freebsd-skq/sys/dev/netmap/netmap_kern.h
Vincenzo Maffione 45100257c6 netmap: don't schedule kqueue notify task when kqueue is not used
This change adds a counter (kqueue_users) to keep track of how many
kqueue users are referencing a given struct nm_selinfo.
In this way, nm_os_selwakeup() can schedule the kevent notification
task only when kqueue is actually being used.
This is important to avoid wasting CPU in the common case where
kqueue is not used.

Reviewed by:	Aleksandr Fedorov <aleksandr.fedorov@itglobal.com>
MFC after:	1 week
Differential Revision:	https://reviews.freebsd.org/D19177
2019-02-18 14:21:41 +00:00

2409 lines
74 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo
* Copyright (C) 2013-2016 Universita` di Pisa
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* $FreeBSD$
*
* The header contains the definitions of constants and function
* prototypes used only in kernelspace.
*/
#ifndef _NET_NETMAP_KERN_H_
#define _NET_NETMAP_KERN_H_
#if defined(linux)
#if defined(CONFIG_NETMAP_EXTMEM)
#define WITH_EXTMEM
#endif
#if defined(CONFIG_NETMAP_VALE)
#define WITH_VALE
#endif
#if defined(CONFIG_NETMAP_PIPE)
#define WITH_PIPES
#endif
#if defined(CONFIG_NETMAP_MONITOR)
#define WITH_MONITOR
#endif
#if defined(CONFIG_NETMAP_GENERIC)
#define WITH_GENERIC
#endif
#if defined(CONFIG_NETMAP_PTNETMAP)
#define WITH_PTNETMAP
#endif
#if defined(CONFIG_NETMAP_SINK)
#define WITH_SINK
#endif
#if defined(CONFIG_NETMAP_NULL)
#define WITH_NMNULL
#endif
#elif defined (_WIN32)
#define WITH_VALE // comment out to disable VALE support
#define WITH_PIPES
#define WITH_MONITOR
#define WITH_GENERIC
#define WITH_NMNULL
#else /* neither linux nor windows */
#define WITH_VALE // comment out to disable VALE support
#define WITH_PIPES
#define WITH_MONITOR
#define WITH_GENERIC
#define WITH_PTNETMAP /* ptnetmap guest support */
#define WITH_EXTMEM
#define WITH_NMNULL
#endif
#if defined(__FreeBSD__)
#include <sys/selinfo.h>
#define likely(x) __builtin_expect((long)!!(x), 1L)
#define unlikely(x) __builtin_expect((long)!!(x), 0L)
#define __user
#define NM_LOCK_T struct mtx /* low level spinlock, used to protect queues */
#define NM_MTX_T struct sx /* OS-specific mutex (sleepable) */
#define NM_MTX_INIT(m) sx_init(&(m), #m)
#define NM_MTX_DESTROY(m) sx_destroy(&(m))
#define NM_MTX_LOCK(m) sx_xlock(&(m))
#define NM_MTX_SPINLOCK(m) while (!sx_try_xlock(&(m))) ;
#define NM_MTX_UNLOCK(m) sx_xunlock(&(m))
#define NM_MTX_ASSERT(m) sx_assert(&(m), SA_XLOCKED)
#define NM_SELINFO_T struct nm_selinfo
#define NM_SELRECORD_T struct thread
#define MBUF_LEN(m) ((m)->m_pkthdr.len)
#define MBUF_TXQ(m) ((m)->m_pkthdr.flowid)
#define MBUF_TRANSMIT(na, ifp, m) ((na)->if_transmit(ifp, m))
#define GEN_TX_MBUF_IFP(m) ((m)->m_pkthdr.rcvif)
#define NM_ATOMIC_T volatile int /* required by atomic/bitops.h */
/* atomic operations */
#include <machine/atomic.h>
#define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1))
#define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0)
#if __FreeBSD_version >= 1100030
#define WNA(_ifp) (_ifp)->if_netmap
#else /* older FreeBSD */
#define WNA(_ifp) (_ifp)->if_pspare[0]
#endif /* older FreeBSD */
#if __FreeBSD_version >= 1100005
struct netmap_adapter *netmap_getna(if_t ifp);
#endif
#if __FreeBSD_version >= 1100027
#define MBUF_REFCNT(m) ((m)->m_ext.ext_count)
#define SET_MBUF_REFCNT(m, x) (m)->m_ext.ext_count = x
#else
#define MBUF_REFCNT(m) ((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1)
#define SET_MBUF_REFCNT(m, x) *((m)->m_ext.ref_cnt) = x
#endif
#define MBUF_QUEUED(m) 1
struct nm_selinfo {
/* Support for select(2) and poll(2). */
struct selinfo si;
/* Support for kqueue(9). See comments in netmap_freebsd.c */
struct taskqueue *ntfytq;
struct task ntfytask;
struct mtx m;
char mtxname[32];
int kqueue_users;
};
struct hrtimer {
/* Not used in FreeBSD. */
};
#define NM_BNS_GET(b)
#define NM_BNS_PUT(b)
#elif defined (linux)
#define NM_LOCK_T safe_spinlock_t // see bsd_glue.h
#define NM_SELINFO_T wait_queue_head_t
#define MBUF_LEN(m) ((m)->len)
#define MBUF_TRANSMIT(na, ifp, m) \
({ \
/* Avoid infinite recursion with generic. */ \
m->priority = NM_MAGIC_PRIORITY_TX; \
(((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp)); \
0; \
})
/* See explanation in nm_os_generic_xmit_frame. */
#define GEN_TX_MBUF_IFP(m) ((struct ifnet *)skb_shinfo(m)->destructor_arg)
#define NM_ATOMIC_T volatile long unsigned int
#define NM_MTX_T struct mutex /* OS-specific sleepable lock */
#define NM_MTX_INIT(m) mutex_init(&(m))
#define NM_MTX_DESTROY(m) do { (void)(m); } while (0)
#define NM_MTX_LOCK(m) mutex_lock(&(m))
#define NM_MTX_UNLOCK(m) mutex_unlock(&(m))
#define NM_MTX_ASSERT(m) mutex_is_locked(&(m))
#ifndef DEV_NETMAP
#define DEV_NETMAP
#endif /* DEV_NETMAP */
#elif defined (__APPLE__)
#warning apple support is incomplete.
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#define NM_LOCK_T IOLock *
#define NM_SELINFO_T struct selinfo
#define MBUF_LEN(m) ((m)->m_pkthdr.len)
#elif defined (_WIN32)
#include "../../../WINDOWS/win_glue.h"
#define NM_SELRECORD_T IO_STACK_LOCATION
#define NM_SELINFO_T win_SELINFO // see win_glue.h
#define NM_LOCK_T win_spinlock_t // see win_glue.h
#define NM_MTX_T KGUARDED_MUTEX /* OS-specific mutex (sleepable) */
#define NM_MTX_INIT(m) KeInitializeGuardedMutex(&m);
#define NM_MTX_DESTROY(m) do { (void)(m); } while (0)
#define NM_MTX_LOCK(m) KeAcquireGuardedMutex(&(m))
#define NM_MTX_UNLOCK(m) KeReleaseGuardedMutex(&(m))
#define NM_MTX_ASSERT(m) assert(&m.Count>0)
//These linknames are for the NDIS driver
#define NETMAP_NDIS_LINKNAME_STRING L"\\DosDevices\\NMAPNDIS"
#define NETMAP_NDIS_NTDEVICE_STRING L"\\Device\\NMAPNDIS"
//Definition of internal driver-to-driver ioctl codes
#define NETMAP_KERNEL_XCHANGE_POINTERS _IO('i', 180)
#define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL _IO_direct('i', 195)
typedef struct hrtimer{
KTIMER timer;
BOOLEAN active;
KDPC deferred_proc;
};
/* MSVC does not have likely/unlikely support */
#ifdef _MSC_VER
#define likely(x) (x)
#define unlikely(x) (x)
#else
#define likely(x) __builtin_expect((long)!!(x), 1L)
#define unlikely(x) __builtin_expect((long)!!(x), 0L)
#endif //_MSC_VER
#else
#error unsupported platform
#endif /* end - platform-specific code */
#ifndef _WIN32 /* support for emulated sysctl */
#define SYSBEGIN(x)
#define SYSEND
#endif /* _WIN32 */
#define NM_ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x))
#define NMG_LOCK_T NM_MTX_T
#define NMG_LOCK_INIT() NM_MTX_INIT(netmap_global_lock)
#define NMG_LOCK_DESTROY() NM_MTX_DESTROY(netmap_global_lock)
#define NMG_LOCK() NM_MTX_LOCK(netmap_global_lock)
#define NMG_UNLOCK() NM_MTX_UNLOCK(netmap_global_lock)
#define NMG_LOCK_ASSERT() NM_MTX_ASSERT(netmap_global_lock)
#if defined(__FreeBSD__)
#define nm_prerr_int printf
#define nm_prinf_int printf
#elif defined (_WIN32)
#define nm_prerr_int DbgPrint
#define nm_prinf_int DbgPrint
#elif defined(linux)
#define nm_prerr_int(fmt, arg...) printk(KERN_ERR fmt, ##arg)
#define nm_prinf_int(fmt, arg...) printk(KERN_INFO fmt, ##arg)
#endif
#define nm_prinf(format, ...) \
do { \
struct timeval __xxts; \
microtime(&__xxts); \
nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\
(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \
__LINE__, __FUNCTION__, ##__VA_ARGS__); \
} while (0)
#define nm_prerr(format, ...) \
do { \
struct timeval __xxts; \
microtime(&__xxts); \
nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\
(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \
__LINE__, __FUNCTION__, ##__VA_ARGS__); \
} while (0)
/* Disabled printf (used to be nm_prdis). */
#define nm_prdis(format, ...)
