freebsd-skq/sys/arm/ti/ti_sdhci.c
ian 1f9fa7964e The ability to do 8-bit implies 4-bit capability too. Rearrange the cases
and add a fallthrough comment to make that happen.
2013-11-01 19:29:59 +00:00

634 lines
18 KiB
C

/*-
* Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
* Copyright (c) 2011 Ben Gray <ben.r.gray@gmail.com>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/gpio.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/resource.h>
#include <sys/rman.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/intr.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/mmc/bridge.h>
#include <dev/mmc/mmcreg.h>
#include <dev/mmc/mmcbrvar.h>
#include <dev/sdhci/sdhci.h>
#include "sdhci_if.h"
#include <arm/ti/ti_cpuid.h>
#include <arm/ti/ti_prcm.h>
#include "gpio_if.h"
struct ti_sdhci_softc {
device_t dev;
device_t gpio_dev;
struct resource * mem_res;
struct resource * irq_res;
void * intr_cookie;
struct sdhci_slot slot;
uint32_t mmchs_device_id;
uint32_t mmchs_reg_off;
uint32_t sdhci_reg_off;
uint32_t baseclk_hz;
uint32_t wp_gpio_pin;
uint32_t cmd_and_mode;
uint32_t sdhci_clkdiv;
};
/*
* Table of supported FDT compat strings.
*
* Note that "ti,mmchs" is our own invention, and should be phased out in favor
* of the documented names.
*
* Note that vendor Beaglebone dtsi files use "ti,omap3-hsmmc" for the am335x.
*/
static struct ofw_compat_data compat_data[] = {
{"ti,omap3-hsmmc", 1},
{"ti,omap4-hsmmc", 1},
{"ti,mmchs", 1},
{NULL, 0},
};
/*
* The MMCHS hardware has a few control and status registers at the beginning of
* the device's memory map, followed by the standard sdhci register block.
* Different SoCs have the register blocks at different offsets from the
* beginning of the device. Define some constants to map out the registers we
* access, and the various per-SoC offsets. The SDHCI_REG_OFFSET is how far
* beyond the MMCHS block the SDHCI block is found; it's the same on all SoCs.
*/
#define OMAP3_MMCHS_REG_OFFSET 0x000
#define OMAP4_MMCHS_REG_OFFSET 0x100
#define AM335X_MMCHS_REG_OFFSET 0x100
#define SDHCI_REG_OFFSET 0x100
#define MMCHS_SYSCONFIG 0x010
#define MMCHS_SYSCONFIG_RESET (1 << 1)
#define MMCHS_SYSSTATUS 0x014
#define MMCHS_CON 0x02C
#define MMCHS_CON_DW8 (1 << 5)
#define MMCHS_CON_DVAL_8_4MS (3 << 9)
#define MMCHS_SD_CAPA 0x240
#define MMCHS_SD_CAPA_VS18 (1 << 26)
#define MMCHS_SD_CAPA_VS30 (1 << 25)
#define MMCHS_SD_CAPA_VS33 (1 << 24)
static inline uint32_t
ti_mmchs_read_4(struct ti_sdhci_softc *sc, bus_size_t off)
{
return (bus_read_4(sc->mem_res, off + sc->mmchs_reg_off));
}
static inline void
ti_mmchs_write_4(struct ti_sdhci_softc *sc, bus_size_t off, uint32_t val)
{
bus_write_4(sc->mem_res, off + sc->mmchs_reg_off, val);
}
static inline uint32_t
RD4(struct ti_sdhci_softc *sc, bus_size_t off)
{
return (bus_read_4(sc->mem_res, off + sc->sdhci_reg_off));
}
static inline void
WR4(struct ti_sdhci_softc *sc, bus_size_t off, uint32_t val)
{
bus_write_4(sc->mem_res, off + sc->sdhci_reg_off, val);
}
static uint8_t
ti_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
{
struct ti_sdhci_softc *sc = device_get_softc(dev);
return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xff);
}
static uint16_t
ti_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
{
struct ti_sdhci_softc *sc = device_get_softc(dev);
uint32_t clkdiv, val32;
/*
* The MMCHS hardware has a non-standard interpretation of the sdclock
* divisor bits. It uses the same bit positions as SDHCI 3.0 (15..6)
* but doesn't split them into low:high fields. Instead they're a
* single number in the range 0..1023 and the number is exactly the
* clock divisor (with 0 and 1 both meaning divide by 1). The SDHCI
* driver code expects a v2.0 divisor (value N is power of two in the
* range 0..128 and clock is divided by 2N). The shifting and masking
* here extracts the MMCHS representation from the hardware word, cleans
* those bits out, applies the 2N adjustment, and plugs that into the
* bit positions for the 2.0 divisor in the returned register value. The
* ti_sdhci_write_2() routine performs the opposite transformation when
* the SDHCI driver writes to the register.
