freebsd-skq/sys/pci/if_al.c

2000 lines
46 KiB
C

/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id: if_al.c,v 1.8 1999/08/21 22:10:48 msmith Exp $
*/
/*
* ADMtek AL981 Comet fast ethernet PCI NIC driver. Datasheets for
* the AL981 are available from http://www.admtek.com.tw.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The ADMtek AL981 Comet is still another DEC 21x4x clone. It's
* a reasonably close copy of the tulip, except for the receiver filter
* programming. Where the DEC chip has a special setup frame that
* needs to be downloaded into the transmit DMA engine, the ADMtek chip
* has physical address and multicast address registers.
*/
#include "bpf.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/eventhandler.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#if NBPF > 0
#include <net/bpf.h>
#endif
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
/* Enable workaround for small transmitter bug. */
#define AL_TX_STALL_WAR
#define AL_USEIOSPACE
/* #define AL_BACKGROUND_AUTONEG */
#include <pci/if_alreg.h>
#ifndef lint
static const char rcsid[] =
"$Id: if_al.c,v 1.8 1999/08/21 22:10:48 msmith Exp $";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct al_type al_devs[] = {
{ AL_VENDORID, AL_DEVICEID_AL981,
"ADMtek AL981 10/100BaseTX" },
{ 0, 0, NULL }
};
/*
* Various supported PHY vendors/types and their names. Note that
* this driver will work with pretty much any MII-compliant PHY,
* so failure to positively identify the chip is not a fatal error.
*/
static struct al_type al_phys[] = {
{ TI_PHY_VENDORID, TI_PHY_10BT, "<TI ThunderLAN 10BT (internal)>" },
{ TI_PHY_VENDORID, TI_PHY_100VGPMI, "<TI TNETE211 100VG Any-LAN>" },
{ NS_PHY_VENDORID, NS_PHY_83840A, "<National Semiconductor DP83840A>"},
{ LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "<Level 1 LXT970>" },
{ INTEL_PHY_VENDORID, INTEL_PHY_82555, "<Intel 82555>" },
{ SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "<SEEQ 80220>" },
{ 0, 0, "<MII-compliant physical interface>" }
};
static unsigned long al_count = 0;
static const char *al_probe __P((pcici_t, pcidi_t));
static void al_attach __P((pcici_t, int));
static int al_newbuf __P((struct al_softc *,
struct al_chain_onefrag *));
static int al_encap __P((struct al_softc *, struct al_chain *,
struct mbuf *));
static void al_rxeof __P((struct al_softc *));
static void al_rxeoc __P((struct al_softc *));
static void al_txeof __P((struct al_softc *));
static void al_txeoc __P((struct al_softc *));
static void al_intr __P((void *));
static void al_start __P((struct ifnet *));
static int al_ioctl __P((struct ifnet *, u_long, caddr_t));
static void al_init __P((void *));
static void al_stop __P((struct al_softc *));
static void al_watchdog __P((struct ifnet *));
static void al_shutdown __P((void *, int));
static int al_ifmedia_upd __P((struct ifnet *));
static void al_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static void al_delay __P((struct al_softc *));
static void al_eeprom_idle __P((struct al_softc *));
static void al_eeprom_putbyte __P((struct al_softc *, int));
static void al_eeprom_getword __P((struct al_softc *, int, u_int16_t *));
static void al_read_eeprom __P((struct al_softc *, caddr_t, int,
int, int));
static u_int16_t al_phy_readreg __P((struct al_softc *, int));
static void al_phy_writereg __P((struct al_softc *, int, int));
static void al_autoneg_xmit __P((struct al_softc *));
static void al_autoneg_mii __P((struct al_softc *, int, int));
static void al_setmode_mii __P((struct al_softc *, int));
static void al_getmode_mii __P((struct al_softc *));
static u_int32_t al_calchash __P((caddr_t));
static void al_setmulti __P((struct al_softc *));
static void al_reset __P((struct al_softc *));
static int al_list_rx_init __P((struct al_softc *));
static int al_list_tx_init __P((struct al_softc *));
#define AL_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | x)
#define AL_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~x)
#define SIO_SET(x) \
CSR_WRITE_4(sc, AL_SIO, \
CSR_READ_4(sc, AL_SIO) | x)
#define SIO_CLR(x) \
CSR_WRITE_4(sc, AL_SIO, \
CSR_READ_4(sc, AL_SIO) & ~x)
static void al_delay(sc)
struct al_softc *sc;
{
int idx;
for (idx = (300 / 33) + 1; idx > 0; idx--)
CSR_READ_4(sc, AL_BUSCTL);
}
static void al_eeprom_idle(sc)
struct al_softc *sc;
{
register int i;
CSR_WRITE_4(sc, AL_SIO, AL_SIO_EESEL);
al_delay(sc);
AL_SETBIT(sc, AL_SIO, AL_SIO_ROMCTL_READ);
al_delay(sc);
AL_SETBIT(sc, AL_SIO, AL_SIO_EE_CS);
al_delay(sc);
AL_SETBIT(sc, AL_SIO, AL_SIO_EE_CLK);
al_delay(sc);
for (i = 0; i < 25; i++) {
AL_CLRBIT(sc, AL_SIO, AL_SIO_EE_CLK);
al_delay(sc);
AL_SETBIT(sc, AL_SIO, AL_SIO_EE_CLK);
al_delay(sc);
}
AL_CLRBIT(sc, AL_SIO, AL_SIO_EE_CLK);
al_delay(sc);
AL_CLRBIT(sc, AL_SIO, AL_SIO_EE_CS);
al_delay(sc);
CSR_WRITE_4(sc, AL_SIO, 0x00000000);
return;
}
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void al_eeprom_putbyte(sc, addr)
struct al_softc *sc;
int addr;
{
register int d, i;
d = addr | AL_EECMD_READ;
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
SIO_SET(AL_SIO_EE_DATAIN);
} else {
SIO_CLR(AL_SIO_EE_DATAIN);
}
al_delay(sc);
SIO_SET(AL_SIO_EE_CLK);
al_delay(sc);
SIO_CLR(AL_SIO_EE_CLK);
al_delay(sc);
}
return;
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void al_eeprom_getword(sc, addr, dest)
struct al_softc *sc;
int addr;
u_int16_t *dest;
{
register int i;
u_int16_t word = 0;
/* Force EEPROM to idle state. */
al_eeprom_idle(sc);
/* Enter EEPROM access mode. */
CSR_WRITE_4(sc, AL_SIO, AL_SIO_EESEL);
al_delay(sc);
AL_SETBIT(sc, AL_SIO, AL_SIO_ROMCTL_READ);
al_delay(sc);
AL_SETBIT(sc, AL_SIO, AL_SIO_EE_CS);
al_delay(sc);
AL_SETBIT(sc, AL_SIO, AL_SIO_EE_CLK);
al_delay(sc);
/*
* Send address of word we want to read.
