freebsd-skq/sys/dev/ata/atapi-cd.c
phk c5dc1fb629 Put the device cloning functions for disk-drivers under #ifndef BURN_BRIDGES.
For the floppy driver, use fdcontrol to manipulate density selection.

For the CD drivers, the 'a' and 'c' suffix is without actual effect and
any applications insisting on it can be satisfied with a symlink:
	ln -s /dev/cd0 /dev/cd0a

Ongoing discussion may result in these pieces of code being removed before
the 5-stable branch as opposed to after.
2003-09-05 10:40:16 +00:00

2032 lines
54 KiB
C

/*-
* Copyright (c) 1998 - 2003 Søren Schmidt <sos@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ata.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ata.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/devicestat.h>
#include <sys/cdio.h>
#include <sys/cdrio.h>
#include <sys/dvdio.h>
#include <sys/fcntl.h>
#include <sys/conf.h>
#include <sys/ctype.h>
#include <sys/taskqueue.h>
#include <sys/mutex.h>
#include <machine/bus.h>
#include <dev/ata/ata-all.h>
#include <dev/ata/atapi-cd.h>
/* device structures */
static d_open_t acd_open;
static d_close_t acd_close;
static d_ioctl_t acd_ioctl;
static d_strategy_t acd_strategy;
static struct cdevsw acd_cdevsw = {
.d_open = acd_open,
.d_close = acd_close,
.d_read = physread,
.d_write = physwrite,
.d_ioctl = acd_ioctl,
.d_strategy = acd_strategy,
.d_name = "acd",
.d_maj = 117,
.d_flags = D_DISK | D_TRACKCLOSE | D_NOGIANT,
};
/* prototypes */
static void acd_detach(struct ata_device *);
static void acd_start(struct ata_device *);
static struct acd_softc *acd_init_lun(struct ata_device *);
static void acd_make_dev(struct acd_softc *);
static void acd_set_ioparm(struct acd_softc *);
static void acd_describe(struct acd_softc *);
static void lba2msf(u_int32_t, u_int8_t *, u_int8_t *, u_int8_t *);
static u_int32_t msf2lba(u_int8_t, u_int8_t, u_int8_t);
static void acd_done(struct ata_request *);
static void acd_read_toc(struct acd_softc *);
static int acd_play(struct acd_softc *, int, int);
static int acd_setchan(struct acd_softc *, u_int8_t, u_int8_t, u_int8_t, u_int8_t);
static void acd_select_slot(struct acd_softc *);
static int acd_init_writer(struct acd_softc *, int);
static int acd_fixate(struct acd_softc *, int);
static int acd_init_track(struct acd_softc *, struct cdr_track *);
static int acd_flush(struct acd_softc *);
static int acd_read_track_info(struct acd_softc *, int32_t, struct acd_track_info *);
static int acd_get_progress(struct acd_softc *, int *);
static int acd_send_cue(struct acd_softc *, struct cdr_cuesheet *);
static int acd_report_key(struct acd_softc *, struct dvd_authinfo *);
static int acd_send_key(struct acd_softc *, struct dvd_authinfo *);
static int acd_read_structure(struct acd_softc *, struct dvd_struct *);
static int acd_eject(struct acd_softc *, int);
static int acd_blank(struct acd_softc *, int);
static int acd_prevent_allow(struct acd_softc *, int);
static int acd_start_stop(struct acd_softc *, int);
static int acd_pause_resume(struct acd_softc *, int);
static int acd_mode_sense(struct acd_softc *, int, caddr_t, int);
static int acd_mode_select(struct acd_softc *, caddr_t, int);
static int acd_set_speed(struct acd_softc *, int, int);
static void acd_get_cap(struct acd_softc *);
static int acd_read_format_caps(struct acd_softc *, struct cdr_format_capacities *);
