5aa60b6f21
address alignment of mappings. - MAP_ALIGNED(n) requests a mapping aligned on a boundary of (1 << n). Requests for n >= number of bits in a pointer or less than the size of a page fail with EINVAL. This matches the API provided by NetBSD. - MAP_ALIGNED_SUPER is a special case of MAP_ALIGNED. It can be used to optimize the chances of using large pages. By default it will align the mapping on a large page boundary (the system is free to choose any large page size to align to that seems best for the mapping request). However, if the object being mapped is already using large pages, then it will align the virtual mapping to match the existing large pages in the object instead. - Internally, VMFS_ALIGNED_SPACE is now renamed to VMFS_SUPER_SPACE, and VMFS_ALIGNED_SPACE(n) is repurposed for specifying a specific alignment. MAP_ALIGNED(n) maps to using VMFS_ALIGNED_SPACE(n), while MAP_ALIGNED_SUPER maps to VMFS_SUPER_SPACE. - mmap() of a device object now uses VMFS_OPTIMAL_SPACE rather than explicitly using VMFS_SUPER_SPACE. All device objects are forced to use a specific color on creation, so VMFS_OPTIMAL_SPACE is effectively equivalent. Reviewed by: alc MFC after: 1 month
565 lines
15 KiB
C
565 lines
15 KiB
C
/*-
|
|
* Copyright (c) 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
|
|
*
|
|
*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
/*
|
|
* Kernel memory management.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h> /* for ticks and hz */
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/vmem.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/uma.h>
|
|
|
|
vm_map_t kernel_map;
|
|
vm_map_t exec_map;
|
|
vm_map_t pipe_map;
|
|
|
|
const void *zero_region;
|
|
CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
|
|
|
|
SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
|
|
NULL, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
|
|
|
|
SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
|
|
#if defined(__arm__) || defined(__sparc64__)
|
|
&vm_max_kernel_address, 0,
|
|
#else
|
|
NULL, VM_MAX_KERNEL_ADDRESS,
|
|
#endif
|
|
"Max kernel address");
|
|
|
|
/*
|
|
* kva_alloc:
|
|
*
|
|
* Allocate a virtual address range with no underlying object and
|
|
* no initial mapping to physical memory. Any mapping from this
|
|
* range to physical memory must be explicitly created prior to
|
|
* its use, typically with pmap_qenter(). Any attempt to create
|
|
* a mapping on demand through vm_fault() will result in a panic.
|
|
*/
|
|
vm_offset_t
|
|
kva_alloc(size)
|
|
vm_size_t size;
|
|
{
|
|
vm_offset_t addr;
|
|
|
|
size = round_page(size);
|
|
if (vmem_alloc(kernel_arena, size, M_BESTFIT | M_NOWAIT, &addr))
|
|
return (0);
|
|
|
|
return (addr);
|
|
}
|
|
|
|
/*
|
|
* kva_free:
|
|
*
|
|
* Release a region of kernel virtual memory allocated
|
|
* with kva_alloc, and return the physical pages
|
|
* associated with that region.
|
|
*
|
|
* This routine may not block on kernel maps.
|
|
*/
|
|
void
|
|
kva_free(addr, size)
|
|
vm_offset_t addr;
|
|
vm_size_t size;
|
|
{
|
|
|
|
size = round_page(size);
|
|
vmem_free(kernel_arena, addr, size);
|
|
}
|
|
|
|
/*
|
|
* Allocates a region from the kernel address map and physical pages
|
|
* within the specified address range to the kernel object. Creates a
|
|
* wired mapping from this region to these pages, and returns the
|
|
* region's starting virtual address. The allocated pages are not
|
|
* necessarily physically contiguous. If M_ZERO is specified through the
|
|
* given flags, then the pages are zeroed before they are mapped.
|
|
*/
|
|
vm_offset_t
|
|
kmem_alloc_attr(vmem_t *vmem, vm_size_t size, int flags, vm_paddr_t low,
|
|
vm_paddr_t high, vm_memattr_t memattr)
|
|
{
|
|
vm_object_t object = vmem == kmem_arena ? kmem_object : kernel_object;
|
|
vm_offset_t addr;
|
|
vm_ooffset_t offset;
|
|
vm_page_t m;
|
|
int pflags, tries;
|
|
int i;
|
|
|
|
size = round_page(size);
|
|
if (vmem_alloc(vmem, size, M_BESTFIT | flags, &addr))
|
|
return (0);
|
|
offset = addr - VM_MIN_KERNEL_ADDRESS;
|
|
pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
|
|
VM_OBJECT_WLOCK(object);
|
|
for (i = 0; i < size; i += PAGE_SIZE) {
|
|
tries = 0;
|
|
retry:
|
|
m = vm_page_alloc_contig(object, OFF_TO_IDX(offset + i),
|
|
pflags, 1, low, high, PAGE_SIZE, 0, memattr);
|
|
if (m == NULL) {
|
|
VM_OBJECT_WUNLOCK(object);
|
|
if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
|
|
vm_pageout_grow_cache(tries, low, high);
|
|
VM_OBJECT_WLOCK(object);
|
|
tries++;
|
|
goto retry;
|
|
}
|
|
/*
|
|
* Unmap and free the pages.
