freebsd-skq/sys/dev/alc/if_alc.c
2011-03-23 13:10:15 +00:00

3768 lines
110 KiB
C

/*-
* Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_llc.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <machine/in_cksum.h>
#include <dev/alc/if_alcreg.h>
#include <dev/alc/if_alcvar.h>
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#undef ALC_USE_CUSTOM_CSUM
#ifdef ALC_USE_CUSTOM_CSUM
#define ALC_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
#else
#define ALC_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
#endif
MODULE_DEPEND(alc, pci, 1, 1, 1);
MODULE_DEPEND(alc, ether, 1, 1, 1);
MODULE_DEPEND(alc, miibus, 1, 1, 1);
/* Tunables. */
static int msi_disable = 0;
static int msix_disable = 0;
TUNABLE_INT("hw.alc.msi_disable", &msi_disable);
TUNABLE_INT("hw.alc.msix_disable", &msix_disable);
/*
* Devices supported by this driver.
*/
static struct alc_ident alc_ident_table[] = {
{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8131, 9 * 1024,
"Atheros AR8131 PCIe Gigabit Ethernet" },
{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8132, 9 * 1024,
"Atheros AR8132 PCIe Fast Ethernet" },
{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151, 6 * 1024,
"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151_V2, 6 * 1024,
"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B, 6 * 1024,
"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B2, 6 * 1024,
"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
{ 0, 0, 0, NULL}
};
static void alc_aspm(struct alc_softc *, int);
static int alc_attach(device_t);
static int alc_check_boundary(struct alc_softc *);
static int alc_detach(device_t);
static void alc_disable_l0s_l1(struct alc_softc *);
static int alc_dma_alloc(struct alc_softc *);
static void alc_dma_free(struct alc_softc *);
static void alc_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int alc_encap(struct alc_softc *, struct mbuf **);
static struct alc_ident *
alc_find_ident(device_t);
#ifndef __NO_STRICT_ALIGNMENT
static struct mbuf *
alc_fixup_rx(struct ifnet *, struct mbuf *);
#endif
static void alc_get_macaddr(struct alc_softc *);
static void alc_init(void *);
static void alc_init_cmb(struct alc_softc *);
static void alc_init_locked(struct alc_softc *);
static void alc_init_rr_ring(struct alc_softc *);
static int alc_init_rx_ring(struct alc_softc *);
static void alc_init_smb(struct alc_softc *);
static void alc_init_tx_ring(struct alc_softc *);
static void alc_int_task(void *, int);
static int alc_intr(void *);
static int alc_ioctl(struct ifnet *, u_long, caddr_t);
static void alc_mac_config(struct alc_softc *);
static int alc_miibus_readreg(device_t, int, int);
static void alc_miibus_statchg(device_t);
static int alc_miibus_writereg(device_t, int, int, int);
static int alc_mediachange(struct ifnet *);
static void alc_mediastatus(struct ifnet *, struct ifmediareq *);
static int alc_newbuf(struct alc_softc *, struct alc_rxdesc *);
static void alc_phy_down(struct alc_softc *);
static void alc_phy_reset(struct alc_softc *);
static int alc_probe(device_t);
static void alc_reset(struct alc_softc *);
static int alc_resume(device_t);
static void alc_rxeof(struct alc_softc *, struct rx_rdesc *);
static int alc_rxintr(struct alc_softc *, int);
static void alc_rxfilter(struct alc_softc *);
static void alc_rxvlan(struct alc_softc *);
static void alc_setlinkspeed(struct alc_softc *);
static void alc_setwol(struct alc_softc *);
static int alc_shutdown(device_t);
static void alc_start(struct ifnet *);
static void alc_start_locked(struct ifnet *);
static void alc_start_queue(struct alc_softc *);
static void alc_stats_clear(struct alc_softc *);
static void alc_stats_update(struct alc_softc *);
static void alc_stop(struct alc_softc *);
static void alc_stop_mac(struct alc_softc *);
static void alc_stop_queue(struct alc_softc *);
static int alc_suspend(device_t);
static void alc_sysctl_node(struct alc_softc *);
static void alc_tick(void *);
static void alc_txeof(struct alc_softc *);
static void alc_watchdog(struct alc_softc *);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
static int sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS);
static int sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS);
static device_method_t alc_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, alc_probe),
DEVMETHOD(device_attach, alc_attach),
DEVMETHOD(device_detach, alc_detach),
DEVMETHOD(device_shutdown, alc_shutdown),
DEVMETHOD(device_suspend, alc_suspend),
DEVMETHOD(device_resume, alc_resume),
/* MII interface. */
DEVMETHOD(miibus_readreg, alc_miibus_readreg),
DEVMETHOD(miibus_writereg, alc_miibus_writereg),
DEVMETHOD(miibus_statchg, alc_miibus_statchg),
{ NULL, NULL }
};
static driver_t alc_driver = {
"alc",
alc_methods,
sizeof(struct alc_softc)
};
static devclass_t alc_devclass;
DRIVER_MODULE(alc, pci, alc_driver, alc_devclass, 0, 0);
DRIVER_MODULE(miibus, alc, miibus_driver, miibus_devclass, 0, 0);
static struct resource_spec alc_res_spec_mem[] = {
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
{ -1, 0, 0 }
};
static struct resource_spec alc_irq_spec_legacy[] = {
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0, 0 }
};
static struct resource_spec alc_irq_spec_msi[] = {
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ -1, 0, 0 }
};
static struct resource_spec alc_irq_spec_msix[] = {
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ -1, 0, 0 }
};
static uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
static int
alc_miibus_readreg(device_t dev, int phy, int reg)
{
struct alc_softc *sc;
uint32_t v;
int i;
sc = device_get_softc(dev);
/*
* For AR8132 fast ethernet controller, do not report 1000baseT
* capability to mii(4). Even though AR8132 uses the same
* model/revision number of F1 gigabit PHY, the PHY has no
* ability to establish 1000baseT link.
*/
if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 &&
reg == MII_EXTSR)
return (0);
CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
v = CSR_READ_4(sc, ALC_MDIO);
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
break;
}
if (i == 0) {
device_printf(sc->alc_dev, "phy read timeout : %d\n", reg);
return (0);
}
return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
}
static int
alc_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct alc_softc *sc;
uint32_t v;
int i;
sc = device_get_softc(dev);
CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
(val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
v = CSR_READ_4(sc, ALC_MDIO);
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
break;
}
if (i == 0)
device_printf(sc->alc_dev, "phy write timeout : %d\n", reg);
return (0);
}
static void
alc_miibus_statchg(device_t dev)
{
struct alc_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
uint32_t reg;
sc = device_get_softc(dev);
mii = device_get_softc(sc->alc_miibus);
ifp = sc->alc_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
sc->alc_flags &= ~ALC_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->alc_flags |= ALC_FLAG_LINK;
break;
case IFM_1000_T:
if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
sc->alc_flags |= ALC_FLAG_LINK;
break;
default:
break;
}
}
alc_stop_queue(sc);
/* Stop Rx/Tx MACs. */
alc_stop_mac(sc);
/* Program MACs with resolved speed/duplex/flow-control. */
if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
alc_start_queue(sc);
alc_mac_config(sc);
/* Re-enable Tx/Rx MACs. */
reg = CSR_READ_4(sc, ALC_MAC_CFG);
reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
}
}
static void
alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct alc_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
ALC_LOCK(sc);
if ((ifp->if_flags & IFF_UP) == 0) {
ALC_UNLOCK(sc);
return;
}
mii = device_get_softc(sc->alc_miibus);
mii_pollstat(mii);
ALC_UNLOCK(sc);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = mii->mii_media_active;
}
static int
alc_mediachange(struct ifnet *ifp)
{
struct alc_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
ALC_LOCK(sc);
mii = device_get_softc(sc->alc_miibus);
if (mii->mii_instance != 0) {
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
error = mii_mediachg(mii);
ALC_UNLOCK(sc);
return (error);
}
static struct alc_ident *
alc_find_ident(device_t dev)
{
struct alc_ident *ident;
uint16_t vendor, devid;
vendor = pci_get_vendor(dev);
devid = pci_get_device(dev);
for (ident = alc_ident_table; ident->name != NULL; ident++) {
if (vendor == ident->vendorid && devid == ident->deviceid)
return (ident);
}
return (NULL);
}
static int
alc_probe(device_t dev)
{
struct alc_ident *ident;
ident = alc_find_ident(dev);
if (ident != NULL) {
device_set_desc(dev, ident->name);
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static void
alc_get_macaddr(struct alc_softc *sc)
{
uint32_t ea[2], opt;
uint16_t val;
int eeprom, i;
eeprom = 0;
opt = CSR_READ_4(sc, ALC_OPT_CFG);
if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
(CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
/*
* EEPROM found, let TWSI reload EEPROM configuration.
* This will set ethernet address of controller.
*/
eeprom++;
switch (sc->alc_ident->deviceid) {
case DEVICEID_ATHEROS_AR8131:
case DEVICEID_ATHEROS_AR8132:
if ((opt & OPT_CFG_CLK_ENB) == 0) {
opt |= OPT_CFG_CLK_ENB;
CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
CSR_READ_4(sc, ALC_OPT_CFG);
DELAY(1000);
}
break;
case DEVICEID_ATHEROS_AR8151:
case DEVICEID_ATHEROS_AR8151_V2:
case DEVICEID_ATHEROS_AR8152_B:
case DEVICEID_ATHEROS_AR8152_B2:
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x00);
val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, val & 0xFF7F);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x3B);
val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, val | 0x0008);
DELAY(20);
break;
}
CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
CSR_READ_4(sc, ALC_WOL_CFG);
CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
TWSI_CFG_SW_LD_START);
for (i = 100; i > 0; i--) {
DELAY(1000);
if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
TWSI_CFG_SW_LD_START) == 0)
break;
}
if (i == 0)
device_printf(sc->alc_dev,
"reloading EEPROM timeout!\n");
} else {
if (bootverbose)
device_printf(sc->alc_dev, "EEPROM not found!\n");
}
if (eeprom != 0) {
switch (sc->alc_ident->deviceid) {
case DEVICEID_ATHEROS_AR8131:
case DEVICEID_ATHEROS_AR8132:
if ((opt & OPT_CFG_CLK_ENB) != 0) {
opt &= ~OPT_CFG_CLK_ENB;
CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
CSR_READ_4(sc, ALC_OPT_CFG);
DELAY(1000);
}
break;
case DEVICEID_ATHEROS_AR8151:
case DEVICEID_ATHEROS_AR8151_V2:
case DEVICEID_ATHEROS_AR8152_B:
case DEVICEID_ATHEROS_AR8152_B2:
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x00);
val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, val | 0x0080);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x3B);
val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, val & 0xFFF7);
DELAY(20);
break;
}
}
ea[0] = CSR_READ_4(sc, ALC_PAR0);
ea[1] = CSR_READ_4(sc, ALC_PAR1);
sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
}
static void
alc_disable_l0s_l1(struct alc_softc *sc)
{
uint32_t pmcfg;
/* Another magic from vendor. */
pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
PM_CFG_SERDES_PD_EX_L1);
pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
PM_CFG_SERDES_L1_ENB;
CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
}
static void
alc_phy_reset(struct alc_softc *sc)
{
uint16_t data;
/* Reset magic from Linux. */
CSR_WRITE_2(sc, ALC_GPHY_CFG,
GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
CSR_READ_2(sc, ALC_GPHY_CFG);
DELAY(10 * 1000);
CSR_WRITE_2(sc, ALC_GPHY_CFG,
GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
GPHY_CFG_SEL_ANA_RESET);
CSR_READ_2(sc, ALC_GPHY_CFG);
DELAY(10 * 1000);
/* DSP fixup, Vendor magic. */
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x000A);
data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data & 0xDFFF);
}
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x003B);
data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data & 0xFFF7);
DELAY(20 * 1000);
}
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151) {
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x0029);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, 0x929D);
}
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x0029);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, 0xB6DD);
}
/* Load DSP codes, vendor magic. */
data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, MII_ANA_CFG18);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data);
data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
ANA_SERDES_EN_LCKDT;
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, MII_ANA_CFG5);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data);
data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
ANA_LONG_CABLE_TH_100_MASK) |
((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
ANA_SHORT_CABLE_TH_100_SHIFT) |
ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, MII_ANA_CFG54);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data);
data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, MII_ANA_CFG4);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data);
data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
ANA_OEN_125M;
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, MII_ANA_CFG0);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data);
DELAY(1000);
}
static void
alc_phy_down(struct alc_softc *sc)
{
switch (sc->alc_ident->deviceid) {
case DEVICEID_ATHEROS_AR8151:
case DEVICEID_ATHEROS_AR8151_V2:
/*
* GPHY power down caused more problems on AR8151 v2.0.