*/
al_eeprom_putbyte(sc, addr);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
SIO_SET(AL_SIO_EE_CLK);
al_delay(sc);
if (CSR_READ_4(sc, AL_SIO) & AL_SIO_EE_DATAOUT)
word |= i;
al_delay(sc);
SIO_CLR(AL_SIO_EE_CLK);
al_delay(sc);
}
/* Turn off EEPROM access mode. */
al_eeprom_idle(sc);
*dest = word;
return;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void al_read_eeprom(sc, dest, off, cnt, swap)
struct al_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
al_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return;
}
static u_int16_t al_phy_readreg(sc, reg)
struct al_softc *sc;
int reg;
{
u_int16_t rval = 0;
u_int16_t phy_reg = 0;
switch(reg) {
case PHY_BMCR:
phy_reg = AL_BMCR;
break;
case PHY_BMSR:
phy_reg = AL_BMSR;
break;
case PHY_VENID:
phy_reg = AL_VENID;
break;
case PHY_DEVID:
phy_reg = AL_DEVID;
break;
case PHY_ANAR:
phy_reg = AL_ANAR;
break;
case PHY_LPAR:
phy_reg = AL_LPAR;
break;
case PHY_ANEXP:
phy_reg = AL_ANER;
break;
default:
printf("al%d: read: bad phy register %x\n",
sc->al_unit, reg);
break;
}
rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
return(rval);
}
static void al_phy_writereg(sc, reg, data)
struct al_softc *sc;
int reg;
int data;
{
u_int16_t phy_reg = 0;
switch(reg) {
case PHY_BMCR:
phy_reg = AL_BMCR;
break;
case PHY_BMSR:
phy_reg = AL_BMSR;
break;
case PHY_VENID:
phy_reg = AL_VENID;
break;
case PHY_DEVID:
phy_reg = AL_DEVID;
break;
case PHY_ANAR:
phy_reg = AL_ANAR;
break;
case PHY_LPAR:
phy_reg = AL_LPAR;
break;
case PHY_ANEXP:
phy_reg = AL_ANER;
break;
default:
printf("al%d: phy_write: bad phy register %x\n",
sc->al_unit, reg);
break;
}
CSR_WRITE_4(sc, phy_reg, data);
return;
}
/*
* Calculate CRC of a multicast group address, return the lower 6 bits.
*/
static u_int32_t al_calchash(addr)
caddr_t addr;
{
u_int32_t crc, carry;
int i, j;
u_int8_t c;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (i = 0; i < 6; i++) {
c = *(addr + i);
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
crc <<= 1;
c >>= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
/* return the filter bit position */
return((crc >> 26) & 0x0000003F);
}
static void al_setmulti(sc)
struct al_softc *sc;
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
u_int32_t rxfilt;
ifp = &sc->arpcom.ac_if;
rxfilt = CSR_READ_4(sc, AL_NETCFG);
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
rxfilt |= AL_NETCFG_RX_ALLMULTI;
CSR_WRITE_4(sc, AL_NETCFG, rxfilt);
return;
} else
rxfilt &= ~AL_NETCFG_RX_ALLMULTI;
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, AL_MAR0, 0);
CSR_WRITE_4(sc, AL_MAR1, 0);
/* now program new ones */
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = al_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
CSR_WRITE_4(sc, AL_MAR0, hashes[0]);
CSR_WRITE_4(sc, AL_MAR1, hashes[1]);
CSR_WRITE_4(sc, AL_NETCFG, rxfilt);
return;
}
/*
* Initiate an autonegotiation session.
*/
static void al_autoneg_xmit(sc)
struct al_softc *sc;
{
u_int16_t phy_sts;
al_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
DELAY(500);
while(al_phy_readreg(sc, PHY_BMCR)
& PHY_BMCR_RESET);
phy_sts = al_phy_readreg(sc, PHY_BMCR);
phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
al_phy_writereg(sc, PHY_BMCR, phy_sts);
return;
}
/*
* Invoke autonegotiation on a PHY.
*/
static void al_autoneg_mii(sc, flag, verbose)
struct al_softc *sc;
int flag;
int verbose;
{
u_int16_t phy_sts = 0, media, advert, ability;
struct ifnet *ifp;
struct ifmedia *ifm;
ifm = &sc->ifmedia;
ifp = &sc->arpcom.ac_if;
ifm->ifm_media = IFM_ETHER | IFM_AUTO;
/*
* The 100baseT4 PHY on the 3c905-T4 has the 'autoneg supported'
* bit cleared in the status register, but has the 'autoneg enabled'
* bit set in the control register. This is a contradiction, and
* I'm not sure how to handle it. If you want to force an attempt
* to autoneg for 100baseT4 PHYs, #define FORCE_AUTONEG_TFOUR
* and see what happens.
*/
#ifndef FORCE_AUTONEG_TFOUR
/*
* First, see if autoneg is supported. If not, there's
* no point in continuing.
