8da898f26c
intention of the POSIX IEEE Std 1003.1TM-2008/Cor 1-2013. A robust mutex is guaranteed to be cleared by the system upon either thread or process owner termination while the mutex is held. The next mutex locker is then notified about inconsistent mutex state and can execute (or abandon) corrective actions. The patch mostly consists of small changes here and there, adding neccessary checks for the inconsistent and abandoned conditions into existing paths. Additionally, the thread exit handler was extended to iterate over the userspace-maintained list of owned robust mutexes, unlocking and marking as terminated each of them. The list of owned robust mutexes cannot be maintained atomically synchronous with the mutex lock state (it is possible in kernel, but is too expensive). Instead, for the duration of lock or unlock operation, the current mutex is remembered in a special slot that is also checked by the kernel at thread termination. Kernel must be aware about the per-thread location of the heads of robust mutex lists and the current active mutex slot. When a thread touches a robust mutex for the first time, a new umtx op syscall is issued which informs about location of lists heads. The umtx sleep queues for PP and PI mutexes are split between non-robust and robust. Somewhat unrelated changes in the patch: 1. Style. 2. The fix for proper tdfind() call use in umtxq_sleep_pi() for shared pi mutexes. 3. Removal of the userspace struct pthread_mutex m_owner field. 4. The sysctl kern.ipc.umtx_vnode_persistent is added, which controls the lifetime of the shared mutex associated with a vnode' page. Reviewed by: jilles (previous version, supposedly the objection was fixed) Discussed with: brooks, Martin Simmons <martin@lispworks.com> (some aspects) Tested by: pho Sponsored by: The FreeBSD Foundation
4495 lines
102 KiB
C
4495 lines
102 KiB
C
/*-
|
|
* Copyright (c) 2015, 2016 The FreeBSD Foundation
|
|
* Copyright (c) 2004, David Xu <davidxu@freebsd.org>
|
|
* Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
|
|
* All rights reserved.
|
|
*
|
|
* Portions of this software were developed by Konstantin Belousov
|
|
* under sponsorship from the FreeBSD Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_compat.h"
|
|
#include "opt_umtx_profiling.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/file.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/syscallsubr.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/umtx.h>
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_object.h>
|
|
|
|
#include <machine/cpu.h>
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
#include <compat/freebsd32/freebsd32_proto.h>
|
|
#endif
|
|
|
|
#define _UMUTEX_TRY 1
|
|
#define _UMUTEX_WAIT 2
|
|
|
|
#ifdef UMTX_PROFILING
|
|
#define UPROF_PERC_BIGGER(w, f, sw, sf) \
|
|
(((w) > (sw)) || ((w) == (sw) && (f) > (sf)))
|
|
#endif
|
|
|
|
/* Priority inheritance mutex info. */
|
|
struct umtx_pi {
|
|
/* Owner thread */
|
|
struct thread *pi_owner;
|
|
|
|
/* Reference count */
|
|
int pi_refcount;
|
|
|
|
/* List entry to link umtx holding by thread */
|
|
TAILQ_ENTRY(umtx_pi) pi_link;
|
|
|
|
/* List entry in hash */
|
|
TAILQ_ENTRY(umtx_pi) pi_hashlink;
|
|
|
|
/* List for waiters */
|
|
TAILQ_HEAD(,umtx_q) pi_blocked;
|
|
|
|
/* Identify a userland lock object */
|
|
struct umtx_key pi_key;
|
|
};
|
|
|
|
/* A userland synchronous object user. */
|
|
struct umtx_q {
|
|
/* Linked list for the hash. */
|
|
TAILQ_ENTRY(umtx_q) uq_link;
|
|
|
|
/* Umtx key. */
|
|
struct umtx_key uq_key;
|
|
|
|
/* Umtx flags. */
|
|
int uq_flags;
|
|
#define UQF_UMTXQ 0x0001
|
|
|
|
/* The thread waits on. */
|
|
struct thread *uq_thread;
|
|
|
|
/*
|
|
* Blocked on PI mutex. read can use chain lock
|
|
* or umtx_lock, write must have both chain lock and
|
|
* umtx_lock being hold.
|
|
*/
|
|
struct umtx_pi *uq_pi_blocked;
|
|
|
|
/* On blocked list */
|
|
TAILQ_ENTRY(umtx_q) uq_lockq;
|
|
|
|
/* Thread contending with us */
|
|
TAILQ_HEAD(,umtx_pi) uq_pi_contested;
|
|
|
|
/* Inherited priority from PP mutex */
|
|
u_char uq_inherited_pri;
|
|
|
|
/* Spare queue ready to be reused */
|
|
struct umtxq_queue *uq_spare_queue;
|
|
|
|
/* The queue we on */
|
|
struct umtxq_queue *uq_cur_queue;
|
|
};
|
|
|
|
TAILQ_HEAD(umtxq_head, umtx_q);
|
|
|
|
/* Per-key wait-queue */
|
|
struct umtxq_queue {
|
|
struct umtxq_head head;
|
|
struct umtx_key key;
|
|
LIST_ENTRY(umtxq_queue) link;
|
|
int length;
|
|
};
|
|
|
|
LIST_HEAD(umtxq_list, umtxq_queue);
|
|
|
|
/* Userland lock object's wait-queue chain */
|
|
struct umtxq_chain {
|
|
/* Lock for this chain. */
|
|
struct mtx uc_lock;
|
|
|
|
/* List of sleep queues. */
|
|
struct umtxq_list uc_queue[2];
|
|
#define UMTX_SHARED_QUEUE 0
|
|
#define UMTX_EXCLUSIVE_QUEUE 1
|
|
|
|
LIST_HEAD(, umtxq_queue) uc_spare_queue;
|
|
|
|
/* Busy flag */
|
|
char uc_busy;
|
|
|
|
/* Chain lock waiters */
|
|
int uc_waiters;
|
|
|
|
/* All PI in the list */
|
|
TAILQ_HEAD(,umtx_pi) uc_pi_list;
|
|
|
|
#ifdef UMTX_PROFILING
|
|
u_int length;
|
|
u_int max_length;
|
|
#endif
|
|
};
|
|
|
|
#define UMTXQ_LOCKED_ASSERT(uc) mtx_assert(&(uc)->uc_lock, MA_OWNED)
|
|
|
|
/*
|
|
* Don't propagate time-sharing priority, there is a security reason,
|
|
* a user can simply introduce PI-mutex, let thread A lock the mutex,
|
|
* and let another thread B block on the mutex, because B is
|
|
* sleeping, its priority will be boosted, this causes A's priority to
|
|
* be boosted via priority propagating too and will never be lowered even
|
|
* if it is using 100%CPU, this is unfair to other processes.
|
|
*/
|
|
|
|
#define UPRI(td) (((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
|
|
(td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
|
|
PRI_MAX_TIMESHARE : (td)->td_user_pri)
|
|
|
|
#define GOLDEN_RATIO_PRIME 2654404609U
|
|
#define UMTX_CHAINS 512
|
|
#define UMTX_SHIFTS (__WORD_BIT - 9)
|
|
|
|
#define GET_SHARE(flags) \
|
|
(((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
|
|
|
|
#define BUSY_SPINS 200
|
|
|
|
struct abs_timeout {
|
|
int clockid;
|
|
struct timespec cur;
|
|
struct timespec end;
|
|
};
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
struct umutex32 {
|
|
volatile __lwpid_t m_owner; /* Owner of the mutex */
|
|
__uint32_t m_flags; /* Flags of the mutex */
|
|
__uint32_t m_ceilings[2]; /* Priority protect ceiling */
|
|
__uint32_t m_rb_lnk; /* Robust linkage */
|
|
__uint32_t m_pad;
|
|
__uint32_t m_spare[2];
|
|
};
|
|
|
|
_Static_assert(sizeof(struct umutex) == sizeof(struct umutex32), "umutex32");
|
|
_Static_assert(__offsetof(struct umutex, m_spare[0]) ==
|
|
__offsetof(struct umutex32, m_spare[0]), "m_spare32");
|
|
#endif
|
|
|
|
int umtx_shm_vnobj_persistent = 0;
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_vnode_persistent, CTLFLAG_RWTUN,
|
|
&umtx_shm_vnobj_persistent, 0,
|
|
"False forces destruction of umtx attached to file, on last close");
|
|
static int umtx_max_rb = 1000;
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_max_robust, CTLFLAG_RWTUN,
|
|
&umtx_max_rb, 0,
|
|
"");
|
|
|
|
static uma_zone_t umtx_pi_zone;
|
|
static struct umtxq_chain umtxq_chains[2][UMTX_CHAINS];
|
|
static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
|
|
static int umtx_pi_allocated;
|
|
|
|
static SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW, 0, "umtx debug");
|
|
SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
|
|
&umtx_pi_allocated, 0, "Allocated umtx_pi");
|
|
static int umtx_verbose_rb = 1;
|
|
SYSCTL_INT(_debug_umtx, OID_AUTO, robust_faults_verbose, CTLFLAG_RWTUN,
|
|
&umtx_verbose_rb, 0,
|
|
"");
|
|
|
|
#ifdef UMTX_PROFILING
|
|
static long max_length;
|
|
SYSCTL_LONG(_debug_umtx, OID_AUTO, max_length, CTLFLAG_RD, &max_length, 0, "max_length");
|
|
static SYSCTL_NODE(_debug_umtx, OID_AUTO, chains, CTLFLAG_RD, 0, "umtx chain stats");
|
|
#endif
|
|
|
|
static void umtx_shm_init(void);
|
|
static void umtxq_sysinit(void *);
|
|
static void umtxq_hash(struct umtx_key *key);
|
|
static struct umtxq_chain *umtxq_getchain(struct umtx_key *key);
|
|
static void umtxq_lock(struct umtx_key *key);
|
|
static void umtxq_unlock(struct umtx_key *key);
|
|
static void umtxq_busy(struct umtx_key *key);
|
|
static void umtxq_unbusy(struct umtx_key *key);
|
|
static void umtxq_insert_queue(struct umtx_q *uq, int q);
|
|
static void umtxq_remove_queue(struct umtx_q *uq, int q);
|
|
static int umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *);
|
|
static int umtxq_count(struct umtx_key *key);
|
|
static struct umtx_pi *umtx_pi_alloc(int);
|
|
static void umtx_pi_free(struct umtx_pi *pi);
|
|
static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags,
|
|
bool rb);
|
|
static void umtx_thread_cleanup(struct thread *td);
|
|
static void umtx_exec_hook(void *arg __unused, struct proc *p __unused,
|
|
struct image_params *imgp __unused);
|
|
SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
|
|
|
|
#define umtxq_signal(key, nwake) umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
|
|
#define umtxq_insert(uq) umtxq_insert_queue((uq), UMTX_SHARED_QUEUE)
|
|
#define umtxq_remove(uq) umtxq_remove_queue((uq), UMTX_SHARED_QUEUE)
|
|
|
|
static struct mtx umtx_lock;
|
|
|
|
#ifdef UMTX_PROFILING
|
|
static void
|
|
umtx_init_profiling(void)
|
|
{
|
|
struct sysctl_oid *chain_oid;
|
|
char chain_name[10];
|
|
int i;
|
|
|
|
for (i = 0; i < UMTX_CHAINS; ++i) {
|
|
snprintf(chain_name, sizeof(chain_name), "%d", i);
|
|
chain_oid = SYSCTL_ADD_NODE(NULL,
|
|
SYSCTL_STATIC_CHILDREN(_debug_umtx_chains), OID_AUTO,
|
|
chain_name, CTLFLAG_RD, NULL, "umtx hash stats");
|
|
SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
|
|
"max_length0", CTLFLAG_RD, &umtxq_chains[0][i].max_length, 0, NULL);
|
|
SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
|
|
"max_length1", CTLFLAG_RD, &umtxq_chains[1][i].max_length, 0, NULL);
|
|
}
|
|
}
|
|
|
|
static int
|
|
sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
char buf[512];
|
|
struct sbuf sb;
|
|
struct umtxq_chain *uc;
|
|
u_int fract, i, j, tot, whole;
|
|
u_int sf0, sf1, sf2, sf3, sf4;
|
|
u_int si0, si1, si2, si3, si4;
|
|
u_int sw0, sw1, sw2, sw3, sw4;
|
|
|
|
sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
|
|
for (i = 0; i < 2; i++) {
|
|
tot = 0;
|
|
for (j = 0; j < UMTX_CHAINS; ++j) {
|
|
uc = &umtxq_chains[i][j];
|
|
mtx_lock(&uc->uc_lock);
|
|
tot += uc->max_length;
|
|
mtx_unlock(&uc->uc_lock);
|
|
}
|
|
if (tot == 0)
|
|
sbuf_printf(&sb, "%u) Empty ", i);
|
|
else {
|
|
sf0 = sf1 = sf2 = sf3 = sf4 = 0;
|
|
si0 = si1 = si2 = si3 = si4 = 0;
|
|
sw0 = sw1 = sw2 = sw3 = sw4 = 0;
|
|
for (j = 0; j < UMTX_CHAINS; j++) {
|
|
uc = &umtxq_chains[i][j];
|
|
mtx_lock(&uc->uc_lock);
|
|
whole = uc->max_length * 100;
|
|
mtx_unlock(&uc->uc_lock);
|
|
fract = (whole % tot) * 100;
|
|
if (UPROF_PERC_BIGGER(whole, fract, sw0, sf0)) {
|
|
sf0 = fract;
|
|
si0 = j;
|
|
sw0 = whole;
|
|
} else if (UPROF_PERC_BIGGER(whole, fract, sw1,
|
|
sf1)) {
|
|
sf1 = fract;
|
|
si1 = j;
|
|
sw1 = whole;
|
|
} else if (UPROF_PERC_BIGGER(whole, fract, sw2,
|
|
sf2)) {
|
|
sf2 = fract;
|
|
si2 = j;
|
|
sw2 = whole;
|
|
} else if (UPROF_PERC_BIGGER(whole, fract, sw3,
|
|
sf3)) {
|
|
sf3 = fract;
|
|
si3 = j;
|
|
sw3 = whole;
|
|
} else if (UPROF_PERC_BIGGER(whole, fract, sw4,
|
|
sf4)) {
|
|
sf4 = fract;
|
|
si4 = j;
|
|
sw4 = whole;
|
|
}
|
|
}
|
|
sbuf_printf(&sb, "queue %u:\n", i);
|
|
sbuf_printf(&sb, "1st: %u.%u%% idx: %u\n", sw0 / tot,
|
|
sf0 / tot, si0);
|
|
sbuf_printf(&sb, "2nd: %u.%u%% idx: %u\n", sw1 / tot,
|
|
sf1 / tot, si1);
|
|
sbuf_printf(&sb, "3rd: %u.%u%% idx: %u\n", sw2 / tot,
|
|
sf2 / tot, si2);
|
|
sbuf_printf(&sb, "4th: %u.%u%% idx: %u\n", sw3 / tot,
|
|
sf3 / tot, si3);
|
|
sbuf_printf(&sb, "5th: %u.%u%% idx: %u\n", sw4 / tot,
|
|
sf4 / tot, si4);
|
|
}
|
|
}
|
|
sbuf_trim(&sb);
|
|
sbuf_finish(&sb);
|
|
sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
|
|
sbuf_delete(&sb);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct umtxq_chain *uc;
|
|
u_int i, j;
|
|
int clear, error;
|
|
|
|
clear = 0;
|
|
error = sysctl_handle_int(oidp, &clear, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
|
|
if (clear != 0) {
|
|
for (i = 0; i < 2; ++i) {
|
|
for (j = 0; j < UMTX_CHAINS; ++j) {
|
|
uc = &umtxq_chains[i][j];
|
|
mtx_lock(&uc->uc_lock);
|
|
uc->length = 0;
|
|
uc->max_length = 0;
|
|
mtx_unlock(&uc->uc_lock);
|
|
}
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, clear,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
|
|
sysctl_debug_umtx_chains_clear, "I", "Clear umtx chains statistics");
|
|
SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, peaks,
|
|
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
|
|
sysctl_debug_umtx_chains_peaks, "A", "Highest peaks in chains max length");
|
|
#endif
|
|
|
|
static void
|
|
umtxq_sysinit(void *arg __unused)
|
|
{
|
|
int i, j;
|
|
|
|
umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
|
|
for (i = 0; i < 2; ++i) {
|
|
for (j = 0; j < UMTX_CHAINS; ++j) {
|
|
mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
|
|
MTX_DEF | MTX_DUPOK);
|
|
LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
|
|
LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
|
|
LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
|
|
TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
|
|
umtxq_chains[i][j].uc_busy = 0;
|
|
umtxq_chains[i][j].uc_waiters = 0;
|
|
#ifdef UMTX_PROFILING
|
|
umtxq_chains[i][j].length = 0;
|
|
umtxq_chains[i][j].max_length = 0;
|
|
#endif
|
|
}
|
|
}
|
|
#ifdef UMTX_PROFILING
|
|
umtx_init_profiling();
|
|
#endif
|
|
mtx_init(&umtx_lock, "umtx lock", NULL, MTX_DEF);
|
|
EVENTHANDLER_REGISTER(process_exec, umtx_exec_hook, NULL,
|
|
EVENTHANDLER_PRI_ANY);
|
|
umtx_shm_init();
|
|
}
|
|
|
|
struct umtx_q *
|
|
umtxq_alloc(void)
|
|
{
|
|
struct umtx_q *uq;
|
|
|
|
uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
|
|
uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX,
|
|
M_WAITOK | M_ZERO);
|
|
TAILQ_INIT(&uq->uq_spare_queue->head);
|
|
TAILQ_INIT(&uq->uq_pi_contested);
|
|
uq->uq_inherited_pri = PRI_MAX;
|
|
return (uq);
|
|
}
|
|
|
|
void
|
|
umtxq_free(struct umtx_q *uq)
|
|
{
|
|
|
|
MPASS(uq->uq_spare_queue != NULL);
|
|
free(uq->uq_spare_queue, M_UMTX);
|
|
free(uq, M_UMTX);
|
|
}
|
|
|
|
static inline void
|
|
umtxq_hash(struct umtx_key *key)
|
|
{
|
|
unsigned n;
|
|
|
|
n = (uintptr_t)key->info.both.a + key->info.both.b;
|
|
key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
|
|
}
|
|
|
|
static inline struct umtxq_chain *
|
|
umtxq_getchain(struct umtx_key *key)
|
|
{
|
|
|
|
if (key->type <= TYPE_SEM)
|
|
return (&umtxq_chains[1][key->hash]);
|
|
return (&umtxq_chains[0][key->hash]);
|
|
}
|
|
|
|
/*
|
|
* Lock a chain.