/* Rate limited, lps indicates how many per second. */
#define nm_prlim(lps, format, ...) \
do { \
static int t0, __cnt; \
if (t0 != time_second) { \
t0 = time_second; \
__cnt = 0; \
} \
if (__cnt++ < lps) \
nm_prinf(format, ##__VA_ARGS__); \
} while (0)
struct netmap_adapter;
struct nm_bdg_fwd;
struct nm_bridge;
struct netmap_priv_d;
struct nm_bdg_args;
/* os-specific NM_SELINFO_T initialzation/destruction functions */
int nm_os_selinfo_init(NM_SELINFO_T *, const char *name);
void nm_os_selinfo_uninit(NM_SELINFO_T *);
const char *nm_dump_buf(char *p, int len, int lim, char *dst);
void nm_os_selwakeup(NM_SELINFO_T *si);
void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si);
int nm_os_ifnet_init(void);
void nm_os_ifnet_fini(void);
void nm_os_ifnet_lock(void);
void nm_os_ifnet_unlock(void);
unsigned nm_os_ifnet_mtu(struct ifnet *ifp);
void nm_os_get_module(void);
void nm_os_put_module(void);
void netmap_make_zombie(struct ifnet *);
void netmap_undo_zombie(struct ifnet *);
/* os independent alloc/realloc/free */
void *nm_os_malloc(size_t);
void *nm_os_vmalloc(size_t);
void *nm_os_realloc(void *, size_t new_size, size_t old_size);
void nm_os_free(void *);
void nm_os_vfree(void *);
/* os specific attach/detach enter/exit-netmap-mode routines */
void nm_os_onattach(struct ifnet *);
void nm_os_ondetach(struct ifnet *);
void nm_os_onenter(struct ifnet *);
void nm_os_onexit(struct ifnet *);
/* passes a packet up to the host stack.
* If the packet is sent (or dropped) immediately it returns NULL,
* otherwise it links the packet to prev and returns m.
* In this case, a final call with m=NULL and prev != NULL will send up
* the entire chain to the host stack.
*/
void *nm_os_send_up(struct ifnet *, struct mbuf *m, struct mbuf *prev);
int nm_os_mbuf_has_seg_offld(struct mbuf *m);
int nm_os_mbuf_has_csum_offld(struct mbuf *m);
#include "netmap_mbq.h"
extern NMG_LOCK_T netmap_global_lock;
enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX };
static __inline const char*
nm_txrx2str(enum txrx t)
{
return (t== NR_RX ? "RX" : "TX");
}
static __inline enum txrx
nm_txrx_swap(enum txrx t)
{
return (t== NR_RX ? NR_TX : NR_RX);
}
#define for_rx_tx(t) for ((t) = 0; (t) < NR_TXRX; (t)++)
#ifdef WITH_MONITOR
struct netmap_zmon_list {
struct netmap_kring *next;
struct netmap_kring *prev;
};
#endif /* WITH_MONITOR */
/*
* private, kernel view of a ring. Keeps track of the status of
* a ring across system calls.
*
* nr_hwcur index of the next buffer to refill.
* It corresponds to ring->head
* at the time the system call returns.
*
* nr_hwtail index of the first buffer owned by the kernel.
* On RX, hwcur->hwtail are receive buffers
* not yet released. hwcur is advanced following
* ring->head, hwtail is advanced on incoming packets,
* and a wakeup is generated when hwtail passes ring->cur
* On TX, hwcur->rcur have been filled by the sender
* but not sent yet to the NIC; rcur->hwtail are available
* for new transmissions, and hwtail->hwcur-1 are pending
* transmissions not yet acknowledged.
*
* The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
* This is so that, on a reset, buffers owned by userspace are not
* modified by the kernel. In particular:
* RX rings: the next empty buffer (hwtail + hwofs) coincides with
* the next empty buffer as known by the hardware (next_to_check or so).
* TX rings: hwcur + hwofs coincides with next_to_send
*
* The following fields are used to implement lock-free copy of packets
* from input to output ports in VALE switch:
* nkr_hwlease buffer after the last one being copied.
* A writer in nm_bdg_flush reserves N buffers
* from nr_hwlease, advances it, then does the
* copy outside the lock.
* In RX rings (used for VALE ports),
* nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
* In TX rings (used for NIC or host stack ports)
* nkr_hwcur <= nkr_hwlease < nkr_hwtail
* nkr_leases array of nkr_num_slots where writers can report
* completion of their block. NR_NOSLOT (~0) indicates
* that the writer has not finished yet
* nkr_lease_idx index of next free slot in nr_leases, to be assigned
*
* The kring is manipulated by txsync/rxsync and generic netmap function.
*
* Concurrent rxsync or txsync on the same ring are prevented through
* by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
* for NIC rings, and for TX rings attached to the host stack.
*
* RX rings attached to the host stack use an mbq (rx_queue) on both
* rxsync_from_host() and netmap_transmit(). The mbq is protected
* by its internal lock.
*
* RX rings attached to the VALE switch are accessed by both senders
* and receiver. They are protected through the q_lock on the RX ring.
*/
struct netmap_kring {
struct netmap_ring *ring;
uint32_t nr_hwcur; /* should be nr_hwhead */
uint32_t nr_hwtail;
/*
* Copies of values in user rings, so we do not need to look
* at the ring (which could be modified). These are set in the
* *sync_prologue()/finalize() routines.
*/
uint32_t rhead;
uint32_t rcur;
uint32_t rtail;
uint32_t nr_kflags; /* private driver flags */
#define NKR_PENDINTR 0x1 // Pending interrupt.
#define NKR_EXCLUSIVE 0x2 /* exclusive binding */
#define NKR_FORWARD 0x4 /* (host ring only) there are
packets to forward
*/
#define NKR_NEEDRING 0x8 /* ring needed even if users==0
* (used internally by pipes and
* by ptnetmap host ports)
*/
#define NKR_NOINTR 0x10 /* don't use interrupts on this ring */
#define NKR_FAKERING 0x20 /* don't allocate/free buffers */
uint32_t nr_mode;
uint32_t nr_pending_mode;
#define NKR_NETMAP_OFF 0x0
#define NKR_NETMAP_ON 0x1
uint32_t nkr_num_slots;
/*
* On a NIC reset, the NIC ring indexes may be reset but the
* indexes in the netmap rings remain the same. nkr_hwofs
* keeps track of the offset between the two.
*/
int32_t nkr_hwofs;
/* last_reclaim is opaque marker to help reduce the frequency
* of operations such as reclaiming tx buffers. A possible use
* is set it to ticks and do the reclaim only once per tick.
*/
uint64_t last_reclaim;
NM_SELINFO_T si; /* poll/select wait queue */
NM_LOCK_T q_lock; /* protects kring and ring. */
NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */
/* the adapter the owns this kring */
struct netmap_adapter *na;
/* the adapter that wants to be notified when this kring has
* new slots avaialable. This is usually the same as the above,
* but wrappers may let it point to themselves
*/
struct netmap_adapter *notify_na;
/* The following fields are for VALE switch support */
struct nm_bdg_fwd *nkr_ft;
uint32_t *nkr_leases;
#define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */
uint32_t nkr_hwlease;
uint32_t nkr_lease_idx;
/* while nkr_stopped is set, no new [tr]xsync operations can
* be started on this kring.
* This is used by netmap_disable_all_rings()
* to find a synchronization point where critical data
* structures pointed to by the kring can be added or removed
*/
volatile int nkr_stopped;
/* Support for adapters without native netmap support.
* On tx rings we preallocate an array of tx buffers
* (same size as the netmap ring), on rx rings we
* store incoming mbufs in a queue that is drained by
* a rxsync.
*/
struct mbuf **tx_pool;
struct mbuf *tx_event; /* TX event used as a notification */
NM_LOCK_T tx_event_lock; /* protects the tx_event mbuf */
struct mbq rx_queue; /* intercepted rx mbufs. */
uint32_t users; /* existing bindings for this ring */
uint32_t ring_id; /* kring identifier */
enum txrx tx; /* kind of ring (tx or rx) */
char name[64]; /* diagnostic */
/* [tx]sync callback for this kring.
* The default nm_kring_create callback (netmap_krings_create)
* sets the nm_sync callback of each hardware tx(rx) kring to
* the corresponding nm_txsync(nm_rxsync) taken from the
* netmap_adapter; moreover, it sets the sync callback
* of the host tx(rx) ring to netmap_txsync_to_host
* (netmap_rxsync_from_host).
*
* Overrides: the above configuration is not changed by
* any of the nm_krings_create callbacks.