* When driver is reloaded after GPHY power down,
* accesses to PHY/MAC registers hung the system. Only
* cold boot recovered from it. I'm not sure whether
* AR8151 v1.0 also requires this one though. I don't
* have AR8151 v1.0 controller in hand.
* The only option left is to isolate the PHY and
* initiates power down the PHY which in turn saves
* more power when driver is unloaded.
*/
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
MII_BMCR, BMCR_ISO | BMCR_PDOWN);
break;
default:
/* Force PHY down. */
CSR_WRITE_2(sc, ALC_GPHY_CFG,
GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
GPHY_CFG_PWDOWN_HW);
DELAY(1000);
break;
}
}
static void
alc_aspm(struct alc_softc *sc, int media)
{
uint32_t pmcfg;
uint16_t linkcfg;
ALC_LOCK_ASSERT(sc);
pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
(ALC_FLAG_APS | ALC_FLAG_PCIE))
linkcfg = CSR_READ_2(sc, sc->alc_expcap +
PCIR_EXPRESS_LINK_CTL);
else
linkcfg = 0;
pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
pmcfg |= PM_CFG_MAC_ASPM_CHK;
pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
/* Disable extended sync except AR8152 B v1.0 */
linkcfg &= ~0x80;
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
sc->alc_rev == ATHEROS_AR8152_B_V10)
linkcfg |= 0x80;
CSR_WRITE_2(sc, sc->alc_expcap + PCIR_EXPRESS_LINK_CTL,
linkcfg);
pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
PM_CFG_HOTRST);
pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
PM_CFG_L1_ENTRY_TIMER_SHIFT);
pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
PM_CFG_PM_REQ_TIMER_SHIFT);
pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
}
if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
pmcfg |= PM_CFG_ASPM_L0S_ENB;
if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
pmcfg |= PM_CFG_ASPM_L1_ENB;
if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
if (sc->alc_ident->deviceid ==
DEVICEID_ATHEROS_AR8152_B)
pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
PM_CFG_SERDES_PLL_L1_ENB |
PM_CFG_SERDES_BUDS_RX_L1_ENB);
pmcfg |= PM_CFG_CLK_SWH_L1;
if (media == IFM_100_TX || media == IFM_1000_T) {
pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
switch (sc->alc_ident->deviceid) {
case DEVICEID_ATHEROS_AR8152_B:
pmcfg |= (7 <<
PM_CFG_L1_ENTRY_TIMER_SHIFT);
break;
case DEVICEID_ATHEROS_AR8152_B2:
case DEVICEID_ATHEROS_AR8151_V2:
pmcfg |= (4 <<
PM_CFG_L1_ENTRY_TIMER_SHIFT);
break;
default:
pmcfg |= (15 <<
PM_CFG_L1_ENTRY_TIMER_SHIFT);
break;
}
}
} else {
pmcfg |= PM_CFG_SERDES_L1_ENB |
PM_CFG_SERDES_PLL_L1_ENB |
PM_CFG_SERDES_BUDS_RX_L1_ENB;
pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
}
} else {
pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
PM_CFG_SERDES_PLL_L1_ENB);
pmcfg |= PM_CFG_CLK_SWH_L1;
if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
pmcfg |= PM_CFG_ASPM_L1_ENB;
}
CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
}
static int
alc_attach(device_t dev)
{
struct alc_softc *sc;
struct ifnet *ifp;
char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
uint16_t burst;
int base, error, i, msic, msixc, state;
uint32_t cap, ctl, val;
error = 0;
sc = device_get_softc(dev);
sc->alc_dev = dev;
mtx_init(&sc->alc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->alc_tick_ch, &sc->alc_mtx, 0);
TASK_INIT(&sc->alc_int_task, 0, alc_int_task, sc);
sc->alc_ident = alc_find_ident(dev);
/* Map the device. */
pci_enable_busmaster(dev);
sc->alc_res_spec = alc_res_spec_mem;
sc->alc_irq_spec = alc_irq_spec_legacy;
error = bus_alloc_resources(dev, sc->alc_res_spec, sc->alc_res);
if (error != 0) {
device_printf(dev, "cannot allocate memory resources.\n");
goto fail;
}
/* Set PHY address. */
sc->alc_phyaddr = ALC_PHY_ADDR;
/* Initialize DMA parameters. */
sc->alc_dma_rd_burst = 0;
sc->alc_dma_wr_burst = 0;
sc->alc_rcb = DMA_CFG_RCB_64;
if (pci_find_cap(dev, PCIY_EXPRESS, &base) == 0) {
sc->alc_flags |= ALC_FLAG_PCIE;
sc->alc_expcap = base;
burst = CSR_READ_2(sc, base + PCIR_EXPRESS_DEVICE_CTL);
sc->alc_dma_rd_burst =
(burst & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12;
sc->alc_dma_wr_burst = (burst & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5;
if (bootverbose) {
device_printf(dev, "Read request size : %u bytes.\n",
alc_dma_burst[sc->alc_dma_rd_burst]);
device_printf(dev, "TLP payload size : %u bytes.\n",
alc_dma_burst[sc->alc_dma_wr_burst]);
}
if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
sc->alc_dma_rd_burst = 3;
if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
sc->alc_dma_wr_burst = 3;
/* Clear data link and flow-control protocol error. */
val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
PCIE_PHYMISC_FORCE_RCV_DET);
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
pci_get_revid(dev) == ATHEROS_AR8152_B_V10) {
val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
PCIE_PHYMISC2_SERDES_TH_MASK);
val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
}
/* Disable ASPM L0S and L1. */
cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CAP);
if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
ctl = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CTL);
if ((ctl & 0x08) != 0)
sc->alc_rcb = DMA_CFG_RCB_128;
if (bootverbose)
device_printf(dev, "RCB %u bytes\n",
sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
state = ctl & 0x03;
if (state & 0x01)
sc->alc_flags |= ALC_FLAG_L0S;
if (state & 0x02)
sc->alc_flags |= ALC_FLAG_L1S;
if (bootverbose)
device_printf(sc->alc_dev, "ASPM %s %s\n",
aspm_state[state],
state == 0 ? "disabled" : "enabled");
alc_disable_l0s_l1(sc);
} else {
if (bootverbose)
device_printf(sc->alc_dev,
"no ASPM support\n");
}
}
/* Reset PHY. */
alc_phy_reset(sc);
/* Reset the ethernet controller. */
alc_reset(sc);
/*
* One odd thing is AR8132 uses the same PHY hardware(F1
* gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
* the PHY supports 1000Mbps but that's not true. The PHY
* used in AR8132 can't establish gigabit link even if it
* shows the same PHY model/revision number of AR8131.
*/
switch (sc->alc_ident->deviceid) {
case DEVICEID_ATHEROS_AR8152_B:
case DEVICEID_ATHEROS_AR8152_B2:
sc->alc_flags |= ALC_FLAG_APS;
/* FALLTHROUGH */
case DEVICEID_ATHEROS_AR8132:
sc->alc_flags |= ALC_FLAG_FASTETHER;
break;
case DEVICEID_ATHEROS_AR8151:
case DEVICEID_ATHEROS_AR8151_V2:
sc->alc_flags |= ALC_FLAG_APS;
/* FALLTHROUGH */
default:
break;
}
sc->alc_flags |= ALC_FLAG_ASPM_MON | ALC_FLAG_JUMBO;
/*
* It seems that AR813x/AR815x has silicon bug for SMB. In
* addition, Atheros said that enabling SMB wouldn't improve
* performance. However I think it's bad to access lots of
* registers to extract MAC statistics.
*/
sc->alc_flags |= ALC_FLAG_SMB_BUG;
/*
* Don't use Tx CMB. It is known to have silicon bug.
*/
sc->alc_flags |= ALC_FLAG_CMB_BUG;
sc->alc_rev = pci_get_revid(dev);
sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
MASTER_CHIP_REV_SHIFT;
if (bootverbose) {
device_printf(dev, "PCI device revision : 0x%04x\n",
sc->alc_rev);
device_printf(dev, "Chip id/revision : 0x%04x\n",
sc->alc_chip_rev);
}
device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n",
CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
/* Allocate IRQ resources. */
msixc = pci_msix_count(dev);
msic = pci_msi_count(dev);
if (bootverbose) {
device_printf(dev, "MSIX count : %d\n", msixc);
device_printf(dev, "MSI count : %d\n", msic);
}
/* Prefer MSIX over MSI. */
if (msix_disable == 0 || msi_disable == 0) {
if (msix_disable == 0 && msixc == ALC_MSIX_MESSAGES &&
pci_alloc_msix(dev, &msixc) == 0) {
if (msic == ALC_MSIX_MESSAGES) {
device_printf(dev,
"Using %d MSIX message(s).\n", msixc);
sc->alc_flags |= ALC_FLAG_MSIX;
sc->alc_irq_spec = alc_irq_spec_msix;
} else
pci_release_msi(dev);
}
if (msi_disable == 0 && (sc->alc_flags & ALC_FLAG_MSIX) == 0 &&
msic == ALC_MSI_MESSAGES &&
pci_alloc_msi(dev, &msic) == 0) {
if (msic == ALC_MSI_MESSAGES) {
device_printf(dev,
"Using %d MSI message(s).\n", msic);
sc->alc_flags |= ALC_FLAG_MSI;
sc->alc_irq_spec = alc_irq_spec_msi;
} else
pci_release_msi(dev);
}
}
error = bus_alloc_resources(dev, sc->alc_irq_spec, sc->alc_irq);
if (error != 0) {
device_printf(dev, "cannot allocate IRQ resources.\n");
goto fail;
}
/* Create device sysctl node. */
alc_sysctl_node(sc);
if ((error = alc_dma_alloc(sc) != 0))
goto fail;
/* Load station address. */
alc_get_macaddr(sc);
ifp = sc->alc_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "cannot allocate ifnet structure.\n");
error = ENXIO;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = alc_ioctl;
ifp->if_start = alc_start;
ifp->if_init = alc_init;
ifp->if_snd.ifq_drv_maxlen = ALC_TX_RING_CNT - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
ifp->if_hwassist = ALC_CSUM_FEATURES | CSUM_TSO;
if (pci_find_cap(dev, PCIY_PMG, &base) == 0) {
ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
sc->alc_flags |= ALC_FLAG_PM;
sc->alc_pmcap = base;
}
ifp->if_capenable = ifp->if_capabilities;
/* Set up MII bus. */
error = mii_attach(dev, &sc->alc_miibus, ifp, alc_mediachange,
alc_mediastatus, BMSR_DEFCAPMASK, sc->alc_phyaddr, MII_OFFSET_ANY,
MIIF_DOPAUSE);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
ether_ifattach(ifp, sc->alc_eaddr);
/* VLAN capability setup. */
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
ifp->if_capenable = ifp->if_capabilities;
/*
* XXX
* It seems enabling Tx checksum offloading makes more trouble.
* Sometimes the controller does not receive any frames when
* Tx checksum offloading is enabled. I'm not sure whether this
* is a bug in Tx checksum offloading logic or I got broken
* sample boards. To safety, don't enable Tx checksum offloading
* by default but give chance to users to toggle it if they know
* their controllers work without problems.
