_shmem_state(struct bce_softc *sc)
{
BCE_PRINTF(
"----------------------------"
" Hardware State "
"----------------------------\n");
BCE_PRINTF("0x%08X - Shared memory base address\n",
sc->bce_shmem_base);
BCE_PRINTF("%s - bootcode version\n",
sc->bce_bc_ver);
BCE_PRINTF(
"----------------------------"
" Shared Mem "
"----------------------------\n");
for (int i = 0x0; i < 0x200; i += 0x10) {
BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
}
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/****************************************************************************/
/* Prints out the mailbox queue registers. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_mq_regs(struct bce_softc *sc)
{
BCE_PRINTF(
"----------------------------"
" MQ Regs "
"----------------------------\n");
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
for (int i = 0x3c00; i < 0x4000; i += 0x10) {
BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
}
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/****************************************************************************/
/* Prints out the bootcode state. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_bc_state(struct bce_softc *sc)
{
u32 val;
BCE_PRINTF(
"----------------------------"
" Bootcode State "
"----------------------------\n");
BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
val, BCE_BC_RESET_TYPE);
val = bce_shmem_rd(sc, BCE_BC_STATE);
BCE_PRINTF("0x%08X - (0x%06X) state\n",
val, BCE_BC_STATE);
val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
BCE_PRINTF("0x%08X - (0x%06X) condition\n",
val, BCE_BC_STATE_CONDITION);
val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
val, BCE_BC_STATE_DEBUG_CMD);
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/****************************************************************************/
/* Prints out the TXP processor state. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_txp_state(struct bce_softc *sc, int regs)
{
u32 val;
u32 fw_version[3];
BCE_PRINTF(
"----------------------------"
" TXP State "
"----------------------------\n");
for (int i = 0; i < 3; i++)
fw_version[i] = htonl(REG_RD_IND(sc,
(BCE_TXP_SCRATCH + 0x10 + i * 4)));
BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
val, BCE_TXP_CPU_MODE);
val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
val, BCE_TXP_CPU_STATE);
val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
val, BCE_TXP_CPU_EVENT_MASK);
if (regs) {
BCE_PRINTF(
"----------------------------"
" Register Dump "
"----------------------------\n");
for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
/* Skip the big blank spaces */
if (i < 0x454000 && i > 0x5ffff)
BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
"0x%08X 0x%08X\n", i,
REG_RD_IND(sc, i),
REG_RD_IND(sc, i + 0x4),
REG_RD_IND(sc, i + 0x8),
REG_RD_IND(sc, i + 0xC));
}
}
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/****************************************************************************/
/* Prints out the RXP processor state. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_rxp_state(struct bce_softc *sc, int regs)
{
u32 val;
u32 fw_version[3];
BCE_PRINTF(
"----------------------------"
" RXP State "
"----------------------------\n");
for (int i = 0; i < 3; i++)
fw_version[i] = htonl(REG_RD_IND(sc,
(BCE_RXP_SCRATCH + 0x10 + i * 4)));
BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
val, BCE_RXP_CPU_MODE);
val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
val, BCE_RXP_CPU_STATE);
val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
val, BCE_RXP_CPU_EVENT_MASK);
if (regs) {
BCE_PRINTF(
"----------------------------"
" Register Dump "
"----------------------------\n");
for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
/* Skip the big blank sapces */
if (i < 0xc5400 && i > 0xdffff)
BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
"0x%08X 0x%08X\n", i,
REG_RD_IND(sc, i),
REG_RD_IND(sc, i + 0x4),
REG_RD_IND(sc, i + 0x8),
REG_RD_IND(sc, i + 0xC));
}
}
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/****************************************************************************/
/* Prints out the TPAT processor state. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_tpat_state(struct bce_softc *sc, int regs)
{
u32 val;
u32 fw_version[3];
BCE_PRINTF(
"----------------------------"
" TPAT State "
"----------------------------\n");
for (int i = 0; i < 3; i++)
fw_version[i] = htonl(REG_RD_IND(sc,
(BCE_TPAT_SCRATCH + 0x410 + i * 4)));
BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
val, BCE_TPAT_CPU_MODE);
val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
val, BCE_TPAT_CPU_STATE);
val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
val, BCE_TPAT_CPU_EVENT_MASK);
if (regs) {
BCE_PRINTF(
"----------------------------"
" Register Dump "
"----------------------------\n");