|
|
*/
|
|
static inline void
|
|
umtxq_lock(struct umtx_key *key)
|
|
{
|
|
struct umtxq_chain *uc;
|
|
|
|
uc = umtxq_getchain(key);
|
|
mtx_lock(&uc->uc_lock);
|
|
}
|
|
|
|
/*
|
|
* Unlock a chain.
|
|
*/
|
|
static inline void
|
|
umtxq_unlock(struct umtx_key *key)
|
|
{
|
|
struct umtxq_chain *uc;
|
|
|
|
uc = umtxq_getchain(key);
|
|
mtx_unlock(&uc->uc_lock);
|
|
}
|
|
|
|
/*
|
|
* Set chain to busy state when following operation
|
|
* may be blocked (kernel mutex can not be used).
|
|
*/
|
|
static inline void
|
|
umtxq_busy(struct umtx_key *key)
|
|
{
|
|
struct umtxq_chain *uc;
|
|
|
|
uc = umtxq_getchain(key);
|
|
mtx_assert(&uc->uc_lock, MA_OWNED);
|
|
if (uc->uc_busy) {
|
|
#ifdef SMP
|
|
if (smp_cpus > 1) {
|
|
int count = BUSY_SPINS;
|
|
if (count > 0) {
|
|
umtxq_unlock(key);
|
|
while (uc->uc_busy && --count > 0)
|
|
cpu_spinwait();
|
|
umtxq_lock(key);
|
|
}
|
|
}
|
|
#endif
|
|
while (uc->uc_busy) {
|
|
uc->uc_waiters++;
|
|
msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
|
|
uc->uc_waiters--;
|
|
}
|
|
}
|
|
uc->uc_busy = 1;
|
|
}
|
|
|
|
/*
|
|
* Unbusy a chain.
|
|
*/
|
|
static inline void
|
|
umtxq_unbusy(struct umtx_key *key)
|
|
{
|
|
struct umtxq_chain *uc;
|
|
|
|
uc = umtxq_getchain(key);
|
|
mtx_assert(&uc->uc_lock, MA_OWNED);
|
|
KASSERT(uc->uc_busy != 0, ("not busy"));
|
|
uc->uc_busy = 0;
|
|
if (uc->uc_waiters)
|
|
wakeup_one(uc);
|
|
}
|
|
|
|
static inline void
|
|
umtxq_unbusy_unlocked(struct umtx_key *key)
|
|
{
|
|
|
|
umtxq_lock(key);
|
|
umtxq_unbusy(key);
|
|
umtxq_unlock(key);
|
|
}
|
|
|
|
static struct umtxq_queue *
|
|
umtxq_queue_lookup(struct umtx_key *key, int q)
|
|
{
|
|
struct umtxq_queue *uh;
|
|
struct umtxq_chain *uc;
|
|
|
|
uc = umtxq_getchain(key);
|
|
UMTXQ_LOCKED_ASSERT(uc);
|
|
LIST_FOREACH(uh, &uc->uc_queue[q], link) {
|
|
if (umtx_key_match(&uh->key, key))
|
|
return (uh);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static inline void
|
|
umtxq_insert_queue(struct umtx_q *uq, int q)
|
|
{
|
|
struct umtxq_queue *uh;
|
|
struct umtxq_chain *uc;
|
|
|
|
uc = umtxq_getchain(&uq->uq_key);
|
|
UMTXQ_LOCKED_ASSERT(uc);
|
|
KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
|
|
uh = umtxq_queue_lookup(&uq->uq_key, q);
|
|
if (uh != NULL) {
|
|
LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
|
|
} else {
|
|
uh = uq->uq_spare_queue;
|
|
uh->key = uq->uq_key;
|
|
LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
|
|
#ifdef UMTX_PROFILING
|
|
uc->length++;
|
|
if (uc->length > uc->max_length) {
|
|
uc->max_length = uc->length;
|
|
if (uc->max_length > max_length)
|
|
max_length = uc->max_length;
|
|
}
|
|
#endif
|
|
}
|
|
uq->uq_spare_queue = NULL;
|
|
|
|
TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
|
|
uh->length++;
|
|
uq->uq_flags |= UQF_UMTXQ;
|
|
uq->uq_cur_queue = uh;
|
|
return;
|
|
}
|
|
|
|
static inline void
|
|
umtxq_remove_queue(struct umtx_q *uq, int q)
|
|
{
|
|
struct umtxq_chain *uc;
|
|
struct umtxq_queue *uh;
|
|
|
|
uc = umtxq_getchain(&uq->uq_key);
|
|
UMTXQ_LOCKED_ASSERT(uc);
|
|
if (uq->uq_flags & UQF_UMTXQ) {
|
|
uh = uq->uq_cur_queue;
|
|
TAILQ_REMOVE(&uh->head, uq, uq_link);
|
|
uh->length--;
|
|
uq->uq_flags &= ~UQF_UMTXQ;
|
|
if (TAILQ_EMPTY(&uh->head)) {
|
|
KASSERT(uh->length == 0,
|
|
("inconsistent umtxq_queue length"));
|
|
#ifdef UMTX_PROFILING
|
|
uc->length--;
|
|
#endif
|
|
LIST_REMOVE(uh, link);
|
|
} else {
|
|
uh = LIST_FIRST(&uc->uc_spare_queue);
|
|
KASSERT(uh != NULL, ("uc_spare_queue is empty"));
|
|
LIST_REMOVE(uh, link);
|
|
}
|
|
uq->uq_spare_queue = uh;
|
|
uq->uq_cur_queue = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if there are multiple waiters
|
|
*/
|
|
static int
|
|
umtxq_count(struct umtx_key *key)
|
|
{
|
|
struct umtxq_chain *uc;
|
|
struct umtxq_queue *uh;
|
|
|
|
uc = umtxq_getchain(key);
|
|
UMTXQ_LOCKED_ASSERT(uc);
|
|
uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
|
|
if (uh != NULL)
|
|
return (uh->length);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check if there are multiple PI waiters and returns first
|
|
* waiter.
|
|
*/
|
|
static int
|
|
umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
|
|
{
|
|
struct umtxq_chain *uc;
|
|
struct umtxq_queue *uh;
|
|
|
|
*first = NULL;
|
|
uc = umtxq_getchain(key);
|
|
UMTXQ_LOCKED_ASSERT(uc);
|
|
uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
|
|
if (uh != NULL) {
|
|
*first = TAILQ_FIRST(&uh->head);
|
|
return (uh->length);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
umtxq_check_susp(struct thread *td)
|
|
{
|
|
struct proc *p;
|
|
int error;
|
|
|
|
/*
|
|
* The check for TDF_NEEDSUSPCHK is racy, but it is enough to
|
|
* eventually break the lockstep loop.
|
|
*/
|
|
if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
|
|
return (0);
|
|
error = 0;
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
if (P_SHOULDSTOP(p) ||
|
|
((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
|
|
if (p->p_flag & P_SINGLE_EXIT)
|
|
error = EINTR;
|
|
else
|
|
error = ERESTART;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Wake up threads waiting on an userland object.
|
|
*/
|
|
|
|
static int
|
|
umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
|
|
{
|
|
struct umtxq_chain *uc;
|
|
struct umtxq_queue *uh;
|
|
struct umtx_q *uq;
|
|
int ret;
|
|
|
|
ret = 0;
|
|
uc = umtxq_getchain(key);
|
|
UMTXQ_LOCKED_ASSERT(uc);
|
|
uh = umtxq_queue_lookup(key, q);
|
|
if (uh != NULL) {
|
|
while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
|
|
umtxq_remove_queue(uq, q);
|
|
wakeup(uq);
|
|
if (++ret >= n_wake)
|
|
return (ret);
|
|
}
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
|
|
/*
|
|
* Wake up specified thread.
|
|
*/
|
|
static inline void
|
|
umtxq_signal_thread(struct umtx_q *uq)
|
|
{
|
|
struct umtxq_chain *uc;
|
|
|
|
uc = umtxq_getchain(&uq->uq_key);
|
|
UMTXQ_LOCKED_ASSERT(uc);
|
|
umtxq_remove(uq);
|
|
wakeup(uq);
|
|
}
|
|
|
|
static inline int
|
|
tstohz(const struct timespec *tsp)
|
|
{
|
|
struct timeval tv;
|
|
|
|
TIMESPEC_TO_TIMEVAL(&tv, tsp);
|
|
return tvtohz(&tv);
|
|
}
|
|
|
|
static void
|
|
abs_timeout_init(struct abs_timeout *timo, int clockid, int absolute,
|
|
const struct timespec *timeout)
|
|
{
|
|
|
|
timo->clockid = clockid;
|
|
if (!absolute) {
|
|
kern_clock_gettime(curthread, clockid, &timo->end);
|
|
timo->cur = timo->end;
|
|
timespecadd(&timo->end, timeout);
|
|
} else {
|
|
timo->end = *timeout;
|
|
kern_clock_gettime(curthread, clockid, &timo->cur);
|
|
}
|
|
}
|
|
|
|
static void
|
|
abs_timeout_init2(struct abs_timeout *timo, const struct _umtx_time *umtxtime)
|
|
{
|
|
|
|
abs_timeout_init(timo, umtxtime->_clockid,
|
|
(umtxtime->_flags & UMTX_ABSTIME) != 0, &umtxtime->_timeout);
|
|
}
|
|
|
|
static inline void
|
|
abs_timeout_update(struct abs_timeout *timo)
|
|
{
|
|
|
|
kern_clock_gettime(curthread, timo->clockid, &timo->cur);
|
|
}
|
|
|
|
static int
|
|
abs_timeout_gethz(struct abs_timeout *timo)
|
|
{
|
|
struct timespec tts;
|
|
|
|
if (timespeccmp(&timo->end, &timo->cur, <=))
|
|
return (-1);
|
|
tts = timo->end;
|
|
timespecsub(&tts, &timo->cur);
|
|
return (tstohz(&tts));
|
|
}
|
|
|
|
static uint32_t
|
|
umtx_unlock_val(uint32_t flags, bool rb)
|
|
{
|
|
|
|
if (rb)
|
|
return (UMUTEX_RB_OWNERDEAD);
|
|
else if ((flags & UMUTEX_NONCONSISTENT) != 0)
|
|
return (UMUTEX_RB_NOTRECOV);
|
|
else
|
|
return (UMUTEX_UNOWNED);
|
|
|
|
}
|
|
|
|
/*
|
|
* Put thread into sleep state, before sleeping, check if
|
|
* thread was removed from umtx queue.
|
|
*/
|
|
static inline int
|
|
umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *abstime)
|
|
{
|
|
struct umtxq_chain *uc;
|
|
int error, timo;
|
|
|
|
uc = umtxq_getchain(&uq->uq_key);
|
|
UMTXQ_LOCKED_ASSERT(uc);
|
|
for (;;) {
|
|
if (!(uq->uq_flags & UQF_UMTXQ))
|
|
return (0);
|
|
if (abstime != NULL) {
|
|
timo = abs_timeout_gethz(abstime);
|
|
if (timo < 0)
|
|
return (ETIMEDOUT);
|
|
} else
|
|
timo = 0;
|
|
error = msleep(uq, &uc->uc_lock, PCATCH | PDROP, wmesg, timo);
|
|
if (error != EWOULDBLOCK) {
|
|
umtxq_lock(&uq->uq_key);
|
|
break;
|
|
}
|
|
if (abstime != NULL)
|
|
abs_timeout_update(abstime);
|
|
umtxq_lock(&uq->uq_key);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Convert userspace address into unique logical address.
|
|
*/
|
|
int
|
|
umtx_key_get(const void *addr, int type, int share, struct umtx_key *key)
|
|
{
|
|
struct thread *td = curthread;
|
|
vm_map_t map;
|
|
vm_map_entry_t entry;
|
|
vm_pindex_t pindex;
|
|
vm_prot_t prot;
|
|
boolean_t wired;
|
|
|
|
key->type = type;
|
|
if (share == THREAD_SHARE) {
|
|
key->shared = 0;
|
|
key->info.private.vs = td->td_proc->p_vmspace;
|
|
key->info.private.addr = (uintptr_t)addr;
|
|
} else {
|
|
MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
|
|
map = &td->td_proc->p_vmspace->vm_map;
|
|
if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
|
|
&entry, &key->info.shared.object, &pindex, &prot,
|
|
&wired) != KERN_SUCCESS) {
|
|
return (EFAULT);
|
|
}
|
|
|
|
if ((share == PROCESS_SHARE) ||
|
|
(share == AUTO_SHARE &&
|
|
VM_INHERIT_SHARE == entry->inheritance)) {
|
|
key->shared = 1;
|
|
key->info.shared.offset = (vm_offset_t)addr -
|
|
entry->start + entry->offset;
|
|
vm_object_reference(key->info.shared.object);
|
|
} else {
|
|
key->shared = 0;
|
|
key->info.private.vs = td->td_proc->p_vmspace;
|
|
key->info.private.addr = (uintptr_t)addr;
|
|
}
|
|
vm_map_lookup_done(map, entry);
|
|
}
|
|
|
|
umtxq_hash(key);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Release key.
|
|
*/
|
|
void
|
|
umtx_key_release(struct umtx_key *key)
|
|
{
|
|
if (key->shared)
|
|
vm_object_deallocate(key->info.shared.object);
|
|
}
|
|
|
|
/*
|
|
* Fetch and compare value, sleep on the address if value is not changed.
|
|
*/
|
|
static int
|
|
do_wait(struct thread *td, void *addr, u_long id,
|
|
struct _umtx_time *timeout, int compat32, int is_private)
|
|
{
|
|
struct abs_timeout timo;
|
|
struct umtx_q *uq;
|
|
u_long tmp;
|
|
uint32_t tmp32;
|
|
int error = 0;
|
|
|
|
uq = td->td_umtxq;
|
|
if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
|
|
is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
|
|
return (error);
|
|
|
|
if (timeout != NULL)
|
|
abs_timeout_init2(&timo, timeout);
|
|
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_insert(uq);
|
|
umtxq_unlock(&uq->uq_key);
|
|
if (compat32 == 0) {
|
|
error = fueword(addr, &tmp);
|
|
if (error != 0)
|
|
error = EFAULT;
|
|
} else {
|
|
error = fueword32(addr, &tmp32);
|
|
if (error == 0)
|
|
tmp = tmp32;
|
|
else
|
|
error = EFAULT;
|
|
}
|
|
umtxq_lock(&uq->uq_key);
|
|
if (error == 0) {
|
|
if (tmp == id)
|
|
error = umtxq_sleep(uq, "uwait", timeout == NULL ?
|
|
NULL : &timo);
|
|
if ((uq->uq_flags & UQF_UMTXQ) == 0)
|
|
error = 0;
|
|
else
|
|
umtxq_remove(uq);
|
|
} else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
|
|
umtxq_remove(uq);
|
|
}
|
|
umtxq_unlock(&uq->uq_key);
|
|
umtx_key_release(&uq->uq_key);
|
|
if (error == ERESTART)
|
|
error = EINTR;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Wake up threads sleeping on the specified address.
|
|
*/
|
|
int
|
|
kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
|
|
{
|
|
struct umtx_key key;
|
|
int ret;
|
|
|
|
if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
|
|
is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
|
|
return (ret);
|
|
umtxq_lock(&key);
|
|
umtxq_signal(&key, n_wake);
|
|
umtxq_unlock(&key);
|
|
umtx_key_release(&key);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
|
|
*/
|
|
static int
|
|
do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags,
|
|
struct _umtx_time *timeout, int mode)
|
|
{
|
|
struct abs_timeout timo;
|
|
struct umtx_q *uq;
|
|
uint32_t owner, old, id;
|
|
int error, rv;
|
|
|
|
id = td->td_tid;
|
|
uq = td->td_umtxq;
|
|
error = 0;
|
|
if (timeout != NULL)
|
|
abs_timeout_init2(&timo, timeout);
|
|
|
|
/*
|
|
* Care must be exercised when dealing with umtx structure. It
|
|
* can fault on any access.
|
|
*/
|
|
for (;;) {
|
|
rv = fueword32(&m->m_owner, &owner);
|
|
if (rv == -1)
|
|
return (EFAULT);
|
|
if (mode == _UMUTEX_WAIT) {
|
|
if (owner == UMUTEX_UNOWNED ||
|
|
owner == UMUTEX_CONTESTED ||
|
|
owner == UMUTEX_RB_OWNERDEAD ||
|
|
owner == UMUTEX_RB_NOTRECOV)
|
|
return (0);
|
|
} else {
|
|
/*
|
|
* Robust mutex terminated. Kernel duty is to
|
|
* return EOWNERDEAD to the userspace. The
|
|
* umutex.m_flags UMUTEX_NONCONSISTENT is set
|
|
* by the common userspace code.
|
|
*/
|
|
if (owner == UMUTEX_RB_OWNERDEAD) {
|
|
rv = casueword32(&m->m_owner,
|
|
UMUTEX_RB_OWNERDEAD, &owner,
|
|
id | UMUTEX_CONTESTED);
|
|
if (rv == -1)
|
|
return (EFAULT);
|
|
if (owner == UMUTEX_RB_OWNERDEAD)
|
|
return (EOWNERDEAD); /* success */
|
|
rv = umtxq_check_susp(td);
|
|
if (rv != 0)
|
|
return (rv);
|
|
continue;
|
|
}
|
|
if (owner == UMUTEX_RB_NOTRECOV)
|
|
return (ENOTRECOVERABLE);
|
|
|
|
|
|
/*
|
|
* Try the uncontested case. This should be
|
|
* done in userland.
|
|
*/
|
|
rv = casueword32(&m->m_owner, UMUTEX_UNOWNED,
|
|
&owner, id);
|
|
/* The address was invalid. */
|
|
if (rv == -1)
|
|
return (EFAULT);
|
|
|
|
/* The acquire succeeded. */
|
|
if (owner == UMUTEX_UNOWNED)
|
|
return (0);
|
|
|
|
/*
|
|
* If no one owns it but it is contested try
|
|
* to acquire it.
|
|
*/
|
|
if (owner == UMUTEX_CONTESTED) {
|
|
rv = casueword32(&m->m_owner,
|
|
UMUTEX_CONTESTED, &owner,
|
|
id | UMUTEX_CONTESTED);
|
|
/* The address was invalid. */
|
|
if (rv == -1)
|
|
return (EFAULT);
|
|
|
|
if (owner == UMUTEX_CONTESTED)
|
|
return (0);
|
|
|
|
rv = umtxq_check_susp(td);
|
|
if (rv != 0)
|
|
return (rv);
|
|
|
|
/*
|
|
* If this failed the lock has
|
|
* changed, restart.