*/
ifp->if_capenable &= ~IFCAP_TXCSUM;
ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
/* Tell the upper layer(s) we support long frames. */
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
/* Create local taskq. */
sc->alc_tq = taskqueue_create_fast("alc_taskq", M_WAITOK,
taskqueue_thread_enqueue, &sc->alc_tq);
if (sc->alc_tq == NULL) {
device_printf(dev, "could not create taskqueue.\n");
ether_ifdetach(ifp);
error = ENXIO;
goto fail;
}
taskqueue_start_threads(&sc->alc_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->alc_dev));
if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
msic = ALC_MSIX_MESSAGES;
else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
msic = ALC_MSI_MESSAGES;
else
msic = 1;
for (i = 0; i < msic; i++) {
error = bus_setup_intr(dev, sc->alc_irq[i],
INTR_TYPE_NET | INTR_MPSAFE, alc_intr, NULL, sc,
&sc->alc_intrhand[i]);
if (error != 0)
break;
}
if (error != 0) {
device_printf(dev, "could not set up interrupt handler.\n");
taskqueue_free(sc->alc_tq);
sc->alc_tq = NULL;
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error != 0)
alc_detach(dev);
return (error);
}
static int
alc_detach(device_t dev)
{
struct alc_softc *sc;
struct ifnet *ifp;
int i, msic;
sc = device_get_softc(dev);
ifp = sc->alc_ifp;
if (device_is_attached(dev)) {
ether_ifdetach(ifp);
ALC_LOCK(sc);
alc_stop(sc);
ALC_UNLOCK(sc);
callout_drain(&sc->alc_tick_ch);
taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
}
if (sc->alc_tq != NULL) {
taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
taskqueue_free(sc->alc_tq);
sc->alc_tq = NULL;
}
if (sc->alc_miibus != NULL) {
device_delete_child(dev, sc->alc_miibus);
sc->alc_miibus = NULL;
}
bus_generic_detach(dev);
alc_dma_free(sc);
if (ifp != NULL) {
if_free(ifp);
sc->alc_ifp = NULL;
}
if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
msic = ALC_MSIX_MESSAGES;
else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
msic = ALC_MSI_MESSAGES;
else
msic = 1;
for (i = 0; i < msic; i++) {
if (sc->alc_intrhand[i] != NULL) {
bus_teardown_intr(dev, sc->alc_irq[i],
sc->alc_intrhand[i]);
sc->alc_intrhand[i] = NULL;
}
}
if (sc->alc_res[0] != NULL)
alc_phy_down(sc);
bus_release_resources(dev, sc->alc_irq_spec, sc->alc_irq);
if ((sc->alc_flags & (ALC_FLAG_MSI | ALC_FLAG_MSIX)) != 0)
pci_release_msi(dev);
bus_release_resources(dev, sc->alc_res_spec, sc->alc_res);
mtx_destroy(&sc->alc_mtx);
return (0);
}
#define ALC_SYSCTL_STAT_ADD32(c, h, n, p, d) \
SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
#define ALC_SYSCTL_STAT_ADD64(c, h, n, p, d) \
SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
static void
alc_sysctl_node(struct alc_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *child, *parent;
struct sysctl_oid *tree;
struct alc_hw_stats *stats;
int error;
stats = &sc->alc_stats;
ctx = device_get_sysctl_ctx(sc->alc_dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->alc_dev));
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_rx_mod, 0,
sysctl_hw_alc_int_mod, "I", "alc Rx interrupt moderation");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_tx_mod, 0,
sysctl_hw_alc_int_mod, "I", "alc Tx interrupt moderation");
/* Pull in device tunables. */
sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
error = resource_int_value(device_get_name(sc->alc_dev),
device_get_unit(sc->alc_dev), "int_rx_mod", &sc->alc_int_rx_mod);
if (error == 0) {
if (sc->alc_int_rx_mod < ALC_IM_TIMER_MIN ||
sc->alc_int_rx_mod > ALC_IM_TIMER_MAX) {
device_printf(sc->alc_dev, "int_rx_mod value out of "
"range; using default: %d\n",
ALC_IM_RX_TIMER_DEFAULT);
sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
}
}
sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
error = resource_int_value(device_get_name(sc->alc_dev),
device_get_unit(sc->alc_dev), "int_tx_mod", &sc->alc_int_tx_mod);
if (error == 0) {
if (sc->alc_int_tx_mod < ALC_IM_TIMER_MIN ||
sc->alc_int_tx_mod > ALC_IM_TIMER_MAX) {
device_printf(sc->alc_dev, "int_tx_mod value out of "
"range; using default: %d\n",
ALC_IM_TX_TIMER_DEFAULT);
sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
}
}
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
CTLTYPE_INT | CTLFLAG_RW, &sc->alc_process_limit, 0,
sysctl_hw_alc_proc_limit, "I",
"max number of Rx events to process");
/* Pull in device tunables. */
sc->alc_process_limit = ALC_PROC_DEFAULT;
error = resource_int_value(device_get_name(sc->alc_dev),
device_get_unit(sc->alc_dev), "process_limit",
&sc->alc_process_limit);
if (error == 0) {
if (sc->alc_process_limit < ALC_PROC_MIN ||
sc->alc_process_limit > ALC_PROC_MAX) {
device_printf(sc->alc_dev,
"process_limit value out of range; "
"using default: %d\n", ALC_PROC_DEFAULT);
sc->alc_process_limit = ALC_PROC_DEFAULT;
}
}
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "ALC statistics");
parent = SYSCTL_CHILDREN(tree);
/* Rx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
NULL, "Rx MAC statistics");
child = SYSCTL_CHILDREN(tree);
ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
&stats->rx_frames, "Good frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
&stats->rx_bcast_frames, "Good broadcast frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
&stats->rx_mcast_frames, "Good multicast frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
&stats->rx_pause_frames, "Pause control frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
&stats->rx_control_frames, "Control frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
&stats->rx_crcerrs, "CRC errors");
ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
&stats->rx_lenerrs, "Frames with length mismatched");
ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
&stats->rx_bytes, "Good octets");
ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
&stats->rx_bcast_bytes, "Good broadcast octets");
ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
&stats->rx_mcast_bytes, "Good multicast octets");
ALC_SYSCTL_STAT_ADD32(ctx, child, "runts",
&stats->rx_runts, "Too short frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "fragments",
&stats->rx_fragments, "Fragmented frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
&stats->rx_pkts_64, "64 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
&stats->rx_pkts_65_127, "65 to 127 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
&stats->rx_pkts_128_255, "128 to 255 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
&stats->rx_pkts_256_511, "256 to 511 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
&stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
&stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
&stats->rx_pkts_1519_max, "1519 to max frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
&stats->rx_pkts_truncated, "Truncated frames due to MTU size");
ALC_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
&stats->rx_fifo_oflows, "FIFO overflows");
ALC_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
&stats->rx_rrs_errs, "Return status write-back errors");
ALC_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
&stats->rx_alignerrs, "Alignment errors");
ALC_SYSCTL_STAT_ADD32(ctx, child, "filtered",
&stats->rx_pkts_filtered,
"Frames dropped due to address filtering");
/* Tx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
NULL, "Tx MAC statistics");
child = SYSCTL_CHILDREN(tree);
ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
&stats->tx_frames, "Good frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
&stats->tx_bcast_frames, "Good broadcast frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
&stats->tx_mcast_frames, "Good multicast frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
&stats->tx_pause_frames, "Pause control frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
&stats->tx_control_frames, "Control frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
&stats->tx_excess_defer, "Frames with excessive derferrals");
ALC_SYSCTL_STAT_ADD32(ctx, child, "defers",
&stats->tx_excess_defer, "Frames with derferrals");
ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
&stats->tx_bytes, "Good octets");
ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
&stats->tx_bcast_bytes, "Good broadcast octets");
ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
&stats->tx_mcast_bytes, "Good multicast octets");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
&stats->tx_pkts_64, "64 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
&stats->tx_pkts_65_127, "65 to 127 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
&stats->tx_pkts_128_255, "128 to 255 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
&stats->tx_pkts_256_511, "256 to 511 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
&stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
&stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
&stats->tx_pkts_1519_max, "1519 to max frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
&stats->tx_single_colls, "Single collisions");
ALC_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
&stats->tx_multi_colls, "Multiple collisions");
ALC_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
&stats->tx_late_colls, "Late collisions");
ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
&stats->tx_excess_colls, "Excessive collisions");
ALC_SYSCTL_STAT_ADD32(ctx, child, "abort",
&stats->tx_abort, "Aborted frames due to Excessive collisions");
ALC_SYSCTL_STAT_ADD32(ctx, child, "underruns",
&stats->tx_underrun, "FIFO underruns");
ALC_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
&stats->tx_desc_underrun, "Descriptor write-back errors");
ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
&stats->tx_lenerrs, "Frames with length mismatched");
ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
&stats->tx_pkts_truncated, "Truncated frames due to MTU size");
}
#undef ALC_SYSCTL_STAT_ADD32
#undef ALC_SYSCTL_STAT_ADD64
struct alc_dmamap_arg {
bus_addr_t alc_busaddr;
};
static void
alc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct alc_dmamap_arg *ctx;
if (error != 0)
return;
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
ctx = (struct alc_dmamap_arg *)arg;
ctx->alc_busaddr = segs[0].ds_addr;
}
/*
* Normal and high Tx descriptors shares single Tx high address.
* Four Rx descriptor/return rings and CMB shares the same Rx
* high address.
*/
static int
alc_check_boundary(struct alc_softc *sc)
{
bus_addr_t cmb_end, rx_ring_end, rr_ring_end, tx_ring_end;
rx_ring_end = sc->alc_rdata.alc_rx_ring_paddr + ALC_RX_RING_SZ;
rr_ring_end = sc->alc_rdata.alc_rr_ring_paddr + ALC_RR_RING_SZ;
cmb_end = sc->alc_rdata.alc_cmb_paddr + ALC_CMB_SZ;
tx_ring_end = sc->alc_rdata.alc_tx_ring_paddr + ALC_TX_RING_SZ;
/* 4GB boundary crossing is not allowed. */
if ((ALC_ADDR_HI(rx_ring_end) !=
ALC_ADDR_HI(sc->alc_rdata.alc_rx_ring_paddr)) ||
(ALC_ADDR_HI(rr_ring_end) !=
ALC_ADDR_HI(sc->alc_rdata.alc_rr_ring_paddr)) ||
(ALC_ADDR_HI(cmb_end) !=
ALC_ADDR_HI(sc->alc_rdata.alc_cmb_paddr)) ||
(ALC_ADDR_HI(tx_ring_end) !=
ALC_ADDR_HI(sc->alc_rdata.alc_tx_ring_paddr)))
return (EFBIG);
/*
* Make sure Rx return descriptor/Rx descriptor/CMB use
* the same high address.