*/
if (off == SDHCI_CLOCK_CONTROL) {
val32 = RD4(sc, SDHCI_CLOCK_CONTROL);
clkdiv = (val32 >> SDHCI_DIVIDER_HI_SHIFT) & 0xff;
val32 &= ~(0xff << SDHCI_DIVIDER_HI_SHIFT);
val32 |= (clkdiv / 2) << SDHCI_DIVIDER_SHIFT;
return (val32 & 0xffff);
}
/*
* Standard 32-bit handling of command and transfer mode.
*/
if (off == SDHCI_TRANSFER_MODE) {
return (sc->cmd_and_mode >> 16);
} else if (off == SDHCI_COMMAND_FLAGS) {
return (sc->cmd_and_mode & 0x0000ffff);
}
return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xffff);
}
static uint32_t
ti_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
{
struct ti_sdhci_softc *sc = device_get_softc(dev);
return (RD4(sc, off));
}
static void
ti_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
uint32_t *data, bus_size_t count)
{
struct ti_sdhci_softc *sc = device_get_softc(dev);
bus_read_multi_4(sc->mem_res, off + sc->sdhci_reg_off, data, count);
}
static void
ti_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off,
uint8_t val)
{
struct ti_sdhci_softc *sc = device_get_softc(dev);
uint32_t val32;
val32 = RD4(sc, off & ~3);
val32 &= ~(0xff << (off & 3) * 8);
val32 |= (val << (off & 3) * 8);
WR4(sc, off & ~3, val32);
}
static void
ti_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off,
uint16_t val)
{
struct ti_sdhci_softc *sc = device_get_softc(dev);
uint32_t clkdiv, val32;
/*
* Translate between the hardware and SDHCI 2.0 representations of the
* clock divisor. See the comments in ti_sdhci_read_2() for details.
*/
if (off == SDHCI_CLOCK_CONTROL) {
clkdiv = (val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK;
val32 = RD4(sc, SDHCI_CLOCK_CONTROL);
val32 &= 0xffff0000;
val32 |= val & ~(SDHCI_DIVIDER_MASK << SDHCI_DIVIDER_SHIFT);
val32 |= (clkdiv * 2) << SDHCI_DIVIDER_HI_SHIFT;
WR4(sc, SDHCI_CLOCK_CONTROL, val32);
return;
}
/*
* Standard 32-bit handling of command and transfer mode.
*/
if (off == SDHCI_TRANSFER_MODE) {
sc->cmd_and_mode = (sc->cmd_and_mode & 0xffff0000) |
((uint32_t)val & 0x0000ffff);
return;
} else if (off == SDHCI_COMMAND_FLAGS) {
sc->cmd_and_mode = (sc->cmd_and_mode & 0x0000ffff) |
((uint32_t)val << 16);
WR4(sc, SDHCI_TRANSFER_MODE, sc->cmd_and_mode);
return;
}
val32 = RD4(sc, off & ~3);
val32 &= ~(0xffff << (off & 3) * 8);
val32 |= ((val & 0xffff) << (off & 3) * 8);
WR4(sc, off & ~3, val32);
}
static void
ti_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
uint32_t val)
{
struct ti_sdhci_softc *sc = device_get_softc(dev);
WR4(sc, off, val);
}
static void
ti_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
uint32_t *data, bus_size_t count)
{
struct ti_sdhci_softc *sc = device_get_softc(dev);
bus_write_multi_4(sc->mem_res, off + sc->sdhci_reg_off, data, count);
}
static void
ti_sdhci_intr(void *arg)
{
struct ti_sdhci_softc *sc = arg;
sdhci_generic_intr(&sc->slot);
}
static int
ti_sdhci_update_ios(device_t brdev, device_t reqdev)
{
struct ti_sdhci_softc *sc = device_get_softc(brdev);
struct sdhci_slot *slot;
struct mmc_ios *ios;
uint32_t val32;
slot = device_get_ivars(reqdev);
ios = &slot->host.ios;
/*
* There is an 8-bit-bus bit in the MMCHS control register which, when
* set, overrides the 1 vs 4 bit setting in the standard SDHCI
* registers. Set that bit first according to whether an 8-bit bus is
* requested, then let the standard driver handle everything else.