|
|
*/
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (mode == _UMUTEX_TRY)
|
|
return (EBUSY);
|
|
|
|
/*
|
|
* If we caught a signal, we have retried and now
|
|
* exit immediately.
|
|
*/
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
|
|
GET_SHARE(flags), &uq->uq_key)) != 0)
|
|
return (error);
|
|
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_busy(&uq->uq_key);
|
|
umtxq_insert(uq);
|
|
umtxq_unlock(&uq->uq_key);
|
|
|
|
/*
|
|
* Set the contested bit so that a release in user space
|
|
* knows to use the system call for unlock. If this fails
|
|
* either some one else has acquired the lock or it has been
|
|
* released.
|
|
*/
|
|
rv = casueword32(&m->m_owner, owner, &old,
|
|
owner | UMUTEX_CONTESTED);
|
|
|
|
/* The address was invalid. */
|
|
if (rv == -1) {
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_remove(uq);
|
|
umtxq_unbusy(&uq->uq_key);
|
|
umtxq_unlock(&uq->uq_key);
|
|
umtx_key_release(&uq->uq_key);
|
|
return (EFAULT);
|
|
}
|
|
|
|
/*
|
|
* We set the contested bit, sleep. Otherwise the lock changed
|
|
* and we need to retry or we lost a race to the thread
|
|
* unlocking the umtx.
|
|
*/
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_unbusy(&uq->uq_key);
|
|
if (old == owner)
|
|
error = umtxq_sleep(uq, "umtxn", timeout == NULL ?
|
|
NULL : &timo);
|
|
umtxq_remove(uq);
|
|
umtxq_unlock(&uq->uq_key);
|
|
umtx_key_release(&uq->uq_key);
|
|
|
|
if (error == 0)
|
|
error = umtxq_check_susp(td);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
|
|
*/
|
|
static int
|
|
do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
|
|
{
|
|
struct umtx_key key;
|
|
uint32_t owner, old, id, newlock;
|
|
int error, count;
|
|
|
|
id = td->td_tid;
|
|
/*
|
|
* Make sure we own this mtx.
|
|
*/
|
|
error = fueword32(&m->m_owner, &owner);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
|
|
if ((owner & ~UMUTEX_CONTESTED) != id)
|
|
return (EPERM);
|
|
|
|
newlock = umtx_unlock_val(flags, rb);
|
|
if ((owner & UMUTEX_CONTESTED) == 0) {
|
|
error = casueword32(&m->m_owner, owner, &old, newlock);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
if (old == owner)
|
|
return (0);
|
|
owner = old;
|
|
}
|
|
|
|
/* We should only ever be in here for contested locks */
|
|
if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
|
|
&key)) != 0)
|
|
return (error);
|
|
|
|
umtxq_lock(&key);
|
|
umtxq_busy(&key);
|
|
count = umtxq_count(&key);
|
|
umtxq_unlock(&key);
|
|
|
|
/*
|
|
* When unlocking the umtx, it must be marked as unowned if
|
|
* there is zero or one thread only waiting for it.
|
|
* Otherwise, it must be marked as contested.
|
|
*/
|
|
if (count > 1)
|
|
newlock |= UMUTEX_CONTESTED;
|
|
error = casueword32(&m->m_owner, owner, &old, newlock);
|
|
umtxq_lock(&key);
|
|
umtxq_signal(&key, 1);
|
|
umtxq_unbusy(&key);
|
|
umtxq_unlock(&key);
|
|
umtx_key_release(&key);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
if (old != owner)
|
|
return (EINVAL);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check if the mutex is available and wake up a waiter,
|
|
* only for simple mutex.
|
|
*/
|
|
static int
|
|
do_wake_umutex(struct thread *td, struct umutex *m)
|
|
{
|
|
struct umtx_key key;
|
|
uint32_t owner;
|
|
uint32_t flags;
|
|
int error;
|
|
int count;
|
|
|
|
error = fueword32(&m->m_owner, &owner);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
|
|
if ((owner & ~UMUTEX_CONTESTED) != 0 && owner != UMUTEX_RB_OWNERDEAD &&
|
|
owner != UMUTEX_RB_NOTRECOV)
|
|
return (0);
|
|
|
|
error = fueword32(&m->m_flags, &flags);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
|
|
/* We should only ever be in here for contested locks */
|
|
if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
|
|
&key)) != 0)
|
|
return (error);
|
|
|
|
umtxq_lock(&key);
|
|
umtxq_busy(&key);
|
|
count = umtxq_count(&key);
|
|
umtxq_unlock(&key);
|
|
|
|
if (count <= 1 && owner != UMUTEX_RB_OWNERDEAD &&
|
|
owner != UMUTEX_RB_NOTRECOV) {
|
|
error = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
|
|
UMUTEX_UNOWNED);
|
|
if (error == -1)
|
|
error = EFAULT;
|
|
}
|
|
|
|
umtxq_lock(&key);
|
|
if (error == 0 && count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
|
|
owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
|
|
umtxq_signal(&key, 1);
|
|
umtxq_unbusy(&key);
|
|
umtxq_unlock(&key);
|
|
umtx_key_release(&key);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Check if the mutex has waiters and tries to fix contention bit.
|
|
*/
|
|
static int
|
|
do_wake2_umutex(struct thread *td, struct umutex *m, uint32_t flags)
|
|
{
|
|
struct umtx_key key;
|
|
uint32_t owner, old;
|
|
int type;
|
|
int error;
|
|
int count;
|
|
|
|
switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT |
|
|
UMUTEX_ROBUST)) {
|
|
case 0:
|
|
case UMUTEX_ROBUST:
|
|
type = TYPE_NORMAL_UMUTEX;
|
|
break;
|
|
case UMUTEX_PRIO_INHERIT:
|
|
type = TYPE_PI_UMUTEX;
|
|
break;
|
|
case (UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST):
|
|
type = TYPE_PI_ROBUST_UMUTEX;
|
|
break;
|
|
case UMUTEX_PRIO_PROTECT:
|
|
type = TYPE_PP_UMUTEX;
|
|
break;
|
|
case (UMUTEX_PRIO_PROTECT | UMUTEX_ROBUST):
|
|
type = TYPE_PP_ROBUST_UMUTEX;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
if ((error = umtx_key_get(m, type, GET_SHARE(flags), &key)) != 0)
|
|
return (error);
|
|
|
|
owner = 0;
|
|
umtxq_lock(&key);
|
|
umtxq_busy(&key);
|
|
count = umtxq_count(&key);
|
|
umtxq_unlock(&key);
|
|
/*
|
|
* Only repair contention bit if there is a waiter, this means the mutex
|
|
* is still being referenced by userland code, otherwise don't update
|
|
* any memory.
|
|
*/
|
|
if (count > 1) {
|
|
error = fueword32(&m->m_owner, &owner);
|
|
if (error == -1)
|
|
error = EFAULT;
|
|
while (error == 0 && (owner & UMUTEX_CONTESTED) == 0) {
|
|
error = casueword32(&m->m_owner, owner, &old,
|
|
owner | UMUTEX_CONTESTED);
|
|
if (error == -1) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
if (old == owner)
|
|
break;
|
|
owner = old;
|
|
error = umtxq_check_susp(td);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
} else if (count == 1) {
|
|
error = fueword32(&m->m_owner, &owner);
|
|
if (error == -1)
|
|
error = EFAULT;
|
|
while (error == 0 && (owner & ~UMUTEX_CONTESTED) != 0 &&
|
|
(owner & UMUTEX_CONTESTED) == 0) {
|
|
error = casueword32(&m->m_owner, owner, &old,
|
|
owner | UMUTEX_CONTESTED);
|
|
if (error == -1) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
if (old == owner)
|
|
break;
|
|
owner = old;
|
|
error = umtxq_check_susp(td);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
}
|
|
umtxq_lock(&key);
|
|
if (error == EFAULT) {
|
|
umtxq_signal(&key, INT_MAX);
|
|
} else if (count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
|
|
owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
|
|
umtxq_signal(&key, 1);
|
|
umtxq_unbusy(&key);
|
|
umtxq_unlock(&key);
|
|
umtx_key_release(&key);
|
|
return (error);
|
|
}
|
|
|
|
static inline struct umtx_pi *
|
|
umtx_pi_alloc(int flags)
|
|
{
|
|
struct umtx_pi *pi;
|
|
|
|
pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
|
|
TAILQ_INIT(&pi->pi_blocked);
|
|
atomic_add_int(&umtx_pi_allocated, 1);
|
|
return (pi);
|
|
}
|
|
|
|
static inline void
|
|
umtx_pi_free(struct umtx_pi *pi)
|
|
{
|
|
uma_zfree(umtx_pi_zone, pi);
|
|
atomic_add_int(&umtx_pi_allocated, -1);
|
|
}
|
|
|
|
/*
|
|
* Adjust the thread's position on a pi_state after its priority has been
|
|
* changed.
|
|
*/
|
|
static int
|
|
umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
|
|
{
|
|
struct umtx_q *uq, *uq1, *uq2;
|
|
struct thread *td1;
|
|
|
|
mtx_assert(&umtx_lock, MA_OWNED);
|
|
if (pi == NULL)
|
|
return (0);
|
|
|
|
uq = td->td_umtxq;
|
|
|
|
/*
|
|
* Check if the thread needs to be moved on the blocked chain.
|
|
* It needs to be moved if either its priority is lower than
|
|
* the previous thread or higher than the next thread.
|
|
*/
|
|
uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
|
|
uq2 = TAILQ_NEXT(uq, uq_lockq);
|
|
if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
|
|
(uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
|
|
/*
|
|
* Remove thread from blocked chain and determine where
|
|
* it should be moved to.
|
|
*/
|
|
TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
|
|
TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
|
|
td1 = uq1->uq_thread;
|
|
MPASS(td1->td_proc->p_magic == P_MAGIC);
|
|
if (UPRI(td1) > UPRI(td))
|
|
break;
|
|
}
|
|
|
|
if (uq1 == NULL)
|
|
TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
|
|
else
|
|
TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
static struct umtx_pi *
|
|
umtx_pi_next(struct umtx_pi *pi)
|
|
{
|
|
struct umtx_q *uq_owner;
|
|
|
|
if (pi->pi_owner == NULL)
|
|
return (NULL);
|
|
uq_owner = pi->pi_owner->td_umtxq;
|
|
if (uq_owner == NULL)
|
|
return (NULL);
|
|
return (uq_owner->uq_pi_blocked);
|
|
}
|
|
|
|
/*
|
|
* Floyd's Cycle-Finding Algorithm.
|
|
*/
|
|
static bool
|
|
umtx_pi_check_loop(struct umtx_pi *pi)
|
|
{
|
|
struct umtx_pi *pi1; /* fast iterator */
|
|
|
|
mtx_assert(&umtx_lock, MA_OWNED);
|
|
if (pi == NULL)
|
|
return (false);
|
|
pi1 = pi;
|
|
for (;;) {
|
|
pi = umtx_pi_next(pi);
|
|
if (pi == NULL)
|
|
break;
|
|
pi1 = umtx_pi_next(pi1);
|
|
if (pi1 == NULL)
|
|
break;
|
|
pi1 = umtx_pi_next(pi1);
|
|
if (pi1 == NULL)
|
|
break;
|
|
if (pi == pi1)
|
|
return (true);
|
|
}
|
|
return (false);
|
|
}
|
|
|
|
/*
|
|
* Propagate priority when a thread is blocked on POSIX
|
|
* PI mutex.
|
|
*/
|
|
static void
|
|
umtx_propagate_priority(struct thread *td)
|
|
{
|
|
struct umtx_q *uq;
|
|
struct umtx_pi *pi;
|
|
int pri;
|
|
|
|
mtx_assert(&umtx_lock, MA_OWNED);
|
|
pri = UPRI(td);
|
|
uq = td->td_umtxq;
|
|
pi = uq->uq_pi_blocked;
|
|
if (pi == NULL)
|
|
return;
|
|
if (umtx_pi_check_loop(pi))
|
|
return;
|
|
|
|
for (;;) {
|
|
td = pi->pi_owner;
|
|
if (td == NULL || td == curthread)
|
|
return;
|
|
|
|
MPASS(td->td_proc != NULL);
|
|
MPASS(td->td_proc->p_magic == P_MAGIC);
|
|
|
|
thread_lock(td);
|
|
if (td->td_lend_user_pri > pri)
|
|
sched_lend_user_prio(td, pri);
|
|
else {
|
|
thread_unlock(td);
|
|
break;
|
|
}
|
|
thread_unlock(td);
|
|
|
|
/*
|
|
* Pick up the lock that td is blocked on.
|
|
*/
|
|
uq = td->td_umtxq;
|
|
pi = uq->uq_pi_blocked;
|
|
if (pi == NULL)
|
|
break;
|
|
/* Resort td on the list if needed. */
|
|
umtx_pi_adjust_thread(pi, td);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unpropagate priority for a PI mutex when a thread blocked on
|
|
* it is interrupted by signal or resumed by others.
|
|
*/
|
|
static void
|
|
umtx_repropagate_priority(struct umtx_pi *pi)
|
|
{
|
|
struct umtx_q *uq, *uq_owner;
|
|
struct umtx_pi *pi2;
|
|
int pri;
|
|
|
|
mtx_assert(&umtx_lock, MA_OWNED);
|
|
|
|
if (umtx_pi_check_loop(pi))
|
|
return;
|
|
while (pi != NULL && pi->pi_owner != NULL) {
|
|
pri = PRI_MAX;
|
|
uq_owner = pi->pi_owner->td_umtxq;
|
|
|
|
TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
|
|
uq = TAILQ_FIRST(&pi2->pi_blocked);
|
|
if (uq != NULL) {
|
|
if (pri > UPRI(uq->uq_thread))
|
|
pri = UPRI(uq->uq_thread);
|
|
}
|
|
}
|
|
|
|
if (pri > uq_owner->uq_inherited_pri)
|
|
pri = uq_owner->uq_inherited_pri;
|
|
thread_lock(pi->pi_owner);
|
|
sched_lend_user_prio(pi->pi_owner, pri);
|
|
thread_unlock(pi->pi_owner);
|
|
if ((pi = uq_owner->uq_pi_blocked) != NULL)
|
|
umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Insert a PI mutex into owned list.
|
|
*/
|
|
static void
|
|
umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
|
|
{
|
|
struct umtx_q *uq_owner;
|
|
|
|
uq_owner = owner->td_umtxq;
|
|
mtx_assert(&umtx_lock, MA_OWNED);
|
|
if (pi->pi_owner != NULL)
|
|
panic("pi_owner != NULL");
|
|
pi->pi_owner = owner;
|
|
TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
|
|
}
|
|
|
|
|
|
/*
|
|
* Disown a PI mutex, and remove it from the owned list.
|
|
*/
|
|
static void
|
|
umtx_pi_disown(struct umtx_pi *pi)
|
|
{
|
|
|
|
mtx_assert(&umtx_lock, MA_OWNED);
|
|
TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested, pi, pi_link);
|
|
pi->pi_owner = NULL;
|
|
}
|
|
|
|
/*
|
|
* Claim ownership of a PI mutex.
|
|
*/
|
|
static int
|
|
umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
|
|
{
|
|
struct umtx_q *uq;
|
|
int pri;
|
|
|
|
mtx_lock(&umtx_lock);
|
|
if (pi->pi_owner == owner) {
|
|
mtx_unlock(&umtx_lock);
|
|
return (0);
|
|
}
|
|
|
|
if (pi->pi_owner != NULL) {
|
|
/*
|
|
* userland may have already messed the mutex, sigh.
|
|
*/
|
|
mtx_unlock(&umtx_lock);
|
|
return (EPERM);
|
|
}
|
|
umtx_pi_setowner(pi, owner);
|
|
uq = TAILQ_FIRST(&pi->pi_blocked);
|
|
if (uq != NULL) {
|
|
pri = UPRI(uq->uq_thread);
|
|
thread_lock(owner);
|
|
if (pri < UPRI(owner))
|
|
sched_lend_user_prio(owner, pri);
|
|
thread_unlock(owner);
|
|
}
|
|
mtx_unlock(&umtx_lock);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Adjust a thread's order position in its blocked PI mutex,
|
|
* this may result new priority propagating process.
|
|
*/
|
|
void
|
|
umtx_pi_adjust(struct thread *td, u_char oldpri)
|
|
{
|
|
struct umtx_q *uq;
|
|
struct umtx_pi *pi;
|
|
|
|
uq = td->td_umtxq;
|
|
mtx_lock(&umtx_lock);
|
|
/*
|
|
* Pick up the lock that td is blocked on.
|
|
*/
|
|
pi = uq->uq_pi_blocked;
|
|
if (pi != NULL) {
|
|
umtx_pi_adjust_thread(pi, td);
|
|
umtx_repropagate_priority(pi);
|
|
}
|
|
mtx_unlock(&umtx_lock);
|
|
}
|
|
|
|
/*
|
|
* Sleep on a PI mutex.
|
|
*/
|
|
static int
|
|
umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi, uint32_t owner,
|
|
const char *wmesg, struct abs_timeout *timo, bool shared)
|
|
{
|
|
struct umtxq_chain *uc;
|
|
struct thread *td, *td1;
|
|
struct umtx_q *uq1;
|
|
int error, pri;
|
|
|
|
error = 0;
|
|
td = uq->uq_thread;
|
|
KASSERT(td == curthread, ("inconsistent uq_thread"));
|
|
uc = umtxq_getchain(&uq->uq_key);
|
|
UMTXQ_LOCKED_ASSERT(uc);
|
|
KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));
|
|
umtxq_insert(uq);
|
|
mtx_lock(&umtx_lock);
|
|
if (pi->pi_owner == NULL) {
|
|
mtx_unlock(&umtx_lock);
|
|
td1 = tdfind(owner, shared ? -1 : td->td_proc->p_pid);
|
|
mtx_lock(&umtx_lock);
|
|
if (td1 != NULL) {
|
|
if (pi->pi_owner == NULL)
|
|
umtx_pi_setowner(pi, td1);
|
|
PROC_UNLOCK(td1->td_proc);
|
|
}
|
|
}
|
|
|
|
TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
|
|
pri = UPRI(uq1->uq_thread);
|
|
if (pri > UPRI(td))
|
|
break;
|
|
}
|
|
|
|
if (uq1 != NULL)
|
|
TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
|
|
else
|
|
TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
|
|
|
|
uq->uq_pi_blocked = pi;
|
|
thread_lock(td);
|
|
td->td_flags |= TDF_UPIBLOCKED;
|
|
thread_unlock(td);
|
|
umtx_propagate_priority(td);
|
|
mtx_unlock(&umtx_lock);
|
|
umtxq_unbusy(&uq->uq_key);
|
|
|
|
error = umtxq_sleep(uq, wmesg, timo);
|
|
umtxq_remove(uq);
|
|
|
|
mtx_lock(&umtx_lock);
|
|
uq->uq_pi_blocked = NULL;
|
|
thread_lock(td);
|
|
td->td_flags &= ~TDF_UPIBLOCKED;
|
|
thread_unlock(td);
|
|
TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
|
|
umtx_repropagate_priority(pi);
|
|
mtx_unlock(&umtx_lock);
|
|
umtxq_unlock(&uq->uq_key);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Add reference count for a PI mutex.