*/
int (*nm_sync)(struct netmap_kring *kring, int flags);
int (*nm_notify)(struct netmap_kring *kring, int flags);
#ifdef WITH_PIPES
struct netmap_kring *pipe; /* if this is a pipe ring,
* pointer to the other end
*/
uint32_t pipe_tail; /* hwtail updated by the other end */
#endif /* WITH_PIPES */
int (*save_notify)(struct netmap_kring *kring, int flags);
#ifdef WITH_MONITOR
/* array of krings that are monitoring this kring */
struct netmap_kring **monitors;
uint32_t max_monitors; /* current size of the monitors array */
uint32_t n_monitors; /* next unused entry in the monitor array */
uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */
uint32_t mon_tail; /* last seen slot on rx */
/* circular list of zero-copy monitors */
struct netmap_zmon_list zmon_list[NR_TXRX];
/*
* Monitors work by intercepting the sync and notify callbacks of the
* monitored krings. This is implemented by replacing the pointers
* above and saving the previous ones in mon_* pointers below
*/
int (*mon_sync)(struct netmap_kring *kring, int flags);
int (*mon_notify)(struct netmap_kring *kring, int flags);
#endif
}
#ifdef _WIN32
__declspec(align(64));
#else
__attribute__((__aligned__(64)));
#endif
/* return 1 iff the kring needs to be turned on */
static inline int
nm_kring_pending_on(struct netmap_kring *kring)
{
return kring->nr_pending_mode == NKR_NETMAP_ON &&
kring->nr_mode == NKR_NETMAP_OFF;
}
/* return 1 iff the kring needs to be turned off */
static inline int
nm_kring_pending_off(struct netmap_kring *kring)
{
return kring->nr_pending_mode == NKR_NETMAP_OFF &&
kring->nr_mode == NKR_NETMAP_ON;
}
/* return the next index, with wraparound */
static inline uint32_t
nm_next(uint32_t i, uint32_t lim)
{
return unlikely (i == lim) ? 0 : i + 1;
}
/* return the previous index, with wraparound */
static inline uint32_t
nm_prev(uint32_t i, uint32_t lim)
{
return unlikely (i == 0) ? lim : i - 1;
}
/*
*
* Here is the layout for the Rx and Tx rings.
RxRING TxRING
+-----------------+ +-----------------+
| | | |
| free | | free |
+-----------------+ +-----------------+
head->| owned by user |<-hwcur | not sent to nic |<-hwcur
| | | yet |
+-----------------+ | |
cur->| available to | | |
| user, not read | +-----------------+
| yet | cur->| (being |
| | | prepared) |
| | | |
+-----------------+ + ------ +
tail->| |<-hwtail | |<-hwlease
| (being | ... | | ...
| prepared) | ... | | ...
+-----------------+ ... | | ...
| |<-hwlease +-----------------+
| | tail->| |<-hwtail
| | | |
| | | |
| | | |
+-----------------+ +-----------------+
* The cur/tail (user view) and hwcur/hwtail (kernel view)
* are used in the normal operation of the card.
*
* When a ring is the output of a switch port (Rx ring for
* a VALE port, Tx ring for the host stack or NIC), slots
* are reserved in blocks through 'hwlease' which points
* to the next unused slot.
* On an Rx ring, hwlease is always after hwtail,
* and completions cause hwtail to advance.
* On a Tx ring, hwlease is always between cur and hwtail,
* and completions cause cur to advance.
*
* nm_kr_space() returns the maximum number of slots that
* can be assigned.
* nm_kr_lease() reserves the required number of buffers,
* advances nkr_hwlease and also returns an entry in
* a circular array where completions should be reported.
*/
struct lut_entry;
#ifdef __FreeBSD__
#define plut_entry lut_entry
#endif
struct netmap_lut {
struct lut_entry *lut;
struct plut_entry *plut;
uint32_t objtotal; /* max buffer index */
uint32_t objsize; /* buffer size */
};
struct netmap_vp_adapter; // forward
struct nm_bridge;
/* Struct to be filled by nm_config callbacks. */
struct nm_config_info {
unsigned num_tx_rings;
unsigned num_rx_rings;
unsigned num_tx_descs;
unsigned num_rx_descs;
unsigned rx_buf_maxsize;
};
/*
* default type for the magic field.
* May be overriden in glue code.
*/
#ifndef NM_OS_MAGIC
#define NM_OS_MAGIC uint32_t
#endif /* !NM_OS_MAGIC */
/*
* The "struct netmap_adapter" extends the "struct adapter"
* (or equivalent) device descriptor.
* It contains all base fields needed to support netmap operation.
* There are in fact different types of netmap adapters
* (native, generic, VALE switch...) so a netmap_adapter is
* just the first field in the derived type.
*/
struct netmap_adapter {
/*
* On linux we do not have a good way to tell if an interface
* is netmap-capable. So we always use the following trick:
* NA(ifp) points here, and the first entry (which hopefully
* always exists and is at least 32 bits) contains a magic
* value which we can use to detect that the interface is good.
*/
NM_OS_MAGIC magic;
uint32_t na_flags; /* enabled, and other flags */
#define NAF_SKIP_INTR 1 /* use the regular interrupt handler.
* useful during initialization
*/
#define NAF_SW_ONLY 2 /* forward packets only to sw adapter */
#define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when
* forwarding packets coming from this
* interface
*/
#define NAF_MEM_OWNER 8 /* the adapter uses its own memory area
* that cannot be changed
*/
#define NAF_NATIVE 16 /* the adapter is native.
* Virtual ports (non persistent vale ports,
* pipes, monitors...) should never use
* this flag.
*/
#define NAF_NETMAP_ON 32 /* netmap is active (either native or
* emulated). Where possible (e.g. FreeBSD)
* IFCAP_NETMAP also mirrors this flag.
*/
#define NAF_HOST_RINGS 64 /* the adapter supports the host rings */
#define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */
/* free */
#define NAF_MOREFRAG 512 /* the adapter supports NS_MOREFRAG */
#define NAF_ZOMBIE (1U<<30) /* the nic driver has been unloaded */
#define NAF_BUSY (1U<<31) /* the adapter is used internally and
* cannot be registered from userspace
*/
int active_fds; /* number of user-space descriptors using this
interface, which is equal to the number of
struct netmap_if objs in the mapped region. */
u_int num_rx_rings; /* number of adapter receive rings */
u_int num_tx_rings; /* number of adapter transmit rings */
u_int num_host_rx_rings; /* number of host receive rings */
u_int num_host_tx_rings; /* number of host transmit rings */
u_int num_tx_desc; /* number of descriptor in each queue */
u_int num_rx_desc;
/* tx_rings and rx_rings are private but allocated as a
* contiguous chunk of memory. Each array has N+K entries,
* N for the hardware rings and K for the host rings.
*/
struct netmap_kring **tx_rings; /* array of TX rings. */
struct netmap_kring **rx_rings; /* array of RX rings. */
void *tailroom; /* space below the rings array */
/* (used for leases) */
NM_SELINFO_T si[NR_TXRX]; /* global wait queues */
/* count users of the global wait queues */
int si_users[NR_TXRX];
void *pdev; /* used to store pci device */
/* copy of if_qflush and if_transmit pointers, to intercept
* packets from the network stack when netmap is active.
*/
int (*if_transmit)(struct ifnet *, struct mbuf *);
/* copy of if_input for netmap_send_up() */
void (*if_input)(struct ifnet *, struct mbuf *);
/* Back reference to the parent ifnet struct. Used for
* hardware ports (emulated netmap included). */
struct ifnet *ifp; /* adapter is ifp->if_softc */
/*---- callbacks for this netmap adapter -----*/
/*
* nm_dtor() is the cleanup routine called when destroying
* the adapter.
* Called with NMG_LOCK held.
*
* nm_register() is called on NIOCREGIF and close() to enter
* or exit netmap mode on the NIC
* Called with NNG_LOCK held.
*
* nm_txsync() pushes packets to the underlying hw/switch
*
* nm_rxsync() collects packets from the underlying hw/switch
*
* nm_config() returns configuration information from the OS
* Called with NMG_LOCK held.
*
* nm_krings_create() create and init the tx_rings and
* rx_rings arrays of kring structures. In particular,
* set the nm_sync callbacks for each ring.
* There is no need to also allocate the corresponding
* netmap_rings, since netmap_mem_rings_create() will always
* be called to provide the missing ones.
* Called with NNG_LOCK held.
*
* nm_krings_delete() cleanup and delete the tx_rings and rx_rings
* arrays
* Called with NMG_LOCK held.
*
* nm_notify() is used to act after data have become available
* (or the stopped state of the ring has changed)
* For hw devices this is typically a selwakeup(),
* but for NIC/host ports attached to a switch (or vice-versa)
* we also need to invoke the 'txsync' code downstream.
* This callback pointer is actually used only to initialize
* kring->nm_notify.
* Return values are the same as for netmap_rx_irq().
*/
void (*nm_dtor)(struct netmap_adapter *);
int (*nm_register)(struct netmap_adapter *, int onoff);
void (*nm_intr)(struct netmap_adapter *, int onoff);
int (*nm_txsync)(struct netmap_kring *kring, int flags);
int (*nm_rxsync)(struct netmap_kring *kring, int flags);
int (*nm_notify)(struct netmap_kring *kring, int flags);
#define NAF_FORCE_READ 1
#define NAF_FORCE_RECLAIM 2
#define NAF_CAN_FORWARD_DOWN 4
/* return configuration information */
int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info);
int (*nm_krings_create)(struct netmap_adapter *);
void (*nm_krings_delete)(struct netmap_adapter *);
/*
* nm_bdg_attach() initializes the na_vp field to point
* to an adapter that can be attached to a VALE switch. If the
* current adapter is already a VALE port, na_vp is simply a cast;
* otherwise, na_vp points to a netmap_bwrap_adapter.