*/
val32 = ti_mmchs_read_4(sc, MMCHS_CON);
if (ios->bus_width == bus_width_8)
ti_mmchs_write_4(sc, MMCHS_CON, val32 | MMCHS_CON_DW8);
else
ti_mmchs_write_4(sc, MMCHS_CON, val32 & ~MMCHS_CON_DW8);
return (sdhci_generic_update_ios(brdev, reqdev));
}
static int
ti_sdhci_get_ro(device_t brdev, device_t reqdev)
{
struct ti_sdhci_softc *sc = device_get_softc(brdev);
unsigned int readonly = 0;
/* If a gpio pin is configured, read it. */
if (sc->gpio_dev != NULL) {
GPIO_PIN_GET(sc->gpio_dev, sc->wp_gpio_pin, &readonly);
}
return (readonly);
}
static int
ti_sdhci_detach(device_t dev)
{
return (EBUSY);
}
static void
ti_sdhci_hw_init(device_t dev)
{
struct ti_sdhci_softc *sc = device_get_softc(dev);
clk_ident_t clk;
uint32_t regval;
unsigned long timeout;
/* Enable the controller and interface/functional clocks */
clk = MMC0_CLK + sc->mmchs_device_id;
if (ti_prcm_clk_enable(clk) != 0) {
device_printf(dev, "Error: failed to enable MMC clock\n");
return;
}
/* Get the frequency of the source clock */
if (ti_prcm_clk_get_source_freq(clk, &sc->baseclk_hz) != 0) {
device_printf(dev, "Error: failed to get source clock freq\n");
return;
}
/* Issue a softreset to the controller */
ti_mmchs_write_4(sc, MMCHS_SYSCONFIG, MMCHS_SYSCONFIG_RESET);
timeout = 1000;
while ((ti_mmchs_read_4(sc, MMCHS_SYSSTATUS) & MMCHS_SYSCONFIG_RESET)) {
if (--timeout == 0) {
device_printf(dev, "Error: Controller reset operation timed out\n");
break;
}
DELAY(100);
}
/* Reset both the command and data state machines */
ti_sdhci_write_1(dev, NULL, SDHCI_SOFTWARE_RESET, SDHCI_RESET_ALL);
timeout = 1000;
while ((ti_sdhci_read_1(dev, NULL, SDHCI_SOFTWARE_RESET) & SDHCI_RESET_ALL)) {
if (--timeout == 0) {
device_printf(dev, "Error: Software reset operation timed out\n");
break;
}
DELAY(100);
}
/*
* The attach() routine has examined fdt data and set flags in
* slot.host.caps to reflect what voltages we can handle. Set those
* values in the CAPA register. The manual says that these values can
* only be set once, "before initialization" whatever that means, and
* that they survive a reset. So maybe doing this will be a no-op if
* u-boot has already initialized the hardware.
*/
regval = ti_mmchs_read_4(sc, MMCHS_SD_CAPA);
if (sc->slot.host.caps & MMC_OCR_LOW_VOLTAGE)
regval |= MMCHS_SD_CAPA_VS18;
if (sc->slot.host.caps & (MMC_OCR_290_300 | MMC_OCR_300_310))
regval |= MMCHS_SD_CAPA_VS30;
ti_mmchs_write_4(sc, MMCHS_SD_CAPA, regval);
/* Set initial host configuration (1-bit, std speed, pwr off). */
ti_sdhci_write_1(dev, NULL, SDHCI_HOST_CONTROL, 0);
ti_sdhci_write_1(dev, NULL, SDHCI_POWER_CONTROL, 0);
/* Set the initial controller configuration. */
ti_mmchs_write_4(sc, MMCHS_CON, MMCHS_CON_DVAL_8_4MS);
}
static int
ti_sdhci_attach(device_t dev)
{
struct ti_sdhci_softc *sc = device_get_softc(dev);
int rid, err;
pcell_t prop;
phandle_t node;
sc->dev = dev;
/*
* Get the MMCHS device id from FDT. If it's not there use the newbus
* unit number (which will work as long as the devices are in order and
* none are skipped in the fdt). Note that this is a property we made
* up and added in freebsd, it doesn't exist in the published bindings.