|
|
*/
|
|
static void
|
|
umtx_pi_ref(struct umtx_pi *pi)
|
|
{
|
|
struct umtxq_chain *uc;
|
|
|
|
uc = umtxq_getchain(&pi->pi_key);
|
|
UMTXQ_LOCKED_ASSERT(uc);
|
|
pi->pi_refcount++;
|
|
}
|
|
|
|
/*
|
|
* Decrease reference count for a PI mutex, if the counter
|
|
* is decreased to zero, its memory space is freed.
|
|
*/
|
|
static void
|
|
umtx_pi_unref(struct umtx_pi *pi)
|
|
{
|
|
struct umtxq_chain *uc;
|
|
|
|
uc = umtxq_getchain(&pi->pi_key);
|
|
UMTXQ_LOCKED_ASSERT(uc);
|
|
KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
|
|
if (--pi->pi_refcount == 0) {
|
|
mtx_lock(&umtx_lock);
|
|
if (pi->pi_owner != NULL)
|
|
umtx_pi_disown(pi);
|
|
KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
|
|
("blocked queue not empty"));
|
|
mtx_unlock(&umtx_lock);
|
|
TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
|
|
umtx_pi_free(pi);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find a PI mutex in hash table.
|
|
*/
|
|
static struct umtx_pi *
|
|
umtx_pi_lookup(struct umtx_key *key)
|
|
{
|
|
struct umtxq_chain *uc;
|
|
struct umtx_pi *pi;
|
|
|
|
uc = umtxq_getchain(key);
|
|
UMTXQ_LOCKED_ASSERT(uc);
|
|
|
|
TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
|
|
if (umtx_key_match(&pi->pi_key, key)) {
|
|
return (pi);
|
|
}
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Insert a PI mutex into hash table.
|
|
*/
|
|
static inline void
|
|
umtx_pi_insert(struct umtx_pi *pi)
|
|
{
|
|
struct umtxq_chain *uc;
|
|
|
|
uc = umtxq_getchain(&pi->pi_key);
|
|
UMTXQ_LOCKED_ASSERT(uc);
|
|
TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
|
|
}
|
|
|
|
/*
|
|
* Lock a PI mutex.
|
|
*/
|
|
static int
|
|
do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags,
|
|
struct _umtx_time *timeout, int try)
|
|
{
|
|
struct abs_timeout timo;
|
|
struct umtx_q *uq;
|
|
struct umtx_pi *pi, *new_pi;
|
|
uint32_t id, old_owner, owner, old;
|
|
int error, rv;
|
|
|
|
id = td->td_tid;
|
|
uq = td->td_umtxq;
|
|
|
|
if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
|
|
TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
|
|
&uq->uq_key)) != 0)
|
|
return (error);
|
|
|
|
if (timeout != NULL)
|
|
abs_timeout_init2(&timo, timeout);
|
|
|
|
umtxq_lock(&uq->uq_key);
|
|
pi = umtx_pi_lookup(&uq->uq_key);
|
|
if (pi == NULL) {
|
|
new_pi = umtx_pi_alloc(M_NOWAIT);
|
|
if (new_pi == NULL) {
|
|
umtxq_unlock(&uq->uq_key);
|
|
new_pi = umtx_pi_alloc(M_WAITOK);
|
|
umtxq_lock(&uq->uq_key);
|
|
pi = umtx_pi_lookup(&uq->uq_key);
|
|
if (pi != NULL) {
|
|
umtx_pi_free(new_pi);
|
|
new_pi = NULL;
|
|
}
|
|
}
|
|
if (new_pi != NULL) {
|
|
new_pi->pi_key = uq->uq_key;
|
|
umtx_pi_insert(new_pi);
|
|
pi = new_pi;
|
|
}
|
|
}
|
|
umtx_pi_ref(pi);
|
|
umtxq_unlock(&uq->uq_key);
|
|
|
|
/*
|
|
* Care must be exercised when dealing with umtx structure. It
|
|
* can fault on any access.
|
|
*/
|
|
for (;;) {
|
|
/*
|
|
* Try the uncontested case. This should be done in userland.
|
|
*/
|
|
rv = casueword32(&m->m_owner, UMUTEX_UNOWNED, &owner, id);
|
|
/* The address was invalid. */
|
|
if (rv == -1) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
|
|
/* The acquire succeeded. */
|
|
if (owner == UMUTEX_UNOWNED) {
|
|
error = 0;
|
|
break;
|
|
}
|
|
|
|
if (owner == UMUTEX_RB_NOTRECOV) {
|
|
error = ENOTRECOVERABLE;
|
|
break;
|
|
}
|
|
|
|
/* If no one owns it but it is contested try to acquire it. */
|
|
if (owner == UMUTEX_CONTESTED || owner == UMUTEX_RB_OWNERDEAD) {
|
|
old_owner = owner;
|
|
rv = casueword32(&m->m_owner, owner, &owner,
|
|
id | UMUTEX_CONTESTED);
|
|
/* The address was invalid. */
|
|
if (rv == -1) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
|
|
if (owner == old_owner) {
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_busy(&uq->uq_key);
|
|
error = umtx_pi_claim(pi, td);
|
|
umtxq_unbusy(&uq->uq_key);
|
|
umtxq_unlock(&uq->uq_key);
|
|
if (error != 0) {
|
|
/*
|
|
* Since we're going to return an
|
|
* error, restore the m_owner to its
|
|
* previous, unowned state to avoid
|
|
* compounding the problem.
|
|
*/
|
|
(void)casuword32(&m->m_owner,
|
|
id | UMUTEX_CONTESTED,
|
|
old_owner);
|
|
}
|
|
if (error == 0 &&
|
|
old_owner == UMUTEX_RB_OWNERDEAD)
|
|
error = EOWNERDEAD;
|
|
break;
|
|
}
|
|
|
|
error = umtxq_check_susp(td);
|
|
if (error != 0)
|
|
break;
|
|
|
|
/* If this failed the lock has changed, restart. */
|
|
continue;
|
|
}
|
|
|
|
if ((owner & ~UMUTEX_CONTESTED) == id) {
|
|
error = EDEADLK;
|
|
break;
|
|
}
|
|
|
|
if (try != 0) {
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we caught a signal, we have retried and now
|
|
* exit immediately.
|
|
*/
|
|
if (error != 0)
|
|
break;
|
|
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_busy(&uq->uq_key);
|
|
umtxq_unlock(&uq->uq_key);
|
|
|
|
/*
|
|
* Set the contested bit so that a release in user space
|
|
* knows to use the system call for unlock. If this fails
|
|
* either some one else has acquired the lock or it has been
|
|
* released.
|
|
*/
|
|
rv = casueword32(&m->m_owner, owner, &old, owner |
|
|
UMUTEX_CONTESTED);
|
|
|
|
/* The address was invalid. */
|
|
if (rv == -1) {
|
|
umtxq_unbusy_unlocked(&uq->uq_key);
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
|
|
umtxq_lock(&uq->uq_key);
|
|
/*
|
|
* We set the contested bit, sleep. Otherwise the lock changed
|
|
* and we need to retry or we lost a race to the thread
|
|
* unlocking the umtx. Note that the UMUTEX_RB_OWNERDEAD
|
|
* value for owner is impossible there.
|
|
*/
|
|
if (old == owner) {
|
|
error = umtxq_sleep_pi(uq, pi,
|
|
owner & ~UMUTEX_CONTESTED,
|
|
"umtxpi", timeout == NULL ? NULL : &timo,
|
|
(flags & USYNC_PROCESS_SHARED) != 0);
|
|
if (error != 0)
|
|
continue;
|
|
} else {
|
|
umtxq_unbusy(&uq->uq_key);
|
|
umtxq_unlock(&uq->uq_key);
|
|
}
|
|
|
|
error = umtxq_check_susp(td);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
|
|
umtxq_lock(&uq->uq_key);
|
|
umtx_pi_unref(pi);
|
|
umtxq_unlock(&uq->uq_key);
|
|
|
|
umtx_key_release(&uq->uq_key);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Unlock a PI mutex.
|
|
*/
|
|
static int
|
|
do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
|
|
{
|
|
struct umtx_key key;
|
|
struct umtx_q *uq_first, *uq_first2, *uq_me;
|
|
struct umtx_pi *pi, *pi2;
|
|
uint32_t id, new_owner, old, owner;
|
|
int count, error, pri;
|
|
|
|
id = td->td_tid;
|
|
/*
|
|
* Make sure we own this mtx.
|
|
*/
|
|
error = fueword32(&m->m_owner, &owner);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
|
|
if ((owner & ~UMUTEX_CONTESTED) != id)
|
|
return (EPERM);
|
|
|
|
new_owner = umtx_unlock_val(flags, rb);
|
|
|
|
/* This should be done in userland */
|
|
if ((owner & UMUTEX_CONTESTED) == 0) {
|
|
error = casueword32(&m->m_owner, owner, &old, new_owner);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
if (old == owner)
|
|
return (0);
|
|
owner = old;
|
|
}
|
|
|
|
/* We should only ever be in here for contested locks */
|
|
if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
|
|
TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
|
|
&key)) != 0)
|
|
return (error);
|
|
|
|
umtxq_lock(&key);
|
|
umtxq_busy(&key);
|
|
count = umtxq_count_pi(&key, &uq_first);
|
|
if (uq_first != NULL) {
|
|
mtx_lock(&umtx_lock);
|
|
pi = uq_first->uq_pi_blocked;
|
|
KASSERT(pi != NULL, ("pi == NULL?"));
|
|
if (pi->pi_owner != td && !(rb && pi->pi_owner == NULL)) {
|
|
mtx_unlock(&umtx_lock);
|
|
umtxq_unbusy(&key);
|
|
umtxq_unlock(&key);
|
|
umtx_key_release(&key);
|
|
/* userland messed the mutex */
|
|
return (EPERM);
|
|
}
|
|
uq_me = td->td_umtxq;
|
|
if (pi->pi_owner == td)
|
|
umtx_pi_disown(pi);
|
|
/* get highest priority thread which is still sleeping. */
|
|
uq_first = TAILQ_FIRST(&pi->pi_blocked);
|
|
while (uq_first != NULL &&
|
|
(uq_first->uq_flags & UQF_UMTXQ) == 0) {
|
|
uq_first = TAILQ_NEXT(uq_first, uq_lockq);
|
|
}
|
|
pri = PRI_MAX;
|
|
TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
|
|
uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
|
|
if (uq_first2 != NULL) {
|
|
if (pri > UPRI(uq_first2->uq_thread))
|
|
pri = UPRI(uq_first2->uq_thread);
|
|
}
|
|
}
|
|
thread_lock(td);
|
|
sched_lend_user_prio(td, pri);
|
|
thread_unlock(td);
|
|
mtx_unlock(&umtx_lock);
|
|
if (uq_first)
|
|
umtxq_signal_thread(uq_first);
|
|
} else {
|
|
pi = umtx_pi_lookup(&key);
|
|
/*
|
|
* A umtx_pi can exist if a signal or timeout removed the
|
|
* last waiter from the umtxq, but there is still
|
|
* a thread in do_lock_pi() holding the umtx_pi.
|
|
*/
|
|
if (pi != NULL) {
|
|
/*
|
|
* The umtx_pi can be unowned, such as when a thread
|
|
* has just entered do_lock_pi(), allocated the
|
|
* umtx_pi, and unlocked the umtxq.
|
|
* If the current thread owns it, it must disown it.
|
|
*/
|
|
mtx_lock(&umtx_lock);
|
|
if (pi->pi_owner == td)
|
|
umtx_pi_disown(pi);
|
|
mtx_unlock(&umtx_lock);
|
|
}
|
|
}
|
|
umtxq_unlock(&key);
|
|
|
|
/*
|
|
* When unlocking the umtx, it must be marked as unowned if
|
|
* there is zero or one thread only waiting for it.
|
|
* Otherwise, it must be marked as contested.
|
|
*/
|
|
|
|
if (count > 1)
|
|
new_owner |= UMUTEX_CONTESTED;
|
|
error = casueword32(&m->m_owner, owner, &old, new_owner);
|
|
|
|
umtxq_unbusy_unlocked(&key);
|
|
umtx_key_release(&key);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
if (old != owner)
|
|
return (EINVAL);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Lock a PP mutex.
|
|
*/
|
|
static int
|
|
do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags,
|
|
struct _umtx_time *timeout, int try)
|
|
{
|
|
struct abs_timeout timo;
|
|
struct umtx_q *uq, *uq2;
|
|
struct umtx_pi *pi;
|
|
uint32_t ceiling;
|
|
uint32_t owner, id;
|
|
int error, pri, old_inherited_pri, su, rv;
|
|
|
|
id = td->td_tid;
|
|
uq = td->td_umtxq;
|
|
if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
|
|
TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
|
|
&uq->uq_key)) != 0)
|
|
return (error);
|
|
|
|
if (timeout != NULL)
|
|
abs_timeout_init2(&timo, timeout);
|
|
|
|
su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
|
|
for (;;) {
|
|
old_inherited_pri = uq->uq_inherited_pri;
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_busy(&uq->uq_key);
|
|
umtxq_unlock(&uq->uq_key);
|
|
|
|
rv = fueword32(&m->m_ceilings[0], &ceiling);
|
|
if (rv == -1) {
|
|
error = EFAULT;
|
|
goto out;
|
|
}
|
|
ceiling = RTP_PRIO_MAX - ceiling;
|
|
if (ceiling > RTP_PRIO_MAX) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
mtx_lock(&umtx_lock);
|
|
if (UPRI(td) < PRI_MIN_REALTIME + ceiling) {
|
|
mtx_unlock(&umtx_lock);
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
if (su && PRI_MIN_REALTIME + ceiling < uq->uq_inherited_pri) {
|
|
uq->uq_inherited_pri = PRI_MIN_REALTIME + ceiling;
|
|
thread_lock(td);
|
|
if (uq->uq_inherited_pri < UPRI(td))
|
|
sched_lend_user_prio(td, uq->uq_inherited_pri);
|
|
thread_unlock(td);
|
|
}
|
|
mtx_unlock(&umtx_lock);
|
|
|
|
rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
|
|
id | UMUTEX_CONTESTED);
|
|
/* The address was invalid. */
|
|
if (rv == -1) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
|
|
if (owner == UMUTEX_CONTESTED) {
|
|
error = 0;
|
|
break;
|
|
} else if (owner == UMUTEX_RB_OWNERDEAD) {
|
|
rv = casueword32(&m->m_owner, UMUTEX_RB_OWNERDEAD,
|
|
&owner, id | UMUTEX_CONTESTED);
|
|
if (rv == -1) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
if (owner == UMUTEX_RB_OWNERDEAD) {
|
|
error = EOWNERDEAD; /* success */
|
|
break;
|
|
}
|
|
error = 0;
|
|
} else if (owner == UMUTEX_RB_NOTRECOV) {
|
|
error = ENOTRECOVERABLE;
|
|
break;
|
|
}
|
|
|
|
if (try != 0) {
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we caught a signal, we have retried and now
|
|
* exit immediately.
|
|
*/
|
|
if (error != 0)
|
|
break;
|
|
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_insert(uq);
|
|
umtxq_unbusy(&uq->uq_key);
|
|
error = umtxq_sleep(uq, "umtxpp", timeout == NULL ?
|
|
NULL : &timo);
|
|
umtxq_remove(uq);
|
|
umtxq_unlock(&uq->uq_key);
|
|
|
|
mtx_lock(&umtx_lock);
|
|
uq->uq_inherited_pri = old_inherited_pri;
|
|
pri = PRI_MAX;
|
|
TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
|
|
uq2 = TAILQ_FIRST(&pi->pi_blocked);
|
|
if (uq2 != NULL) {
|
|
if (pri > UPRI(uq2->uq_thread))
|
|
pri = UPRI(uq2->uq_thread);
|
|
}
|
|
}
|
|
if (pri > uq->uq_inherited_pri)
|
|
pri = uq->uq_inherited_pri;
|
|
thread_lock(td);
|
|
sched_lend_user_prio(td, pri);
|
|
thread_unlock(td);
|
|
mtx_unlock(&umtx_lock);
|
|
}
|
|
|
|
if (error != 0 && error != EOWNERDEAD) {
|
|
mtx_lock(&umtx_lock);
|
|
uq->uq_inherited_pri = old_inherited_pri;
|
|
pri = PRI_MAX;
|
|
TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
|
|
uq2 = TAILQ_FIRST(&pi->pi_blocked);
|
|
if (uq2 != NULL) {
|
|
if (pri > UPRI(uq2->uq_thread))
|
|
pri = UPRI(uq2->uq_thread);
|
|
}
|
|
}
|
|
if (pri > uq->uq_inherited_pri)
|
|
pri = uq->uq_inherited_pri;
|
|
thread_lock(td);
|
|
sched_lend_user_prio(td, pri);
|
|
thread_unlock(td);
|
|
mtx_unlock(&umtx_lock);
|
|
}
|
|
|
|
out:
|
|
umtxq_unbusy_unlocked(&uq->uq_key);
|
|
umtx_key_release(&uq->uq_key);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Unlock a PP mutex.
|
|
*/
|
|
static int
|
|
do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
|
|
{
|
|
struct umtx_key key;
|
|
struct umtx_q *uq, *uq2;
|
|
struct umtx_pi *pi;
|
|
uint32_t id, owner, rceiling;
|
|
int error, pri, new_inherited_pri, su;
|
|
|
|
id = td->td_tid;
|
|
uq = td->td_umtxq;
|
|
su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
|
|
|
|
/*
|
|
* Make sure we own this mtx.