*/
phy_sts = al_phy_readreg(sc, PHY_BMSR);
if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
if (verbose)
printf("al%d: autonegotiation not supported\n",
sc->al_unit);
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
return;
}
#endif
switch (flag) {
case AL_FLAG_FORCEDELAY:
/*
* XXX Never use this option anywhere but in the probe
* routine: making the kernel stop dead in its tracks
* for three whole seconds after we've gone multi-user
* is really bad manners.
*/
al_autoneg_xmit(sc);
DELAY(5000000);
break;
case AL_FLAG_SCHEDDELAY:
/*
* Wait for the transmitter to go idle before starting
* an autoneg session, otherwise al_start() may clobber
* our timeout, and we don't want to allow transmission
* during an autoneg session since that can screw it up.
*/
if (sc->al_cdata.al_tx_head != NULL) {
sc->al_want_auto = 1;
return;
}
al_autoneg_xmit(sc);
ifp->if_timer = 5;
sc->al_autoneg = 1;
sc->al_want_auto = 0;
return;
break;
case AL_FLAG_DELAYTIMEO:
ifp->if_timer = 0;
sc->al_autoneg = 0;
break;
default:
printf("al%d: invalid autoneg flag: %d\n", sc->al_unit, flag);
return;
}
if (al_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
if (verbose)
printf("al%d: autoneg complete, ", sc->al_unit);
phy_sts = al_phy_readreg(sc, PHY_BMSR);
} else {
if (verbose)
printf("al%d: autoneg not complete, ", sc->al_unit);
}
media = al_phy_readreg(sc, PHY_BMCR);
/* Link is good. Report modes and set duplex mode. */
if (al_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
if (verbose)
printf("link status good ");
advert = al_phy_readreg(sc, PHY_ANAR);
ability = al_phy_readreg(sc, PHY_LPAR);
if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
ifm->ifm_media = IFM_ETHER|IFM_100_T4;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(100baseT4)\n");
} else if (advert & PHY_ANAR_100BTXFULL &&
ability & PHY_ANAR_100BTXFULL) {
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
media |= PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_100BTXHALF &&
ability & PHY_ANAR_100BTXHALF) {
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_10BTFULL &&
ability & PHY_ANAR_10BTFULL) {
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
media &= ~PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 10Mbps)\n");
} else if (advert & PHY_ANAR_10BTHALF &&
ability & PHY_ANAR_10BTHALF) {
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
media &= ~PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 10Mbps)\n");
}
media &= ~PHY_BMCR_AUTONEGENBL;
/* Set ASIC's duplex mode to match the PHY. */
al_phy_writereg(sc, PHY_BMCR, media);
} else {
if (verbose)
printf("no carrier\n");
}
al_init(sc);
if (sc->al_tx_pend) {
sc->al_autoneg = 0;
sc->al_tx_pend = 0;
al_start(ifp);
}
return;
}
static void al_getmode_mii(sc)
struct al_softc *sc;
{
u_int16_t bmsr;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
bmsr = al_phy_readreg(sc, PHY_BMSR);
if (bootverbose)
printf("al%d: PHY status word: %x\n", sc->al_unit, bmsr);
/* fallback */
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
if (bmsr & PHY_BMSR_10BTHALF) {
if (bootverbose)
printf("al%d: 10Mbps half-duplex mode supported\n",
sc->al_unit);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
}
if (bmsr & PHY_BMSR_10BTFULL) {
if (bootverbose)
printf("al%d: 10Mbps full-duplex mode supported\n",
sc->al_unit);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
}
if (bmsr & PHY_BMSR_100BTXHALF) {
if (bootverbose)
printf("al%d: 100Mbps half-duplex mode supported\n",
sc->al_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
}
if (bmsr & PHY_BMSR_100BTXFULL) {
if (bootverbose)
printf("al%d: 100Mbps full-duplex mode supported\n",
sc->al_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
}
/* Some also support 100BaseT4. */
if (bmsr & PHY_BMSR_100BT4) {
if (bootverbose)
printf("al%d: 100baseT4 mode supported\n", sc->al_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4;
#ifdef FORCE_AUTONEG_TFOUR
if (bootverbose)
printf("al%d: forcing on autoneg support for BT4\n",
sc->al_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0 NULL):
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
#endif
}
if (bmsr & PHY_BMSR_CANAUTONEG) {
if (bootverbose)
printf("al%d: autoneg supported\n", sc->al_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
}
return;
}
/*
* Set speed and duplex mode.
*/
static void al_setmode_mii(sc, media)
struct al_softc *sc;
int media;
{
u_int16_t bmcr;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/*
* If an autoneg session is in progress, stop it.