* If applicable, this callback also initializes na_hostvp,
* that can be used to connect the adapter host rings to the
* switch.
* Called with NMG_LOCK held.
*
* nm_bdg_ctl() is called on the actual attach/detach to/from
* to/from the switch, to perform adapter-specific
* initializations
* Called with NMG_LOCK held.
*/
int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *,
struct nm_bridge *);
int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *);
/* adapter used to attach this adapter to a VALE switch (if any) */
struct netmap_vp_adapter *na_vp;
/* adapter used to attach the host rings of this adapter
* to a VALE switch (if any) */
struct netmap_vp_adapter *na_hostvp;
/* standard refcount to control the lifetime of the adapter
* (it should be equal to the lifetime of the corresponding ifp)
*/
int na_refcount;
/* memory allocator (opaque)
* We also cache a pointer to the lut_entry for translating
* buffer addresses, the total number of buffers and the buffer size.
*/
struct netmap_mem_d *nm_mem;
struct netmap_mem_d *nm_mem_prev;
struct netmap_lut na_lut;
/* additional information attached to this adapter
* by other netmap subsystems. Currently used by
* bwrap, LINUX/v1000 and ptnetmap
*/
void *na_private;
/* array of pipes that have this adapter as a parent */
struct netmap_pipe_adapter **na_pipes;
int na_next_pipe; /* next free slot in the array */
int na_max_pipes; /* size of the array */
/* Offset of ethernet header for each packet. */
u_int virt_hdr_len;
/* Max number of bytes that the NIC can store in the buffer
* referenced by each RX descriptor. This translates to the maximum
* bytes that a single netmap slot can reference. Larger packets
* require NS_MOREFRAG support. */
unsigned rx_buf_maxsize;
char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */
#ifdef WITH_MONITOR
unsigned long monitor_id; /* debugging */
#endif
};
static __inline u_int
nma_get_ndesc(struct netmap_adapter *na, enum txrx t)
{
return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc);
}
static __inline void
nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v)
{
if (t == NR_TX)
na->num_tx_desc = v;
else
na->num_rx_desc = v;
}
static __inline u_int
nma_get_nrings(struct netmap_adapter *na, enum txrx t)
{
return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings);
}
static __inline u_int
nma_get_host_nrings(struct netmap_adapter *na, enum txrx t)
{
return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings);
}
static __inline void
nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
{
if (t == NR_TX)
na->num_tx_rings = v;
else
na->num_rx_rings = v;
}
static __inline void
nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
{
if (t == NR_TX)
na->num_host_tx_rings = v;
else
na->num_host_rx_rings = v;
}
static __inline struct netmap_kring**
NMR(struct netmap_adapter *na, enum txrx t)
{
return (t == NR_TX ? na->tx_rings : na->rx_rings);
}
int nma_intr_enable(struct netmap_adapter *na, int onoff);
/*
* If the NIC is owned by the kernel
* (i.e., bridge), neither another bridge nor user can use it;
* if the NIC is owned by a user, only users can share it.
* Evaluation must be done under NMG_LOCK().
*/
#define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY)
#define NETMAP_OWNED_BY_ANY(na) \
(NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
/*
* derived netmap adapters for various types of ports
*/
struct netmap_vp_adapter { /* VALE software port */
struct netmap_adapter up;
/*
* Bridge support:
*
* bdg_port is the port number used in the bridge;
* na_bdg points to the bridge this NA is attached to.
*/
int bdg_port;
struct nm_bridge *na_bdg;
int retry;
int autodelete; /* remove the ifp on last reference */
/* Maximum Frame Size, used in bdg_mismatch_datapath() */
u_int mfs;
/* Last source MAC on this port */
uint64_t last_smac;
};
struct netmap_hw_adapter { /* physical device */
struct netmap_adapter up;
#ifdef linux
struct net_device_ops nm_ndo;
struct ethtool_ops nm_eto;
#endif
const struct ethtool_ops* save_ethtool;
int (*nm_hw_register)(struct netmap_adapter *, int onoff);
};
#ifdef WITH_GENERIC
/* Mitigation support. */
struct nm_generic_mit {
struct hrtimer mit_timer;
int mit_pending;
int mit_ring_idx; /* index of the ring being mitigated */
struct netmap_adapter *mit_na; /* backpointer */
};
struct netmap_generic_adapter { /* emulated device */
struct netmap_hw_adapter up;
/* Pointer to a previously used netmap adapter. */
struct netmap_adapter *prev;
/* Emulated netmap adapters support:
* - save_if_input saves the if_input hook (FreeBSD);
* - mit implements rx interrupt mitigation;
*/
void (*save_if_input)(struct ifnet *, struct mbuf *);
struct nm_generic_mit *mit;
#ifdef linux
netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *);
#endif
/* Is the adapter able to use multiple RX slots to scatter
* each packet pushed up by the driver? */
int rxsg;
/* Is the transmission path controlled by a netmap-aware
* device queue (i.e. qdisc on linux)? */
int txqdisc;
};
#endif /* WITH_GENERIC */
static __inline u_int
netmap_real_rings(struct netmap_adapter *na, enum txrx t)
{
return nma_get_nrings(na, t) +
!!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t);
}
/* account for fake rings */
static __inline u_int
netmap_all_rings(struct netmap_adapter *na, enum txrx t)
{
return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t));
}
int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na,
struct nm_bridge *);
struct nm_bdg_polling_state;
/*
* Bridge wrapper for non VALE ports attached to a VALE switch.
*
* The real device must already have its own netmap adapter (hwna).
* The bridge wrapper and the hwna adapter share the same set of
* netmap rings and buffers, but they have two separate sets of
* krings descriptors, with tx/rx meanings swapped:
*
* netmap
* bwrap krings rings krings hwna
* +------+ +------+ +-----+ +------+ +------+
* |tx_rings->| |\ /| |----| |<-tx_rings|
* | | +------+ \ / +-----+ +------+ | |
* | | X | |
* | | / \ | |
* | | +------+/ \+-----+ +------+ | |
* |rx_rings->| | | |----| |<-rx_rings|
* | | +------+ +-----+ +------+ | |
* +------+ +------+
*
* - packets coming from the bridge go to the brwap rx rings,
* which are also the hwna tx rings. The bwrap notify callback
* will then complete the hwna tx (see netmap_bwrap_notify).
*
* - packets coming from the outside go to the hwna rx rings,
* which are also the bwrap tx rings. The (overwritten) hwna
* notify method will then complete the bridge tx
* (see netmap_bwrap_intr_notify).
*
* The bridge wrapper may optionally connect the hwna 'host' rings
* to the bridge. This is done by using a second port in the
* bridge and connecting it to the 'host' netmap_vp_adapter
* contained in the netmap_bwrap_adapter. The brwap host adapter
* cross-links the hwna host rings in the same way as shown above.
*
* - packets coming from the bridge and directed to the host stack
* are handled by the bwrap host notify callback
* (see netmap_bwrap_host_notify)
*
* - packets coming from the host stack are still handled by the
* overwritten hwna notify callback (netmap_bwrap_intr_notify),
* but are diverted to the host adapter depending on the ring number.
*
*/
struct netmap_bwrap_adapter {
struct netmap_vp_adapter up;
struct netmap_vp_adapter host; /* for host rings */
struct netmap_adapter *hwna; /* the underlying device */
/*
* When we attach a physical interface to the bridge, we
* allow the controlling process to terminate, so we need
* a place to store the n_detmap_priv_d data structure.
* This is only done when physical interfaces
* are attached to a bridge.
*/
struct netmap_priv_d *na_kpriv;
struct nm_bdg_polling_state *na_polling_state;
/* we overwrite the hwna->na_vp pointer, so we save
* here its original value, to be restored at detach
*/
struct netmap_vp_adapter *saved_na_vp;
};
int nm_bdg_polling(struct nmreq_header *hdr);
#ifdef WITH_VALE
int netmap_vale_attach(struct nmreq_header *hdr, void *auth_token);
int netmap_vale_detach(struct nmreq_header *hdr, void *auth_token);
int netmap_vale_list(struct nmreq_header *hdr);
int netmap_vi_create(struct nmreq_header *hdr, int);
int nm_vi_create(struct nmreq_header *);
int nm_vi_destroy(const char *name);
#else /* !WITH_VALE */
#define netmap_vi_create(hdr, a) (EOPNOTSUPP)
#endif /* WITH_VALE */
#ifdef WITH_PIPES
#define NM_MAXPIPES 64 /* max number of pipes per adapter */
struct netmap_pipe_adapter {
/* pipe identifier is up.name */
struct netmap_adapter up;
#define NM_PIPE_ROLE_MASTER 0x1
#define NM_PIPE_ROLE_SLAVE 0x2
int role; /* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */
struct netmap_adapter *parent; /* adapter that owns the memory */
struct netmap_pipe_adapter *peer; /* the other end of the pipe */
int peer_ref; /* 1 iff we are holding a ref to the peer */
struct ifnet *parent_ifp; /* maybe null */
u_int parent_slot; /* index in the parent pipe array */
};
#endif /* WITH_PIPES */
#ifdef WITH_NMNULL
struct netmap_null_adapter {
struct netmap_adapter up;
};
#endif /* WITH_NMNULL */
/* return slots reserved to rx clients; used in drivers */
static inline uint32_t
nm_kr_rxspace(struct netmap_kring *k)
{
int space = k->nr_hwtail - k->nr_hwcur;
if (space < 0)
space += k->nkr_num_slots;
nm_prdis("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
return space;
}
/* return slots reserved to tx clients */
#define nm_kr_txspace(_k) nm_kr_rxspace(_k)
/* True if no space in the tx ring, only valid after txsync_prologue */
static inline int
nm_kr_txempty(struct netmap_kring *kring)
{
return kring->rhead == kring->nr_hwtail;
}
/* True if no more completed slots in the rx ring, only valid after
* rxsync_prologue */
#define nm_kr_rxempty(_k) nm_kr_txempty(_k)
/* True if the application needs to wait for more space on the ring
* (more received packets or more free tx slots).