|
|
*/
|
|
error = fueword32(&m->m_owner, &owner);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
|
|
if ((owner & ~UMUTEX_CONTESTED) != id)
|
|
return (EPERM);
|
|
|
|
error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if (rceiling == -1)
|
|
new_inherited_pri = PRI_MAX;
|
|
else {
|
|
rceiling = RTP_PRIO_MAX - rceiling;
|
|
if (rceiling > RTP_PRIO_MAX)
|
|
return (EINVAL);
|
|
new_inherited_pri = PRI_MIN_REALTIME + rceiling;
|
|
}
|
|
|
|
if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
|
|
TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
|
|
&key)) != 0)
|
|
return (error);
|
|
umtxq_lock(&key);
|
|
umtxq_busy(&key);
|
|
umtxq_unlock(&key);
|
|
/*
|
|
* For priority protected mutex, always set unlocked state
|
|
* to UMUTEX_CONTESTED, so that userland always enters kernel
|
|
* to lock the mutex, it is necessary because thread priority
|
|
* has to be adjusted for such mutex.
|
|
*/
|
|
error = suword32(&m->m_owner, umtx_unlock_val(flags, rb) |
|
|
UMUTEX_CONTESTED);
|
|
|
|
umtxq_lock(&key);
|
|
if (error == 0)
|
|
umtxq_signal(&key, 1);
|
|
umtxq_unbusy(&key);
|
|
umtxq_unlock(&key);
|
|
|
|
if (error == -1)
|
|
error = EFAULT;
|
|
else {
|
|
mtx_lock(&umtx_lock);
|
|
if (su != 0)
|
|
uq->uq_inherited_pri = new_inherited_pri;
|
|
pri = PRI_MAX;
|
|
TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
|
|
uq2 = TAILQ_FIRST(&pi->pi_blocked);
|
|
if (uq2 != NULL) {
|
|
if (pri > UPRI(uq2->uq_thread))
|
|
pri = UPRI(uq2->uq_thread);
|
|
}
|
|
}
|
|
if (pri > uq->uq_inherited_pri)
|
|
pri = uq->uq_inherited_pri;
|
|
thread_lock(td);
|
|
sched_lend_user_prio(td, pri);
|
|
thread_unlock(td);
|
|
mtx_unlock(&umtx_lock);
|
|
}
|
|
umtx_key_release(&key);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
|
|
uint32_t *old_ceiling)
|
|
{
|
|
struct umtx_q *uq;
|
|
uint32_t flags, id, owner, save_ceiling;
|
|
int error, rv, rv1;
|
|
|
|
error = fueword32(&m->m_flags, &flags);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
if ((flags & UMUTEX_PRIO_PROTECT) == 0)
|
|
return (EINVAL);
|
|
if (ceiling > RTP_PRIO_MAX)
|
|
return (EINVAL);
|
|
id = td->td_tid;
|
|
uq = td->td_umtxq;
|
|
if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
|
|
TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
|
|
&uq->uq_key)) != 0)
|
|
return (error);
|
|
for (;;) {
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_busy(&uq->uq_key);
|
|
umtxq_unlock(&uq->uq_key);
|
|
|
|
rv = fueword32(&m->m_ceilings[0], &save_ceiling);
|
|
if (rv == -1) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
|
|
rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
|
|
id | UMUTEX_CONTESTED);
|
|
if (rv == -1) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
|
|
if (owner == UMUTEX_CONTESTED) {
|
|
rv = suword32(&m->m_ceilings[0], ceiling);
|
|
rv1 = suword32(&m->m_owner, UMUTEX_CONTESTED);
|
|
error = (rv == 0 && rv1 == 0) ? 0: EFAULT;
|
|
break;
|
|
}
|
|
|
|
if ((owner & ~UMUTEX_CONTESTED) == id) {
|
|
rv = suword32(&m->m_ceilings[0], ceiling);
|
|
error = rv == 0 ? 0 : EFAULT;
|
|
break;
|
|
}
|
|
|
|
if (owner == UMUTEX_RB_OWNERDEAD) {
|
|
error = EOWNERDEAD;
|
|
break;
|
|
} else if (owner == UMUTEX_RB_NOTRECOV) {
|
|
error = ENOTRECOVERABLE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we caught a signal, we have retried and now
|
|
* exit immediately.
|
|
*/
|
|
if (error != 0)
|
|
break;
|
|
|
|
/*
|
|
* We set the contested bit, sleep. Otherwise the lock changed
|
|
* and we need to retry or we lost a race to the thread
|
|
* unlocking the umtx.
|
|
*/
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_insert(uq);
|
|
umtxq_unbusy(&uq->uq_key);
|
|
error = umtxq_sleep(uq, "umtxpp", NULL);
|
|
umtxq_remove(uq);
|
|
umtxq_unlock(&uq->uq_key);
|
|
}
|
|
umtxq_lock(&uq->uq_key);
|
|
if (error == 0)
|
|
umtxq_signal(&uq->uq_key, INT_MAX);
|
|
umtxq_unbusy(&uq->uq_key);
|
|
umtxq_unlock(&uq->uq_key);
|
|
umtx_key_release(&uq->uq_key);
|
|
if (error == 0 && old_ceiling != NULL) {
|
|
rv = suword32(old_ceiling, save_ceiling);
|
|
error = rv == 0 ? 0 : EFAULT;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Lock a userland POSIX mutex.
|
|
*/
|
|
static int
|
|
do_lock_umutex(struct thread *td, struct umutex *m,
|
|
struct _umtx_time *timeout, int mode)
|
|
{
|
|
uint32_t flags;
|
|
int error;
|
|
|
|
error = fueword32(&m->m_flags, &flags);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
|
|
switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
|
|
case 0:
|
|
error = do_lock_normal(td, m, flags, timeout, mode);
|
|
break;
|
|
case UMUTEX_PRIO_INHERIT:
|
|
error = do_lock_pi(td, m, flags, timeout, mode);
|
|
break;
|
|
case UMUTEX_PRIO_PROTECT:
|
|
error = do_lock_pp(td, m, flags, timeout, mode);
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
if (timeout == NULL) {
|
|
if (error == EINTR && mode != _UMUTEX_WAIT)
|
|
error = ERESTART;
|
|
} else {
|
|
/* Timed-locking is not restarted. */
|
|
if (error == ERESTART)
|
|
error = EINTR;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Unlock a userland POSIX mutex.
|
|
*/
|
|
static int
|
|
do_unlock_umutex(struct thread *td, struct umutex *m, bool rb)
|
|
{
|
|
uint32_t flags;
|
|
int error;
|
|
|
|
error = fueword32(&m->m_flags, &flags);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
|
|
switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
|
|
case 0:
|
|
return (do_unlock_normal(td, m, flags, rb));
|
|
case UMUTEX_PRIO_INHERIT:
|
|
return (do_unlock_pi(td, m, flags, rb));
|
|
case UMUTEX_PRIO_PROTECT:
|
|
return (do_unlock_pp(td, m, flags, rb));
|
|
}
|
|
|
|
return (EINVAL);
|
|
}
|
|
|
|
static int
|
|
do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
|
|
struct timespec *timeout, u_long wflags)
|
|
{
|
|
struct abs_timeout timo;
|
|
struct umtx_q *uq;
|
|
uint32_t flags, clockid, hasw;
|
|
int error;
|
|
|
|
uq = td->td_umtxq;
|
|
error = fueword32(&cv->c_flags, &flags);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if ((wflags & CVWAIT_CLOCKID) != 0) {
|
|
error = fueword32(&cv->c_clockid, &clockid);
|
|
if (error == -1) {
|
|
umtx_key_release(&uq->uq_key);
|
|
return (EFAULT);
|
|
}
|
|
if (clockid < CLOCK_REALTIME ||
|
|
clockid >= CLOCK_THREAD_CPUTIME_ID) {
|
|
/* hmm, only HW clock id will work. */
|
|
umtx_key_release(&uq->uq_key);
|
|
return (EINVAL);
|
|
}
|
|
} else {
|
|
clockid = CLOCK_REALTIME;
|
|
}
|
|
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_busy(&uq->uq_key);
|
|
umtxq_insert(uq);
|
|
umtxq_unlock(&uq->uq_key);
|
|
|
|
/*
|
|
* Set c_has_waiters to 1 before releasing user mutex, also
|
|
* don't modify cache line when unnecessary.
|
|
*/
|
|
error = fueword32(&cv->c_has_waiters, &hasw);
|
|
if (error == 0 && hasw == 0)
|
|
suword32(&cv->c_has_waiters, 1);
|
|
|
|
umtxq_unbusy_unlocked(&uq->uq_key);
|
|
|
|
error = do_unlock_umutex(td, m, false);
|
|
|
|
if (timeout != NULL)
|
|
abs_timeout_init(&timo, clockid, (wflags & CVWAIT_ABSTIME) != 0,
|
|
timeout);
|
|
|
|
umtxq_lock(&uq->uq_key);
|
|
if (error == 0) {
|
|
error = umtxq_sleep(uq, "ucond", timeout == NULL ?
|
|
NULL : &timo);
|
|
}
|
|
|
|
if ((uq->uq_flags & UQF_UMTXQ) == 0)
|
|
error = 0;
|
|
else {
|
|
/*
|
|
* This must be timeout,interrupted by signal or
|
|
* surprious wakeup, clear c_has_waiter flag when
|
|
* necessary.
|
|
*/
|
|
umtxq_busy(&uq->uq_key);
|
|
if ((uq->uq_flags & UQF_UMTXQ) != 0) {
|
|
int oldlen = uq->uq_cur_queue->length;
|
|
umtxq_remove(uq);
|
|
if (oldlen == 1) {
|
|
umtxq_unlock(&uq->uq_key);
|
|
suword32(&cv->c_has_waiters, 0);
|
|
umtxq_lock(&uq->uq_key);
|
|
}
|
|
}
|
|
umtxq_unbusy(&uq->uq_key);
|
|
if (error == ERESTART)
|
|
error = EINTR;
|
|
}
|
|
|
|
umtxq_unlock(&uq->uq_key);
|
|
umtx_key_release(&uq->uq_key);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Signal a userland condition variable.
|
|
*/
|
|
static int
|
|
do_cv_signal(struct thread *td, struct ucond *cv)
|
|
{
|
|
struct umtx_key key;
|
|
int error, cnt, nwake;
|
|
uint32_t flags;
|
|
|
|
error = fueword32(&cv->c_flags, &flags);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
|
|
return (error);
|
|
umtxq_lock(&key);
|
|
umtxq_busy(&key);
|
|
cnt = umtxq_count(&key);
|
|
nwake = umtxq_signal(&key, 1);
|
|
if (cnt <= nwake) {
|
|
umtxq_unlock(&key);
|
|
error = suword32(&cv->c_has_waiters, 0);
|
|
if (error == -1)
|
|
error = EFAULT;
|
|
umtxq_lock(&key);
|
|
}
|
|
umtxq_unbusy(&key);
|
|
umtxq_unlock(&key);
|
|
umtx_key_release(&key);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
do_cv_broadcast(struct thread *td, struct ucond *cv)
|
|
{
|
|
struct umtx_key key;
|
|
int error;
|
|
uint32_t flags;
|
|
|
|
error = fueword32(&cv->c_flags, &flags);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
|
|
return (error);
|
|
|
|
umtxq_lock(&key);
|
|
umtxq_busy(&key);
|
|
umtxq_signal(&key, INT_MAX);
|
|
umtxq_unlock(&key);
|
|
|
|
error = suword32(&cv->c_has_waiters, 0);
|
|
if (error == -1)
|
|
error = EFAULT;
|
|
|
|
umtxq_unbusy_unlocked(&key);
|
|
|
|
umtx_key_release(&key);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag, struct _umtx_time *timeout)
|
|
{
|
|
struct abs_timeout timo;
|
|
struct umtx_q *uq;
|
|
uint32_t flags, wrflags;
|
|
int32_t state, oldstate;
|
|
int32_t blocked_readers;
|
|
int error, rv;
|
|
|
|
uq = td->td_umtxq;
|
|
error = fueword32(&rwlock->rw_flags, &flags);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if (timeout != NULL)
|
|
abs_timeout_init2(&timo, timeout);
|
|
|
|
wrflags = URWLOCK_WRITE_OWNER;
|
|
if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
|
|
wrflags |= URWLOCK_WRITE_WAITERS;
|
|
|
|
for (;;) {
|
|
rv = fueword32(&rwlock->rw_state, &state);
|
|
if (rv == -1) {
|
|
umtx_key_release(&uq->uq_key);
|
|
return (EFAULT);
|
|
}
|
|
|
|
/* try to lock it */
|
|
while (!(state & wrflags)) {
|
|
if (__predict_false(URWLOCK_READER_COUNT(state) == URWLOCK_MAX_READERS)) {
|
|
umtx_key_release(&uq->uq_key);
|
|
return (EAGAIN);
|
|
}
|
|
rv = casueword32(&rwlock->rw_state, state,
|
|
&oldstate, state + 1);
|
|
if (rv == -1) {
|
|
umtx_key_release(&uq->uq_key);
|
|
return (EFAULT);
|
|
}
|
|
if (oldstate == state) {
|
|
umtx_key_release(&uq->uq_key);
|
|
return (0);
|
|
}
|
|
error = umtxq_check_susp(td);
|
|
if (error != 0)
|
|
break;
|
|
state = oldstate;
|
|
}
|
|
|
|
if (error)
|
|
break;
|
|
|
|
/* grab monitor lock */
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_busy(&uq->uq_key);
|
|
umtxq_unlock(&uq->uq_key);
|
|
|
|
/*
|
|
* re-read the state, in case it changed between the try-lock above
|
|
* and the check below
|
|
*/
|
|
rv = fueword32(&rwlock->rw_state, &state);
|
|
if (rv == -1)
|
|
error = EFAULT;
|
|
|
|
/* set read contention bit */
|
|
while (error == 0 && (state & wrflags) &&
|
|
!(state & URWLOCK_READ_WAITERS)) {
|
|
rv = casueword32(&rwlock->rw_state, state,
|
|
&oldstate, state | URWLOCK_READ_WAITERS);
|
|
if (rv == -1) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
if (oldstate == state)
|
|
goto sleep;
|
|
state = oldstate;
|
|
error = umtxq_check_susp(td);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
if (error != 0) {
|
|
umtxq_unbusy_unlocked(&uq->uq_key);
|
|
break;
|
|
}
|
|
|
|
/* state is changed while setting flags, restart */
|
|
if (!(state & wrflags)) {
|
|
umtxq_unbusy_unlocked(&uq->uq_key);
|
|
error = umtxq_check_susp(td);
|
|
if (error != 0)
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
sleep:
|
|
/* contention bit is set, before sleeping, increase read waiter count */
|
|
rv = fueword32(&rwlock->rw_blocked_readers,
|
|
&blocked_readers);
|
|
if (rv == -1) {
|
|
umtxq_unbusy_unlocked(&uq->uq_key);
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
suword32(&rwlock->rw_blocked_readers, blocked_readers+1);
|
|
|
|
while (state & wrflags) {
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_insert(uq);
|
|
umtxq_unbusy(&uq->uq_key);
|
|
|
|
error = umtxq_sleep(uq, "urdlck", timeout == NULL ?
|
|
NULL : &timo);
|
|
|
|
umtxq_busy(&uq->uq_key);
|
|
umtxq_remove(uq);
|
|
umtxq_unlock(&uq->uq_key);
|
|
if (error)
|
|
break;
|
|
rv = fueword32(&rwlock->rw_state, &state);
|
|
if (rv == -1) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* decrease read waiter count, and may clear read contention bit */
|
|
rv = fueword32(&rwlock->rw_blocked_readers,
|
|
&blocked_readers);
|
|
if (rv == -1) {
|
|
umtxq_unbusy_unlocked(&uq->uq_key);
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
suword32(&rwlock->rw_blocked_readers, blocked_readers-1);
|
|
if (blocked_readers == 1) {
|
|
rv = fueword32(&rwlock->rw_state, &state);
|
|
if (rv == -1)
|
|
error = EFAULT;
|
|
while (error == 0) {
|
|
rv = casueword32(&rwlock->rw_state, state,
|
|
&oldstate, state & ~URWLOCK_READ_WAITERS);
|
|
if (rv == -1) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
if (oldstate == state)
|
|
break;
|
|
state = oldstate;
|
|
error = umtxq_check_susp(td);
|
|
}
|
|
}
|
|
|
|
umtxq_unbusy_unlocked(&uq->uq_key);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
umtx_key_release(&uq->uq_key);
|
|
if (error == ERESTART)
|
|
error = EINTR;
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
do_rw_wrlock(struct thread *td, struct urwlock *rwlock, struct _umtx_time *timeout)
|
|
{
|
|
struct abs_timeout timo;
|
|
struct umtx_q *uq;
|
|
uint32_t flags;
|
|
int32_t state, oldstate;
|
|
int32_t blocked_writers;
|
|
int32_t blocked_readers;
|
|
int error, rv;
|
|
|
|
uq = td->td_umtxq;
|
|
error = fueword32(&rwlock->rw_flags, &flags);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if (timeout != NULL)
|
|
abs_timeout_init2(&timo, timeout);
|
|
|
|
blocked_readers = 0;
|
|
for (;;) {
|
|
rv = fueword32(&rwlock->rw_state, &state);
|
|
if (rv == -1) {
|
|
umtx_key_release(&uq->uq_key);
|
|
return (EFAULT);
|
|
}
|
|
while (!(state & URWLOCK_WRITE_OWNER) && URWLOCK_READER_COUNT(state) == 0) {
|
|
rv = casueword32(&rwlock->rw_state, state,
|
|
&oldstate, state | URWLOCK_WRITE_OWNER);
|
|
if (rv == -1) {
|
|
umtx_key_release(&uq->uq_key);
|
|
return (EFAULT);
|
|
}
|
|
if (oldstate == state) {
|
|
umtx_key_release(&uq->uq_key);
|
|
return (0);
|
|
}
|
|
state = oldstate;
|
|
error = umtxq_check_susp(td);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
|
|
if (error) {
|
|
if (!(state & (URWLOCK_WRITE_OWNER|URWLOCK_WRITE_WAITERS)) &&
|
|
blocked_readers != 0) {
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_busy(&uq->uq_key);
|
|
umtxq_signal_queue(&uq->uq_key, INT_MAX, UMTX_SHARED_QUEUE);
|
|
umtxq_unbusy(&uq->uq_key);
|
|
umtxq_unlock(&uq->uq_key);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
/* grab monitor lock */
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_busy(&uq->uq_key);
|
|
umtxq_unlock(&uq->uq_key);
|
|
|
|
/*
|
|
* re-read the state, in case it changed between the try-lock above
|
|
* and the check below
|
|
*/
|
|
rv = fueword32(&rwlock->rw_state, &state);
|
|
if (rv == -1)
|
|
error = EFAULT;
|
|
|
|
while (error == 0 && ((state & URWLOCK_WRITE_OWNER) ||
|
|
URWLOCK_READER_COUNT(state) != 0) &&
|
|
(state & URWLOCK_WRITE_WAITERS) == 0) {
|
|
rv = casueword32(&rwlock->rw_state, state,
|
|
&oldstate, state | URWLOCK_WRITE_WAITERS);
|
|
if (rv == -1) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
if (oldstate == state)
|
|
goto sleep;
|
|
state = oldstate;
|
|
error = umtxq_check_susp(td);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
if (error != 0) {
|
|
umtxq_unbusy_unlocked(&uq->uq_key);
|
|
break;
|
|
}
|
|
|
|
if (!(state & URWLOCK_WRITE_OWNER) && URWLOCK_READER_COUNT(state) == 0) {
|
|
umtxq_unbusy_unlocked(&uq->uq_key);
|
|
error = umtxq_check_susp(td);
|
|
if (error != 0)
|
|
break;
|
|
continue;
|
|
}
|
|
sleep:
|
|
rv = fueword32(&rwlock->rw_blocked_writers,
|
|
&blocked_writers);
|
|
if (rv == -1) {
|
|
umtxq_unbusy_unlocked(&uq->uq_key);
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
suword32(&rwlock->rw_blocked_writers, blocked_writers+1);
|
|
|
|
while ((state & URWLOCK_WRITE_OWNER) || URWLOCK_READER_COUNT(state) != 0) {
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
|
|
umtxq_unbusy(&uq->uq_key);
|
|
|
|
error = umtxq_sleep(uq, "uwrlck", timeout == NULL ?