for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
/* Skip the big blank spaces */
if (i < 0x854000 && i > 0x9ffff)
BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
"0x%08X 0x%08X\n", i,
REG_RD_IND(sc, i),
REG_RD_IND(sc, i + 0x4),
REG_RD_IND(sc, i + 0x8),
REG_RD_IND(sc, i + 0xC));
}
}
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/****************************************************************************/
/* Prints out the Command Procesor (CP) state. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_cp_state(struct bce_softc *sc, int regs)
{
u32 val;
u32 fw_version[3];
BCE_PRINTF(
"----------------------------"
" CP State "
"----------------------------\n");
for (int i = 0; i < 3; i++)
fw_version[i] = htonl(REG_RD_IND(sc,
(BCE_CP_SCRATCH + 0x10 + i * 4)));
BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
val, BCE_CP_CPU_MODE);
val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
val, BCE_CP_CPU_STATE);
val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
BCE_CP_CPU_EVENT_MASK);
if (regs) {
BCE_PRINTF(
"----------------------------"
" Register Dump "
"----------------------------\n");
for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
/* Skip the big blank spaces */
if (i < 0x185400 && i > 0x19ffff)
BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
"0x%08X 0x%08X\n", i,
REG_RD_IND(sc, i),
REG_RD_IND(sc, i + 0x4),
REG_RD_IND(sc, i + 0x8),
REG_RD_IND(sc, i + 0xC));
}
}
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/****************************************************************************/
/* Prints out the Completion Procesor (COM) state. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_com_state(struct bce_softc *sc, int regs)
{
u32 val;
u32 fw_version[4];
BCE_PRINTF(
"----------------------------"
" COM State "
"----------------------------\n");
for (int i = 0; i < 3; i++)
fw_version[i] = htonl(REG_RD_IND(sc,
(BCE_COM_SCRATCH + 0x10 + i * 4)));
BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
val, BCE_COM_CPU_MODE);
val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
val, BCE_COM_CPU_STATE);
val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
BCE_COM_CPU_EVENT_MASK);
if (regs) {
BCE_PRINTF(
"----------------------------"
" Register Dump "
"----------------------------\n");
for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
"0x%08X 0x%08X\n", i,
REG_RD_IND(sc, i),
REG_RD_IND(sc, i + 0x4),
REG_RD_IND(sc, i + 0x8),
REG_RD_IND(sc, i + 0xC));
}
}
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/****************************************************************************/
/* Prints out the Receive Virtual 2 Physical (RV2P) state. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_rv2p_state(struct bce_softc *sc)
{
u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
BCE_PRINTF(
"----------------------------"
" RV2P State "
"----------------------------\n");
/* Stall the RV2P processors. */
val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
/* Read the firmware version. */
val = 0x00000001;
REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
BCE_RV2P_INSTR_HIGH_HIGH;
BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
fw_ver_high, fw_ver_low);
val = 0x00000001;
REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
BCE_RV2P_INSTR_HIGH_HIGH;
BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
fw_ver_high, fw_ver_low);
/* Resume the RV2P processors. */
val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
/* Fetch the program counter value. */
val = 0x68007800;
REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
/* Fetch the program counter value again to see if it is advancing. */
val = 0x68007800;
REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
BCE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/****************************************************************************/
/* Prints out the driver state and then enters the debugger. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_breakpoint(struct bce_softc *sc)
{
/*
* Unreachable code to silence compiler warnings
* about unused functions.
*/
if (0) {
bce_freeze_controller(sc);
bce_unfreeze_controller(sc);
bce_dump_enet(sc, NULL);
bce_dump_txbd(sc, 0, NULL);
bce_dump_rxbd(sc, 0, NULL);
bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
bce_dump_l2fhdr(sc, 0, NULL);
bce_dump_ctx(sc, RX_CID);
bce_dump_ftqs(sc);
bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
bce_dump_status_block(sc);
bce_dump_stats_block(sc);
bce_dump_driver_state(sc);
bce_dump_hw_state(sc);
bce_dump_bc_state(sc);
bce_dump_txp_state(sc, 0);
bce_dump_rxp_state(sc, 0);
bce_dump_tpat_state(sc, 0);
bce_dump_cp_state(sc, 0);
bce_dump_com_state(sc, 0);
bce_dump_rv2p_state(sc);
bce_dump_pgbd(sc, 0, NULL);
}
bce_dump_status_block(sc);
bce_dump_driver_state(sc);
/* Call the debugger. */
breakpoint();
}
#endif