*/
if ((ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(rr_ring_end)) ||
(ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(cmb_end)))
return (EFBIG);
return (0);
}
static int
alc_dma_alloc(struct alc_softc *sc)
{
struct alc_txdesc *txd;
struct alc_rxdesc *rxd;
bus_addr_t lowaddr;
struct alc_dmamap_arg ctx;
int error, i;
lowaddr = BUS_SPACE_MAXADDR;
again:
/* Create parent DMA tag. */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->alc_dev), /* parent */
1, 0, /* alignment, boundary */
lowaddr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->alc_cdata.alc_parent_tag);
if (error != 0) {
device_printf(sc->alc_dev,
"could not create parent DMA tag.\n");
goto fail;
}
/* Create DMA tag for Tx descriptor ring. */
error = bus_dma_tag_create(
sc->alc_cdata.alc_parent_tag, /* parent */
ALC_TX_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ALC_TX_RING_SZ, /* maxsize */
1, /* nsegments */
ALC_TX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->alc_cdata.alc_tx_ring_tag);
if (error != 0) {
device_printf(sc->alc_dev,
"could not create Tx ring DMA tag.\n");
goto fail;
}
/* Create DMA tag for Rx free descriptor ring. */
error = bus_dma_tag_create(
sc->alc_cdata.alc_parent_tag, /* parent */
ALC_RX_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ALC_RX_RING_SZ, /* maxsize */
1, /* nsegments */
ALC_RX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->alc_cdata.alc_rx_ring_tag);
if (error != 0) {
device_printf(sc->alc_dev,
"could not create Rx ring DMA tag.\n");
goto fail;
}
/* Create DMA tag for Rx return descriptor ring. */
error = bus_dma_tag_create(
sc->alc_cdata.alc_parent_tag, /* parent */
ALC_RR_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ALC_RR_RING_SZ, /* maxsize */
1, /* nsegments */
ALC_RR_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->alc_cdata.alc_rr_ring_tag);
if (error != 0) {
device_printf(sc->alc_dev,
"could not create Rx return ring DMA tag.\n");
goto fail;
}
/* Create DMA tag for coalescing message block. */
error = bus_dma_tag_create(
sc->alc_cdata.alc_parent_tag, /* parent */
ALC_CMB_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ALC_CMB_SZ, /* maxsize */
1, /* nsegments */
ALC_CMB_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->alc_cdata.alc_cmb_tag);
if (error != 0) {
device_printf(sc->alc_dev,
"could not create CMB DMA tag.\n");
goto fail;
}
/* Create DMA tag for status message block. */
error = bus_dma_tag_create(
sc->alc_cdata.alc_parent_tag, /* parent */
ALC_SMB_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ALC_SMB_SZ, /* maxsize */
1, /* nsegments */
ALC_SMB_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->alc_cdata.alc_smb_tag);
if (error != 0) {
device_printf(sc->alc_dev,
"could not create SMB DMA tag.\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
error = bus_dmamem_alloc(sc->alc_cdata.alc_tx_ring_tag,
(void **)&sc->alc_rdata.alc_tx_ring,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->alc_cdata.alc_tx_ring_map);
if (error != 0) {
device_printf(sc->alc_dev,
"could not allocate DMA'able memory for Tx ring.\n");
goto fail;
}
ctx.alc_busaddr = 0;
error = bus_dmamap_load(sc->alc_cdata.alc_tx_ring_tag,
sc->alc_cdata.alc_tx_ring_map, sc->alc_rdata.alc_tx_ring,
ALC_TX_RING_SZ, alc_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.alc_busaddr == 0) {
device_printf(sc->alc_dev,
"could not load DMA'able memory for Tx ring.\n");
goto fail;
}
sc->alc_rdata.alc_tx_ring_paddr = ctx.alc_busaddr;
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
error = bus_dmamem_alloc(sc->alc_cdata.alc_rx_ring_tag,
(void **)&sc->alc_rdata.alc_rx_ring,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->alc_cdata.alc_rx_ring_map);
if (error != 0) {
device_printf(sc->alc_dev,
"could not allocate DMA'able memory for Rx ring.\n");
goto fail;
}
ctx.alc_busaddr = 0;
error = bus_dmamap_load(sc->alc_cdata.alc_rx_ring_tag,
sc->alc_cdata.alc_rx_ring_map, sc->alc_rdata.alc_rx_ring,
ALC_RX_RING_SZ, alc_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.alc_busaddr == 0) {
device_printf(sc->alc_dev,
"could not load DMA'able memory for Rx ring.\n");
goto fail;
}
sc->alc_rdata.alc_rx_ring_paddr = ctx.alc_busaddr;
/* Allocate DMA'able memory and load the DMA map for Rx return ring. */
error = bus_dmamem_alloc(sc->alc_cdata.alc_rr_ring_tag,
(void **)&sc->alc_rdata.alc_rr_ring,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->alc_cdata.alc_rr_ring_map);
if (error != 0) {
device_printf(sc->alc_dev,
"could not allocate DMA'able memory for Rx return ring.\n");
goto fail;
}
ctx.alc_busaddr = 0;
error = bus_dmamap_load(sc->alc_cdata.alc_rr_ring_tag,
sc->alc_cdata.alc_rr_ring_map, sc->alc_rdata.alc_rr_ring,
ALC_RR_RING_SZ, alc_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.alc_busaddr == 0) {
device_printf(sc->alc_dev,
"could not load DMA'able memory for Tx ring.\n");
goto fail;
}
sc->alc_rdata.alc_rr_ring_paddr = ctx.alc_busaddr;
/* Allocate DMA'able memory and load the DMA map for CMB. */
error = bus_dmamem_alloc(sc->alc_cdata.alc_cmb_tag,
(void **)&sc->alc_rdata.alc_cmb,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->alc_cdata.alc_cmb_map);
if (error != 0) {
device_printf(sc->alc_dev,
"could not allocate DMA'able memory for CMB.\n");
goto fail;
}
ctx.alc_busaddr = 0;
error = bus_dmamap_load(sc->alc_cdata.alc_cmb_tag,
sc->alc_cdata.alc_cmb_map, sc->alc_rdata.alc_cmb,
ALC_CMB_SZ, alc_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.alc_busaddr == 0) {
device_printf(sc->alc_dev,
"could not load DMA'able memory for CMB.\n");
goto fail;
}
sc->alc_rdata.alc_cmb_paddr = ctx.alc_busaddr;
/* Allocate DMA'able memory and load the DMA map for SMB. */
error = bus_dmamem_alloc(sc->alc_cdata.alc_smb_tag,
(void **)&sc->alc_rdata.alc_smb,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->alc_cdata.alc_smb_map);
if (error != 0) {
device_printf(sc->alc_dev,
"could not allocate DMA'able memory for SMB.\n");
goto fail;
}
ctx.alc_busaddr = 0;
error = bus_dmamap_load(sc->alc_cdata.alc_smb_tag,
sc->alc_cdata.alc_smb_map, sc->alc_rdata.alc_smb,
ALC_SMB_SZ, alc_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.alc_busaddr == 0) {
device_printf(sc->alc_dev,
"could not load DMA'able memory for CMB.\n");
goto fail;
}
sc->alc_rdata.alc_smb_paddr = ctx.alc_busaddr;
/* Make sure we've not crossed 4GB boundary. */
if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
(error = alc_check_boundary(sc)) != 0) {
device_printf(sc->alc_dev, "4GB boundary crossed, "
"switching to 32bit DMA addressing mode.\n");
alc_dma_free(sc);
/*
* Limit max allowable DMA address space to 32bit
* and try again.
*/
lowaddr = BUS_SPACE_MAXADDR_32BIT;
goto again;
}
/*
* Create Tx buffer parent tag.
* AR813x/AR815x allows 64bit DMA addressing of Tx/Rx buffers
* so it needs separate parent DMA tag as parent DMA address
* space could be restricted to be within 32bit address space
* by 4GB boundary crossing.
*/
error = bus_dma_tag_create(
bus_get_dma_tag(sc->alc_dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->alc_cdata.alc_buffer_tag);
if (error != 0) {
device_printf(sc->alc_dev,
"could not create parent buffer DMA tag.\n");
goto fail;
}
/* Create DMA tag for Tx buffers. */
error = bus_dma_tag_create(
sc->alc_cdata.alc_buffer_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ALC_TSO_MAXSIZE, /* maxsize */
ALC_MAXTXSEGS, /* nsegments */
ALC_TSO_MAXSEGSIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->alc_cdata.alc_tx_tag);
if (error != 0) {
device_printf(sc->alc_dev, "could not create Tx DMA tag.\n");
goto fail;
}
/* Create DMA tag for Rx buffers. */
error = bus_dma_tag_create(
sc->alc_cdata.alc_buffer_tag, /* parent */
ALC_RX_BUF_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->alc_cdata.alc_rx_tag);
if (error != 0) {
device_printf(sc->alc_dev, "could not create Rx DMA tag.\n");
goto fail;
}
/* Create DMA maps for Tx buffers. */
for (i = 0; i < ALC_TX_RING_CNT; i++) {
txd = &sc->alc_cdata.alc_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->alc_cdata.alc_tx_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc->alc_dev,
"could not create Tx dmamap.\n");
goto fail;
}
}
/* Create DMA maps for Rx buffers. */
if ((error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0,
&sc->alc_cdata.alc_rx_sparemap)) != 0) {
device_printf(sc->alc_dev,
"could not create spare Rx dmamap.\n");
goto fail;
}
for (i = 0; i < ALC_RX_RING_CNT; i++) {
rxd = &sc->alc_cdata.alc_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0,
&rxd->rx_dmamap);
if (error != 0) {
device_printf(sc->alc_dev,
"could not create Rx dmamap.\n");
goto fail;
}
}
fail:
return (error);
}
static void
alc_dma_free(struct alc_softc *sc)
{
struct alc_txdesc *txd;
struct alc_rxdesc *rxd;
int i;
/* Tx buffers. */
if (sc->alc_cdata.alc_tx_tag != NULL) {
for (i = 0; i < ALC_TX_RING_CNT; i++) {
txd = &sc->alc_cdata.alc_txdesc[i];
if (txd->tx_dmamap != NULL) {
bus_dmamap_destroy(sc->alc_cdata.alc_tx_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(sc->alc_cdata.alc_tx_tag);
sc->alc_cdata.alc_tx_tag = NULL;
}
/* Rx buffers */
if (sc->alc_cdata.alc_rx_tag != NULL) {
for (i = 0; i < ALC_RX_RING_CNT; i++) {
rxd = &sc->alc_cdata.alc_rxdesc[i];
if (rxd->rx_dmamap != NULL) {
bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc->alc_cdata.alc_rx_sparemap != NULL) {
bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
sc->alc_cdata.alc_rx_sparemap);
sc->alc_cdata.alc_rx_sparemap = NULL;
}
bus_dma_tag_destroy(sc->alc_cdata.alc_rx_tag);
sc->alc_cdata.alc_rx_tag = NULL;
}
/* Tx descriptor ring. */
if (sc->alc_cdata.alc_tx_ring_tag != NULL) {
if (sc->alc_cdata.alc_tx_ring_map != NULL)
bus_dmamap_unload(sc->alc_cdata.alc_tx_ring_tag,
sc->alc_cdata.alc_tx_ring_map);
if (sc->alc_cdata.alc_tx_ring_map != NULL &&
sc->alc_rdata.alc_tx_ring != NULL)
bus_dmamem_free(sc->alc_cdata.alc_tx_ring_tag,
sc->alc_rdata.alc_tx_ring,
sc->alc_cdata.alc_tx_ring_map);
sc->alc_rdata.alc_tx_ring = NULL;
sc->alc_cdata.alc_tx_ring_map = NULL;
bus_dma_tag_destroy(sc->alc_cdata.alc_tx_ring_tag);
sc->alc_cdata.alc_tx_ring_tag = NULL;
}
/* Rx ring. */
if (sc->alc_cdata.alc_rx_ring_tag != NULL) {
if (sc->alc_cdata.alc_rx_ring_map != NULL)
bus_dmamap_unload(sc->alc_cdata.alc_rx_ring_tag,
sc->alc_cdata.alc_rx_ring_map);
if (sc->alc_cdata.alc_rx_ring_map != NULL &&
sc->alc_rdata.alc_rx_ring != NULL)
bus_dmamem_free(sc->alc_cdata.alc_rx_ring_tag,
sc->alc_rdata.alc_rx_ring,
sc->alc_cdata.alc_rx_ring_map);
sc->alc_rdata.alc_rx_ring = NULL;
sc->alc_cdata.alc_rx_ring_map = NULL;
bus_dma_tag_destroy(sc->alc_cdata.alc_rx_ring_tag);
sc->alc_cdata.alc_rx_ring_tag = NULL;
}
/* Rx return ring. */
if (sc->alc_cdata.alc_rr_ring_tag != NULL) {
if (sc->alc_cdata.alc_rr_ring_map != NULL)
bus_dmamap_unload(sc->alc_cdata.alc_rr_ring_tag,
sc->alc_cdata.alc_rr_ring_map);
if (sc->alc_cdata.alc_rr_ring_map != NULL &&
sc->alc_rdata.alc_rr_ring != NULL)
bus_dmamem_free(sc->alc_cdata.alc_rr_ring_tag,
sc->alc_rdata.alc_rr_ring,
sc->alc_cdata.alc_rr_ring_map);
sc->alc_rdata.alc_rr_ring = NULL;
sc->alc_cdata.alc_rr_ring_map = NULL;
bus_dma_tag_destroy(sc->alc_cdata.alc_rr_ring_tag);
sc->alc_cdata.alc_rr_ring_tag = NULL;
}
/* CMB block */
if (sc->alc_cdata.alc_cmb_tag != NULL) {
if (sc->alc_cdata.alc_cmb_map != NULL)
bus_dmamap_unload(sc->alc_cdata.alc_cmb_tag,
sc->alc_cdata.alc_cmb_map);
if (sc->alc_cdata.alc_cmb_map != NULL &&
sc->alc_rdata.alc_cmb != NULL)
bus_dmamem_free(sc->alc_cdata.alc_cmb_tag,
sc->alc_rdata.alc_cmb,
sc->alc_cdata.alc_cmb_map);
sc->alc_rdata.alc_cmb = NULL;
sc->alc_cdata.alc_cmb_map = NULL;
bus_dma_tag_destroy(sc->alc_cdata.alc_cmb_tag);
sc->alc_cdata.alc_cmb_tag = NULL;
}
/* SMB block */
if (sc->alc_cdata.alc_smb_tag != NULL) {
if (sc->alc_cdata.alc_smb_map != NULL)
bus_dmamap_unload(sc->alc_cdata.alc_smb_tag,
sc->alc_cdata.alc_smb_map);
if (sc->alc_cdata.alc_smb_map != NULL &&
sc->alc_rdata.alc_smb != NULL)
bus_dmamem_free(sc->alc_cdata.alc_smb_tag,
sc->alc_rdata.alc_smb,
sc->alc_cdata.alc_smb_map);
sc->alc_rdata.alc_smb = NULL;
sc->alc_cdata.alc_smb_map = NULL;
bus_dma_tag_destroy(sc->alc_cdata.alc_smb_tag);
sc->alc_cdata.alc_smb_tag = NULL;
}
if (sc->alc_cdata.alc_buffer_tag != NULL) {
bus_dma_tag_destroy(sc->alc_cdata.alc_buffer_tag);
sc->alc_cdata.alc_buffer_tag = NULL;
}
if (sc->alc_cdata.alc_parent_tag != NULL) {
bus_dma_tag_destroy(sc->alc_cdata.alc_parent_tag);
sc->alc_cdata.alc_parent_tag = NULL;
}
}
static int
alc_shutdown(device_t dev)
{
return (alc_suspend(dev));
}
/*
* Note, this driver resets the link speed to 10/100Mbps by
* restarting auto-negotiation in suspend/shutdown phase but we
* don't know whether that auto-negotiation would succeed or not
* as driver has no control after powering off/suspend operation.