*/
node = ofw_bus_get_node(dev);
if ((OF_getprop(node, "mmchs-device-id", &prop, sizeof(prop))) <= 0) {
sc->mmchs_device_id = device_get_unit(dev);
device_printf(dev, "missing mmchs-device-id attribute in FDT, "
"using unit number (%d)", sc->mmchs_device_id);
} else
sc->mmchs_device_id = fdt32_to_cpu(prop);
/*
* The hardware can inherently do dual-voltage (1p8v, 3p0v) on the first
* device, and only 1p8v on other devices unless an external transceiver
* is used. The only way we could know about a transceiver is fdt data.
* Note that we have to do this before calling ti_sdhci_hw_init() so
* that it can set the right values in the CAPA register, which can only
* be done once and never reset.
*/
sc->slot.host.host_ocr |= MMC_OCR_LOW_VOLTAGE;
if (sc->mmchs_device_id == 0 || OF_hasprop(node, "ti,dual-volt")) {
sc->slot.host.host_ocr |= MMC_OCR_290_300 | MMC_OCR_300_310;
}
/*
* See if we've got a GPIO-based write detect pin. This is not the
* standard documented property for this, we added it in freebsd.
*/
if ((OF_getprop(node, "mmchs-wp-gpio-pin", &prop, sizeof(prop))) <= 0)
sc->wp_gpio_pin = 0xffffffff;
else
sc->wp_gpio_pin = fdt32_to_cpu(prop);
if (sc->wp_gpio_pin != 0xffffffff) {
sc->gpio_dev = devclass_get_device(devclass_find("gpio"), 0);
if (sc->gpio_dev == NULL)
device_printf(dev, "Error: No GPIO device, "
"Write Protect pin will not function\n");
else
GPIO_PIN_SETFLAGS(sc->gpio_dev, sc->wp_gpio_pin,
GPIO_PIN_INPUT);
}
/*
* Set the offset from the device's memory start to the MMCHS registers.
*/
if (ti_chip() == CHIP_OMAP_3)
sc->mmchs_reg_off = OMAP3_MMCHS_REG_OFFSET;
else if (ti_chip() == CHIP_OMAP_4)
sc->mmchs_reg_off = OMAP4_MMCHS_REG_OFFSET;
else if (ti_chip() == CHIP_AM335X)
sc->mmchs_reg_off = AM335X_MMCHS_REG_OFFSET;
else
panic("Unknown OMAP device\n");
/*
* The standard SDHCI registers are at a fixed offset (the same on all
* SoCs) beyond the MMCHS registers.
*/
sc->sdhci_reg_off = sc->mmchs_reg_off + SDHCI_REG_OFFSET;
/* Resource setup. */
rid = 0;
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (!sc->mem_res) {
device_printf(dev, "cannot allocate memory window\n");
err = ENXIO;
goto fail;
}
rid = 0;
sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (!sc->irq_res) {
device_printf(dev, "cannot allocate interrupt\n");
err = ENXIO;
goto fail;
}
if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
NULL, ti_sdhci_intr, sc, &sc->intr_cookie)) {
device_printf(dev, "cannot setup interrupt handler\n");
err = ENXIO;
goto fail;
}
/* Initialise the MMCHS hardware. */
ti_sdhci_hw_init(dev);
/*
* The capabilities register can only express base clock frequencies in
* the range of 0-63MHz for a v2.0 controller. Since our clock runs
* faster than that, the hardware sets the frequency to zero in the
* register. When the register contains zero, the sdhci driver expects
* slot.max_clk to already have the right value in it.