|
|
NULL : &timo);
|
|
|
|
umtxq_busy(&uq->uq_key);
|
|
umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
|
|
umtxq_unlock(&uq->uq_key);
|
|
if (error)
|
|
break;
|
|
rv = fueword32(&rwlock->rw_state, &state);
|
|
if (rv == -1) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
rv = fueword32(&rwlock->rw_blocked_writers,
|
|
&blocked_writers);
|
|
if (rv == -1) {
|
|
umtxq_unbusy_unlocked(&uq->uq_key);
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
suword32(&rwlock->rw_blocked_writers, blocked_writers-1);
|
|
if (blocked_writers == 1) {
|
|
rv = fueword32(&rwlock->rw_state, &state);
|
|
if (rv == -1) {
|
|
umtxq_unbusy_unlocked(&uq->uq_key);
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
for (;;) {
|
|
rv = casueword32(&rwlock->rw_state, state,
|
|
&oldstate, state & ~URWLOCK_WRITE_WAITERS);
|
|
if (rv == -1) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
if (oldstate == state)
|
|
break;
|
|
state = oldstate;
|
|
error = umtxq_check_susp(td);
|
|
/*
|
|
* We are leaving the URWLOCK_WRITE_WAITERS
|
|
* behind, but this should not harm the
|
|
* correctness.
|
|
*/
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
rv = fueword32(&rwlock->rw_blocked_readers,
|
|
&blocked_readers);
|
|
if (rv == -1) {
|
|
umtxq_unbusy_unlocked(&uq->uq_key);
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
} else
|
|
blocked_readers = 0;
|
|
|
|
umtxq_unbusy_unlocked(&uq->uq_key);
|
|
}
|
|
|
|
umtx_key_release(&uq->uq_key);
|
|
if (error == ERESTART)
|
|
error = EINTR;
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
do_rw_unlock(struct thread *td, struct urwlock *rwlock)
|
|
{
|
|
struct umtx_q *uq;
|
|
uint32_t flags;
|
|
int32_t state, oldstate;
|
|
int error, rv, q, count;
|
|
|
|
uq = td->td_umtxq;
|
|
error = fueword32(&rwlock->rw_flags, &flags);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
error = fueword32(&rwlock->rw_state, &state);
|
|
if (error == -1) {
|
|
error = EFAULT;
|
|
goto out;
|
|
}
|
|
if (state & URWLOCK_WRITE_OWNER) {
|
|
for (;;) {
|
|
rv = casueword32(&rwlock->rw_state, state,
|
|
&oldstate, state & ~URWLOCK_WRITE_OWNER);
|
|
if (rv == -1) {
|
|
error = EFAULT;
|
|
goto out;
|
|
}
|
|
if (oldstate != state) {
|
|
state = oldstate;
|
|
if (!(oldstate & URWLOCK_WRITE_OWNER)) {
|
|
error = EPERM;
|
|
goto out;
|
|
}
|
|
error = umtxq_check_susp(td);
|
|
if (error != 0)
|
|
goto out;
|
|
} else
|
|
break;
|
|
}
|
|
} else if (URWLOCK_READER_COUNT(state) != 0) {
|
|
for (;;) {
|
|
rv = casueword32(&rwlock->rw_state, state,
|
|
&oldstate, state - 1);
|
|
if (rv == -1) {
|
|
error = EFAULT;
|
|
goto out;
|
|
}
|
|
if (oldstate != state) {
|
|
state = oldstate;
|
|
if (URWLOCK_READER_COUNT(oldstate) == 0) {
|
|
error = EPERM;
|
|
goto out;
|
|
}
|
|
error = umtxq_check_susp(td);
|
|
if (error != 0)
|
|
goto out;
|
|
} else
|
|
break;
|
|
}
|
|
} else {
|
|
error = EPERM;
|
|
goto out;
|
|
}
|
|
|
|
count = 0;
|
|
|
|
if (!(flags & URWLOCK_PREFER_READER)) {
|
|
if (state & URWLOCK_WRITE_WAITERS) {
|
|
count = 1;
|
|
q = UMTX_EXCLUSIVE_QUEUE;
|
|
} else if (state & URWLOCK_READ_WAITERS) {
|
|
count = INT_MAX;
|
|
q = UMTX_SHARED_QUEUE;
|
|
}
|
|
} else {
|
|
if (state & URWLOCK_READ_WAITERS) {
|
|
count = INT_MAX;
|
|
q = UMTX_SHARED_QUEUE;
|
|
} else if (state & URWLOCK_WRITE_WAITERS) {
|
|
count = 1;
|
|
q = UMTX_EXCLUSIVE_QUEUE;
|
|
}
|
|
}
|
|
|
|
if (count) {
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_busy(&uq->uq_key);
|
|
umtxq_signal_queue(&uq->uq_key, count, q);
|
|
umtxq_unbusy(&uq->uq_key);
|
|
umtxq_unlock(&uq->uq_key);
|
|
}
|
|
out:
|
|
umtx_key_release(&uq->uq_key);
|
|
return (error);
|
|
}
|
|
|
|
#if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
|
|
static int
|
|
do_sem_wait(struct thread *td, struct _usem *sem, struct _umtx_time *timeout)
|
|
{
|
|
struct abs_timeout timo;
|
|
struct umtx_q *uq;
|
|
uint32_t flags, count, count1;
|
|
int error, rv;
|
|
|
|
uq = td->td_umtxq;
|
|
error = fueword32(&sem->_flags, &flags);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if (timeout != NULL)
|
|
abs_timeout_init2(&timo, timeout);
|
|
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_busy(&uq->uq_key);
|
|
umtxq_insert(uq);
|
|
umtxq_unlock(&uq->uq_key);
|
|
rv = casueword32(&sem->_has_waiters, 0, &count1, 1);
|
|
if (rv == 0)
|
|
rv = fueword32(&sem->_count, &count);
|
|
if (rv == -1 || count != 0) {
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_unbusy(&uq->uq_key);
|
|
umtxq_remove(uq);
|
|
umtxq_unlock(&uq->uq_key);
|
|
umtx_key_release(&uq->uq_key);
|
|
return (rv == -1 ? EFAULT : 0);
|
|
}
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_unbusy(&uq->uq_key);
|
|
|
|
error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
|
|
|
|
if ((uq->uq_flags & UQF_UMTXQ) == 0)
|
|
error = 0;
|
|
else {
|
|
umtxq_remove(uq);
|
|
/* A relative timeout cannot be restarted. */
|
|
if (error == ERESTART && timeout != NULL &&
|
|
(timeout->_flags & UMTX_ABSTIME) == 0)
|
|
error = EINTR;
|
|
}
|
|
umtxq_unlock(&uq->uq_key);
|
|
umtx_key_release(&uq->uq_key);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Signal a userland semaphore.
|
|
*/
|
|
static int
|
|
do_sem_wake(struct thread *td, struct _usem *sem)
|
|
{
|
|
struct umtx_key key;
|
|
int error, cnt;
|
|
uint32_t flags;
|
|
|
|
error = fueword32(&sem->_flags, &flags);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
|
|
return (error);
|
|
umtxq_lock(&key);
|
|
umtxq_busy(&key);
|
|
cnt = umtxq_count(&key);
|
|
if (cnt > 0) {
|
|
umtxq_signal(&key, 1);
|
|
/*
|
|
* Check if count is greater than 0, this means the memory is
|
|
* still being referenced by user code, so we can safely
|
|
* update _has_waiters flag.
|
|
*/
|
|
if (cnt == 1) {
|
|
umtxq_unlock(&key);
|
|
error = suword32(&sem->_has_waiters, 0);
|
|
umtxq_lock(&key);
|
|
if (error == -1)
|
|
error = EFAULT;
|
|
}
|
|
}
|
|
umtxq_unbusy(&key);
|
|
umtxq_unlock(&key);
|
|
umtx_key_release(&key);
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
do_sem2_wait(struct thread *td, struct _usem2 *sem, struct _umtx_time *timeout)
|
|
{
|
|
struct abs_timeout timo;
|
|
struct umtx_q *uq;
|
|
uint32_t count, flags;
|
|
int error, rv;
|
|
|
|
uq = td->td_umtxq;
|
|
flags = fuword32(&sem->_flags);
|
|
error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if (timeout != NULL)
|
|
abs_timeout_init2(&timo, timeout);
|
|
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_busy(&uq->uq_key);
|
|
umtxq_insert(uq);
|
|
umtxq_unlock(&uq->uq_key);
|
|
rv = fueword32(&sem->_count, &count);
|
|
if (rv == -1) {
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_unbusy(&uq->uq_key);
|
|
umtxq_remove(uq);
|
|
umtxq_unlock(&uq->uq_key);
|
|
umtx_key_release(&uq->uq_key);
|
|
return (EFAULT);
|
|
}
|
|
for (;;) {
|
|
if (USEM_COUNT(count) != 0) {
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_unbusy(&uq->uq_key);
|
|
umtxq_remove(uq);
|
|
umtxq_unlock(&uq->uq_key);
|
|
umtx_key_release(&uq->uq_key);
|
|
return (0);
|
|
}
|
|
if (count == USEM_HAS_WAITERS)
|
|
break;
|
|
rv = casueword32(&sem->_count, 0, &count, USEM_HAS_WAITERS);
|
|
if (rv == -1) {
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_unbusy(&uq->uq_key);
|
|
umtxq_remove(uq);
|
|
umtxq_unlock(&uq->uq_key);
|
|
umtx_key_release(&uq->uq_key);
|
|
return (EFAULT);
|
|
}
|
|
if (count == 0)
|
|
break;
|
|
}
|
|
umtxq_lock(&uq->uq_key);
|
|
umtxq_unbusy(&uq->uq_key);
|
|
|
|
error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
|
|
|
|
if ((uq->uq_flags & UQF_UMTXQ) == 0)
|
|
error = 0;
|
|
else {
|
|
umtxq_remove(uq);
|
|
/* A relative timeout cannot be restarted. */
|
|
if (error == ERESTART && timeout != NULL &&
|
|
(timeout->_flags & UMTX_ABSTIME) == 0)
|
|
error = EINTR;
|
|
}
|
|
umtxq_unlock(&uq->uq_key);
|
|
umtx_key_release(&uq->uq_key);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Signal a userland semaphore.
|
|
*/
|
|
static int
|
|
do_sem2_wake(struct thread *td, struct _usem2 *sem)
|
|
{
|
|
struct umtx_key key;
|
|
int error, cnt, rv;
|
|
uint32_t count, flags;
|
|
|
|
rv = fueword32(&sem->_flags, &flags);
|
|
if (rv == -1)
|
|
return (EFAULT);
|
|
if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
|
|
return (error);
|
|
umtxq_lock(&key);
|
|
umtxq_busy(&key);
|
|
cnt = umtxq_count(&key);
|
|
if (cnt > 0) {
|
|
umtxq_signal(&key, 1);
|
|
|
|
/*
|
|
* If this was the last sleeping thread, clear the waiters
|
|
* flag in _count.
|
|
*/
|
|
if (cnt == 1) {
|
|
umtxq_unlock(&key);
|
|
rv = fueword32(&sem->_count, &count);
|
|
while (rv != -1 && count & USEM_HAS_WAITERS)
|
|
rv = casueword32(&sem->_count, count, &count,
|
|
count & ~USEM_HAS_WAITERS);
|
|
if (rv == -1)
|
|
error = EFAULT;
|
|
umtxq_lock(&key);
|
|
}
|
|
}
|
|
umtxq_unbusy(&key);
|
|
umtxq_unlock(&key);
|
|
umtx_key_release(&key);
|
|
return (error);
|
|
}
|
|
|
|
inline int
|
|
umtx_copyin_timeout(const void *addr, struct timespec *tsp)
|
|
{
|
|
int error;
|
|
|
|
error = copyin(addr, tsp, sizeof(struct timespec));
|
|
if (error == 0) {
|
|
if (tsp->tv_sec < 0 ||
|
|
tsp->tv_nsec >= 1000000000 ||
|
|
tsp->tv_nsec < 0)
|
|
error = EINVAL;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static inline int
|
|
umtx_copyin_umtx_time(const void *addr, size_t size, struct _umtx_time *tp)
|
|
{
|
|
int error;
|
|
|
|
if (size <= sizeof(struct timespec)) {
|
|
tp->_clockid = CLOCK_REALTIME;
|
|
tp->_flags = 0;
|
|
error = copyin(addr, &tp->_timeout, sizeof(struct timespec));
|
|
} else
|
|
error = copyin(addr, tp, sizeof(struct _umtx_time));
|
|
if (error != 0)
|
|
return (error);
|
|
if (tp->_timeout.tv_sec < 0 ||
|
|
tp->_timeout.tv_nsec >= 1000000000 || tp->_timeout.tv_nsec < 0)
|
|
return (EINVAL);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
__umtx_op_unimpl(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
|
|
return (EOPNOTSUPP);
|
|
}
|
|
|
|
static int
|
|
__umtx_op_wait(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct _umtx_time timeout, *tm_p;
|
|
int error;
|
|
|
|
if (uap->uaddr2 == NULL)
|
|
tm_p = NULL;
|
|
else {
|
|
error = umtx_copyin_umtx_time(
|
|
uap->uaddr2, (size_t)uap->uaddr1, &timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
tm_p = &timeout;
|
|
}
|
|
return (do_wait(td, uap->obj, uap->val, tm_p, 0, 0));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct _umtx_time timeout, *tm_p;
|
|
int error;
|
|
|
|
if (uap->uaddr2 == NULL)
|
|
tm_p = NULL;
|
|
else {
|
|
error = umtx_copyin_umtx_time(
|
|
uap->uaddr2, (size_t)uap->uaddr1, &timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
tm_p = &timeout;
|
|
}
|
|
return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct _umtx_time *tm_p, timeout;
|
|
int error;
|
|
|
|
if (uap->uaddr2 == NULL)
|
|
tm_p = NULL;
|
|
else {
|
|
error = umtx_copyin_umtx_time(
|
|
uap->uaddr2, (size_t)uap->uaddr1, &timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
tm_p = &timeout;
|
|
}
|
|
return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_wake(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
|
|
return (kern_umtx_wake(td, uap->obj, uap->val, 0));
|
|
}
|
|
|
|
#define BATCH_SIZE 128
|
|
static int
|
|
__umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
char *uaddrs[BATCH_SIZE], **upp;
|
|
int count, error, i, pos, tocopy;
|
|
|
|
upp = (char **)uap->obj;
|
|
error = 0;
|
|
for (count = uap->val, pos = 0; count > 0; count -= tocopy,
|
|
pos += tocopy) {
|
|
tocopy = MIN(count, BATCH_SIZE);
|
|
error = copyin(upp + pos, uaddrs, tocopy * sizeof(char *));
|
|
if (error != 0)
|
|
break;
|
|
for (i = 0; i < tocopy; ++i)
|
|
kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
|
|
maybe_yield();
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
__umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
|
|
return (kern_umtx_wake(td, uap->obj, uap->val, 1));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct _umtx_time *tm_p, timeout;
|
|
int error;
|
|
|
|
/* Allow a null timespec (wait forever). */
|
|
if (uap->uaddr2 == NULL)
|
|
tm_p = NULL;
|
|
else {
|
|
error = umtx_copyin_umtx_time(
|
|
uap->uaddr2, (size_t)uap->uaddr1, &timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
tm_p = &timeout;
|
|
}
|
|
return (do_lock_umutex(td, uap->obj, tm_p, 0));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
|
|
return (do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct _umtx_time *tm_p, timeout;
|
|
int error;
|
|
|
|
/* Allow a null timespec (wait forever). */
|
|
if (uap->uaddr2 == NULL)
|
|
tm_p = NULL;
|
|
else {
|
|
error = umtx_copyin_umtx_time(
|
|
uap->uaddr2, (size_t)uap->uaddr1, &timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
tm_p = &timeout;
|
|
}
|
|
return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
|
|
return (do_wake_umutex(td, uap->obj));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
|
|
return (do_unlock_umutex(td, uap->obj, false));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
|
|
return (do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct timespec *ts, timeout;
|
|
int error;
|
|
|
|
/* Allow a null timespec (wait forever). */
|
|
if (uap->uaddr2 == NULL)
|
|
ts = NULL;
|
|
else {
|
|
error = umtx_copyin_timeout(uap->uaddr2, &timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
ts = &timeout;
|
|
}
|
|
return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
|
|
return (do_cv_signal(td, uap->obj));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
|
|
return (do_cv_broadcast(td, uap->obj));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct _umtx_time timeout;
|
|
int error;
|
|
|
|