* If the renegotiation fail WOL may not work. Running at 1Gbps
* will draw more power than 375mA at 3.3V which is specified in
* PCI specification and that would result in complete
* shutdowning power to ethernet controller.
*
* TODO
* Save current negotiated media speed/duplex/flow-control to
* softc and restore the same link again after resuming. PHY
* handling such as power down/resetting to 100Mbps may be better
* handled in suspend method in phy driver.
*/
static void
alc_setlinkspeed(struct alc_softc *sc)
{
struct mii_data *mii;
int aneg, i;
mii = device_get_softc(sc->alc_miibus);
mii_pollstat(mii);
aneg = 0;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch IFM_SUBTYPE(mii->mii_media_active) {
case IFM_10_T:
case IFM_100_TX:
return;
case IFM_1000_T:
aneg++;
break;
default:
break;
}
}
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, MII_100T2CR, 0);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
DELAY(1000);
if (aneg != 0) {
/*
* Poll link state until alc(4) get a 10/100Mbps link.
*/
for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
mii_pollstat(mii);
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
== (IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(
mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
alc_mac_config(sc);
return;
default:
break;
}
}
ALC_UNLOCK(sc);
pause("alclnk", hz);
ALC_LOCK(sc);
}
if (i == MII_ANEGTICKS_GIGE)
device_printf(sc->alc_dev,
"establishing a link failed, WOL may not work!");
}
/*
* No link, force MAC to have 100Mbps, full-duplex link.
* This is the last resort and may/may not work.
*/
mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
alc_mac_config(sc);
}
static void
alc_setwol(struct alc_softc *sc)
{
struct ifnet *ifp;
uint32_t reg, pmcs;
uint16_t pmstat;
ALC_LOCK_ASSERT(sc);
alc_disable_l0s_l1(sc);
ifp = sc->alc_ifp;
if ((sc->alc_flags & ALC_FLAG_PM) == 0) {
/* Disable WOL. */
CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
reg |= PCIE_PHYMISC_FORCE_RCV_DET;
CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
/* Force PHY power down. */
alc_phy_down(sc);
CSR_WRITE_4(sc, ALC_MASTER_CFG,
CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
return;
}
if ((ifp->if_capenable & IFCAP_WOL) != 0) {
if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
alc_setlinkspeed(sc);
CSR_WRITE_4(sc, ALC_MASTER_CFG,
CSR_READ_4(sc, ALC_MASTER_CFG) & ~MASTER_CLK_SEL_DIS);
}
pmcs = 0;
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
CSR_WRITE_4(sc, ALC_WOL_CFG, pmcs);
reg = CSR_READ_4(sc, ALC_MAC_CFG);
reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
MAC_CFG_BCAST);
if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
if ((ifp->if_capenable & IFCAP_WOL) != 0)
reg |= MAC_CFG_RX_ENB;
CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
reg |= PCIE_PHYMISC_FORCE_RCV_DET;
CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
if ((ifp->if_capenable & IFCAP_WOL) == 0) {
/* WOL disabled, PHY power down. */
alc_phy_down(sc);
CSR_WRITE_4(sc, ALC_MASTER_CFG,
CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
}
/* Request PME. */
pmstat = pci_read_config(sc->alc_dev,
sc->alc_pmcap + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->alc_dev,
sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
}
static int
alc_suspend(device_t dev)
{
struct alc_softc *sc;
sc = device_get_softc(dev);
ALC_LOCK(sc);
alc_stop(sc);
alc_setwol(sc);
ALC_UNLOCK(sc);
return (0);
}
static int
alc_resume(device_t dev)
{
struct alc_softc *sc;
struct ifnet *ifp;
uint16_t pmstat;
sc = device_get_softc(dev);
ALC_LOCK(sc);
if ((sc->alc_flags & ALC_FLAG_PM) != 0) {
/* Disable PME and clear PME status. */
pmstat = pci_read_config(sc->alc_dev,
sc->alc_pmcap + PCIR_POWER_STATUS, 2);
if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
pmstat &= ~PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->alc_dev,
sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
}
}
/* Reset PHY. */
alc_phy_reset(sc);
ifp = sc->alc_ifp;
if ((ifp->if_flags & IFF_UP) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
alc_init_locked(sc);
}
ALC_UNLOCK(sc);
return (0);
}
static int
alc_encap(struct alc_softc *sc, struct mbuf **m_head)
{
struct alc_txdesc *txd, *txd_last;
struct tx_desc *desc;
struct mbuf *m;
struct ip *ip;
struct tcphdr *tcp;
bus_dma_segment_t txsegs[ALC_MAXTXSEGS];
bus_dmamap_t map;
uint32_t cflags, hdrlen, ip_off, poff, vtag;
int error, idx, nsegs, prod;
ALC_LOCK_ASSERT(sc);
M_ASSERTPKTHDR((*m_head));
m = *m_head;
ip = NULL;
tcp = NULL;
ip_off = poff = 0;
if ((m->m_pkthdr.csum_flags & (ALC_CSUM_FEATURES | CSUM_TSO)) != 0) {
/*
* AR813x/AR815x requires offset of TCP/UDP header in its
* Tx descriptor to perform Tx checksum offloading. TSO
* also requires TCP header offset and modification of
* IP/TCP header. This kind of operation takes many CPU
* cycles on FreeBSD so fast host CPU is required to get
* smooth TSO performance.
*/
struct ether_header *eh;
if (M_WRITABLE(m) == 0) {
/* Get a writable copy. */
m = m_dup(*m_head, M_DONTWAIT);
/* Release original mbufs. */
m_freem(*m_head);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
ip_off = sizeof(struct ether_header);
m = m_pullup(m, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
eh = mtod(m, struct ether_header *);
/*
* Check if hardware VLAN insertion is off.
* Additional check for LLC/SNAP frame?
*/
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
ip_off = sizeof(struct ether_vlan_header);
m = m_pullup(m, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
}
m = m_pullup(m, ip_off + sizeof(struct ip));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
ip = (struct ip *)(mtod(m, char *) + ip_off);
poff = ip_off + (ip->ip_hl << 2);
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
m = m_pullup(m, poff + sizeof(struct tcphdr));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
m = m_pullup(m, poff + (tcp->th_off << 2));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
/*
* Due to strict adherence of Microsoft NDIS
* Large Send specification, hardware expects
* a pseudo TCP checksum inserted by upper
* stack. Unfortunately the pseudo TCP
* checksum that NDIS refers to does not include
* TCP payload length so driver should recompute
* the pseudo checksum here. Hopefully this
* wouldn't be much burden on modern CPUs.
*
* Reset IP checksum and recompute TCP pseudo
* checksum as NDIS specification said.
*/
ip = (struct ip *)(mtod(m, char *) + ip_off);
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
ip->ip_sum = 0;
tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
}
*m_head = m;
}
prod = sc->alc_cdata.alc_tx_prod;
txd = &sc->alc_cdata.alc_txdesc[prod];
txd_last = txd;
map = txd->tx_dmamap;
error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map,
*m_head, txsegs, &nsegs, 0);
if (error == EFBIG) {
m = m_collapse(*m_head, M_DONTWAIT, ALC_MAXTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map,
*m_head, txsegs, &nsegs, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/* Check descriptor overrun. */
if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, map);
return (ENOBUFS);
}
bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, map, BUS_DMASYNC_PREWRITE);
m = *m_head;
cflags = TD_ETHERNET;
vtag = 0;
desc = NULL;
idx = 0;
/* Configure VLAN hardware tag insertion. */
if ((m->m_flags & M_VLANTAG) != 0) {
vtag = htons(m->m_pkthdr.ether_vtag);
vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
cflags |= TD_INS_VLAN_TAG;
}
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
/* Request TSO and set MSS. */
cflags |= TD_TSO | TD_TSO_DESCV1;
cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << TD_MSS_SHIFT) &
TD_MSS_MASK;
/* Set TCP header offset. */
cflags |= (poff << TD_TCPHDR_OFFSET_SHIFT) &
TD_TCPHDR_OFFSET_MASK;
/*
* AR813x/AR815x requires the first buffer should
* only hold IP/TCP header data. Payload should
* be handled in other descriptors.