static int acd_format(struct acd_softc *, struct cdr_format_params *);
static int acd_test_ready(struct ata_device *);
static int acd_request_sense(struct ata_device *, struct atapi_sense *);
/* internal vars */
static u_int32_t acd_lun_map = 0;
static MALLOC_DEFINE(M_ACD, "ACD driver", "ATAPI CD driver buffers");
void
acd_attach(struct ata_device *atadev)
{
struct acd_softc *cdp;
struct changer *chp;
if ((cdp = acd_init_lun(atadev)) == NULL) {
ata_prtdev(atadev, "out of memory\n");
return;
}
ata_set_name(atadev, "acd", cdp->lun);
acd_get_cap(cdp);
/* if this is a changer device, allocate the neeeded lun's */
if ((cdp->cap.mechanism & MST_MECH_MASK) == MST_MECH_CHANGER) {
int8_t ccb[16] = { ATAPI_MECH_STATUS, 0, 0, 0, 0, 0, 0, 0,
sizeof(struct changer)>>8, sizeof(struct changer),
0, 0, 0, 0, 0, 0 };
chp = malloc(sizeof(struct changer), M_ACD, M_NOWAIT | M_ZERO);
if (chp == NULL) {
ata_prtdev(atadev, "out of memory\n");
free(cdp, M_ACD);
return;
}
if (!ata_atapicmd(cdp->device, ccb, (caddr_t)chp,
sizeof(struct changer), ATA_R_READ, 60)) {
struct acd_softc *tmpcdp = cdp;
struct acd_softc **cdparr;
char *name;
int count;
chp->table_length = htons(chp->table_length);
if (!(cdparr = malloc(sizeof(struct acd_softc) * chp->slots,
M_ACD, M_NOWAIT))) {
ata_prtdev(atadev, "out of memory\n");
free(chp, M_ACD);
free(cdp, M_ACD);
return;
}
for (count = 0; count < chp->slots; count++) {
if (count > 0) {
tmpcdp = acd_init_lun(atadev);
if (!tmpcdp) {
ata_prtdev(atadev, "out of memory\n");
break;
}
}
cdparr[count] = tmpcdp;
tmpcdp->driver = cdparr;
tmpcdp->slot = count;
tmpcdp->changer_info = chp;
acd_make_dev(tmpcdp);
tmpcdp->stats = devstat_new_entry("acd", tmpcdp->lun, DEV_BSIZE,
DEVSTAT_NO_ORDERED_TAGS,
DEVSTAT_TYPE_CDROM | DEVSTAT_TYPE_IF_IDE,
DEVSTAT_PRIORITY_CD);
}
if (!(name = malloc(strlen(atadev->name) + 2, M_ACD, M_NOWAIT))) {
ata_prtdev(atadev, "out of memory\n");
free(cdp, M_ACD);
return;
}
strcpy(name, atadev->name);
strcat(name, "-");
ata_free_name(atadev);
ata_set_name(atadev, name, cdp->lun + cdp->changer_info->slots - 1);
free(name, M_ACD);
}
}
else {
acd_make_dev(cdp);
cdp->stats = devstat_new_entry("acd", cdp->lun, DEV_BSIZE,
DEVSTAT_NO_ORDERED_TAGS,
DEVSTAT_TYPE_CDROM | DEVSTAT_TYPE_IF_IDE,
DEVSTAT_PRIORITY_CD);
}
/* use DMA if allowed and if drive/controller supports it */
if (atapi_dma && atadev->channel->dma &&
(atadev->param->config & ATA_DRQ_MASK) != ATA_DRQ_INTR)
atadev->setmode(atadev, ATA_DMA_MAX);
else
atadev->setmode(atadev, ATA_PIO_MAX);
/* setup the function ptrs */
atadev->detach = acd_detach;
atadev->start = acd_start;
atadev->softc = cdp;
/* announce we are here */
acd_describe(cdp);
}
static void
acd_detach(struct ata_device *atadev)
{
struct acd_softc *cdp = atadev->softc;
struct acd_devlist *entry;
int subdev;
if (cdp->changer_info) {
for (subdev = 0; subdev < cdp->changer_info->slots; subdev++) {
if (cdp->driver[subdev] == cdp)
continue;
mtx_lock(&cdp->driver[subdev]->queue_mtx);
bioq_flush(&cdp->driver[subdev]->queue, NULL, ENXIO);
mtx_unlock(&cdp->driver[subdev]->queue_mtx);
destroy_dev(cdp->driver[subdev]->dev);
while ((entry = TAILQ_FIRST(&cdp->driver[subdev]->dev_list))) {
destroy_dev(entry->dev);
TAILQ_REMOVE(&cdp->driver[subdev]->dev_list, entry, chain);
free(entry, M_ACD);
}
devstat_remove_entry(cdp->driver[subdev]->stats);
ata_free_lun(&acd_lun_map, cdp->driver[subdev]->lun);