|
|
*/
|
|
if (i != 0)
|
|
pmap_remove(kernel_pmap, addr, addr + i);
|
|
while (i != 0) {
|
|
i -= PAGE_SIZE;
|
|
m = vm_page_lookup(object,
|
|
OFF_TO_IDX(offset + i));
|
|
vm_page_unwire(m, 0);
|
|
vm_page_free(m);
|
|
}
|
|
vmem_free(vmem, addr, size);
|
|
return (0);
|
|
}
|
|
if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
|
|
pmap_zero_page(m);
|
|
m->valid = VM_PAGE_BITS_ALL;
|
|
pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL,
|
|
TRUE);
|
|
}
|
|
VM_OBJECT_WUNLOCK(object);
|
|
return (addr);
|
|
}
|
|
|
|
/*
|
|
* Allocates a region from the kernel address map and physically
|
|
* contiguous pages within the specified address range to the kernel
|
|
* object. Creates a wired mapping from this region to these pages, and
|
|
* returns the region's starting virtual address. If M_ZERO is specified
|
|
* through the given flags, then the pages are zeroed before they are
|
|
* mapped.
|
|
*/
|
|
vm_offset_t
|
|
kmem_alloc_contig(struct vmem *vmem, vm_size_t size, int flags, vm_paddr_t low,
|
|
vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
|
|
vm_memattr_t memattr)
|
|
{
|
|
vm_object_t object = vmem == kmem_arena ? kmem_object : kernel_object;
|
|
vm_offset_t addr, tmp;
|
|
vm_ooffset_t offset;
|
|
vm_page_t end_m, m;
|
|
int pflags, tries;
|
|
|
|
size = round_page(size);
|
|
if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
|
|
return (0);
|
|
offset = addr - VM_MIN_KERNEL_ADDRESS;
|
|
pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
|
|
VM_OBJECT_WLOCK(object);
|
|
tries = 0;
|
|
retry:
|
|
m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags,
|
|
atop(size), low, high, alignment, boundary, memattr);
|
|
if (m == NULL) {
|
|
VM_OBJECT_WUNLOCK(object);
|
|
if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
|
|
vm_pageout_grow_cache(tries, low, high);
|
|
VM_OBJECT_WLOCK(object);
|
|
tries++;
|
|
goto retry;
|
|
}
|
|
vmem_free(vmem, addr, size);
|
|
return (0);
|
|
}
|
|
end_m = m + atop(size);
|
|
tmp = addr;
|
|
for (; m < end_m; m++) {
|
|
if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
|
|
pmap_zero_page(m);
|
|
m->valid = VM_PAGE_BITS_ALL;
|
|
pmap_enter(kernel_pmap, tmp, VM_PROT_ALL, m, VM_PROT_ALL, true);
|
|
tmp += PAGE_SIZE;
|
|
}
|
|
VM_OBJECT_WUNLOCK(object);
|
|
return (addr);
|
|
}
|
|
|
|
/*
|
|
* kmem_suballoc:
|
|
*
|
|
* Allocates a map to manage a subrange
|
|
* of the kernel virtual address space.
|
|
*
|
|
* Arguments are as follows:
|
|
*
|
|
* parent Map to take range from
|
|
* min, max Returned endpoints of map
|
|
* size Size of range to find
|
|
* superpage_align Request that min is superpage aligned
|
|
*/
|
|
vm_map_t
|
|
kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
|
|
vm_size_t size, boolean_t superpage_align)
|
|
{
|
|
int ret;
|
|
vm_map_t result;
|
|
|
|
size = round_page(size);
|
|
|
|
*min = vm_map_min(parent);
|
|
ret = vm_map_find(parent, NULL, 0, min, size, superpage_align ?