*/
hdrlen = poff + (tcp->th_off << 2);
desc = &sc->alc_rdata.alc_tx_ring[prod];
desc->len = htole32(TX_BYTES(hdrlen | vtag));
desc->flags = htole32(cflags);
desc->addr = htole64(txsegs[0].ds_addr);
sc->alc_cdata.alc_tx_cnt++;
ALC_DESC_INC(prod, ALC_TX_RING_CNT);
if (m->m_len - hdrlen > 0) {
/* Handle remaining payload of the first fragment. */
desc = &sc->alc_rdata.alc_tx_ring[prod];
desc->len = htole32(TX_BYTES((m->m_len - hdrlen) |
vtag));
desc->flags = htole32(cflags);
desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
sc->alc_cdata.alc_tx_cnt++;
ALC_DESC_INC(prod, ALC_TX_RING_CNT);
}
/* Handle remaining fragments. */
idx = 1;
} else if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
/* Configure Tx checksum offload. */
#ifdef ALC_USE_CUSTOM_CSUM
cflags |= TD_CUSTOM_CSUM;
/* Set checksum start offset. */
cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
TD_PLOAD_OFFSET_MASK;
/* Set checksum insertion position of TCP/UDP. */
cflags |= (((poff + m->m_pkthdr.csum_data) >> 1) <<
TD_CUSTOM_CSUM_OFFSET_SHIFT) & TD_CUSTOM_CSUM_OFFSET_MASK;
#else
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
cflags |= TD_IPCSUM;
if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
cflags |= TD_TCPCSUM;
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
cflags |= TD_UDPCSUM;
/* Set TCP/UDP header offset. */
cflags |= (poff << TD_L4HDR_OFFSET_SHIFT) &
TD_L4HDR_OFFSET_MASK;
#endif
}
for (; idx < nsegs; idx++) {
desc = &sc->alc_rdata.alc_tx_ring[prod];
desc->len = htole32(TX_BYTES(txsegs[idx].ds_len) | vtag);
desc->flags = htole32(cflags);
desc->addr = htole64(txsegs[idx].ds_addr);
sc->alc_cdata.alc_tx_cnt++;
ALC_DESC_INC(prod, ALC_TX_RING_CNT);
}
/* Update producer index. */
sc->alc_cdata.alc_tx_prod = prod;
/* Finally set EOP on the last descriptor. */
prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
desc = &sc->alc_rdata.alc_tx_ring[prod];
desc->flags |= htole32(TD_EOP);
/* Swap dmamap of the first and the last. */
txd = &sc->alc_cdata.alc_txdesc[prod];
map = txd_last->tx_dmamap;
txd_last->tx_dmamap = txd->tx_dmamap;
txd->tx_dmamap = map;
txd->tx_m = m;
return (0);
}
static void
alc_start(struct ifnet *ifp)
{
struct alc_softc *sc;
sc = ifp->if_softc;
ALC_LOCK(sc);
alc_start_locked(ifp);
ALC_UNLOCK(sc);
}
static void
alc_start_locked(struct ifnet *ifp)
{
struct alc_softc *sc;
struct mbuf *m_head;
int enq;
sc = ifp->if_softc;
ALC_LOCK_ASSERT(sc);
/* Reclaim transmitted frames. */
if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
alc_txeof(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->alc_flags & ALC_FLAG_LINK) == 0)
return;
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (alc_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
/* Sync descriptors. */
bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
/* Kick. Assume we're using normal Tx priority queue. */
CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
(sc->alc_cdata.alc_tx_prod <<
MBOX_TD_PROD_LO_IDX_SHIFT) &
MBOX_TD_PROD_LO_IDX_MASK);
/* Set a timeout in case the chip goes out to lunch. */
sc->alc_watchdog_timer = ALC_TX_TIMEOUT;
}
}
static void
alc_watchdog(struct alc_softc *sc)
{
struct ifnet *ifp;
ALC_LOCK_ASSERT(sc);
if (sc->alc_watchdog_timer == 0 || --sc->alc_watchdog_timer)
return;
ifp = sc->alc_ifp;
if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
if_printf(sc->alc_ifp, "watchdog timeout (lost link)\n");
ifp->if_oerrors++;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
alc_init_locked(sc);
return;
}
if_printf(sc->alc_ifp, "watchdog timeout -- resetting\n");
ifp->if_oerrors++;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
alc_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
alc_start_locked(ifp);
}
static int
alc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct alc_softc *sc;
struct ifreq *ifr;
struct mii_data *mii;
int error, mask;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
error = 0;
switch (cmd) {
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN ||
ifr->ifr_mtu > (sc->alc_ident->max_framelen -
sizeof(struct ether_vlan_header) - ETHER_CRC_LEN) ||
((sc->alc_flags & ALC_FLAG_JUMBO) == 0 &&
ifr->ifr_mtu > ETHERMTU))
error = EINVAL;
else if (ifp->if_mtu != ifr->ifr_mtu) {
ALC_LOCK(sc);
ifp->if_mtu = ifr->ifr_mtu;
/* AR813x/AR815x has 13 bits MSS field. */
if (ifp->if_mtu > ALC_TSO_MTU &&
(ifp->if_capenable & IFCAP_TSO4) != 0) {
ifp->if_capenable &= ~IFCAP_TSO4;
ifp->if_hwassist &= ~CSUM_TSO;
VLAN_CAPABILITIES(ifp);
}
ALC_UNLOCK(sc);
}
break;
case SIOCSIFFLAGS:
ALC_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
((ifp->if_flags ^ sc->alc_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) != 0)
alc_rxfilter(sc);
else
alc_init_locked(sc);
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
alc_stop(sc);
sc->alc_if_flags = ifp->if_flags;
ALC_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
ALC_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
alc_rxfilter(sc);
ALC_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->alc_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
ALC_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_TXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
ifp->if_hwassist |= ALC_CSUM_FEATURES;
else
ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
}
if ((mask & IFCAP_TSO4) != 0 &&
(ifp->if_capabilities & IFCAP_TSO4) != 0) {
ifp->if_capenable ^= IFCAP_TSO4;
if ((ifp->if_capenable & IFCAP_TSO4) != 0) {
/* AR813x/AR815x has 13 bits MSS field. */
if (ifp->if_mtu > ALC_TSO_MTU) {
ifp->if_capenable &= ~IFCAP_TSO4;
ifp->if_hwassist &= ~CSUM_TSO;
} else
ifp->if_hwassist |= CSUM_TSO;
} else
ifp->if_hwassist &= ~CSUM_TSO;
}
if ((mask & IFCAP_WOL_MCAST) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
ifp->if_capenable ^= IFCAP_WOL_MCAST;
if ((mask & IFCAP_WOL_MAGIC) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
alc_rxvlan(sc);
}
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
ifp->if_capenable &=
~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
ALC_UNLOCK(sc);
VLAN_CAPABILITIES(ifp);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
alc_mac_config(struct alc_softc *sc)
{
struct mii_data *mii;
uint32_t reg;
ALC_LOCK_ASSERT(sc);
mii = device_get_softc(sc->alc_miibus);
reg = CSR_READ_4(sc, ALC_MAC_CFG);
reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
MAC_CFG_SPEED_MASK);
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
/* Reprogram MAC with resolved speed/duplex. */
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
reg |= MAC_CFG_SPEED_10_100;
break;
case IFM_1000_T:
reg |= MAC_CFG_SPEED_1000;
break;
}
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
reg |= MAC_CFG_FULL_DUPLEX;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
reg |= MAC_CFG_TX_FC;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
reg |= MAC_CFG_RX_FC;
}
CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
}
static void
alc_stats_clear(struct alc_softc *sc)
{
struct smb sb, *smb;
uint32_t *reg;
int i;
if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
sc->alc_cdata.alc_smb_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
smb = sc->alc_rdata.alc_smb;
/* Update done, clear. */
smb->updated = 0;
bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
sc->alc_cdata.alc_smb_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
} else {
for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
reg++) {
CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
i += sizeof(uint32_t);
}
/* Read Tx statistics. */
for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
reg++) {
CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
i += sizeof(uint32_t);
}
}
}
static void
alc_stats_update(struct alc_softc *sc)
{
struct alc_hw_stats *stat;
struct smb sb, *smb;
struct ifnet *ifp;
uint32_t *reg;
int i;
ALC_LOCK_ASSERT(sc);
ifp = sc->alc_ifp;
stat = &sc->alc_stats;
if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
sc->alc_cdata.alc_smb_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
smb = sc->alc_rdata.alc_smb;
if (smb->updated == 0)
return;
} else {
smb = &sb;
/* Read Rx statistics. */
for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
reg++) {
*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
i += sizeof(uint32_t);
}
/* Read Tx statistics. */
for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
reg++) {
*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
i += sizeof(uint32_t);
}
}
/* Rx stats. */
stat->rx_frames += smb->rx_frames;
stat->rx_bcast_frames += smb->rx_bcast_frames;
stat->rx_mcast_frames += smb->rx_mcast_frames;
stat->rx_pause_frames += smb->rx_pause_frames;
stat->rx_control_frames += smb->rx_control_frames;
stat->rx_crcerrs += smb->rx_crcerrs;
stat->rx_lenerrs += smb->rx_lenerrs;
stat->rx_bytes += smb->rx_bytes;
stat->rx_runts += smb->rx_runts;
stat->rx_fragments += smb->rx_fragments;
stat->rx_pkts_64 += smb->rx_pkts_64;
stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
stat->rx_pkts_truncated += smb->rx_pkts_truncated;
stat->rx_fifo_oflows += smb->rx_fifo_oflows;
stat->rx_rrs_errs += smb->rx_rrs_errs;
stat->rx_alignerrs += smb->rx_alignerrs;
stat->rx_bcast_bytes += smb->rx_bcast_bytes;
stat->rx_mcast_bytes += smb->rx_mcast_bytes;
stat->rx_pkts_filtered += smb->rx_pkts_filtered;
/* Tx stats. */
stat->tx_frames += smb->tx_frames;
stat->tx_bcast_frames += smb->tx_bcast_frames;
stat->tx_mcast_frames += smb->tx_mcast_frames;
stat->tx_pause_frames += smb->tx_pause_frames;
stat->tx_excess_defer += smb->tx_excess_defer;
stat->tx_control_frames += smb->tx_control_frames;
stat->tx_deferred += smb->tx_deferred;
stat->tx_bytes += smb->tx_bytes;
stat->tx_pkts_64 += smb->tx_pkts_64;
stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
stat->tx_single_colls += smb->tx_single_colls;
stat->tx_multi_colls += smb->tx_multi_colls;
stat->tx_late_colls += smb->tx_late_colls;
stat->tx_excess_colls += smb->tx_excess_colls;
stat->tx_abort += smb->tx_abort;
stat->tx_underrun += smb->tx_underrun;
stat->tx_desc_underrun += smb->tx_desc_underrun;
stat->tx_lenerrs += smb->tx_lenerrs;
stat->tx_pkts_truncated += smb->tx_pkts_truncated;
stat->tx_bcast_bytes += smb->tx_bcast_bytes;
stat->tx_mcast_bytes += smb->tx_mcast_bytes;
/* Update counters in ifnet. */
ifp->if_opackets += smb->tx_frames;
ifp->if_collisions += smb->tx_single_colls +
smb->tx_multi_colls * 2 + smb->tx_late_colls +
smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
/*
* XXX
* tx_pkts_truncated counter looks suspicious. It constantly
* increments with no sign of Tx errors. This may indicate
* the counter name is not correct one so I've removed the
* counter in output errors.
*/
ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
smb->tx_underrun;
ifp->if_ipackets += smb->rx_frames;
ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
smb->rx_runts + smb->rx_pkts_truncated +
smb->rx_fifo_oflows + smb->rx_rrs_errs +
smb->rx_alignerrs;
if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
/* Update done, clear. */
smb->updated = 0;
bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
sc->alc_cdata.alc_smb_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
}
static int
alc_intr(void *arg)
{
struct alc_softc *sc;
uint32_t status;
sc = (struct alc_softc *)arg;
status = CSR_READ_4(sc, ALC_INTR_STATUS);
if ((status & ALC_INTRS) == 0)
return (FILTER_STRAY);
/* Disable interrupts. */
CSR_WRITE_4(sc, ALC_INTR_STATUS, INTR_DIS_INT);
taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
return (FILTER_HANDLED);
}
static void
alc_int_task(void *arg, int pending)
{
struct alc_softc *sc;
struct ifnet *ifp;
uint32_t status;
int more;
sc = (struct alc_softc *)arg;
ifp = sc->alc_ifp;
status = CSR_READ_4(sc, ALC_INTR_STATUS);
ALC_LOCK(sc);
if (sc->alc_morework != 0) {
sc->alc_morework = 0;
status |= INTR_RX_PKT;
}
if ((status & ALC_INTRS) == 0)
goto done;
/* Acknowledge interrupts but still disable interrupts. */
CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
more = 0;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if ((status & INTR_RX_PKT) != 0) {
more = alc_rxintr(sc, sc->alc_process_limit);
if (more == EAGAIN)
sc->alc_morework = 1;
else if (more == EIO) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
alc_init_locked(sc);
ALC_UNLOCK(sc);
return;
}
}
if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
INTR_TXQ_TO_RST)) != 0) {
if ((status & INTR_DMA_RD_TO_RST) != 0)
device_printf(sc->alc_dev,
"DMA read error! -- resetting\n");
if ((status & INTR_DMA_WR_TO_RST) != 0)
device_printf(sc->alc_dev,
"DMA write error! -- resetting\n");
if ((status & INTR_TXQ_TO_RST) != 0)
device_printf(sc->alc_dev,
"TxQ reset! -- resetting\n");
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
alc_init_locked(sc);
ALC_UNLOCK(sc);
return;
}
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
alc_start_locked(ifp);
}
if (more == EAGAIN ||
(CSR_READ_4(sc, ALC_INTR_STATUS) & ALC_INTRS) != 0) {
ALC_UNLOCK(sc);
taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
return;
}
done:
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
/* Re-enable interrupts if we're running. */
CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
}
ALC_UNLOCK(sc);
}
static void
alc_txeof(struct alc_softc *sc)
{
struct ifnet *ifp;
struct alc_txdesc *txd;
uint32_t cons, prod;
int prog;
ALC_LOCK_ASSERT(sc);
ifp = sc->alc_ifp;
if (sc->alc_cdata.alc_tx_cnt == 0)
return;
bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_POSTWRITE);
if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_POSTREAD);
prod = sc->alc_rdata.alc_cmb->cons;
} else
prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
/* Assume we're using normal Tx priority queue. */
prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
MBOX_TD_CONS_LO_IDX_SHIFT;
cons = sc->alc_cdata.alc_tx_cons;
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
for (prog = 0; cons != prod; prog++,
ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
if (sc->alc_cdata.alc_tx_cnt <= 0)
break;
prog++;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->alc_cdata.alc_tx_cnt--;
txd = &sc->alc_cdata.alc_txdesc[cons];
if (txd->tx_m != NULL) {
/* Reclaim transmitted mbufs. */
bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_PREREAD);
sc->alc_cdata.alc_tx_cons = cons;
/*
* Unarm watchdog timer only when there is no pending
* frames in Tx queue.