*/
if (sc->al_autoneg) {
printf("al%d: canceling autoneg session\n", sc->al_unit);
ifp->if_timer = sc->al_autoneg = sc->al_want_auto = 0;
bmcr = al_phy_readreg(sc, PHY_BMCR);
bmcr &= ~PHY_BMCR_AUTONEGENBL;
al_phy_writereg(sc, PHY_BMCR, bmcr);
}
printf("al%d: selecting MII, ", sc->al_unit);
bmcr = al_phy_readreg(sc, PHY_BMCR);
bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL|
PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK);
if (IFM_SUBTYPE(media) == IFM_100_T4) {
printf("100Mbps/T4, half-duplex\n");
bmcr |= PHY_BMCR_SPEEDSEL;
bmcr &= ~PHY_BMCR_DUPLEX;
}
if (IFM_SUBTYPE(media) == IFM_100_TX) {
printf("100Mbps, ");
bmcr |= PHY_BMCR_SPEEDSEL;
}
if (IFM_SUBTYPE(media) == IFM_10_T) {
printf("10Mbps, ");
bmcr &= ~PHY_BMCR_SPEEDSEL;
}
if ((media & IFM_GMASK) == IFM_FDX) {
printf("full duplex\n");
bmcr |= PHY_BMCR_DUPLEX;
} else {
printf("half duplex\n");
bmcr &= ~PHY_BMCR_DUPLEX;
}
al_phy_writereg(sc, PHY_BMCR, bmcr);
return;
}
static void al_reset(sc)
struct al_softc *sc;
{
register int i;
AL_SETBIT(sc, AL_BUSCTL, AL_BUSCTL_RESET);
for (i = 0; i < AL_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_4(sc, AL_BUSCTL) & AL_BUSCTL_RESET))
break;
}
#ifdef notdef
if (i == AL_TIMEOUT)
printf("al%d: reset never completed!\n", sc->al_unit);
#endif
CSR_WRITE_4(sc, AL_BUSCTL, AL_BUSCTL_ARBITRATION);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
return;
}
/*
* Probe for an ADMtek chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static const char *
al_probe(config_id, device_id)
pcici_t config_id;
pcidi_t device_id;
{
struct al_type *t;
t = al_devs;
while(t->al_name != NULL) {
if ((device_id & 0xFFFF) == t->al_vid &&
((device_id >> 16) & 0xFFFF) == t->al_did) {
return(t->al_name);
}
t++;
}
return(NULL);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static void
al_attach(config_id, unit)
pcici_t config_id;
int unit;
{
int s, i;
#ifndef AL_USEIOSPACE
vm_offset_t pbase, vbase;
#endif
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t command;
struct al_softc *sc;
struct ifnet *ifp;
int media = IFM_ETHER|IFM_100_TX|IFM_FDX;
unsigned int round;
caddr_t roundptr;
struct al_type *p;
u_int16_t phy_vid, phy_did, phy_sts;
s = splimp();
sc = malloc(sizeof(struct al_softc), M_DEVBUF, M_NOWAIT);
if (sc == NULL) {
printf("al%d: no memory for softc struct!\n", unit);
goto fail;
}
bzero(sc, sizeof(struct al_softc));
/*
* Handle power management nonsense.
*/
command = pci_conf_read(config_id, AL_PCI_CAPID) & 0x000000FF;
if (command == 0x01) {
command = pci_conf_read(config_id, AL_PCI_PWRMGMTCTRL);
if (command & AL_PSTATE_MASK) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_conf_read(config_id, AL_PCI_LOIO);
membase = pci_conf_read(config_id, AL_PCI_LOMEM);
irq = pci_conf_read(config_id, AL_PCI_INTLINE);
/* Reset the power state. */
printf("al%d: chip is in D%d power mode "
"-- setting to D0\n", unit, command & AL_PSTATE_MASK);
command &= 0xFFFFFFFC;
pci_conf_write(config_id, AL_PCI_PWRMGMTCTRL, command);
/* Restore PCI config data. */
pci_conf_write(config_id, AL_PCI_LOIO, iobase);
pci_conf_write(config_id, AL_PCI_LOMEM, membase);
pci_conf_write(config_id, AL_PCI_INTLINE, irq);
}
}
/*
* Map control/status registers.
*/
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, command);
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
#ifdef AL_USEIOSPACE
if (!(command & PCIM_CMD_PORTEN)) {
printf("al%d: failed to enable I/O ports!\n", unit);
free(sc, M_DEVBUF);
goto fail;
}
if (!pci_map_port(config_id, AL_PCI_LOIO,
(pci_port_t *)&(sc->al_bhandle))) {
printf ("al%d: couldn't map ports\n", unit);
goto fail;
}
#ifdef __i386__
sc->al_btag = I386_BUS_SPACE_IO;
#endif
#ifdef __alpha__
sc->al_btag = ALPHA_BUS_SPACE_IO;
#endif
#else
if (!(command & PCIM_CMD_MEMEN)) {
printf("al%d: failed to enable memory mapping!\n", unit);
goto fail;
}
if (!pci_map_mem(config_id, AL_PCI_LOMEM, &vbase, &pbase)) {
printf ("al%d: couldn't map memory\n", unit);
goto fail;
}
#ifdef __i386__
sc->al_btag = I386_BUS_SPACE_MEM;
#endif
#ifdef __alpha__
sc->al_btag = ALPHA_BUS_SPACE_MEM;
#endif
sc->al_bhandle = vbase;
#endif
/* Allocate interrupt */
if (!pci_map_int(config_id, al_intr, sc, &net_imask)) {
printf("al%d: couldn't map interrupt\n", unit);
goto fail;
}
/* Save cache line size. */
sc->al_cachesize = pci_conf_read(config_id, AL_PCI_CACHELEN) & 0xFF;
/* Reset the adapter. */
al_reset(sc);
/*
* Get station address from the EEPROM.
*/
al_read_eeprom(sc, (caddr_t)&eaddr, AL_EE_NODEADDR, 3, 0);
/*
* An ADMtek chip was detected. Inform the world.
*/
printf("al%d: Ethernet address: %6D\n", unit, eaddr, ":");
sc->al_unit = unit;
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
sc->al_ldata_ptr = malloc(sizeof(struct al_list_data) + 8,
M_DEVBUF, M_NOWAIT);
if (sc->al_ldata_ptr == NULL) {
free(sc, M_DEVBUF);
printf("al%d: no memory for list buffers!\n", unit);
goto fail;
}
sc->al_ldata = (struct al_list_data *)sc->al_ldata_ptr;
round = (uintptr_t)sc->al_ldata_ptr & 0xF;
roundptr = sc->al_ldata_ptr;
for (i = 0; i < 8; i++) {
if (round % 8) {
round++;
roundptr++;
} else
break;
}
sc->al_ldata = (struct al_list_data *)roundptr;
bzero(sc->al_ldata, sizeof(struct al_list_data));
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "al";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = al_ioctl;
ifp->if_output = ether_output;
ifp->if_start = al_start;
ifp->if_watchdog = al_watchdog;
ifp->if_init = al_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = AL_TX_LIST_CNT - 1;
if (bootverbose)
printf("al%d: probing for a PHY\n", sc->al_unit);
for (i = AL_PHYADDR_MIN; i < AL_PHYADDR_MAL + 1; i++) {
if (bootverbose)
printf("al%d: checking address: %d\n",
sc->al_unit, i);
sc->al_phy_addr = i;
al_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
DELAY(500);
while(al_phy_readreg(sc, PHY_BMCR)
& PHY_BMCR_RESET);
if ((phy_sts = al_phy_readreg(sc, PHY_BMSR)))
break;
}
if (phy_sts) {
phy_vid = al_phy_readreg(sc, PHY_VENID);
phy_did = al_phy_readreg(sc, PHY_DEVID);
if (bootverbose)
printf("al%d: found PHY at address %d, ",
sc->al_unit, sc->al_phy_addr);
if (bootverbose)
printf("vendor id: %x device id: %x\n",
phy_vid, phy_did);
p = al_phys;
while(p->al_vid) {
if (phy_vid == p->al_vid &&
(phy_did | 0x000F) == p->al_did) {
sc->al_pinfo = p;
break;
}
p++;
}
if (sc->al_pinfo == NULL)
sc->al_pinfo = &al_phys[PHY_UNKNOWN];
if (bootverbose)
printf("al%d: PHY type: %s\n",
sc->al_unit, sc->al_pinfo->al_name);
} else {
#ifdef DIAGNOSTIC
printf("al%d: MII without any phy!\n", sc->al_unit);
#endif
}
/*
* Do ifmedia setup.