|
|
VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
|
|
MAP_ACC_NO_CHARGE);
|
|
if (ret != KERN_SUCCESS)
|
|
panic("kmem_suballoc: bad status return of %d", ret);
|
|
*max = *min + size;
|
|
result = vm_map_create(vm_map_pmap(parent), *min, *max);
|
|
if (result == NULL)
|
|
panic("kmem_suballoc: cannot create submap");
|
|
if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
|
|
panic("kmem_suballoc: unable to change range to submap");
|
|
return (result);
|
|
}
|
|
|
|
/*
|
|
* kmem_malloc:
|
|
*
|
|
* Allocate wired-down pages in the kernel's address space.
|
|
*/
|
|
vm_offset_t
|
|
kmem_malloc(struct vmem *vmem, vm_size_t size, int flags)
|
|
{
|
|
vm_offset_t addr;
|
|
int rv;
|
|
|
|
size = round_page(size);
|
|
if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
|
|
return (0);
|
|
|
|
rv = kmem_back((vmem == kmem_arena) ? kmem_object : kernel_object,
|
|
addr, size, flags);
|
|
if (rv != KERN_SUCCESS) {
|
|
vmem_free(vmem, addr, size);
|
|
return (0);
|
|
}
|
|
return (addr);
|
|
}
|
|
|
|
/*
|
|
* kmem_back:
|
|
*
|
|
* Allocate physical pages for the specified virtual address range.
|
|
*/
|
|
int
|
|
kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
|
|
{
|
|
vm_offset_t offset, i;
|
|
vm_page_t m;
|
|
int pflags;
|
|
|
|
KASSERT(object == kmem_object || object == kernel_object,
|
|
("kmem_back: only supports kernel objects."));
|
|
|
|
offset = addr - VM_MIN_KERNEL_ADDRESS;
|
|
pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
|
|
|
|
VM_OBJECT_WLOCK(object);
|
|
for (i = 0; i < size; i += PAGE_SIZE) {
|
|
retry:
|
|
m = vm_page_alloc(object, OFF_TO_IDX(offset + i), pflags);
|
|
|
|
/*
|
|
* Ran out of space, free everything up and return. Don't need
|
|
* to lock page queues here as we know that the pages we got
|
|
* aren't on any queues.
|
|
*/
|
|
if (m == NULL) {
|
|
if ((flags & M_NOWAIT) == 0) {
|
|
VM_OBJECT_WUNLOCK(object);
|
|
VM_WAIT;
|
|
VM_OBJECT_WLOCK(object);
|
|
goto retry;
|
|
}
|
|
/*
|
|
* Unmap and free the pages.
|
|
*/
|
|
if (i != 0)
|
|
pmap_remove(kernel_pmap, addr, addr + i);
|
|
while (i != 0) {
|
|
i -= PAGE_SIZE;
|
|
m = vm_page_lookup(object,
|
|
OFF_TO_IDX(offset + i));
|
|
vm_page_unwire(m, 0);
|
|
vm_page_free(m);
|
|
}
|
|
VM_OBJECT_WUNLOCK(object);
|
|
return (KERN_NO_SPACE);
|
|
}
|
|
if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
|
|
pmap_zero_page(m);
|
|
KASSERT((m->oflags & VPO_UNMANAGED) != 0,
|
|
("kmem_malloc: page %p is managed", m));
|
|
m->valid = VM_PAGE_BITS_ALL;
|
|
pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL,
|
|
TRUE);
|
|
}
|
|
VM_OBJECT_WUNLOCK(object);
|
|
|
|
return (KERN_SUCCESS);
|
|
}
|
|
|
|
void
|
|
kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
|
|
{
|
|
vm_page_t m;
|
|
vm_offset_t offset;
|
|
int i;
|
|
|
|
KASSERT(object == kmem_object || object == kernel_object,
|
|
("kmem_unback: only supports kernel objects."));
|
|
|
|
offset = addr - VM_MIN_KERNEL_ADDRESS;
|
|
VM_OBJECT_WLOCK(object);
|
|
pmap_remove(kernel_pmap, addr, addr + size);
|
|
for (i = 0; i < size; i += PAGE_SIZE) {
|
|
m = vm_page_lookup(object, OFF_TO_IDX(offset + i));
|
|
vm_page_unwire(m, 0);
|
|
vm_page_free(m);
|
|
}
|
|
VM_OBJECT_WUNLOCK(object);
|
|
}
|
|
|
|
/*
|
|
* kmem_free:
|
|
*
|
|
* Free memory allocated with kmem_malloc. The size must match the
|
|
* original allocation.
