freebsd-skq/sys/kern/subr_taskqueue.c
John Baldwin 712f57d8ab Tidy up the thread taskqueue implementation and close a lost wakeup race.
Instead of creating a mutex that we msleep on but don't actually lock when
doing the corresponding wakeup(), in the kthread, lock the mutex associated
with our taskqueue and msleep while the queue is empty.  Assert that the
queue is locked when the callback function is called to wake the kthread.
2004-02-19 22:03:52 +00:00

386 lines
9.3 KiB
C

/*-
* Copyright (c) 2000 Doug Rabson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/taskqueue.h>
#include <sys/unistd.h>
static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
static void *taskqueue_giant_ih;
static void *taskqueue_ih;
static STAILQ_HEAD(taskqueue_list, taskqueue) taskqueue_queues;
static struct mtx taskqueue_queues_mutex;
static struct proc *taskqueue_thread_proc;
struct taskqueue {
STAILQ_ENTRY(taskqueue) tq_link;
STAILQ_HEAD(, task) tq_queue;
const char *tq_name;
taskqueue_enqueue_fn tq_enqueue;
void *tq_context;
int tq_draining;
struct mtx tq_mutex;
};
static void init_taskqueue_list(void *data);
static void
init_taskqueue_list(void *data __unused)
{
mtx_init(&taskqueue_queues_mutex, "taskqueue list", NULL, MTX_DEF);
STAILQ_INIT(&taskqueue_queues);
}
SYSINIT(taskqueue_list, SI_SUB_INTRINSIC, SI_ORDER_ANY, init_taskqueue_list,
NULL);
struct taskqueue *
taskqueue_create(const char *name, int mflags,
taskqueue_enqueue_fn enqueue, void *context)
{
struct taskqueue *queue;
queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
if (!queue)
return 0;
STAILQ_INIT(&queue->tq_queue);
queue->tq_name = name;
queue->tq_enqueue = enqueue;
queue->tq_context = context;
queue->tq_draining = 0;
mtx_init(&queue->tq_mutex, "taskqueue", NULL, MTX_DEF);
mtx_lock(&taskqueue_queues_mutex);
STAILQ_INSERT_TAIL(&taskqueue_queues, queue, tq_link);
mtx_unlock(&taskqueue_queues_mutex);
return queue;
}
void
taskqueue_free(struct taskqueue *queue)
{
mtx_lock(&queue->tq_mutex);
KASSERT(queue->tq_draining == 0, ("free'ing a draining taskqueue"));
queue->tq_draining = 1;
mtx_unlock(&queue->tq_mutex);
taskqueue_run(queue);
mtx_lock(&taskqueue_queues_mutex);
STAILQ_REMOVE(&taskqueue_queues, queue, taskqueue, tq_link);
mtx_unlock(&taskqueue_queues_mutex);
mtx_destroy(&queue->tq_mutex);
free(queue, M_TASKQUEUE);
}
/*
* Returns with the taskqueue locked.
*/
struct taskqueue *
taskqueue_find(const char *name)
{
struct taskqueue *queue;
mtx_lock(&taskqueue_queues_mutex);
STAILQ_FOREACH(queue, &taskqueue_queues, tq_link) {
mtx_lock(&queue->tq_mutex);
if (strcmp(queue->tq_name, name) == 0) {
mtx_unlock(&taskqueue_queues_mutex);
return queue;
}
mtx_unlock(&queue->tq_mutex);
}
mtx_unlock(&taskqueue_queues_mutex);
return NULL;
}
int
taskqueue_enqueue(struct taskqueue *queue, struct task *task)
{
struct task *ins;
struct task *prev;
mtx_lock(&queue->tq_mutex);
/*
* Don't allow new tasks on a queue which is being freed.
*/
if (queue->tq_draining) {
mtx_unlock(&queue->tq_mutex);
return EPIPE;
}
/*
* Count multiple enqueues.
*/
if (task->ta_pending) {
task->ta_pending++;
mtx_unlock(&queue->tq_mutex);
return 0;
}
/*
* Optimise the case when all tasks have the same priority.
*/
prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
if (!prev || prev->ta_priority >= task->ta_priority) {
STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
} else {
prev = 0;
for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
prev = ins, ins = STAILQ_NEXT(ins, ta_link))
if (ins->ta_priority < task->ta_priority)
break;
if (prev)
STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
else
STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
}
task->ta_pending = 1;
if (queue->tq_enqueue)
queue->tq_enqueue(queue->tq_context);
mtx_unlock(&queue->tq_mutex);
return 0;
}
void
taskqueue_run(struct taskqueue *queue)
{
struct task *task;
int pending;
mtx_lock(&queue->tq_mutex);
while (STAILQ_FIRST(&queue->tq_queue)) {
/*
* Carefully remove the first task from the queue and
* zero its pending count.