*/
ifmedia_init(&sc->ifmedia, 0, al_ifmedia_upd, al_ifmedia_sts);
if (sc->al_pinfo != NULL) {
al_getmode_mii(sc);
al_autoneg_mii(sc, AL_FLAG_FORCEDELAY, 1);
} else {
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
}
media = sc->ifmedia.ifm_media;
al_stop(sc);
ifmedia_set(&sc->ifmedia, media);
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
#if NBPF > 0
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
EVENTHANDLER_REGISTER(shutdown_post_sync, al_shutdown, sc,
SHUTDOWN_PRI_DEFAULT);
fail:
splx(s);
return;
}
/*
* Initialize the transmit descriptors.
*/
static int al_list_tx_init(sc)
struct al_softc *sc;
{
struct al_chain_data *cd;
struct al_list_data *ld;
int i;
cd = &sc->al_cdata;
ld = sc->al_ldata;
for (i = 0; i < AL_TX_LIST_CNT; i++) {
cd->al_tx_chain[i].al_ptr = &ld->al_tx_list[i];
if (i == (AL_TX_LIST_CNT - 1))
cd->al_tx_chain[i].al_nextdesc =
&cd->al_tx_chain[0];
else
cd->al_tx_chain[i].al_nextdesc =
&cd->al_tx_chain[i + 1];
}
cd->al_tx_free = &cd->al_tx_chain[0];
cd->al_tx_tail = cd->al_tx_head = NULL;
return(0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int al_list_rx_init(sc)
struct al_softc *sc;
{
struct al_chain_data *cd;
struct al_list_data *ld;
int i;
cd = &sc->al_cdata;
ld = sc->al_ldata;
for (i = 0; i < AL_RX_LIST_CNT; i++) {
cd->al_rx_chain[i].al_ptr =
(volatile struct al_desc *)&ld->al_rx_list[i];
if (al_newbuf(sc, &cd->al_rx_chain[i]) == ENOBUFS)
return(ENOBUFS);
if (i == (AL_RX_LIST_CNT - 1)) {
cd->al_rx_chain[i].al_nextdesc =
&cd->al_rx_chain[0];
ld->al_rx_list[i].al_next =
vtophys(&ld->al_rx_list[0]);
} else {
cd->al_rx_chain[i].al_nextdesc =
&cd->al_rx_chain[i + 1];
ld->al_rx_list[i].al_next =
vtophys(&ld->al_rx_list[i + 1]);
}
}
cd->al_rx_head = &cd->al_rx_chain[0];
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
* Note: the length fields are only 11 bits wide, which means the
* largest size we can specify is 2047. This is important because
* MCLBYTES is 2048, so we have to subtract one otherwise we'll
* overflow the field and make a mess.
*/
static int al_newbuf(sc, c)
struct al_softc *sc;
struct al_chain_onefrag *c;
{
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("al%d: no memory for rx list -- packet dropped!\n",
sc->al_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("al%d: no memory for rx list -- packet dropped!\n",
sc->al_unit);
m_freem(m_new);
return(ENOBUFS);
}
c->al_mbuf = m_new;
c->al_ptr->al_status = AL_RXSTAT;
c->al_ptr->al_data = vtophys(mtod(m_new, caddr_t));
c->al_ptr->al_ctl = MCLBYTES - 1;
return(0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void al_rxeof(sc)
struct al_softc *sc;
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
struct al_chain_onefrag *cur_rx;
int total_len = 0;
u_int32_t rxstat;
ifp = &sc->arpcom.ac_if;
while(!((rxstat = sc->al_cdata.al_rx_head->al_ptr->al_status) &
AL_RXSTAT_OWN)) {
#ifdef __alpha__
struct mbuf *m0 = NULL;
#endif
cur_rx = sc->al_cdata.al_rx_head;
sc->al_cdata.al_rx_head = cur_rx->al_nextdesc;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxstat & AL_RXSTAT_RXERR) {
ifp->if_ierrors++;
if (rxstat & AL_RXSTAT_COLLSEEN)
ifp->if_collisions++;
cur_rx->al_ptr->al_status = AL_RXSTAT;
cur_rx->al_ptr->al_ctl = (MCLBYTES - 1);
continue;
}
/* No errors; receive the packet. */
m = cur_rx->al_mbuf;
total_len = AL_RXBYTES(cur_rx->al_ptr->al_status);
total_len -= ETHER_CRC_LEN;
#ifdef __alpha__
/*
* Try to conjure up a new mbuf cluster. If that
* fails, it means we have an out of memory condition and
* should leave the buffer in place and continue. This will
* result in a lost packet, but there's little else we
* can do in this situation.
*/
if (al_newbuf(sc, cur_rx) == ENOBUFS) {
ifp->if_ierrors++;
cur_rx->al_ptr->al_status = AL_RXSTAT;
cur_rx->al_ptr->al_ctl = (MCLBYTES - 1);
continue;
}
/*
* Sadly, the ADMtek chip doesn't decode the last few
* bits of the RX DMA buffer address, so we have to
* cheat in order to obtain proper payload alignment
* on the alpha.