* Only valid after *xsync_prologue. */
static inline int
nm_kr_wouldblock(struct netmap_kring *kring)
{
return kring->rcur == kring->nr_hwtail;
}
/*
* protect against multiple threads using the same ring.
* also check that the ring has not been stopped or locked
*/
#define NM_KR_BUSY 1 /* some other thread is syncing the ring */
#define NM_KR_STOPPED 2 /* unbounded stop (ifconfig down or driver unload) */
#define NM_KR_LOCKED 3 /* bounded, brief stop for mutual exclusion */
/* release the previously acquired right to use the *sync() methods of the ring */
static __inline void nm_kr_put(struct netmap_kring *kr)
{
NM_ATOMIC_CLEAR(&kr->nr_busy);
}
/* true if the ifp that backed the adapter has disappeared (e.g., the
* driver has been unloaded)
*/
static inline int nm_iszombie(struct netmap_adapter *na);
/* try to obtain exclusive right to issue the *sync() operations on the ring.
* The right is obtained and must be later relinquished via nm_kr_put() if and
* only if nm_kr_tryget() returns 0.
* If can_sleep is 1 there are only two other possible outcomes:
* - the function returns NM_KR_BUSY
* - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr
* (if non-null)
* In both cases the caller will typically skip the ring, possibly collecting
* errors along the way.
* If the calling context does not allow sleeping, the caller must pass 0 in can_sleep.
* In the latter case, the function may also return NM_KR_LOCKED and leave *perr
* untouched: ideally, the caller should try again at a later time.
*/
static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr)
{
int busy = 1, stopped;
/* check a first time without taking the lock
* to avoid starvation for nm_kr_get()
*/
retry:
stopped = kr->nkr_stopped;
if (unlikely(stopped)) {
goto stop;
}
busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy);
/* we should not return NM_KR_BUSY if the ring was
* actually stopped, so check another time after
* the barrier provided by the atomic operation
*/
stopped = kr->nkr_stopped;
if (unlikely(stopped)) {
goto stop;
}
if (unlikely(nm_iszombie(kr->na))) {
stopped = NM_KR_STOPPED;
goto stop;
}
return unlikely(busy) ? NM_KR_BUSY : 0;
stop:
if (!busy)
nm_kr_put(kr);
if (stopped == NM_KR_STOPPED) {
/* if POLLERR is defined we want to use it to simplify netmap_poll().
* Otherwise, any non-zero value will do.
*/
#ifdef POLLERR
#define NM_POLLERR POLLERR
#else
#define NM_POLLERR 1
#endif /* POLLERR */
if (perr)
*perr |= NM_POLLERR;
#undef NM_POLLERR
} else if (can_sleep) {
tsleep(kr, 0, "NM_KR_TRYGET", 4);
goto retry;
}
return stopped;
}
/* put the ring in the 'stopped' state and wait for the current user (if any) to
* notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED
*/
static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped)
{
kr->nkr_stopped = stopped;
while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
tsleep(kr, 0, "NM_KR_GET", 4);
}
/* restart a ring after a stop */
static __inline void nm_kr_start(struct netmap_kring *kr)
{
kr->nkr_stopped = 0;
nm_kr_put(kr);
}
/*
* The following functions are used by individual drivers to
* support netmap operation.
*
* netmap_attach() initializes a struct netmap_adapter, allocating the
* struct netmap_ring's and the struct selinfo.
*
* netmap_detach() frees the memory allocated by netmap_attach().
*
* netmap_transmit() replaces the if_transmit routine of the interface,
* and is used to intercept packets coming from the stack.
*
* netmap_load_map/netmap_reload_map are helper routines to set/reset
* the dmamap for a packet buffer
*
* netmap_reset() is a helper routine to be called in the hw driver
* when reinitializing a ring. It should not be called by
* virtual ports (vale, pipes, monitor)
*/
int netmap_attach(struct netmap_adapter *);
int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg);
void netmap_detach(struct ifnet *);
int netmap_transmit(struct ifnet *, struct mbuf *);
struct netmap_slot *netmap_reset(struct netmap_adapter *na,
enum txrx tx, u_int n, u_int new_cur);
int netmap_ring_reinit(struct netmap_kring *);
int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *);
/* Return codes for netmap_*x_irq. */
enum {
/* Driver should do normal interrupt processing, e.g. because
* the interface is not in netmap mode. */
NM_IRQ_PASS = 0,
/* Port is in netmap mode, and the interrupt work has been
* completed. The driver does not have to notify netmap
* again before the next interrupt. */
NM_IRQ_COMPLETED = -1,
/* Port is in netmap mode, but the interrupt work has not been
* completed. The driver has to make sure netmap will be
* notified again soon, even if no more interrupts come (e.g.
* on Linux the driver should not call napi_complete()). */
NM_IRQ_RESCHED = -2,
};
/* default functions to handle rx/tx interrupts */
int netmap_rx_irq(struct ifnet *, u_int, u_int *);
#define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done);
#ifdef WITH_VALE
/* functions used by external modules to interface with VALE */
#define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp)
#define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp)
#define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
#define netmap_bdg_idx(_vp) ((_vp)->bdg_port)
const char *netmap_bdg_name(struct netmap_vp_adapter *);
#else /* !WITH_VALE */
#define netmap_vp_to_ifp(_vp) NULL
#define netmap_ifp_to_vp(_ifp) NULL
#define netmap_ifp_to_host_vp(_ifp) NULL
#define netmap_bdg_idx(_vp) -1
#endif /* WITH_VALE */
static inline int
nm_netmap_on(struct netmap_adapter *na)
{
return na && na->na_flags & NAF_NETMAP_ON;
}
static inline int
nm_native_on(struct netmap_adapter *na)
{
return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE);
}
static inline int
nm_iszombie(struct netmap_adapter *na)
{
return na == NULL || (na->na_flags & NAF_ZOMBIE);
}
static inline void
nm_update_hostrings_mode(struct netmap_adapter *na)
{
/* Process nr_mode and nr_pending_mode for host rings. */
na->tx_rings[na->num_tx_rings]->nr_mode =
na->tx_rings[na->num_tx_rings]->nr_pending_mode;
na->rx_rings[na->num_rx_rings]->nr_mode =
na->rx_rings[na->num_rx_rings]->nr_pending_mode;
}
void nm_set_native_flags(struct netmap_adapter *);
void nm_clear_native_flags(struct netmap_adapter *);
void netmap_krings_mode_commit(struct netmap_adapter *na, int onoff);
/*
* nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap
* kthreads.
* We need netmap_ring* parameter, because in ptnetmap it is decoupled
* from host kring.
* The user-space ring pointers (head/cur/tail) are shared through
* CSB between host and guest.
*/
/*
* validates parameters in the ring/kring, returns a value for head
* If any error, returns ring_size to force a reinit.
*/
uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *);
/*
* validates parameters in the ring/kring, returns a value for head
* If any error, returns ring_size lim to force a reinit.
*/
uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *);
/* check/fix address and len in tx rings */
#if 1 /* debug version */
#define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \
if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \
nm_prlim(5, "bad addr/len ring %d slot %d idx %d len %d", \
kring->ring_id, nm_i, slot->buf_idx, len); \
if (_l > NETMAP_BUF_SIZE(_na)) \
_l = NETMAP_BUF_SIZE(_na); \
} } while (0)
#else /* no debug version */
#define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \
if (_l > NETMAP_BUF_SIZE(_na)) \
_l = NETMAP_BUF_SIZE(_na); \
} while (0)
#endif
/*---------------------------------------------------------------*/
/*
* Support routines used by netmap subsystems
* (native drivers, VALE, generic, pipes, monitors, ...)
*/
/* common routine for all functions that create a netmap adapter. It performs
* two main tasks:
* - if the na points to an ifp, mark the ifp as netmap capable
* using na as its native adapter;
* - provide defaults for the setup callbacks and the memory allocator
*/
int netmap_attach_common(struct netmap_adapter *);
/* fill priv->np_[tr]xq{first,last} using the ringid and flags information
* coming from a struct nmreq_register
*/
int netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
uint16_t nr_ringid, uint64_t nr_flags);
/* update the ring parameters (number and size of tx and rx rings).
* It calls the nm_config callback, if available.
*/
int netmap_update_config(struct netmap_adapter *na);
/* create and initialize the common fields of the krings array.
* using the information that must be already available in the na.
* tailroom can be used to request the allocation of additional
* tailroom bytes after the krings array. This is used by
* netmap_vp_adapter's (i.e., VALE ports) to make room for
* leasing-related data structures
*/
int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
/* deletes the kring array of the adapter. The array must have
* been created using netmap_krings_create
*/
void netmap_krings_delete(struct netmap_adapter *na);
int netmap_hw_krings_create(struct netmap_adapter *na);
void netmap_hw_krings_delete(struct netmap_adapter *na);
/* set the stopped/enabled status of ring
* When stopping, they also wait for all current activity on the ring to
* terminate. The status change is then notified using the na nm_notify
* callback.