|
|
*/
|
|
void
|
|
kmem_free(struct vmem *vmem, vm_offset_t addr, vm_size_t size)
|
|
{
|
|
|
|
size = round_page(size);
|
|
kmem_unback((vmem == kmem_arena) ? kmem_object : kernel_object,
|
|
addr, size);
|
|
vmem_free(vmem, addr, size);
|
|
}
|
|
|
|
/*
|
|
* kmap_alloc_wait:
|
|
*
|
|
* Allocates pageable memory from a sub-map of the kernel. If the submap
|
|
* has no room, the caller sleeps waiting for more memory in the submap.
|
|
*
|
|
* This routine may block.
|
|
*/
|
|
vm_offset_t
|
|
kmap_alloc_wait(map, size)
|
|
vm_map_t map;
|
|
vm_size_t size;
|
|
{
|
|
vm_offset_t addr;
|
|
|
|
size = round_page(size);
|
|
if (!swap_reserve(size))
|
|
return (0);
|
|
|
|
for (;;) {
|
|
/*
|
|
* To make this work for more than one map, use the map's lock
|
|
* to lock out sleepers/wakers.
|
|
*/
|
|
vm_map_lock(map);
|
|
if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
|
|
break;
|
|
/* no space now; see if we can ever get space */
|
|
if (vm_map_max(map) - vm_map_min(map) < size) {
|
|
vm_map_unlock(map);
|
|
swap_release(size);
|
|
return (0);
|
|
}
|
|
map->needs_wakeup = TRUE;
|
|
vm_map_unlock_and_wait(map, 0);
|
|
}
|
|
vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL,
|
|
VM_PROT_ALL, MAP_ACC_CHARGED);
|
|
vm_map_unlock(map);
|
|
return (addr);
|
|
}
|
|
|
|
/*
|
|
* kmap_free_wakeup:
|
|
*
|
|
* Returns memory to a submap of the kernel, and wakes up any processes
|
|
* waiting for memory in that map.
|
|
*/
|
|
void
|
|
kmap_free_wakeup(map, addr, size)
|
|
vm_map_t map;
|
|
vm_offset_t addr;
|
|
vm_size_t size;
|
|
{
|
|
|
|
vm_map_lock(map);
|
|
(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
|
|
if (map->needs_wakeup) {
|
|
map->needs_wakeup = FALSE;
|
|
vm_map_wakeup(map);
|
|
}
|
|
vm_map_unlock(map);
|
|
}
|
|
|
|
void
|
|
kmem_init_zero_region(void)
|
|
{
|
|
vm_offset_t addr, i;
|
|
vm_page_t m;
|
|
|
|
/*
|
|
* Map a single physical page of zeros to a larger virtual range.
|
|
* This requires less looping in places that want large amounts of
|
|
* zeros, while not using much more physical resources.
|
|
*/
|
|
addr = kva_alloc(ZERO_REGION_SIZE);
|
|
m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
|
|
VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
|
|
if ((m->flags & PG_ZERO) == 0)
|
|
pmap_zero_page(m);
|
|
for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
|
|
pmap_qenter(addr + i, &m, 1);
|
|
pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
|
|
|
|
zero_region = (const void *)addr;
|
|
}
|
|
|
|
/*
|
|
* kmem_init:
|
|
*
|
|
* Create the kernel map; insert a mapping covering kernel text,
|
|
* data, bss, and all space allocated thus far (`boostrap' data). The
|
|
* new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
|
|
* `start' as allocated, and the range between `start' and `end' as free.
|
|
*/
|
|
void
|
|
kmem_init(start, end)
|
|
vm_offset_t start, end;
|
|
{
|
|
vm_map_t m;
|
|
|
|
m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
|
|
m->system_map = 1;
|
|
vm_map_lock(m);
|
|
/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
|
|
kernel_map = m;
|
|
(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
|
|
#ifdef __amd64__
|
|
KERNBASE,
|
|
#else
|
|
VM_MIN_KERNEL_ADDRESS,
|
|
#endif
|
|
start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
|
|
/* ... and ending with the completion of the above `insert' */
|
|
vm_map_unlock(m);
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Allow userspace to directly trigger the VM drain routine for testing
|
|
* purposes.
|
|
*/
|
|
static int
|
|
debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, i;
|
|
|
|
i = 0;
|
|
error = sysctl_handle_int(oidp, &i, 0, req);
|
|
if (error)
|
|
return (error);
|
|
if (i)
|
|
EVENTHANDLER_INVOKE(vm_lowmem, 0);
|
|
return (0);
|
|
}
|
|
|
|
SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
|
|
debug_vm_lowmem, "I", "set to trigger vm_lowmem event");
|
|
#endif
|