*/
if (sc->alc_cdata.alc_tx_cnt == 0)
sc->alc_watchdog_timer = 0;
}
static int
alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd)
{
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
#ifndef __NO_STRICT_ALIGNMENT
m_adj(m, sizeof(uint64_t));
#endif
if (bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_rx_tag,
sc->alc_cdata.alc_rx_sparemap, m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
sc->alc_cdata.alc_rx_sparemap = map;
bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
rxd->rx_desc->addr = htole64(segs[0].ds_addr);
return (0);
}
static int
alc_rxintr(struct alc_softc *sc, int count)
{
struct ifnet *ifp;
struct rx_rdesc *rrd;
uint32_t nsegs, status;
int rr_cons, prog;
bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
sc->alc_cdata.alc_rr_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_POSTWRITE);
rr_cons = sc->alc_cdata.alc_rr_cons;
ifp = sc->alc_ifp;
for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;) {
if (count-- <= 0)
break;
rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
status = le32toh(rrd->status);
if ((status & RRD_VALID) == 0)
break;
nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
if (nsegs == 0) {
/* This should not happen! */
device_printf(sc->alc_dev,
"unexpected segment count -- resetting\n");
return (EIO);
}
alc_rxeof(sc, rrd);
/* Clear Rx return status. */
rrd->status = 0;
ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
sc->alc_cdata.alc_rx_cons += nsegs;
sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
prog += nsegs;
}
if (prog > 0) {
/* Update the consumer index. */
sc->alc_cdata.alc_rr_cons = rr_cons;
/* Sync Rx return descriptors. */
bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
sc->alc_cdata.alc_rr_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/*
* Sync updated Rx descriptors such that controller see
* modified buffer addresses.
*/
bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
/*
* Let controller know availability of new Rx buffers.
* Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
* it may be possible to update ALC_MBOX_RD0_PROD_IDX
* only when Rx buffer pre-fetching is required. In
* addition we already set ALC_RX_RD_FREE_THRESH to
* RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
* it still seems that pre-fetching needs more
* experimentation.
*/
CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
sc->alc_cdata.alc_rx_cons);
}
return (count > 0 ? 0 : EAGAIN);
}
#ifndef __NO_STRICT_ALIGNMENT
static struct mbuf *
alc_fixup_rx(struct ifnet *ifp, struct mbuf *m)
{
struct mbuf *n;
int i;
uint16_t *src, *dst;
src = mtod(m, uint16_t *);
dst = src - 3;
if (m->m_next == NULL) {
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
*dst++ = *src++;
m->m_data -= 6;
return (m);
}
/*
* Append a new mbuf to received mbuf chain and copy ethernet
* header from the mbuf chain. This can save lots of CPU
* cycles for jumbo frame.
*/
MGETHDR(n, M_DONTWAIT, MT_DATA);
if (n == NULL) {
ifp->if_iqdrops++;
m_freem(m);
return (NULL);
}
bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
m->m_data += ETHER_HDR_LEN;
m->m_len -= ETHER_HDR_LEN;
n->m_len = ETHER_HDR_LEN;
M_MOVE_PKTHDR(n, m);
n->m_next = m;
return (n);
}
#endif
/* Receive a frame. */
static void
alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
{
struct alc_rxdesc *rxd;
struct ifnet *ifp;
struct mbuf *mp, *m;
uint32_t rdinfo, status, vtag;
int count, nsegs, rx_cons;
ifp = sc->alc_ifp;
status = le32toh(rrd->status);
rdinfo = le32toh(rrd->rdinfo);
rx_cons = RRD_RD_IDX(rdinfo);
nsegs = RRD_RD_CNT(rdinfo);
sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
if ((status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) != 0) {
/*
* We want to pass the following frames to upper
* layer regardless of error status of Rx return
* ring.
*
* o IP/TCP/UDP checksum is bad.
* o frame length and protocol specific length
* does not match.
*
* Force network stack compute checksum for
* errored frames.
*/
status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
return;
}
for (count = 0; count < nsegs; count++,
ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
mp = rxd->rx_m;
/* Add a new receive buffer to the ring. */
if (alc_newbuf(sc, rxd) != 0) {
ifp->if_iqdrops++;
/* Reuse Rx buffers. */
if (sc->alc_cdata.alc_rxhead != NULL)
m_freem(sc->alc_cdata.alc_rxhead);
break;
}
/*
* Assume we've received a full sized frame.
* Actual size is fixed when we encounter the end of
* multi-segmented frame.
*/
mp->m_len = sc->alc_buf_size;
/* Chain received mbufs. */
if (sc->alc_cdata.alc_rxhead == NULL) {
sc->alc_cdata.alc_rxhead = mp;
sc->alc_cdata.alc_rxtail = mp;
} else {
mp->m_flags &= ~M_PKTHDR;
sc->alc_cdata.alc_rxprev_tail =
sc->alc_cdata.alc_rxtail;
sc->alc_cdata.alc_rxtail->m_next = mp;
sc->alc_cdata.alc_rxtail = mp;
}
if (count == nsegs - 1) {
/* Last desc. for this frame. */
m = sc->alc_cdata.alc_rxhead;
m->m_flags |= M_PKTHDR;
/*
* It seems that L1C/L2C controller has no way
* to tell hardware to strip CRC bytes.
*/
m->m_pkthdr.len =
sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
if (nsegs > 1) {
/* Set last mbuf size. */
mp->m_len = sc->alc_cdata.alc_rxlen -
(nsegs - 1) * sc->alc_buf_size;
/* Remove the CRC bytes in chained mbufs. */
if (mp->m_len <= ETHER_CRC_LEN) {
sc->alc_cdata.alc_rxtail =
sc->alc_cdata.alc_rxprev_tail;
sc->alc_cdata.alc_rxtail->m_len -=
(ETHER_CRC_LEN - mp->m_len);
sc->alc_cdata.alc_rxtail->m_next = NULL;
m_freem(mp);
} else {
mp->m_len -= ETHER_CRC_LEN;
}
} else
m->m_len = m->m_pkthdr.len;
m->m_pkthdr.rcvif = ifp;
/*
* Due to hardware bugs, Rx checksum offloading
* was intentionally disabled.
*/
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
(status & RRD_VLAN_TAG) != 0) {
vtag = RRD_VLAN(le32toh(rrd->vtag));
m->m_pkthdr.ether_vtag = ntohs(vtag);
m->m_flags |= M_VLANTAG;
}
#ifndef __NO_STRICT_ALIGNMENT
m = alc_fixup_rx(ifp, m);
if (m != NULL)
#endif
{
/* Pass it on. */
ALC_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
ALC_LOCK(sc);
}
}
}
/* Reset mbuf chains. */
ALC_RXCHAIN_RESET(sc);
}
static void
alc_tick(void *arg)
{
struct alc_softc *sc;
struct mii_data *mii;
sc = (struct alc_softc *)arg;
ALC_LOCK_ASSERT(sc);
mii = device_get_softc(sc->alc_miibus);
mii_tick(mii);
alc_stats_update(sc);
/*
* alc(4) does not rely on Tx completion interrupts to reclaim
* transferred buffers. Instead Tx completion interrupts are
* used to hint for scheduling Tx task. So it's necessary to
* release transmitted buffers by kicking Tx completion
* handler. This limits the maximum reclamation delay to a hz.
*/
alc_txeof(sc);
alc_watchdog(sc);
callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
}
static void
alc_reset(struct alc_softc *sc)
{
uint32_t reg;
int i;
reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
DELAY(10);
if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
break;
}
if (i == 0)
device_printf(sc->alc_dev, "master reset timeout!\n");
for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
break;
DELAY(10);
}
if (i == 0)
device_printf(sc->alc_dev, "reset timeout(0x%08x)!\n", reg);
}
static void
alc_init(void *xsc)
{
struct alc_softc *sc;
sc = (struct alc_softc *)xsc;
ALC_LOCK(sc);
alc_init_locked(sc);
ALC_UNLOCK(sc);
}
static void
alc_init_locked(struct alc_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
uint8_t eaddr[ETHER_ADDR_LEN];
bus_addr_t paddr;
uint32_t reg, rxf_hi, rxf_lo;
ALC_LOCK_ASSERT(sc);
ifp = sc->alc_ifp;
mii = device_get_softc(sc->alc_miibus);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/*
* Cancel any pending I/O.
*/
alc_stop(sc);
/*
* Reset the chip to a known state.
*/
alc_reset(sc);
/* Initialize Rx descriptors. */
if (alc_init_rx_ring(sc) != 0) {
device_printf(sc->alc_dev, "no memory for Rx buffers.\n");
alc_stop(sc);
return;
}
alc_init_rr_ring(sc);
alc_init_tx_ring(sc);
alc_init_cmb(sc);
alc_init_smb(sc);
/* Enable all clocks. */
CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
/* Reprogram the station address. */
bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
CSR_WRITE_4(sc, ALC_PAR0,
eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
/*
* Clear WOL status and disable all WOL feature as WOL
* would interfere Rx operation under normal environments.
*/
CSR_READ_4(sc, ALC_WOL_CFG);
CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
/* Set Tx descriptor base addresses. */
paddr = sc->alc_rdata.alc_tx_ring_paddr;
CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
/* We don't use high priority ring. */
CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
/* Set Tx descriptor counter. */
CSR_WRITE_4(sc, ALC_TD_RING_CNT,
(ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
/* Set Rx descriptor base addresses. */
paddr = sc->alc_rdata.alc_rx_ring_paddr;
CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
/* We use one Rx ring. */
CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
/* Set Rx descriptor counter. */
CSR_WRITE_4(sc, ALC_RD_RING_CNT,
(ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
/*
* Let hardware split jumbo frames into alc_max_buf_sized chunks.
* if it do not fit the buffer size. Rx return descriptor holds
* a counter that indicates how many fragments were made by the
* hardware. The buffer size should be multiple of 8 bytes.
* Since hardware has limit on the size of buffer size, always
* use the maximum value.
* For strict-alignment architectures make sure to reduce buffer
* size by 8 bytes to make room for alignment fixup.