*/
sc->slot.max_clk = sc->baseclk_hz;
/*
* The MMCHS timeout counter is based on the output sdclock. Tell the
* sdhci driver to recalculate the timeout clock whenever the output
* sdclock frequency changes.
*/
sc->slot.quirks |= SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK;
/*
* The MMCHS hardware shifts the 136-bit response data (in violation of
* the spec), so tell the sdhci driver not to do the same in software.
*/
sc->slot.quirks |= SDHCI_QUIRK_DONT_SHIFT_RESPONSE;
/*
* DMA is not really broken, I just haven't implemented it yet.
*/
sc->slot.quirks |= SDHCI_QUIRK_BROKEN_DMA;
/*
* Set up the hardware and go. Note that this sets many of the
* slot.host.* fields, so we have to do this before overriding any of
* those values based on fdt data, below.
*/
sdhci_init_slot(dev, &sc->slot, 0);
/*
* The SDHCI controller doesn't realize it, but we can support 8-bit
* even though we're not a v3.0 controller. If there's an fdt bus-width
* property, honor it.
*/
if (OF_getencprop(node, "bus-width", &prop, sizeof(prop)) > 0) {
sc->slot.host.caps &= ~(MMC_CAP_4_BIT_DATA |
MMC_CAP_8_BIT_DATA);
switch (prop) {
case 8:
sc->slot.host.caps |= MMC_CAP_8_BIT_DATA;
/* FALLTHROUGH */
case 4:
sc->slot.host.caps |= MMC_CAP_4_BIT_DATA;
break;
case 1:
break;
default:
device_printf(dev, "Bad bus-width value %u\n", prop);
break;
}
}
bus_generic_probe(dev);
bus_generic_attach(dev);
sdhci_start_slot(&sc->slot);
return (0);
fail:
if (sc->intr_cookie)
bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
if (sc->irq_res)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res);
if (sc->mem_res)
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
return (err);
}
static int
ti_sdhci_probe(device_t dev)
{
if (ofw_bus_search_compatible(dev, compat_data)->ocd_data != 0) {
device_set_desc(dev, "TI MMCHS (SDHCI 2.0)");
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static device_method_t ti_sdhci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ti_sdhci_probe),
DEVMETHOD(device_attach, ti_sdhci_attach),
DEVMETHOD(device_detach, ti_sdhci_detach),
/* Bus interface */
DEVMETHOD(bus_read_ivar, sdhci_generic_read_ivar),
DEVMETHOD(bus_write_ivar, sdhci_generic_write_ivar),
DEVMETHOD(bus_print_child, bus_generic_print_child),
/* MMC bridge interface */
DEVMETHOD(mmcbr_update_ios, ti_sdhci_update_ios),
DEVMETHOD(mmcbr_request, sdhci_generic_request),
DEVMETHOD(mmcbr_get_ro, ti_sdhci_get_ro),
DEVMETHOD(mmcbr_acquire_host, sdhci_generic_acquire_host),
DEVMETHOD(mmcbr_release_host, sdhci_generic_release_host),
/* SDHCI registers accessors */
DEVMETHOD(sdhci_read_1, ti_sdhci_read_1),
DEVMETHOD(sdhci_read_2, ti_sdhci_read_2),
DEVMETHOD(sdhci_read_4, ti_sdhci_read_4),
DEVMETHOD(sdhci_read_multi_4, ti_sdhci_read_multi_4),
DEVMETHOD(sdhci_write_1, ti_sdhci_write_1),
DEVMETHOD(sdhci_write_2, ti_sdhci_write_2),
DEVMETHOD(sdhci_write_4, ti_sdhci_write_4),
DEVMETHOD(sdhci_write_multi_4, ti_sdhci_write_multi_4),
DEVMETHOD_END
};
static devclass_t ti_sdhci_devclass;
static driver_t ti_sdhci_driver = {
"sdhci_ti",
ti_sdhci_methods,
sizeof(struct ti_sdhci_softc),
};
DRIVER_MODULE(sdhci_ti, simplebus, ti_sdhci_driver, ti_sdhci_devclass, 0, 0);
MODULE_DEPEND(sdhci_ti, sdhci, 1, 1, 1);