*/
task = STAILQ_FIRST(&queue->tq_queue);
STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
pending = task->ta_pending;
task->ta_pending = 0;
mtx_unlock(&queue->tq_mutex);
task->ta_func(task->ta_context, pending);
mtx_lock(&queue->tq_mutex);
}
mtx_unlock(&queue->tq_mutex);
}
static void
taskqueue_swi_enqueue(void *context)
{
swi_sched(taskqueue_ih, 0);
}
static void
taskqueue_swi_run(void *dummy)
{
taskqueue_run(taskqueue_swi);
}
static void
taskqueue_swi_giant_enqueue(void *context)
{
swi_sched(taskqueue_giant_ih, 0);
}
static void
taskqueue_swi_giant_run(void *dummy)
{
taskqueue_run(taskqueue_swi_giant);
}
static void
taskqueue_thread_loop(void *arg)
{
for (;;) {
mtx_lock(&taskqueue_thread->tq_mutex);
while (STAILQ_EMPTY(&taskqueue_thread->tq_queue))
msleep(taskqueue_thread, &taskqueue_thread->tq_mutex,
PWAIT, "-", 0);
mtx_unlock(&taskqueue_thread->tq_mutex);
taskqueue_run(taskqueue_thread);
}
}
static void
taskqueue_thread_enqueue(void *context)
{
mtx_assert(&taskqueue_thread->tq_mutex, MA_OWNED);
wakeup(taskqueue_thread);
}
TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, 0,
swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
INTR_MPSAFE, &taskqueue_ih));
TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, 0,
swi_add(NULL, "Giant task queue", taskqueue_swi_giant_run,
NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
TASKQUEUE_DEFINE(thread, taskqueue_thread_enqueue, 0,
kthread_create(taskqueue_thread_loop, NULL,
&taskqueue_thread_proc, 0, 0, "taskqueue"));
int
taskqueue_enqueue_fast(struct taskqueue *queue, struct task *task)
{
struct task *ins;
struct task *prev;
mtx_lock_spin(&queue->tq_mutex);
/*
* Don't allow new tasks on a queue which is being freed.
*/
if (queue->tq_draining) {
mtx_unlock_spin(&queue->tq_mutex);
return EPIPE;
}
/*
* Count multiple enqueues.
*/
if (task->ta_pending) {
task->ta_pending++;
mtx_unlock_spin(&queue->tq_mutex);
return 0;
}
/*
* Optimise the case when all tasks have the same priority.
*/
prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
if (!prev || prev->ta_priority >= task->ta_priority) {
STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
} else {
prev = 0;
for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
prev = ins, ins = STAILQ_NEXT(ins, ta_link))
if (ins->ta_priority < task->ta_priority)
break;
if (prev)
STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
else
STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
}
task->ta_pending = 1;
if (queue->tq_enqueue)
queue->tq_enqueue(queue->tq_context);
mtx_unlock_spin(&queue->tq_mutex);
return 0;
}
static void
taskqueue_run_fast(struct taskqueue *queue)
{
struct task *task;
int pending;
mtx_lock_spin(&queue->tq_mutex);
while (STAILQ_FIRST(&queue->tq_queue)) {
/*
* Carefully remove the first task from the queue and
* zero its pending count.
*/
task = STAILQ_FIRST(&queue->tq_queue);
STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
pending = task->ta_pending;
task->ta_pending = 0;
mtx_unlock_spin(&queue->tq_mutex);
task->ta_func(task->ta_context, pending);
mtx_lock_spin(&queue->tq_mutex);
}
mtx_unlock_spin(&queue->tq_mutex);
}
struct taskqueue *taskqueue_fast;
static void *taskqueue_fast_ih;
static void
taskqueue_fast_schedule(void *context)
{
swi_sched(taskqueue_fast_ih, 0);
}
static void
taskqueue_fast_run(void *dummy)
{
taskqueue_run_fast(taskqueue_fast);
}
static void
taskqueue_define_fast(void *arg)
{
taskqueue_fast = malloc(sizeof(struct taskqueue),
M_TASKQUEUE, M_NOWAIT | M_ZERO);
if (!taskqueue_fast) {
printf("%s: Unable to allocate fast task queue!\n", __func__);
return;
}
STAILQ_INIT(&taskqueue_fast->tq_queue);
taskqueue_fast->tq_name = "fast";
taskqueue_fast->tq_enqueue = taskqueue_fast_schedule;
mtx_init(&taskqueue_fast->tq_mutex, "taskqueue_fast", NULL, MTX_SPIN);
mtx_lock(&taskqueue_queues_mutex);
STAILQ_INSERT_TAIL(&taskqueue_queues, taskqueue_fast, tq_link);
mtx_unlock(&taskqueue_queues_mutex);
swi_add(NULL, "Fast task queue", taskqueue_fast_run,
NULL, SWI_TQ_FAST, 0, &taskqueue_fast_ih);
}
SYSINIT(taskqueue_fast, SI_SUB_CONFIGURE, SI_ORDER_SECOND,
taskqueue_define_fast, NULL);