*/
#ifndef __NO_STRICT_ALIGNMENT
sc->alc_buf_size = RX_BUF_SIZE_MAX - sizeof(uint64_t);
#else
sc->alc_buf_size = RX_BUF_SIZE_MAX;
#endif
CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
paddr = sc->alc_rdata.alc_rr_ring_paddr;
/* Set Rx return descriptor base addresses. */
CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
/* We use one Rx return ring. */
CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
/* Set Rx return descriptor counter. */
CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
(ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
paddr = sc->alc_rdata.alc_cmb_paddr;
CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
paddr = sc->alc_rdata.alc_smb_paddr;
CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
/* Reconfigure SRAM - Vendor magic. */
CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
}
/* Tell hardware that we're ready to load DMA blocks. */
CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
/* Configure interrupt moderation timer. */
reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
/*
* We don't want to automatic interrupt clear as task queue
* for the interrupt should know interrupt status.
*/
reg = MASTER_SA_TIMER_ENB;
if (ALC_USECS(sc->alc_int_rx_mod) != 0)
reg |= MASTER_IM_RX_TIMER_ENB;
if (ALC_USECS(sc->alc_int_tx_mod) != 0)
reg |= MASTER_IM_TX_TIMER_ENB;
CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
/*
* Disable interrupt re-trigger timer. We don't want automatic
* re-triggering of un-ACKed interrupts.
*/
CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
/* Configure CMB. */
if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
} else
CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
/*
* Hardware can be configured to issue SMB interrupt based
* on programmed interval. Since there is a callout that is
* invoked for every hz in driver we use that instead of
* relying on periodic SMB interrupt.
*/
CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
/* Clear MAC statistics. */
alc_stats_clear(sc);
/*
* Always use maximum frame size that controller can support.
* Otherwise received frames that has larger frame length
* than alc(4) MTU would be silently dropped in hardware. This
* would make path-MTU discovery hard as sender wouldn't get
* any responses from receiver. alc(4) supports
* multi-fragmented frames on Rx path so it has no issue on
* assembling fragmented frames. Using maximum frame size also
* removes the need to reinitialize hardware when interface
* MTU configuration was changed.
*
* Be conservative in what you do, be liberal in what you
* accept from others - RFC 793.
*/
CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
/* Disable header split(?) */
CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
/* Configure IPG/IFG parameters. */
CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
/* Set parameters for half-duplex media. */
CSR_WRITE_4(sc, ALC_HDPX_CFG,
((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
HDPX_CFG_LCOL_MASK) |
((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
HDPX_CFG_ABEBT_MASK) |
((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
HDPX_CFG_JAMIPG_MASK));
/*
* Set TSO/checksum offload threshold. For frames that is
* larger than this threshold, hardware wouldn't do
* TSO/checksum offloading.
*/
CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
(sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
TSO_OFFLOAD_THRESH_MASK);
/* Configure TxQ. */
reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
reg >>= 1;
reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
TXQ_CFG_TD_BURST_MASK;
CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
/* Configure Rx free descriptor pre-fetching. */
CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
RX_RD_FREE_THRESH_HI_MASK) |
((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
RX_RD_FREE_THRESH_LO_MASK));
/*
* Configure flow control parameters.
* XON : 80% of Rx FIFO
* XOFF : 30% of Rx FIFO
*/
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132) {
reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
rxf_hi = (reg * 8) / 10;
rxf_lo = (reg * 3) / 10;
CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
RX_FIFO_PAUSE_THRESH_LO_MASK) |
((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
RX_FIFO_PAUSE_THRESH_HI_MASK));
}
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2)
CSR_WRITE_4(sc, ALC_SERDES_LOCK,
CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
SERDES_PHY_CLK_SLOWDOWN);
/* Disable RSS until I understand L1C/L2C's RSS logic. */
CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
/* Configure RxQ. */
reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
RXQ_CFG_RD_BURST_MASK;
reg |= RXQ_CFG_RSS_MODE_DIS;
if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
/* Configure DMA parameters. */
reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
reg |= sc->alc_rcb;
if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
reg |= DMA_CFG_CMB_ENB;
if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
reg |= DMA_CFG_SMB_ENB;
else
reg |= DMA_CFG_SMB_DIS;
reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
DMA_CFG_RD_BURST_SHIFT;
reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
DMA_CFG_WR_BURST_SHIFT;
reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
DMA_CFG_RD_DELAY_CNT_MASK;
reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
DMA_CFG_WR_DELAY_CNT_MASK;
CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
/*
* Configure Tx/Rx MACs.
* - Auto-padding for short frames.
* - Enable CRC generation.
* Actual reconfiguration of MAC for resolved speed/duplex
* is followed after detection of link establishment.
* AR813x/AR815x always does checksum computation regardless
* of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
* have bug in protocol field in Rx return structure so
* these controllers can't handle fragmented frames. Disable
* Rx checksum offloading until there is a newer controller
* that has sane implementation.
*/
reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
MAC_CFG_PREAMBLE_MASK);
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
reg |= MAC_CFG_SPEED_10_100;
else
reg |= MAC_CFG_SPEED_1000;
CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
/* Set up the receive filter. */
alc_rxfilter(sc);
alc_rxvlan(sc);
/* Acknowledge all pending interrupts and clear it. */
CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
sc->alc_flags &= ~ALC_FLAG_LINK;
/* Switch to the current media. */
mii_mediachg(mii);
callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
static void
alc_stop(struct alc_softc *sc)
{
struct ifnet *ifp;
struct alc_txdesc *txd;
struct alc_rxdesc *rxd;
uint32_t reg;
int i;
ALC_LOCK_ASSERT(sc);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp = sc->alc_ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->alc_flags &= ~ALC_FLAG_LINK;
callout_stop(&sc->alc_tick_ch);
sc->alc_watchdog_timer = 0;
alc_stats_update(sc);
/* Disable interrupts. */
CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
alc_stop_queue(sc);
/* Disable DMA. */
reg = CSR_READ_4(sc, ALC_DMA_CFG);
reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
reg |= DMA_CFG_SMB_DIS;
CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
DELAY(1000);
/* Stop Rx/Tx MACs. */
alc_stop_mac(sc);
/* Disable interrupts which might be touched in taskq handler. */
CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
/* Reclaim Rx buffers that have been processed. */
if (sc->alc_cdata.alc_rxhead != NULL)
m_freem(sc->alc_cdata.alc_rxhead);
ALC_RXCHAIN_RESET(sc);
/*
* Free Tx/Rx mbufs still in the queues.
*/
for (i = 0; i < ALC_RX_RING_CNT; i++) {
rxd = &sc->alc_cdata.alc_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->alc_cdata.alc_rx_tag,
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->alc_cdata.alc_rx_tag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < ALC_TX_RING_CNT; i++) {
txd = &sc->alc_cdata.alc_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
}
static void
alc_stop_mac(struct alc_softc *sc)
{
uint32_t reg;
int i;
ALC_LOCK_ASSERT(sc);
/* Disable Rx/Tx MAC. */
reg = CSR_READ_4(sc, ALC_MAC_CFG);
if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
}
for (i = ALC_TIMEOUT; i > 0; i--) {
reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
if (reg == 0)
break;
DELAY(10);
}
if (i == 0)
device_printf(sc->alc_dev,
"could not disable Rx/Tx MAC(0x%08x)!\n", reg);
}
static void
alc_start_queue(struct alc_softc *sc)
{
uint32_t qcfg[] = {
0,
RXQ_CFG_QUEUE0_ENB,
RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
RXQ_CFG_ENB
};
uint32_t cfg;
ALC_LOCK_ASSERT(sc);
/* Enable RxQ. */
cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
cfg &= ~RXQ_CFG_ENB;
cfg |= qcfg[1];
CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
/* Enable TxQ. */
cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
cfg |= TXQ_CFG_ENB;
CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
}
static void
alc_stop_queue(struct alc_softc *sc)
{
uint32_t reg;
int i;
ALC_LOCK_ASSERT(sc);
/* Disable RxQ. */
reg = CSR_READ_4(sc, ALC_RXQ_CFG);
if ((reg & RXQ_CFG_ENB) != 0) {
reg &= ~RXQ_CFG_ENB;
CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
}
/* Disable TxQ. */
reg = CSR_READ_4(sc, ALC_TXQ_CFG);
if ((reg & TXQ_CFG_ENB) != 0) {
reg &= ~TXQ_CFG_ENB;
CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
}
for (i = ALC_TIMEOUT; i > 0; i--) {
reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
break;
DELAY(10);
}
if (i == 0)
device_printf(sc->alc_dev,
"could not disable RxQ/TxQ (0x%08x)!\n", reg);
}
static void
alc_init_tx_ring(struct alc_softc *sc)
{
struct alc_ring_data *rd;
struct alc_txdesc *txd;
int i;
ALC_LOCK_ASSERT(sc);
sc->alc_cdata.alc_tx_prod = 0;
sc->alc_cdata.alc_tx_cons = 0;
sc->alc_cdata.alc_tx_cnt = 0;
rd = &sc->alc_rdata;
bzero(rd->alc_tx_ring, ALC_TX_RING_SZ);
for (i = 0; i < ALC_TX_RING_CNT; i++) {
txd = &sc->alc_cdata.alc_txdesc[i];
txd->tx_m = NULL;
}
bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
}
static int
alc_init_rx_ring(struct alc_softc *sc)
{
struct alc_ring_data *rd;
struct alc_rxdesc *rxd;
int i;
ALC_LOCK_ASSERT(sc);
sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
sc->alc_morework = 0;
rd = &sc->alc_rdata;
bzero(rd->alc_rx_ring, ALC_RX_RING_SZ);
for (i = 0; i < ALC_RX_RING_CNT; i++) {
rxd = &sc->alc_cdata.alc_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_desc = &rd->alc_rx_ring[i];
if (alc_newbuf(sc, rxd) != 0)
return (ENOBUFS);
}
/*
* Since controller does not update Rx descriptors, driver
* does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
* is enough to ensure coherence.
*/
bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
/* Let controller know availability of new Rx buffers. */
CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
return (0);
}
static void
alc_init_rr_ring(struct alc_softc *sc)
{
struct alc_ring_data *rd;
ALC_LOCK_ASSERT(sc);
sc->alc_cdata.alc_rr_cons = 0;
ALC_RXCHAIN_RESET(sc);
rd = &sc->alc_rdata;
bzero(rd->alc_rr_ring, ALC_RR_RING_SZ);
bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
sc->alc_cdata.alc_rr_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
alc_init_cmb(struct alc_softc *sc)
{
struct alc_ring_data *rd;
ALC_LOCK_ASSERT(sc);
rd = &sc->alc_rdata;
bzero(rd->alc_cmb, ALC_CMB_SZ);
bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
alc_init_smb(struct alc_softc *sc)
{
struct alc_ring_data *rd;
ALC_LOCK_ASSERT(sc);
rd = &sc->alc_rdata;
bzero(rd->alc_smb, ALC_SMB_SZ);
bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
alc_rxvlan(struct alc_softc *sc)
{
struct ifnet *ifp;
uint32_t reg;
ALC_LOCK_ASSERT(sc);
ifp = sc->alc_ifp;
reg = CSR_READ_4(sc, ALC_MAC_CFG);
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
reg |= MAC_CFG_VLAN_TAG_STRIP;
else
reg &= ~MAC_CFG_VLAN_TAG_STRIP;
CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
}
static void
alc_rxfilter(struct alc_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t crc;
uint32_t mchash[2];
uint32_t rxcfg;
ALC_LOCK_ASSERT(sc);
ifp = sc->alc_ifp;
bzero(mchash, sizeof(mchash));
rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
if ((ifp->if_flags & IFF_BROADCAST) != 0)
rxcfg |= MAC_CFG_BCAST;
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
if ((ifp->if_flags & IFF_PROMISC) != 0)
rxcfg |= MAC_CFG_PROMISC;
if ((ifp->if_flags & IFF_ALLMULTI) != 0)
rxcfg |= MAC_CFG_ALLMULTI;
mchash[0] = 0xFFFFFFFF;
mchash[1] = 0xFFFFFFFF;
goto chipit;
}
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &sc->alc_ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN);
mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
}
if_maddr_runlock(ifp);
chipit:
CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
}
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
if (arg1 == NULL)
return (EINVAL);
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || req->newptr == NULL)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
ALC_PROC_MIN, ALC_PROC_MAX));
}
static int
sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
ALC_IM_TIMER_MIN, ALC_IM_TIMER_MAX));
}