*/
void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped);
/* set the stopped/enabled status of all rings of the adapter. */
void netmap_set_all_rings(struct netmap_adapter *, int stopped);
/* convenience wrappers for netmap_set_all_rings */
void netmap_disable_all_rings(struct ifnet *);
void netmap_enable_all_rings(struct ifnet *);
int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu);
int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags);
void netmap_do_unregif(struct netmap_priv_d *priv);
u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na,
struct ifnet **ifp, struct netmap_mem_d *nmd, int create);
void netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp);
int netmap_get_hw_na(struct ifnet *ifp,
struct netmap_mem_d *nmd, struct netmap_adapter **na);
#ifdef WITH_VALE
uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
struct netmap_vp_adapter *, void *private_data);
/* these are redefined in case of no VALE support */
int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na,
struct netmap_mem_d *nmd, int create);
void *netmap_vale_create(const char *bdg_name, int *return_status);
int netmap_vale_destroy(const char *bdg_name, void *auth_token);
#else /* !WITH_VALE */
#define netmap_bdg_learning(_1, _2, _3, _4) 0
#define netmap_get_vale_na(_1, _2, _3, _4) 0
#define netmap_bdg_create(_1, _2) NULL
#define netmap_bdg_destroy(_1, _2) 0
#endif /* !WITH_VALE */
#ifdef WITH_PIPES
/* max number of pipes per device */
#define NM_MAXPIPES 64 /* XXX this should probably be a sysctl */
void netmap_pipe_dealloc(struct netmap_adapter *);
int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na,
struct netmap_mem_d *nmd, int create);
#else /* !WITH_PIPES */
#define NM_MAXPIPES 0
#define netmap_pipe_alloc(_1, _2) 0
#define netmap_pipe_dealloc(_1)
#define netmap_get_pipe_na(hdr, _2, _3, _4) \
((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0)
#endif
#ifdef WITH_MONITOR
int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na,
struct netmap_mem_d *nmd, int create);
void netmap_monitor_stop(struct netmap_adapter *na);
#else
#define netmap_get_monitor_na(hdr, _2, _3, _4) \
(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
#endif
#ifdef WITH_NMNULL
int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na,
struct netmap_mem_d *nmd, int create);
#else /* !WITH_NMNULL */
#define netmap_get_null_na(hdr, _2, _3, _4) \
(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
#endif /* WITH_NMNULL */
#ifdef CONFIG_NET_NS
struct net *netmap_bns_get(void);
void netmap_bns_put(struct net *);
void netmap_bns_getbridges(struct nm_bridge **, u_int *);
#else
extern struct nm_bridge *nm_bridges;
#define netmap_bns_get()
#define netmap_bns_put(_1)
#define netmap_bns_getbridges(b, n) \
do { *b = nm_bridges; *n = NM_BRIDGES; } while (0)
#endif
/* Various prototypes */
int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td);
int netmap_init(void);
void netmap_fini(void);
int netmap_get_memory(struct netmap_priv_d* p);
void netmap_dtor(void *data);
int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
struct thread *, int nr_body_is_user);
int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
struct thread *td);
size_t nmreq_size_by_type(uint16_t nr_reqtype);
/* netmap_adapter creation/destruction */
// #define NM_DEBUG_PUTGET 1
#ifdef NM_DEBUG_PUTGET
#define NM_DBG(f) __##f
void __netmap_adapter_get(struct netmap_adapter *na);
#define netmap_adapter_get(na) \
do { \
struct netmap_adapter *__na = na; \
nm_prinf("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \
__netmap_adapter_get(__na); \
} while (0)
int __netmap_adapter_put(struct netmap_adapter *na);
#define netmap_adapter_put(na) \
({ \
struct netmap_adapter *__na = na; \
nm_prinf("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \
__netmap_adapter_put(__na); \
})
#else /* !NM_DEBUG_PUTGET */
#define NM_DBG(f) f
void netmap_adapter_get(struct netmap_adapter *na);
int netmap_adapter_put(struct netmap_adapter *na);
#endif /* !NM_DEBUG_PUTGET */
/*
* module variables
*/
#define NETMAP_BUF_BASE(_na) ((_na)->na_lut.lut[0].vaddr)
#define NETMAP_BUF_SIZE(_na) ((_na)->na_lut.objsize)
extern int netmap_no_pendintr;
extern int netmap_mitigate;
extern int netmap_verbose;
#ifdef CONFIG_NETMAP_DEBUG
extern int netmap_debug; /* for debugging */
#else /* !CONFIG_NETMAP_DEBUG */
#define netmap_debug (0)
#endif /* !CONFIG_NETMAP_DEBUG */
enum { /* debug flags */
NM_DEBUG_ON = 1, /* generic debug messsages */
NM_DEBUG_HOST = 0x2, /* debug host stack */
NM_DEBUG_RXSYNC = 0x10, /* debug on rxsync/txsync */
NM_DEBUG_TXSYNC = 0x20,
NM_DEBUG_RXINTR = 0x100, /* debug on rx/tx intr (driver) */
NM_DEBUG_TXINTR = 0x200,
NM_DEBUG_NIC_RXSYNC = 0x1000, /* debug on rx/tx intr (driver) */
NM_DEBUG_NIC_TXSYNC = 0x2000,
NM_DEBUG_MEM = 0x4000, /* verbose memory allocations/deallocations */
NM_DEBUG_VALE = 0x8000, /* debug messages from memory allocators */
NM_DEBUG_BDG = NM_DEBUG_VALE,
};
extern int netmap_txsync_retry;
extern int netmap_flags;
extern int netmap_generic_hwcsum;
extern int netmap_generic_mit;
extern int netmap_generic_ringsize;
extern int netmap_generic_rings;
#ifdef linux
extern int netmap_generic_txqdisc;
#endif
/*
* NA returns a pointer to the struct netmap adapter from the ifp.
* WNA is os-specific and must be defined in glue code.
*/
#define NA(_ifp) ((struct netmap_adapter *)WNA(_ifp))
/*
* we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA
* based on the WNA field.
* Glue code may override this by defining its own NM_ATTACH_NA
*/
#ifndef NM_ATTACH_NA
/*
* On old versions of FreeBSD, NA(ifp) is a pspare. On linux we
* overload another pointer in the netdev.
*
* We check if NA(ifp) is set and its first element has a related
* magic value. The capenable is within the struct netmap_adapter.
*/
#define NETMAP_MAGIC 0x52697a7a
#define NM_NA_VALID(ifp) (NA(ifp) && \
((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
#define NM_ATTACH_NA(ifp, na) do { \
WNA(ifp) = na; \
if (NA(ifp)) \
NA(ifp)->magic = \
((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC; \
} while(0)
#define NM_RESTORE_NA(ifp, na) WNA(ifp) = na;
#define NM_DETACH_NA(ifp) do { WNA(ifp) = NULL; } while (0)
#define NM_NA_CLASH(ifp) (NA(ifp) && !NM_NA_VALID(ifp))
#endif /* !NM_ATTACH_NA */
#define NM_IS_NATIVE(ifp) (NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor)
#if defined(__FreeBSD__)
/* Assigns the device IOMMU domain to an allocator.
* Returns -ENOMEM in case the domain is different */
#define nm_iommu_group_id(dev) (0)
/* Callback invoked by the dma machinery after a successful dmamap_load */
static void netmap_dmamap_cb(__unused void *arg,
__unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
{
}
/* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
* XXX can we do it without a callback ?