/* Allow a null timespec (wait forever). */
|
|
if (uap->uaddr2 == NULL) {
|
|
error = do_rw_rdlock(td, uap->obj, uap->val, 0);
|
|
} else {
|
|
error = umtx_copyin_umtx_time(uap->uaddr2,
|
|
(size_t)uap->uaddr1, &timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
__umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct _umtx_time timeout;
|
|
int error;
|
|
|
|
/* Allow a null timespec (wait forever). */
|
|
if (uap->uaddr2 == NULL) {
|
|
error = do_rw_wrlock(td, uap->obj, 0);
|
|
} else {
|
|
error = umtx_copyin_umtx_time(uap->uaddr2,
|
|
(size_t)uap->uaddr1, &timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
error = do_rw_wrlock(td, uap->obj, &timeout);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
__umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
|
|
return (do_rw_unlock(td, uap->obj));
|
|
}
|
|
|
|
#if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
|
|
static int
|
|
__umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct _umtx_time *tm_p, timeout;
|
|
int error;
|
|
|
|
/* Allow a null timespec (wait forever). */
|
|
if (uap->uaddr2 == NULL)
|
|
tm_p = NULL;
|
|
else {
|
|
error = umtx_copyin_umtx_time(
|
|
uap->uaddr2, (size_t)uap->uaddr1, &timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
tm_p = &timeout;
|
|
}
|
|
return (do_sem_wait(td, uap->obj, tm_p));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
|
|
return (do_sem_wake(td, uap->obj));
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
__umtx_op_wake2_umutex(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
|
|
return (do_wake2_umutex(td, uap->obj, uap->val));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_sem2_wait(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct _umtx_time *tm_p, timeout;
|
|
int error;
|
|
|
|
/* Allow a null timespec (wait forever). */
|
|
if (uap->uaddr2 == NULL)
|
|
tm_p = NULL;
|
|
else {
|
|
error = umtx_copyin_umtx_time(
|
|
uap->uaddr2, (size_t)uap->uaddr1, &timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
tm_p = &timeout;
|
|
}
|
|
return (do_sem2_wait(td, uap->obj, tm_p));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_sem2_wake(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
|
|
return (do_sem2_wake(td, uap->obj));
|
|
}
|
|
|
|
#define USHM_OBJ_UMTX(o) \
|
|
((struct umtx_shm_obj_list *)(&(o)->umtx_data))
|
|
|
|
#define USHMF_REG_LINKED 0x0001
|
|
#define USHMF_OBJ_LINKED 0x0002
|
|
struct umtx_shm_reg {
|
|
TAILQ_ENTRY(umtx_shm_reg) ushm_reg_link;
|
|
LIST_ENTRY(umtx_shm_reg) ushm_obj_link;
|
|
struct umtx_key ushm_key;
|
|
struct ucred *ushm_cred;
|
|
struct shmfd *ushm_obj;
|
|
u_int ushm_refcnt;
|
|
u_int ushm_flags;
|
|
};
|
|
|
|
LIST_HEAD(umtx_shm_obj_list, umtx_shm_reg);
|
|
TAILQ_HEAD(umtx_shm_reg_head, umtx_shm_reg);
|
|
|
|
static uma_zone_t umtx_shm_reg_zone;
|
|
static struct umtx_shm_reg_head umtx_shm_registry[UMTX_CHAINS];
|
|
static struct mtx umtx_shm_lock;
|
|
static struct umtx_shm_reg_head umtx_shm_reg_delfree =
|
|
TAILQ_HEAD_INITIALIZER(umtx_shm_reg_delfree);
|
|
|
|
static void umtx_shm_free_reg(struct umtx_shm_reg *reg);
|
|
|
|
static void
|
|
umtx_shm_reg_delfree_tq(void *context __unused, int pending __unused)
|
|
{
|
|
struct umtx_shm_reg_head d;
|
|
struct umtx_shm_reg *reg, *reg1;
|
|
|
|
TAILQ_INIT(&d);
|
|
mtx_lock(&umtx_shm_lock);
|
|
TAILQ_CONCAT(&d, &umtx_shm_reg_delfree, ushm_reg_link);
|
|
mtx_unlock(&umtx_shm_lock);
|
|
TAILQ_FOREACH_SAFE(reg, &d, ushm_reg_link, reg1) {
|
|
TAILQ_REMOVE(&d, reg, ushm_reg_link);
|
|
umtx_shm_free_reg(reg);
|
|
}
|
|
}
|
|
|
|
static struct task umtx_shm_reg_delfree_task =
|
|
TASK_INITIALIZER(0, umtx_shm_reg_delfree_tq, NULL);
|
|
|
|
static struct umtx_shm_reg *
|
|
umtx_shm_find_reg_locked(const struct umtx_key *key)
|
|
{
|
|
struct umtx_shm_reg *reg;
|
|
struct umtx_shm_reg_head *reg_head;
|
|
|
|
KASSERT(key->shared, ("umtx_p_find_rg: private key"));
|
|
mtx_assert(&umtx_shm_lock, MA_OWNED);
|
|
reg_head = &umtx_shm_registry[key->hash];
|
|
TAILQ_FOREACH(reg, reg_head, ushm_reg_link) {
|
|
KASSERT(reg->ushm_key.shared,
|
|
("non-shared key on reg %p %d", reg, reg->ushm_key.shared));
|
|
if (reg->ushm_key.info.shared.object ==
|
|
key->info.shared.object &&
|
|
reg->ushm_key.info.shared.offset ==
|
|
key->info.shared.offset) {
|
|
KASSERT(reg->ushm_key.type == TYPE_SHM, ("TYPE_USHM"));
|
|
KASSERT(reg->ushm_refcnt > 0,
|
|
("reg %p refcnt 0 onlist", reg));
|
|
KASSERT((reg->ushm_flags & USHMF_REG_LINKED) != 0,
|
|
("reg %p not linked", reg));
|
|
reg->ushm_refcnt++;
|
|
return (reg);
|
|
}
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static struct umtx_shm_reg *
|
|
umtx_shm_find_reg(const struct umtx_key *key)
|
|
{
|
|
struct umtx_shm_reg *reg;
|
|
|
|
mtx_lock(&umtx_shm_lock);
|
|
reg = umtx_shm_find_reg_locked(key);
|
|
mtx_unlock(&umtx_shm_lock);
|
|
return (reg);
|
|
}
|
|
|
|
static void
|
|
umtx_shm_free_reg(struct umtx_shm_reg *reg)
|
|
{
|
|
|
|
chgumtxcnt(reg->ushm_cred->cr_ruidinfo, -1, 0);
|
|
crfree(reg->ushm_cred);
|
|
shm_drop(reg->ushm_obj);
|
|
uma_zfree(umtx_shm_reg_zone, reg);
|
|
}
|
|
|
|
static bool
|
|
umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool force)
|
|
{
|
|
bool res;
|
|
|
|
mtx_assert(&umtx_shm_lock, MA_OWNED);
|
|
KASSERT(reg->ushm_refcnt > 0, ("ushm_reg %p refcnt 0", reg));
|
|
reg->ushm_refcnt--;
|
|
res = reg->ushm_refcnt == 0;
|
|
if (res || force) {
|
|
if ((reg->ushm_flags & USHMF_REG_LINKED) != 0) {
|
|
TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash],
|
|
reg, ushm_reg_link);
|
|
reg->ushm_flags &= ~USHMF_REG_LINKED;
|
|
}
|
|
if ((reg->ushm_flags & USHMF_OBJ_LINKED) != 0) {
|
|
LIST_REMOVE(reg, ushm_obj_link);
|
|
reg->ushm_flags &= ~USHMF_OBJ_LINKED;
|
|
}
|
|
}
|
|
return (res);
|
|
}
|
|
|
|
static void
|
|
umtx_shm_unref_reg(struct umtx_shm_reg *reg, bool force)
|
|
{
|
|
vm_object_t object;
|
|
bool dofree;
|
|
|
|
if (force) {
|
|
object = reg->ushm_obj->shm_object;
|
|
VM_OBJECT_WLOCK(object);
|
|
object->flags |= OBJ_UMTXDEAD;
|
|
VM_OBJECT_WUNLOCK(object);
|
|
}
|
|
mtx_lock(&umtx_shm_lock);
|
|
dofree = umtx_shm_unref_reg_locked(reg, force);
|
|
mtx_unlock(&umtx_shm_lock);
|
|
if (dofree)
|
|
umtx_shm_free_reg(reg);
|
|
}
|
|
|
|
void
|
|
umtx_shm_object_init(vm_object_t object)
|
|
{
|
|
|
|
LIST_INIT(USHM_OBJ_UMTX(object));
|
|
}
|
|
|
|
void
|
|
umtx_shm_object_terminated(vm_object_t object)
|
|
{
|
|
struct umtx_shm_reg *reg, *reg1;
|
|
bool dofree;
|
|
|
|
dofree = false;
|
|
mtx_lock(&umtx_shm_lock);
|
|
LIST_FOREACH_SAFE(reg, USHM_OBJ_UMTX(object), ushm_obj_link, reg1) {
|
|
if (umtx_shm_unref_reg_locked(reg, true)) {
|
|
TAILQ_INSERT_TAIL(&umtx_shm_reg_delfree, reg,
|
|
ushm_reg_link);
|
|
dofree = true;
|
|
}
|
|
}
|
|
mtx_unlock(&umtx_shm_lock);
|
|
if (dofree)
|
|
taskqueue_enqueue(taskqueue_thread, &umtx_shm_reg_delfree_task);
|
|
}
|
|
|
|
static int
|
|
umtx_shm_create_reg(struct thread *td, const struct umtx_key *key,
|
|
struct umtx_shm_reg **res)
|
|
{
|
|
struct umtx_shm_reg *reg, *reg1;
|
|
struct ucred *cred;
|
|
int error;
|
|
|
|
reg = umtx_shm_find_reg(key);
|
|
if (reg != NULL) {
|
|
*res = reg;
|
|
return (0);
|
|
}
|
|
cred = td->td_ucred;
|
|
if (!chgumtxcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_UMTXP)))
|
|
return (ENOMEM);
|
|
reg = uma_zalloc(umtx_shm_reg_zone, M_WAITOK | M_ZERO);
|
|
reg->ushm_refcnt = 1;
|
|
bcopy(key, ®->ushm_key, sizeof(*key));
|
|
reg->ushm_obj = shm_alloc(td->td_ucred, O_RDWR);
|
|
reg->ushm_cred = crhold(cred);
|
|
error = shm_dotruncate(reg->ushm_obj, PAGE_SIZE);
|
|
if (error != 0) {
|
|
umtx_shm_free_reg(reg);
|
|
return (error);
|
|
}
|
|
mtx_lock(&umtx_shm_lock);
|
|
reg1 = umtx_shm_find_reg_locked(key);
|
|
if (reg1 != NULL) {
|
|
mtx_unlock(&umtx_shm_lock);
|
|
umtx_shm_free_reg(reg);
|
|
*res = reg1;
|
|
return (0);
|
|
}
|
|
reg->ushm_refcnt++;
|
|
TAILQ_INSERT_TAIL(&umtx_shm_registry[key->hash], reg, ushm_reg_link);
|
|
LIST_INSERT_HEAD(USHM_OBJ_UMTX(key->info.shared.object), reg,
|
|
ushm_obj_link);
|
|
reg->ushm_flags = USHMF_REG_LINKED | USHMF_OBJ_LINKED;
|
|
mtx_unlock(&umtx_shm_lock);
|
|
*res = reg;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
umtx_shm_alive(struct thread *td, void *addr)
|
|
{
|
|
vm_map_t map;
|
|
vm_map_entry_t entry;
|
|
vm_object_t object;
|
|
vm_pindex_t pindex;
|
|
vm_prot_t prot;
|
|
int res, ret;
|
|
boolean_t wired;
|
|
|
|
map = &td->td_proc->p_vmspace->vm_map;
|
|
res = vm_map_lookup(&map, (uintptr_t)addr, VM_PROT_READ, &entry,
|
|
&object, &pindex, &prot, &wired);
|
|
if (res != KERN_SUCCESS)
|
|
return (EFAULT);
|
|
if (object == NULL)
|
|
ret = EINVAL;
|
|
else
|
|
ret = (object->flags & OBJ_UMTXDEAD) != 0 ? ENOTTY : 0;
|
|
vm_map_lookup_done(map, entry);
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
umtx_shm_init(void)
|
|
{
|
|
int i;
|
|
|
|
umtx_shm_reg_zone = uma_zcreate("umtx_shm", sizeof(struct umtx_shm_reg),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
|
|
mtx_init(&umtx_shm_lock, "umtxshm", NULL, MTX_DEF);
|
|
for (i = 0; i < nitems(umtx_shm_registry); i++)
|
|
TAILQ_INIT(&umtx_shm_registry[i]);
|
|
}
|
|
|
|
static int
|
|
umtx_shm(struct thread *td, void *addr, u_int flags)
|
|
{
|
|
struct umtx_key key;
|
|
struct umtx_shm_reg *reg;
|
|
struct file *fp;
|
|
int error, fd;
|
|
|
|
if (__bitcount(flags & (UMTX_SHM_CREAT | UMTX_SHM_LOOKUP |
|
|
UMTX_SHM_DESTROY| UMTX_SHM_ALIVE)) != 1)
|
|
return (EINVAL);
|
|
if ((flags & UMTX_SHM_ALIVE) != 0)
|
|
return (umtx_shm_alive(td, addr));
|
|
error = umtx_key_get(addr, TYPE_SHM, PROCESS_SHARE, &key);
|
|
if (error != 0)
|
|
return (error);
|
|
KASSERT(key.shared == 1, ("non-shared key"));
|
|
if ((flags & UMTX_SHM_CREAT) != 0) {
|
|
error = umtx_shm_create_reg(td, &key, ®);
|
|
} else {
|
|
reg = umtx_shm_find_reg(&key);
|
|
if (reg == NULL)
|
|
error = ESRCH;
|
|
}
|
|
umtx_key_release(&key);
|
|
if (error != 0)
|
|
return (error);
|
|
KASSERT(reg != NULL, ("no reg"));
|
|
if ((flags & UMTX_SHM_DESTROY) != 0) {
|
|
umtx_shm_unref_reg(reg, true);
|
|
} else {
|
|
#if 0
|
|
#ifdef MAC
|
|
error = mac_posixshm_check_open(td->td_ucred,
|
|
reg->ushm_obj, FFLAGS(O_RDWR));
|
|
if (error == 0)
|
|
#endif
|
|
error = shm_access(reg->ushm_obj, td->td_ucred,
|
|
FFLAGS(O_RDWR));
|
|
if (error == 0)
|
|
#endif
|
|
error = falloc_caps(td, &fp, &fd, O_CLOEXEC, NULL);
|
|
if (error == 0) {
|
|
shm_hold(reg->ushm_obj);
|
|
finit(fp, FFLAGS(O_RDWR), DTYPE_SHM, reg->ushm_obj,
|
|
&shm_ops);
|
|
td->td_retval[0] = fd;
|
|
fdrop(fp, td);
|
|
}
|
|
}
|
|
umtx_shm_unref_reg(reg, false);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
__umtx_op_shm(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
|
|
return (umtx_shm(td, uap->uaddr1, uap->val));
|
|
}
|
|
|
|
static int
|
|
umtx_robust_lists(struct thread *td, struct umtx_robust_lists_params *rbp)
|
|
{
|
|
|
|
td->td_rb_list = rbp->robust_list_offset;
|
|
td->td_rbp_list = rbp->robust_priv_list_offset;
|
|
td->td_rb_inact = rbp->robust_inact_offset;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
__umtx_op_robust_lists(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct umtx_robust_lists_params rb;
|
|
int error;
|
|
|
|
if (uap->val > sizeof(rb))
|
|
return (EINVAL);
|
|
bzero(&rb, sizeof(rb));
|
|
error = copyin(uap->uaddr1, &rb, uap->val);
|
|
if (error != 0)
|
|
return (error);
|
|
return (umtx_robust_lists(td, &rb));
|
|
}
|
|
|
|
typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap);
|
|
|
|
static const _umtx_op_func op_table[] = {
|
|
[UMTX_OP_RESERVED0] = __umtx_op_unimpl,
|
|
[UMTX_OP_RESERVED1] = __umtx_op_unimpl,
|
|
[UMTX_OP_WAIT] = __umtx_op_wait,
|
|
[UMTX_OP_WAKE] = __umtx_op_wake,
|
|
[UMTX_OP_MUTEX_TRYLOCK] = __umtx_op_trylock_umutex,
|
|
[UMTX_OP_MUTEX_LOCK] = __umtx_op_lock_umutex,
|
|
[UMTX_OP_MUTEX_UNLOCK] = __umtx_op_unlock_umutex,
|
|
[UMTX_OP_SET_CEILING] = __umtx_op_set_ceiling,
|
|
[UMTX_OP_CV_WAIT] = __umtx_op_cv_wait,
|
|
[UMTX_OP_CV_SIGNAL] = __umtx_op_cv_signal,
|
|
[UMTX_OP_CV_BROADCAST] = __umtx_op_cv_broadcast,
|
|
[UMTX_OP_WAIT_UINT] = __umtx_op_wait_uint,
|
|
[UMTX_OP_RW_RDLOCK] = __umtx_op_rw_rdlock,
|
|
[UMTX_OP_RW_WRLOCK] = __umtx_op_rw_wrlock,
|
|
[UMTX_OP_RW_UNLOCK] = __umtx_op_rw_unlock,
|
|
[UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private,
|
|
[UMTX_OP_WAKE_PRIVATE] = __umtx_op_wake_private,
|
|
[UMTX_OP_MUTEX_WAIT] = __umtx_op_wait_umutex,
|
|
[UMTX_OP_MUTEX_WAKE] = __umtx_op_wake_umutex,
|
|
#if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
|
|
[UMTX_OP_SEM_WAIT] = __umtx_op_sem_wait,
|
|
[UMTX_OP_SEM_WAKE] = __umtx_op_sem_wake,
|
|
#else
|
|
[UMTX_OP_SEM_WAIT] = __umtx_op_unimpl,
|
|
[UMTX_OP_SEM_WAKE] = __umtx_op_unimpl,
|
|
#endif
|
|
[UMTX_OP_NWAKE_PRIVATE] = __umtx_op_nwake_private,
|
|
[UMTX_OP_MUTEX_WAKE2] = __umtx_op_wake2_umutex,
|
|
[UMTX_OP_SEM2_WAIT] = __umtx_op_sem2_wait,
|
|
[UMTX_OP_SEM2_WAKE] = __umtx_op_sem2_wake,
|
|
[UMTX_OP_SHM] = __umtx_op_shm,
|
|
[UMTX_OP_ROBUST_LISTS] = __umtx_op_robust_lists,
|
|
};
|
|
|
|
int
|
|
sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
|
|
if ((unsigned)uap->op < nitems(op_table))
|
|
return (*op_table[uap->op])(td, uap);
|
|
return (EINVAL);
|
|
}
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
|
|
struct timespec32 {
|
|
int32_t tv_sec;
|
|
int32_t tv_nsec;
|
|
};
|
|
|
|
struct umtx_time32 {
|
|
struct timespec32 timeout;
|
|
uint32_t flags;
|
|
uint32_t clockid;
|
|
};
|
|
|
|
static inline int
|
|
umtx_copyin_timeout32(void *addr, struct timespec *tsp)
|
|
{
|
|
struct timespec32 ts32;
|
|
int error;
|
|
|
|
error = copyin(addr, &ts32, sizeof(struct timespec32));