*/
MGETHDR(m0, M_DONTWAIT, MT_DATA);
if (m0 == NULL) {
ifp->if_ierrors++;
cur_rx->al_ptr->al_status = AL_RXSTAT;
cur_rx->al_ptr->al_ctl = (MCLBYTES - 1);
continue;
}
m0->m_data += 2;
if (total_len <= (MHLEN - 2)) {
bcopy(mtod(m, caddr_t), mtod(m0, caddr_t), total_len); m_freem(m);
m = m0;
m->m_pkthdr.len = m->m_len = total_len;
} else {
bcopy(mtod(m, caddr_t), mtod(m0, caddr_t), (MHLEN - 2));
m->m_len = total_len - (MHLEN - 2);
m->m_data += (MHLEN - 2);
m0->m_next = m;
m0->m_len = (MHLEN - 2);
m = m0;
m->m_pkthdr.len = total_len;
}
m->m_pkthdr.rcvif = ifp;
#else
if (total_len < MINCLSIZE) {
m = m_devget(mtod(cur_rx->al_mbuf, char *),
total_len, 0, ifp, NULL);
cur_rx->al_ptr->al_status = AL_RXSTAT;
cur_rx->al_ptr->al_ctl = (MCLBYTES - 1);
if (m == NULL) {
ifp->if_ierrors++;
continue;
}
} else {
m = cur_rx->al_mbuf;
/*
* Try to conjure up a new mbuf cluster. If that
* fails, it means we have an out of memory condition and
* should leave the buffer in place and continue. This will
* result in a lost packet, but there's little else we
* can do in this situation.
*/
if (al_newbuf(sc, cur_rx) == ENOBUFS) {
ifp->if_ierrors++;
cur_rx->al_ptr->al_status = AL_RXSTAT;
cur_rx->al_ptr->al_ctl = (MCLBYTES - 1);
continue;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
}
#endif
ifp->if_ipackets++;
eh = mtod(m, struct ether_header *);
#if NBPF > 0
/*
* Handle BPF listeners. Let the BPF user see the packet, but
* don't pass it up to the ether_input() layer unless it's
* a broadcast packet, multicast packet, matches our ethernet
* address or the interface is in promiscuous mode.
*/
if (ifp->if_bpf) {
bpf_mtap(ifp, m);
if (ifp->if_flags & IFF_PROMISC &&
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN) &&
(eh->ether_dhost[0] & 1) == 0)) {
m_freem(m);
continue;
}
}
#endif
/* Remove header from mbuf and pass it on. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
return;
}
void al_rxeoc(sc)
struct al_softc *sc;
{
al_rxeof(sc);
AL_CLRBIT(sc, AL_NETCFG, AL_NETCFG_RX_ON);
CSR_WRITE_4(sc, AL_RXADDR, vtophys(sc->al_cdata.al_rx_head->al_ptr));
AL_SETBIT(sc, AL_NETCFG, AL_NETCFG_RX_ON);
CSR_WRITE_4(sc, AL_RXSTART, 0xFFFFFFFF);
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void al_txeof(sc)
struct al_softc *sc;
{
struct al_chain *cur_tx;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/* Clear the timeout timer. */
ifp->if_timer = 0;
if (sc->al_cdata.al_tx_head == NULL)
return;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
while(sc->al_cdata.al_tx_head->al_mbuf != NULL) {
u_int32_t txstat;
cur_tx = sc->al_cdata.al_tx_head;
txstat = AL_TXSTATUS(cur_tx);
if (txstat & AL_TXSTAT_OWN)
break;
if (txstat & AL_TXSTAT_ERRSUM) {
ifp->if_oerrors++;
if (txstat & AL_TXSTAT_EXCESSCOLL)
ifp->if_collisions++;
if (txstat & AL_TXSTAT_LATECOLL)
ifp->if_collisions++;
}
ifp->if_collisions += (txstat & AL_TXSTAT_COLLCNT) >> 3;
ifp->if_opackets++;
m_freem(cur_tx->al_mbuf);
cur_tx->al_mbuf = NULL;
if (sc->al_cdata.al_tx_head == sc->al_cdata.al_tx_tail) {
sc->al_cdata.al_tx_head = NULL;
sc->al_cdata.al_tx_tail = NULL;
ifp->if_flags &= ~IFF_OACTIVE;
break;
}
sc->al_cdata.al_tx_head = cur_tx->al_nextdesc;
}
return;
}
/*
* TX 'end of channel' interrupt handler.