*/
static inline int
netmap_load_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
{
if (map)
bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
return 0;
}
static inline void
netmap_unload_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map)
{
if (map)
bus_dmamap_unload(tag, map);
}
#define netmap_sync_map(na, tag, map, sz, t)
/* update the map when a buffer changes. */
static inline void
netmap_reload_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
{
if (map) {
bus_dmamap_unload(tag, map);
bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
}
}
#elif defined(_WIN32)
#else /* linux */
int nm_iommu_group_id(bus_dma_tag_t dev);
#include <linux/dma-mapping.h>
/*
* on linux we need
* dma_map_single(&pdev->dev, virt_addr, len, direction)
* dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction)
*/
#if 0
struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l];
/* set time_stamp *before* dma to help avoid a possible race */
buffer_info->time_stamp = jiffies;
buffer_info->mapped_as_page = false;
buffer_info->length = len;
//buffer_info->next_to_watch = l;
/* reload dma map */
dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
NETMAP_BUF_SIZE, DMA_TO_DEVICE);
buffer_info->dma = dma_map_single(&adapter->pdev->dev,
addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
nm_prerr("dma mapping error");
/* goto dma_error; See e1000_put_txbuf() */
/* XXX reset */
}
tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
#endif
static inline int
netmap_load_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size)
{
if (map) {
*map = dma_map_single(na->pdev, buf, size,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(na->pdev, *map)) {
*map = 0;
return ENOMEM;
}
}
return 0;
}
static inline void
netmap_unload_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, u_int sz)
{
if (*map) {
dma_unmap_single(na->pdev, *map, sz,
DMA_BIDIRECTIONAL);
}
}
#ifdef NETMAP_LINUX_HAVE_DMASYNC
static inline void
netmap_sync_map_cpu(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
{
if (*map) {
dma_sync_single_for_cpu(na->pdev, *map, sz,
(t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
}
}
static inline void
netmap_sync_map_dev(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
{
if (*map) {
dma_sync_single_for_device(na->pdev, *map, sz,
(t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
}
}
static inline void
netmap_reload_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
{
u_int sz = NETMAP_BUF_SIZE(na);
if (*map) {
dma_unmap_single(na->pdev, *map, sz,
DMA_BIDIRECTIONAL);
}
*map = dma_map_single(na->pdev, buf, sz,
DMA_BIDIRECTIONAL);
}
#else /* !NETMAP_LINUX_HAVE_DMASYNC */
#define netmap_sync_map_cpu(na, tag, map, sz, t)
#define netmap_sync_map_dev(na, tag, map, sz, t)
#endif /* NETMAP_LINUX_HAVE_DMASYNC */
#endif /* linux */
/*
* functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
*/
static inline int
netmap_idx_n2k(struct netmap_kring *kr, int idx)
{
int n = kr->nkr_num_slots;
if (likely(kr->nkr_hwofs == 0)) {
return idx;
}
idx += kr->nkr_hwofs;
if (idx < 0)
return idx + n;
else if (idx < n)
return idx;
else
return idx - n;
}
static inline int
netmap_idx_k2n(struct netmap_kring *kr, int idx)
{
int n = kr->nkr_num_slots;
if (likely(kr->nkr_hwofs == 0)) {
return idx;
}
idx -= kr->nkr_hwofs;
if (idx < 0)
return idx + n;
else if (idx < n)
return idx;
else
return idx - n;
}
/* Entries of the look-up table. */
#ifdef __FreeBSD__
struct lut_entry {
void *vaddr; /* virtual address. */
vm_paddr_t paddr; /* physical address. */
};
#else /* linux & _WIN32 */
/* dma-mapping in linux can assign a buffer a different address
* depending on the device, so we need to have a separate
* physical-address look-up table for each na.
* We can still share the vaddrs, though, therefore we split
* the lut_entry structure.
*/
struct lut_entry {
void *vaddr; /* virtual address. */
};
struct plut_entry {
vm_paddr_t paddr; /* physical address. */
};
#endif /* linux & _WIN32 */
struct netmap_obj_pool;
/*
* NMB return the virtual address of a buffer (buffer 0 on bad index)
* PNMB also fills the physical address
*/
static inline void *
NMB(struct netmap_adapter *na, struct netmap_slot *slot)
{
struct lut_entry *lut = na->na_lut.lut;
uint32_t i = slot->buf_idx;
return (unlikely(i >= na->na_lut.objtotal)) ?
lut[0].vaddr : lut[i].vaddr;
}
static inline void *
PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
{
uint32_t i = slot->buf_idx;
struct lut_entry *lut = na->na_lut.lut;
struct plut_entry *plut = na->na_lut.plut;
void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr;
#ifdef _WIN32
*pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart;
#else
*pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr;
#endif
return ret;
}
/*
* Structure associated to each netmap file descriptor.
* It is created on open and left unbound (np_nifp == NULL).
* A successful NIOCREGIF will set np_nifp and the first few fields;
* this is protected by a global lock (NMG_LOCK) due to low contention.
*
* np_refs counts the number of references to the structure: one for the fd,
* plus (on FreeBSD) one for each active mmap which we track ourselves
* (linux automatically tracks them, but FreeBSD does not).
* np_refs is protected by NMG_LOCK.
*
* Read access to the structure is lock free, because ni_nifp once set
* can only go to 0 when nobody is using the entry anymore. Readers
* must check that np_nifp != NULL before using the other fields.
*/
struct netmap_priv_d {
struct netmap_if * volatile np_nifp; /* netmap if descriptor. */
struct netmap_adapter *np_na;
struct ifnet *np_ifp;
uint32_t np_flags; /* from the ioctl */
u_int np_qfirst[NR_TXRX],
np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */
uint16_t np_txpoll;
uint16_t np_kloop_state; /* use with NMG_LOCK held */
#define NM_SYNC_KLOOP_RUNNING (1 << 0)
#define NM_SYNC_KLOOP_STOPPING (1 << 1)
int np_sync_flags; /* to be passed to nm_sync */
int np_refs; /* use with NMG_LOCK held */
/* pointers to the selinfo to be used for selrecord.
* Either the local or the global one depending on the
* number of rings.
*/
NM_SELINFO_T *np_si[NR_TXRX];
/* In the optional CSB mode, the user must specify the start address
* of two arrays of Communication Status Block (CSB) entries, for the
* two directions (kernel read application write, and kernel write
* application read).
* The number of entries must agree with the number of rings bound to
* the netmap file descriptor. The entries corresponding to the TX
* rings are laid out before the ones corresponding to the RX rings.
*
* Array of CSB entries for application --> kernel communication
* (N entries). */
struct nm_csb_atok *np_csb_atok_base;
/* Array of CSB entries for kernel --> application communication
* (N entries). */
struct nm_csb_ktoa *np_csb_ktoa_base;
#ifdef linux
struct file *np_filp; /* used by sync kloop */
#endif /* linux */
};
struct netmap_priv_d *netmap_priv_new(void);
void netmap_priv_delete(struct netmap_priv_d *);
static inline int nm_kring_pending(struct netmap_priv_d *np)
{
struct netmap_adapter *na = np->np_na;
enum txrx t;
int i;
for_rx_tx(t) {
for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) {
struct netmap_kring *kring = NMR(na, t)[i];
if (kring->nr_mode != kring->nr_pending_mode) {
return 1;
}
}
}
return 0;
}
/* call with NMG_LOCK held */
static __inline int
nm_si_user(struct netmap_priv_d *priv, enum txrx t)
{
return (priv->np_na != NULL &&
(priv->np_qlast[t] - priv->np_qfirst[t] > 1));
}
#ifdef WITH_PIPES
int netmap_pipe_txsync(struct netmap_kring *txkring, int flags);
int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags);
int netmap_pipe_krings_create_both(struct netmap_adapter *na,
struct netmap_adapter *ona);
void netmap_pipe_krings_delete_both(struct netmap_adapter *na,
struct netmap_adapter *ona);
int netmap_pipe_reg_both(struct netmap_adapter *na,
struct netmap_adapter *ona);
#endif /* WITH_PIPES */
#ifdef WITH_MONITOR
struct netmap_monitor_adapter {
struct netmap_adapter up;
struct netmap_priv_d priv;
uint32_t flags;
};
#endif /* WITH_MONITOR */
#ifdef WITH_GENERIC
/*
* generic netmap emulation for devices that do not have
* native netmap support.
*/
int generic_netmap_attach(struct ifnet *ifp);
int generic_rx_handler(struct ifnet *ifp, struct mbuf *m);;
int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept);
int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept);
int na_is_generic(struct netmap_adapter *na);
/*
* the generic transmit routine is passed a structure to optionally
* build a queue of descriptors, in an OS-specific way.
* The payload is at addr, if non-null, and the routine should send or queue
* the packet, returning 0 if successful, 1 on failure.
*
* At the end, if head is non-null, there will be an additional call
* to the function with addr = NULL; this should tell the OS-specific
* routine to send the queue and free any resources. Failure is ignored.
*/
struct nm_os_gen_arg {
struct ifnet *ifp;
void *m; /* os-specific mbuf-like object */
void *head, *tail; /* tailq, if the OS-specific routine needs to build one */
void *addr; /* payload of current packet */
u_int len; /* packet length */
u_int ring_nr; /* packet length */
u_int qevent; /* in txqdisc mode, place an event on this mbuf */
};
int nm_os_generic_xmit_frame(struct nm_os_gen_arg *);
int nm_os_generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx);
void nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq);
void nm_os_generic_set_features(struct netmap_generic_adapter *gna);
static inline struct ifnet*
netmap_generic_getifp(struct netmap_generic_adapter *gna)
{
if (gna->prev)
return gna->prev->ifp;
return gna->up.up.ifp;
}
void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done);
//#define RATE_GENERIC /* Enables communication statistics for generic. */
#ifdef RATE_GENERIC
void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
#else
#define generic_rate(txp, txs, txi, rxp, rxs, rxi)
#endif
/*
* netmap_mitigation API. This is used by the generic adapter
* to reduce the number of interrupt requests/selwakeup
* to clients on incoming packets.
*/
void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx,
struct netmap_adapter *na);
void nm_os_mitigation_start(struct nm_generic_mit *mit);
void nm_os_mitigation_restart(struct nm_generic_mit *mit);
int nm_os_mitigation_active(struct nm_generic_mit *mit);
void nm_os_mitigation_cleanup(struct nm_generic_mit *mit);
#else /* !WITH_GENERIC */
#define generic_netmap_attach(ifp) (EOPNOTSUPP)
#define na_is_generic(na) (0)
#endif /* WITH_GENERIC */
/* Shared declarations for the VALE switch. */
/*
* Each transmit queue accumulates a batch of packets into
* a structure before forwarding. Packets to the same
* destination are put in a list using ft_next as a link field.
* ft_frags and ft_next are valid only on the first fragment.