|
|
if (error == 0) {
|
|
if (ts32.tv_sec < 0 ||
|
|
ts32.tv_nsec >= 1000000000 ||
|
|
ts32.tv_nsec < 0)
|
|
error = EINVAL;
|
|
else {
|
|
tsp->tv_sec = ts32.tv_sec;
|
|
tsp->tv_nsec = ts32.tv_nsec;
|
|
}
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static inline int
|
|
umtx_copyin_umtx_time32(const void *addr, size_t size, struct _umtx_time *tp)
|
|
{
|
|
struct umtx_time32 t32;
|
|
int error;
|
|
|
|
t32.clockid = CLOCK_REALTIME;
|
|
t32.flags = 0;
|
|
if (size <= sizeof(struct timespec32))
|
|
error = copyin(addr, &t32.timeout, sizeof(struct timespec32));
|
|
else
|
|
error = copyin(addr, &t32, sizeof(struct umtx_time32));
|
|
if (error != 0)
|
|
return (error);
|
|
if (t32.timeout.tv_sec < 0 ||
|
|
t32.timeout.tv_nsec >= 1000000000 || t32.timeout.tv_nsec < 0)
|
|
return (EINVAL);
|
|
tp->_timeout.tv_sec = t32.timeout.tv_sec;
|
|
tp->_timeout.tv_nsec = t32.timeout.tv_nsec;
|
|
tp->_flags = t32.flags;
|
|
tp->_clockid = t32.clockid;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
__umtx_op_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct _umtx_time *tm_p, timeout;
|
|
int error;
|
|
|
|
if (uap->uaddr2 == NULL)
|
|
tm_p = NULL;
|
|
else {
|
|
error = umtx_copyin_umtx_time32(uap->uaddr2,
|
|
(size_t)uap->uaddr1, &timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
tm_p = &timeout;
|
|
}
|
|
return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_lock_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct _umtx_time *tm_p, timeout;
|
|
int error;
|
|
|
|
/* Allow a null timespec (wait forever). */
|
|
if (uap->uaddr2 == NULL)
|
|
tm_p = NULL;
|
|
else {
|
|
error = umtx_copyin_umtx_time(uap->uaddr2,
|
|
(size_t)uap->uaddr1, &timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
tm_p = &timeout;
|
|
}
|
|
return (do_lock_umutex(td, uap->obj, tm_p, 0));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_wait_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct _umtx_time *tm_p, timeout;
|
|
int error;
|
|
|
|
/* Allow a null timespec (wait forever). */
|
|
if (uap->uaddr2 == NULL)
|
|
tm_p = NULL;
|
|
else {
|
|
error = umtx_copyin_umtx_time32(uap->uaddr2,
|
|
(size_t)uap->uaddr1, &timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
tm_p = &timeout;
|
|
}
|
|
return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_cv_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct timespec *ts, timeout;
|
|
int error;
|
|
|
|
/* Allow a null timespec (wait forever). */
|
|
if (uap->uaddr2 == NULL)
|
|
ts = NULL;
|
|
else {
|
|
error = umtx_copyin_timeout32(uap->uaddr2, &timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
ts = &timeout;
|
|
}
|
|
return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_rw_rdlock_compat32(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct _umtx_time timeout;
|
|
int error;
|
|
|
|
/* Allow a null timespec (wait forever). */
|
|
if (uap->uaddr2 == NULL) {
|
|
error = do_rw_rdlock(td, uap->obj, uap->val, 0);
|
|
} else {
|
|
error = umtx_copyin_umtx_time32(uap->uaddr2,
|
|
(size_t)uap->uaddr1, &timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
__umtx_op_rw_wrlock_compat32(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct _umtx_time timeout;
|
|
int error;
|
|
|
|
/* Allow a null timespec (wait forever). */
|
|
if (uap->uaddr2 == NULL) {
|
|
error = do_rw_wrlock(td, uap->obj, 0);
|
|
} else {
|
|
error = umtx_copyin_umtx_time32(uap->uaddr2,
|
|
(size_t)uap->uaddr1, &timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
error = do_rw_wrlock(td, uap->obj, &timeout);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
__umtx_op_wait_uint_private_compat32(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct _umtx_time *tm_p, timeout;
|
|
int error;
|
|
|
|
if (uap->uaddr2 == NULL)
|
|
tm_p = NULL;
|
|
else {
|
|
error = umtx_copyin_umtx_time32(
|
|
uap->uaddr2, (size_t)uap->uaddr1,&timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
tm_p = &timeout;
|
|
}
|
|
return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
|
|
}
|
|
|
|
#if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
|
|
static int
|
|
__umtx_op_sem_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct _umtx_time *tm_p, timeout;
|
|
int error;
|
|
|
|
/* Allow a null timespec (wait forever). */
|
|
if (uap->uaddr2 == NULL)
|
|
tm_p = NULL;
|
|
else {
|
|
error = umtx_copyin_umtx_time32(uap->uaddr2,
|
|
(size_t)uap->uaddr1, &timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
tm_p = &timeout;
|
|
}
|
|
return (do_sem_wait(td, uap->obj, tm_p));
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
__umtx_op_sem2_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct _umtx_time *tm_p, timeout;
|
|
int error;
|
|
|
|
/* Allow a null timespec (wait forever). */
|
|
if (uap->uaddr2 == NULL)
|
|
tm_p = NULL;
|
|
else {
|
|
error = umtx_copyin_umtx_time32(uap->uaddr2,
|
|
(size_t)uap->uaddr1, &timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
tm_p = &timeout;
|
|
}
|
|
return (do_sem2_wait(td, uap->obj, tm_p));
|
|
}
|
|
|
|
static int
|
|
__umtx_op_nwake_private32(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
uint32_t uaddrs[BATCH_SIZE], **upp;
|
|
int count, error, i, pos, tocopy;
|
|
|
|
upp = (uint32_t **)uap->obj;
|
|
error = 0;
|
|
for (count = uap->val, pos = 0; count > 0; count -= tocopy,
|
|
pos += tocopy) {
|
|
tocopy = MIN(count, BATCH_SIZE);
|
|
error = copyin(upp + pos, uaddrs, tocopy * sizeof(uint32_t));
|
|
if (error != 0)
|
|
break;
|
|
for (i = 0; i < tocopy; ++i)
|
|
kern_umtx_wake(td, (void *)(intptr_t)uaddrs[i],
|
|
INT_MAX, 1);
|
|
maybe_yield();
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
struct umtx_robust_lists_params_compat32 {
|
|
uint32_t robust_list_offset;
|
|
uint32_t robust_priv_list_offset;
|
|
uint32_t robust_inact_offset;
|
|
};
|
|
|
|
static int
|
|
__umtx_op_robust_lists_compat32(struct thread *td, struct _umtx_op_args *uap)
|
|
{
|
|
struct umtx_robust_lists_params rb;
|
|
struct umtx_robust_lists_params_compat32 rb32;
|
|
int error;
|
|
|
|
if (uap->val > sizeof(rb32))
|
|
return (EINVAL);
|
|
bzero(&rb, sizeof(rb));
|
|
bzero(&rb32, sizeof(rb32));
|
|
error = copyin(uap->uaddr1, &rb32, uap->val);
|
|
if (error != 0)
|
|
return (error);
|
|
rb.robust_list_offset = rb32.robust_list_offset;
|
|
rb.robust_priv_list_offset = rb32.robust_priv_list_offset;
|
|
rb.robust_inact_offset = rb32.robust_inact_offset;
|
|
return (umtx_robust_lists(td, &rb));
|
|
}
|
|
|
|
static const _umtx_op_func op_table_compat32[] = {
|
|
[UMTX_OP_RESERVED0] = __umtx_op_unimpl,
|
|
[UMTX_OP_RESERVED1] = __umtx_op_unimpl,
|
|
[UMTX_OP_WAIT] = __umtx_op_wait_compat32,
|
|
[UMTX_OP_WAKE] = __umtx_op_wake,
|
|
[UMTX_OP_MUTEX_TRYLOCK] = __umtx_op_trylock_umutex,
|
|
[UMTX_OP_MUTEX_LOCK] = __umtx_op_lock_umutex_compat32,
|
|
[UMTX_OP_MUTEX_UNLOCK] = __umtx_op_unlock_umutex,
|
|
[UMTX_OP_SET_CEILING] = __umtx_op_set_ceiling,
|
|
[UMTX_OP_CV_WAIT] = __umtx_op_cv_wait_compat32,
|
|
[UMTX_OP_CV_SIGNAL] = __umtx_op_cv_signal,
|
|
[UMTX_OP_CV_BROADCAST] = __umtx_op_cv_broadcast,
|
|
[UMTX_OP_WAIT_UINT] = __umtx_op_wait_compat32,
|
|
[UMTX_OP_RW_RDLOCK] = __umtx_op_rw_rdlock_compat32,
|
|
[UMTX_OP_RW_WRLOCK] = __umtx_op_rw_wrlock_compat32,
|
|
[UMTX_OP_RW_UNLOCK] = __umtx_op_rw_unlock,
|
|
[UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private_compat32,
|
|
[UMTX_OP_WAKE_PRIVATE] = __umtx_op_wake_private,
|
|
[UMTX_OP_MUTEX_WAIT] = __umtx_op_wait_umutex_compat32,
|
|
[UMTX_OP_MUTEX_WAKE] = __umtx_op_wake_umutex,
|
|
#if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
|
|
[UMTX_OP_SEM_WAIT] = __umtx_op_sem_wait_compat32,
|
|
[UMTX_OP_SEM_WAKE] = __umtx_op_sem_wake,
|
|
#else
|
|
[UMTX_OP_SEM_WAIT] = __umtx_op_unimpl,
|
|
[UMTX_OP_SEM_WAKE] = __umtx_op_unimpl,
|
|
#endif
|
|
[UMTX_OP_NWAKE_PRIVATE] = __umtx_op_nwake_private32,
|
|
[UMTX_OP_MUTEX_WAKE2] = __umtx_op_wake2_umutex,
|
|
[UMTX_OP_SEM2_WAIT] = __umtx_op_sem2_wait_compat32,
|
|
[UMTX_OP_SEM2_WAKE] = __umtx_op_sem2_wake,
|
|
[UMTX_OP_SHM] = __umtx_op_shm,
|
|
[UMTX_OP_ROBUST_LISTS] = __umtx_op_robust_lists_compat32,
|
|
};
|
|
|
|
int
|
|
freebsd32_umtx_op(struct thread *td, struct freebsd32_umtx_op_args *uap)
|
|
{
|
|
|
|
if ((unsigned)uap->op < nitems(op_table_compat32)) {
|
|
return (*op_table_compat32[uap->op])(td,
|
|
(struct _umtx_op_args *)uap);
|
|
}
|
|
return (EINVAL);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
umtx_thread_init(struct thread *td)
|
|
{
|
|
|
|
td->td_umtxq = umtxq_alloc();
|
|
td->td_umtxq->uq_thread = td;
|
|
}
|
|
|
|
void
|
|
umtx_thread_fini(struct thread *td)
|
|
{
|
|
|
|
umtxq_free(td->td_umtxq);
|
|
}
|
|
|
|
/*
|
|
* It will be called when new thread is created, e.g fork().
|
|
*/
|
|
void
|
|
umtx_thread_alloc(struct thread *td)
|
|
{
|
|
struct umtx_q *uq;
|
|
|
|
uq = td->td_umtxq;
|
|
uq->uq_inherited_pri = PRI_MAX;
|
|
|
|
KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
|
|
KASSERT(uq->uq_thread == td, ("uq_thread != td"));
|
|
KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
|
|
KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
|
|
}
|
|
|
|
/*
|
|
* exec() hook.
|
|
*
|
|
* Clear robust lists for all process' threads, not delaying the
|
|
* cleanup to thread_exit hook, since the relevant address space is
|
|
* destroyed right now.
|
|
*/
|
|
static void
|
|
umtx_exec_hook(void *arg __unused, struct proc *p,
|
|
struct image_params *imgp __unused)
|
|
{
|
|
struct thread *td;
|
|
|
|
KASSERT(p == curproc, ("need curproc"));
|
|
PROC_LOCK(p);
|
|
KASSERT((p->p_flag & P_HADTHREADS) == 0 ||
|
|
(p->p_flag & P_STOPPED_SINGLE) != 0,
|
|
("curproc must be single-threaded"));
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
KASSERT(td == curthread ||
|
|
((td->td_flags & TDF_BOUNDARY) != 0 && TD_IS_SUSPENDED(td)),
|
|
("running thread %p %p", p, td));
|
|
PROC_UNLOCK(p);
|
|
umtx_thread_cleanup(td);
|
|
PROC_LOCK(p);
|
|
td->td_rb_list = td->td_rbp_list = td->td_rb_inact = 0;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
|
|
/*
|
|
* thread_exit() hook.
|
|
*/
|
|
void
|
|
umtx_thread_exit(struct thread *td)
|
|
{
|
|
|
|
umtx_thread_cleanup(td);
|
|
}
|
|
|
|
static int
|
|
umtx_read_uptr(struct thread *td, uintptr_t ptr, uintptr_t *res)
|
|
{
|
|
u_long res1;
|
|
#ifdef COMPAT_FREEBSD32
|
|
uint32_t res32;
|
|
#endif
|
|
int error;
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
|
|
error = fueword32((void *)ptr, &res32);
|
|
if (error == 0)
|
|
res1 = res32;
|
|
} else
|
|
#endif
|
|
{
|
|
error = fueword((void *)ptr, &res1);
|
|
}
|
|
if (error == 0)
|
|
*res = res1;
|
|
else
|
|
error = EFAULT;
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
umtx_read_rb_list(struct thread *td, struct umutex *m, uintptr_t *rb_list)
|
|
{
|
|
#ifdef COMPAT_FREEBSD32
|
|
struct umutex32 m32;
|
|
|
|
if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
|
|
memcpy(&m32, m, sizeof(m32));
|
|
*rb_list = m32.m_rb_lnk;
|
|
} else
|
|
#endif
|
|
*rb_list = m->m_rb_lnk;
|
|
}
|
|
|
|
static int
|
|
umtx_handle_rb(struct thread *td, uintptr_t rbp, uintptr_t *rb_list, bool inact)
|
|
{
|
|
struct umutex m;
|
|
int error;
|
|
|
|
KASSERT(td->td_proc == curproc, ("need current vmspace"));
|
|
error = copyin((void *)rbp, &m, sizeof(m));
|
|
if (error != 0)
|
|
return (error);
|
|
if (rb_list != NULL)
|
|
umtx_read_rb_list(td, &m, rb_list);
|
|
if ((m.m_flags & UMUTEX_ROBUST) == 0)
|
|
return (EINVAL);
|
|
if ((m.m_owner & ~UMUTEX_CONTESTED) != td->td_tid)
|
|
/* inact is cleared after unlock, allow the inconsistency */
|
|
return (inact ? 0 : EINVAL);
|
|
return (do_unlock_umutex(td, (struct umutex *)rbp, true));
|
|
}
|
|
|
|
static void
|
|
umtx_cleanup_rb_list(struct thread *td, uintptr_t rb_list, uintptr_t *rb_inact,
|
|
const char *name)
|
|
{
|
|
int error, i;
|
|
uintptr_t rbp;
|
|
bool inact;
|
|
|
|
if (rb_list == 0)
|
|
return;
|
|
error = umtx_read_uptr(td, rb_list, &rbp);
|
|
for (i = 0; error == 0 && rbp != 0 && i < umtx_max_rb; i++) {
|
|
if (rbp == *rb_inact) {
|
|
inact = true;
|
|
*rb_inact = 0;
|
|
} else
|
|
inact = false;
|
|
error = umtx_handle_rb(td, rbp, &rbp, inact);
|
|
}
|
|
if (i == umtx_max_rb && umtx_verbose_rb) {
|
|
uprintf("comm %s pid %d: reached umtx %smax rb %d\n",
|
|
td->td_proc->p_comm, td->td_proc->p_pid, name, umtx_max_rb);
|
|
}
|
|
if (error != 0 && umtx_verbose_rb) {
|
|
uprintf("comm %s pid %d: handling %srb error %d\n",
|
|
td->td_proc->p_comm, td->td_proc->p_pid, name, error);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clean up umtx data.
|
|
*/
|
|
static void
|
|
umtx_thread_cleanup(struct thread *td)
|
|
{
|
|
struct umtx_q *uq;
|
|
struct umtx_pi *pi;
|
|
uintptr_t rb_inact;
|
|
|
|
/*
|
|
* Disown pi mutexes.
|
|
*/
|
|
uq = td->td_umtxq;
|
|
if (uq != NULL) {
|
|
mtx_lock(&umtx_lock);
|
|
uq->uq_inherited_pri = PRI_MAX;
|
|
while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
|
|
pi->pi_owner = NULL;
|
|
TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
|
|
}
|
|
mtx_unlock(&umtx_lock);
|
|
thread_lock(td);
|
|
sched_lend_user_prio(td, PRI_MAX);
|
|
thread_unlock(td);
|
|
}
|
|
|
|
/*
|
|
* Handle terminated robust mutexes. Must be done after
|
|
* robust pi disown, otherwise unlock could see unowned
|
|
* entries.
|
|
*/
|
|
rb_inact = td->td_rb_inact;
|
|
if (rb_inact != 0)
|
|
(void)umtx_read_uptr(td, rb_inact, &rb_inact);
|
|
umtx_cleanup_rb_list(td, td->td_rb_list, &rb_inact, "");
|
|
umtx_cleanup_rb_list(td, td->td_rbp_list, &rb_inact, "priv ");
|
|
if (rb_inact != 0)
|
|
(void)umtx_handle_rb(td, rb_inact, NULL, true);
|
|
}
|