*/
static void al_txeoc(sc)
struct al_softc *sc;
{
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
if (sc->al_cdata.al_tx_head == NULL) {
ifp->if_flags &= ~IFF_OACTIVE;
sc->al_cdata.al_tx_tail = NULL;
if (sc->al_want_auto)
al_autoneg_mii(sc, AL_FLAG_DELAYTIMEO, 1);
}
return;
}
static void al_intr(arg)
void *arg;
{
struct al_softc *sc;
struct ifnet *ifp;
u_int32_t status;
sc = arg;
ifp = &sc->arpcom.ac_if;
/* Supress unwanted interrupts */
if (!(ifp->if_flags & IFF_UP)) {
al_stop(sc);
return;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, AL_IMR, 0x00000000);
for (;;) {
status = CSR_READ_4(sc, AL_ISR);
if (status)
CSR_WRITE_4(sc, AL_ISR, status);
if ((status & AL_INTRS) == 0)
break;
if (status & AL_ISR_TX_OK)
al_txeof(sc);
if (status & AL_ISR_TX_NOBUF)
al_txeoc(sc);
if (status & AL_ISR_TX_IDLE) {
al_txeof(sc);
if (sc->al_cdata.al_tx_head != NULL) {
AL_SETBIT(sc, AL_NETCFG, AL_NETCFG_TX_ON);
CSR_WRITE_4(sc, AL_TXSTART, 0xFFFFFFFF);
}
}
if (status & AL_ISR_TX_UNDERRUN) {
u_int32_t cfg;
cfg = CSR_READ_4(sc, AL_NETCFG);
if ((cfg & AL_NETCFG_TX_THRESH) == AL_TXTHRESH_160BYTES)
AL_SETBIT(sc, AL_NETCFG, AL_NETCFG_STORENFWD);
else
CSR_WRITE_4(sc, AL_NETCFG, cfg + 0x4000);
}
if (status & AL_ISR_RX_OK)
al_rxeof(sc);
if ((status & AL_ISR_RX_WATDOGTIMEO)
|| (status & AL_ISR_RX_NOBUF))
al_rxeoc(sc);
if (status & AL_ISR_BUS_ERR) {
al_reset(sc);
al_init(sc);
}
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, AL_IMR, AL_INTRS);
if (ifp->if_snd.ifq_head != NULL) {
al_start(ifp);
}
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int al_encap(sc, c, m_head)
struct al_softc *sc;
struct al_chain *c;
struct mbuf *m_head;
{
int frag = 0;
volatile struct al_desc *f = NULL;
int total_len;
struct mbuf *m;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
total_len = 0;
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (frag == AL_MAXFRAGS)
break;
total_len += m->m_len;
f = &c->al_ptr->al_frag[frag];
f->al_ctl = AL_TXCTL_TLINK | m->m_len;
if (frag == 0) {
f->al_status = 0;
f->al_ctl |= AL_TXCTL_FIRSTFRAG;
} else
f->al_status = AL_TXSTAT_OWN;
f->al_next = vtophys(&c->al_ptr->al_frag[frag + 1]);
f->al_data = vtophys(mtod(m, vm_offset_t));
frag++;
}
}
/*
* Handle special case: we ran out of fragments,
* but we have more mbufs left in the chain. Copy the
* data into an mbuf cluster. Note that we don't
* bother clearing the values in the other fragment
* pointers/counters; it wouldn't gain us anything,
* and would waste cycles.
*/
if (m != NULL) {
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("al%d: no memory for tx list", sc->al_unit);
return(1);
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
printf("al%d: no memory for tx list",
sc->al_unit);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
f = &c->al_ptr->al_frag[0];
f->al_status = 0;
f->al_data = vtophys(mtod(m_new, caddr_t));
f->al_ctl = total_len = m_new->m_len;
f->al_ctl |= AL_TXCTL_TLINK|AL_TXCTL_FIRSTFRAG;
frag = 1;
}
c->al_mbuf = m_head;
c->al_lastdesc = frag - 1;
AL_TXCTL(c) |= AL_TXCTL_LASTFRAG|AL_TXCTL_FINT;
AL_TXNEXT(c) = vtophys(&c->al_nextdesc->al_ptr->al_frag[0]);
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void al_start(ifp)
struct ifnet *ifp;
{
struct al_softc *sc;
struct mbuf *m_head = NULL;
struct al_chain *cur_tx = NULL, *start_tx;
sc = ifp->if_softc;
if (ifp->if_flags & IFF_OACTIVE)
return;
if (sc->al_autoneg) {
sc->al_tx_pend = 1;
return;
}
/*
* Check for an available queue slot. If there are none,
* punt.
*/
if (sc->al_cdata.al_tx_free->al_mbuf != NULL) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
start_tx = sc->al_cdata.al_tx_free;
while(sc->al_cdata.al_tx_free->al_mbuf == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/* Pick a descriptor off the free list. */
cur_tx = sc->al_cdata.al_tx_free;
sc->al_cdata.al_tx_free = cur_tx->al_nextdesc;
/* Pack the data into the descriptor. */
al_encap(sc, cur_tx, m_head);
#if NBPF > 0
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, cur_tx->al_mbuf);
#endif
AL_TXOWN(cur_tx) = AL_TXSTAT_OWN;
CSR_WRITE_4(sc, AL_TXSTART, 0xFFFFFFFF);
#ifdef AL_TX_STALL_WAR
/*
* Work around some strange behavior in the Comet. For
* some reason, the transmitter will sometimes wedge if
* we queue up a descriptor chain that wraps from the end
* of the transmit list back to the beginning. If we reach
* the end of the list and still have more packets to queue,
* don't queue them now: end the transmit session here and
* then wait until it finishes before sending the other
* packets.
*/
if (cur_tx == &sc->al_cdata.al_tx_chain[AL_TX_LIST_CNT - 1]) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
#endif
}
sc->al_cdata.al_tx_tail = cur_tx;
if (sc->al_cdata.al_tx_head == NULL)
sc->al_cdata.al_tx_head = start_tx;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
static void al_init(xsc)
void *xsc;
{
struct al_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
u_int16_t phy_bmcr = 0;
int s;
if (sc->al_autoneg)
return;
s = splimp();
if (sc->al_pinfo != NULL)
phy_bmcr = al_phy_readreg(sc, PHY_BMCR);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
al_stop(sc);
al_reset(sc);
/*
* Set cache alignment and burst length.
*/
CSR_WRITE_4(sc, AL_BUSCTL, AL_BUSCTL_ARBITRATION);
AL_SETBIT(sc, AL_BUSCTL, AL_BURSTLEN_16LONG);
switch(sc->al_cachesize) {
case 32:
AL_SETBIT(sc, AL_BUSCTL, AL_CACHEALIGN_32LONG);
break;
case 16:
AL_SETBIT(sc, AL_BUSCTL, AL_CACHEALIGN_16LONG);
break;
case 8:
AL_SETBIT(sc, AL_BUSCTL, AL_CACHEALIGN_8LONG);
break;
case 0:
default:
AL_SETBIT(sc, AL_BUSCTL, AL_CACHEALIGN_NONE);
break;
}
AL_CLRBIT(sc, AL_NETCFG, AL_NETCFG_HEARTBEAT);
AL_CLRBIT(sc, AL_NETCFG, AL_NETCFG_STORENFWD);
AL_CLRBIT(sc, AL_NETCFG, AL_NETCFG_TX_THRESH);
if (IFM_SUBTYPE(sc->ifmedia.ifm_media) == IFM_10_T)
AL_SETBIT(sc, AL_NETCFG, AL_TXTHRESH_160BYTES);
else
AL_SETBIT(sc, AL_NETCFG, AL_TXTHRESH_72BYTES);
/* Init our MAC address */
CSR_WRITE_4(sc, AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
CSR_WRITE_4(sc, AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
/* Init circular RX list. */
if (al_list_rx_init(sc) == ENOBUFS) {
printf("al%d: initialization failed: no "
"memory for rx buffers\n", sc->al_unit);
al_stop(sc);
(void)splx(s);
return;
}
/*
* Init tx descriptors.