*/
struct nm_bdg_fwd { /* forwarding entry for a bridge */
void *ft_buf; /* netmap or indirect buffer */
uint8_t ft_frags; /* how many fragments (only on 1st frag) */
uint16_t ft_offset; /* dst port (unused) */
uint16_t ft_flags; /* flags, e.g. indirect */
uint16_t ft_len; /* src fragment len */
uint16_t ft_next; /* next packet to same destination */
};
/* struct 'virtio_net_hdr' from linux. */
struct nm_vnet_hdr {
#define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */
#define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */
uint8_t flags;
#define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */
#define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */
#define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */
#define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */
#define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */
uint8_t gso_type;
uint16_t hdr_len;
uint16_t gso_size;
uint16_t csum_start;
uint16_t csum_offset;
};
#define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */
/* Private definitions for IPv4, IPv6, UDP and TCP headers. */
struct nm_iphdr {
uint8_t version_ihl;
uint8_t tos;
uint16_t tot_len;
uint16_t id;
uint16_t frag_off;
uint8_t ttl;
uint8_t protocol;
uint16_t check;
uint32_t saddr;
uint32_t daddr;
/*The options start here. */
};
struct nm_tcphdr {
uint16_t source;
uint16_t dest;
uint32_t seq;
uint32_t ack_seq;
uint8_t doff; /* Data offset + Reserved */
uint8_t flags;
uint16_t window;
uint16_t check;
uint16_t urg_ptr;
};
struct nm_udphdr {
uint16_t source;
uint16_t dest;
uint16_t len;
uint16_t check;
};
struct nm_ipv6hdr {
uint8_t priority_version;
uint8_t flow_lbl[3];
uint16_t payload_len;
uint8_t nexthdr;
uint8_t hop_limit;
uint8_t saddr[16];
uint8_t daddr[16];
};
/* Type used to store a checksum (in host byte order) that hasn't been
* folded yet.
*/
#define rawsum_t uint32_t
rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph);
void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
size_t datalen, uint16_t *check);
void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
size_t datalen, uint16_t *check);
uint16_t nm_os_csum_fold(rawsum_t cur_sum);
void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
struct netmap_vp_adapter *dst_na,
const struct nm_bdg_fwd *ft_p,
struct netmap_ring *dst_ring,
u_int *j, u_int lim, u_int *howmany);
/* persistent virtual port routines */
int nm_os_vi_persist(const char *, struct ifnet **);
void nm_os_vi_detach(struct ifnet *);
void nm_os_vi_init_index(void);
/*
* kernel thread routines
*/
struct nm_kctx; /* OS-specific kernel context - opaque */
typedef void (*nm_kctx_worker_fn_t)(void *data);
/* kthread configuration */
struct nm_kctx_cfg {
long type; /* kthread type/identifier */
nm_kctx_worker_fn_t worker_fn; /* worker function */
void *worker_private;/* worker parameter */
int attach_user; /* attach kthread to user process */
};
/* kthread configuration */
struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg,
void *opaque);
int nm_os_kctx_worker_start(struct nm_kctx *);
void nm_os_kctx_worker_stop(struct nm_kctx *);
void nm_os_kctx_destroy(struct nm_kctx *);
void nm_os_kctx_worker_setaff(struct nm_kctx *, int);
u_int nm_os_ncpus(void);
int netmap_sync_kloop(struct netmap_priv_d *priv,
struct nmreq_header *hdr);
int netmap_sync_kloop_stop(struct netmap_priv_d *priv);
#ifdef WITH_PTNETMAP
/* ptnetmap guest routines */
/*
* ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver
*/
struct ptnetmap_memdev;
int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **,
uint64_t *);
void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *);
uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int);
/*
* netmap adapter for guest ptnetmap ports
*/
struct netmap_pt_guest_adapter {
/* The netmap adapter to be used by netmap applications.
* This field must be the first, to allow upcast. */
struct netmap_hw_adapter hwup;
/* The netmap adapter to be used by the driver. */
struct netmap_hw_adapter dr;
/* Reference counter to track users of backend netmap port: the
* network stack and netmap clients.
* Used to decide when we need (de)allocate krings/rings and
* start (stop) ptnetmap kthreads. */
int backend_users;
};
int netmap_pt_guest_attach(struct netmap_adapter *na,
unsigned int nifp_offset,
unsigned int memid);
bool netmap_pt_guest_txsync(struct nm_csb_atok *atok,
struct nm_csb_ktoa *ktoa,
struct netmap_kring *kring, int flags);
bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok,
struct nm_csb_ktoa *ktoa,
struct netmap_kring *kring, int flags);
int ptnet_nm_krings_create(struct netmap_adapter *na);
void ptnet_nm_krings_delete(struct netmap_adapter *na);
void ptnet_nm_dtor(struct netmap_adapter *na);
/* Helper function wrapping nm_sync_kloop_appl_read(). */
static inline void
ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring)
{
struct netmap_ring *ring = kring->ring;
/* Update hwcur and hwtail as known by the host. */
nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur);
/* nm_sync_finalize */
ring->tail = kring->rtail = kring->nr_hwtail;
}
#endif /* WITH_PTNETMAP */
#ifdef __FreeBSD__
/*
* FreeBSD mbuf allocator/deallocator in emulation mode:
*/
#if __FreeBSD_version < 1100000
/*
* For older versions of FreeBSD:
*
* We allocate EXT_PACKET mbuf+clusters, but need to set M_NOFREE
* so that the destructor, if invoked, will not free the packet.
* In principle we should set the destructor only on demand,
* but since there might be a race we better do it on allocation.
* As a consequence, we also need to set the destructor or we
* would leak buffers.
*/
/* mbuf destructor, also need to change the type to EXT_EXTREF,
* add an M_NOFREE flag, and then clear the flag and
* chain into uma_zfree(zone_pack, mf)
* (or reinstall the buffer ?)
*/
#define SET_MBUF_DESTRUCTOR(m, fn) do { \
(m)->m_ext.ext_free = (void *)fn; \
(m)->m_ext.ext_type = EXT_EXTREF; \
} while (0)
static int
void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2)
{
/* restore original mbuf */
m->m_ext.ext_buf = m->m_data = m->m_ext.ext_arg1;
m->m_ext.ext_arg1 = NULL;
m->m_ext.ext_type = EXT_PACKET;
m->m_ext.ext_free = NULL;
if (MBUF_REFCNT(m) == 0)
SET_MBUF_REFCNT(m, 1);
uma_zfree(zone_pack, m);
return 0;
}
static inline struct mbuf *
nm_os_get_mbuf(struct ifnet *ifp, int len)
{
struct mbuf *m;
(void)ifp;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m) {
/* m_getcl() (mb_ctor_mbuf) has an assert that checks that
* M_NOFREE flag is not specified as third argument,
* so we have to set M_NOFREE after m_getcl(). */
m->m_flags |= M_NOFREE;
m->m_ext.ext_arg1 = m->m_ext.ext_buf; // XXX save
m->m_ext.ext_free = (void *)void_mbuf_dtor;
m->m_ext.ext_type = EXT_EXTREF;
nm_prdis(5, "create m %p refcnt %d", m, MBUF_REFCNT(m));
}
return m;
}
#else /* __FreeBSD_version >= 1100000 */
/*
* Newer versions of FreeBSD, using a straightforward scheme.
*
* We allocate mbufs with m_gethdr(), since the mbuf header is needed
* by the driver. We also attach a customly-provided external storage,
* which in this case is a netmap buffer. When calling m_extadd(), however
* we pass a NULL address, since the real address (and length) will be
* filled in by nm_os_generic_xmit_frame() right before calling
* if_transmit().
*
* The dtor function does nothing, however we need it since mb_free_ext()
* has a KASSERT(), checking that the mbuf dtor function is not NULL.
*/
#if __FreeBSD_version <= 1200050
static void void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) { }
#else /* __FreeBSD_version >= 1200051 */
/* The arg1 and arg2 pointers argument were removed by r324446, which
* in included since version 1200051. */
static void void_mbuf_dtor(struct mbuf *m) { }
#endif /* __FreeBSD_version >= 1200051 */
#define SET_MBUF_DESTRUCTOR(m, fn) do { \
(m)->m_ext.ext_free = (fn != NULL) ? \
(void *)fn : (void *)void_mbuf_dtor; \
} while (0)
static inline struct mbuf *
nm_os_get_mbuf(struct ifnet *ifp, int len)
{
struct mbuf *m;
(void)ifp;
(void)len;
m = m_gethdr(M_NOWAIT, MT_DATA);
if (m == NULL) {
return m;
}
m_extadd(m, NULL /* buf */, 0 /* size */, void_mbuf_dtor,
NULL, NULL, 0, EXT_NET_DRV);
return m;
}
#endif /* __FreeBSD_version >= 1100000 */
#endif /* __FreeBSD__ */
struct nmreq_option * nmreq_findoption(struct nmreq_option *, uint16_t);
int nmreq_checkduplicate(struct nmreq_option *);
int netmap_init_bridges(void);
void netmap_uninit_bridges(void);
/* Functions to read and write CSB fields from the kernel. */
#if defined (linux)
#define CSB_READ(csb, field, r) (get_user(r, &csb->field))
#define CSB_WRITE(csb, field, v) (put_user(v, &csb->field))
#else /* ! linux */
#define CSB_READ(csb, field, r) (r = fuword32(&csb->field))
#define CSB_WRITE(csb, field, v) (suword32(&csb->field, v))
#endif /* ! linux */
#endif /* _NET_NETMAP_KERN_H_ */