*/
al_list_tx_init(sc);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
AL_SETBIT(sc, AL_NETCFG, AL_NETCFG_RX_PROMISC);
} else {
AL_CLRBIT(sc, AL_NETCFG, AL_NETCFG_RX_PROMISC);
}
/*
* Load the multicast filter.
*/
al_setmulti(sc);
/*
* Load the address of the RX list.
*/
CSR_WRITE_4(sc, AL_RXADDR, vtophys(sc->al_cdata.al_rx_head->al_ptr));
CSR_WRITE_4(sc, AL_TXADDR, vtophys(&sc->al_ldata->al_tx_list[0]));
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, AL_IMR, AL_INTRS);
CSR_WRITE_4(sc, AL_ISR, 0xFFFFFFFF);
/* Enable receiver and transmitter. */
AL_SETBIT(sc, AL_NETCFG, AL_NETCFG_TX_ON|AL_NETCFG_RX_ON);
CSR_WRITE_4(sc, AL_RXSTART, 0xFFFFFFFF);
/* Restore state of BMCR */
if (sc->al_pinfo != NULL)
al_phy_writereg(sc, PHY_BMCR, phy_bmcr);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
(void)splx(s);
return;
}
/*
* Set media options.
*/
static int al_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct al_softc *sc;
struct ifmedia *ifm;
sc = ifp->if_softc;
ifm = &sc->ifmedia;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return(EINVAL);
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
al_autoneg_mii(sc, AL_FLAG_SCHEDDELAY, 1);
else {
al_setmode_mii(sc, ifm->ifm_media);
}
return(0);
}
/*
* Report current media status.
*/
static void al_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct al_softc *sc;
u_int16_t advert = 0, ability = 0;
sc = ifp->if_softc;
ifmr->ifm_active = IFM_ETHER;
if (!(al_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
if (al_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
else
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
if (al_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
return;
}
ability = al_phy_readreg(sc, PHY_LPAR);
advert = al_phy_readreg(sc, PHY_ANAR);
if (advert & PHY_ANAR_100BT4 &&
ability & PHY_ANAR_100BT4) {
ifmr->ifm_active = IFM_ETHER|IFM_100_T4;
} else if (advert & PHY_ANAR_100BTXFULL &&
ability & PHY_ANAR_100BTXFULL) {
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX;
} else if (advert & PHY_ANAR_100BTXHALF &&
ability & PHY_ANAR_100BTXHALF) {
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX;
} else if (advert & PHY_ANAR_10BTFULL &&
ability & PHY_ANAR_10BTFULL) {
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX;
} else if (advert & PHY_ANAR_10BTHALF &&
ability & PHY_ANAR_10BTHALF) {
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX;
}
return;
}
static int al_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct al_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splimp();
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
al_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
al_stop(sc);
}
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
al_setmulti(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
default:
error = EINVAL;
break;
}
(void)splx(s);
return(error);
}
static void al_watchdog(ifp)
struct ifnet *ifp;
{
struct al_softc *sc;
sc = ifp->if_softc;
if (sc->al_autoneg) {
al_autoneg_mii(sc, AL_FLAG_DELAYTIMEO, 1);
return;
}
ifp->if_oerrors++;
printf("al%d: watchdog timeout\n", sc->al_unit);
if (sc->al_pinfo != NULL) {
if (!(al_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
printf("al%d: no carrier - transceiver "
"cable problem?\n", sc->al_unit);
}
al_stop(sc);
al_reset(sc);
al_init(sc);
if (ifp->if_snd.ifq_head != NULL)
al_start(ifp);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void al_stop(sc)
struct al_softc *sc;
{
register int i;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
AL_CLRBIT(sc, AL_NETCFG, (AL_NETCFG_RX_ON|AL_NETCFG_TX_ON));
CSR_WRITE_4(sc, AL_IMR, 0x00000000);
CSR_WRITE_4(sc, AL_TXADDR, 0x00000000);
CSR_WRITE_4(sc, AL_RXADDR, 0x00000000);
/*
* Free data in the RX lists.
*/
for (i = 0; i < AL_RX_LIST_CNT; i++) {
if (sc->al_cdata.al_rx_chain[i].al_mbuf != NULL) {
m_freem(sc->al_cdata.al_rx_chain[i].al_mbuf);
sc->al_cdata.al_rx_chain[i].al_mbuf = NULL;
}
}
bzero((char *)&sc->al_ldata->al_rx_list,
sizeof(sc->al_ldata->al_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < AL_TX_LIST_CNT; i++) {
if (sc->al_cdata.al_tx_chain[i].al_mbuf != NULL) {
m_freem(sc->al_cdata.al_tx_chain[i].al_mbuf);
sc->al_cdata.al_tx_chain[i].al_mbuf = NULL;
}
}
bzero((char *)&sc->al_ldata->al_tx_list,
sizeof(sc->al_ldata->al_tx_list));
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void al_shutdown(arg, howto)
void *arg;
int howto;
{
struct al_softc *sc = (struct al_softc *)arg;
al_stop(sc);
return;
}
static struct pci_device al_device = {
"al",
al_probe,
al_attach,
&al_count,
NULL
};
COMPAT_PCI_DRIVER(al, al_device);