free(cdp->driver[subdev], M_ACD);
}
free(cdp->driver, M_ACD);
free(cdp->changer_info, M_ACD);
}
mtx_lock(&cdp->queue_mtx);
bioq_flush(&cdp->queue, NULL, ENXIO);
mtx_unlock(&cdp->queue_mtx);
while ((entry = TAILQ_FIRST(&cdp->dev_list))) {
destroy_dev(entry->dev);
TAILQ_REMOVE(&cdp->dev_list, entry, chain);
free(entry, M_ACD);
}
destroy_dev(cdp->dev);
#ifndef BURN_BRIDGES
EVENTHANDLER_DEREGISTER(dev_clone, cdp->clone_evh);
#endif
devstat_remove_entry(cdp->stats);
ata_prtdev(atadev, "WARNING - removed from configuration\n");
ata_free_name(atadev);
ata_free_lun(&acd_lun_map, cdp->lun);
atadev->attach = NULL;
atadev->detach = NULL;
atadev->start = NULL;
atadev->softc = NULL;
atadev->flags = 0;
free(cdp, M_ACD);
}
static struct acd_softc *
acd_init_lun(struct ata_device *atadev)
{
struct acd_softc *cdp;
if (!(cdp = malloc(sizeof(struct acd_softc), M_ACD, M_NOWAIT | M_ZERO)))
return NULL;
TAILQ_INIT(&cdp->dev_list);
bioq_init(&cdp->queue);
mtx_init(&cdp->queue_mtx, "ATAPI CD bioqueue lock", MTX_DEF, 0);
cdp->device = atadev;
cdp->lun = ata_get_lun(&acd_lun_map);
cdp->block_size = 2048;
cdp->slot = -1;
cdp->changer_info = NULL;
return cdp;
}
#ifndef BURN_BRIDGES
static void
acd_clone(void *arg, char *name, int namelen, dev_t *dev)
{
struct acd_softc *cdp = arg;
char *p;
int unit;
if (*dev != NODEV)
return;
if (!dev_stdclone(name, &p, "acd", &unit))
return;
if (*p != '\0' && strcmp(p, "a") != 0 && strcmp(p, "c") != 0)
return;
if (unit == cdp->lun)
*dev = makedev(acd_cdevsw.d_maj, cdp->lun);
}
#endif
static void
acd_make_dev(struct acd_softc *cdp)
{
dev_t dev;
dev = make_dev(&acd_cdevsw, cdp->lun,
UID_ROOT, GID_OPERATOR, 0644, "acd%d", cdp->lun);
dev->si_drv1 = cdp;
cdp->dev = dev;
cdp->device->flags |= ATA_D_MEDIA_CHANGED;
#ifndef BURN_BRIDGES
cdp->clone_evh = EVENTHANDLER_REGISTER(dev_clone, acd_clone, cdp, 1000);
#endif
acd_set_ioparm(cdp);
}
static void
acd_set_ioparm(struct acd_softc *cdp)
{
if (cdp->device->channel->dma)
cdp->dev->si_iosize_max = (min(cdp->device->channel->dma->max_iosize,
65534)/cdp->block_size)*cdp->block_size;
else
cdp->dev->si_iosize_max = (min(DFLTPHYS,
65534)/cdp->block_size)*cdp->block_size;
cdp->dev->si_bsize_phys = cdp->block_size;
}
static void
acd_describe(struct acd_softc *cdp)
{
int comma = 0;
char *mechanism;
if (bootverbose) {
ata_prtdev(cdp->device, "<%.40s/%.8s> %s drive at ata%d as %s\n",
cdp->device->param->model, cdp->device->param->revision,
(cdp->cap.media & MST_WRITE_DVDR) ? "DVDR" :
(cdp->cap.media & MST_WRITE_DVDRAM) ? "DVDRAM" :
(cdp->cap.media & MST_WRITE_CDRW) ? "CDRW" :
(cdp->cap.media & MST_WRITE_CDR) ? "CDR" :
(cdp->cap.media & MST_READ_DVDROM) ? "DVDROM" : "CDROM",
device_get_unit(cdp->device->channel->dev),
(cdp->device->unit == ATA_MASTER) ? "master" : "slave");
ata_prtdev(cdp->device, "%s", "");
if (cdp->cap.cur_read_speed) {
printf("read %dKB/s", cdp->cap.cur_read_speed * 1000 / 1024);
if (cdp->cap.max_read_speed)
printf(" (%dKB/s)", cdp->cap.max_read_speed * 1000 / 1024);
if ((cdp->cap.cur_write_speed) &&
(cdp->cap.media & (MST_WRITE_CDR | MST_WRITE_CDRW |
MST_WRITE_DVDR | MST_WRITE_DVDRAM))) {
printf(" write %dKB/s", cdp->cap.cur_write_speed * 1000 / 1024);
if (cdp->cap.max_write_speed)
printf(" (%dKB/s)", cdp->cap.max_write_speed * 1000 / 1024);
}
comma = 1;
}
if (cdp->cap.buf_size) {
printf("%s %dKB buffer", comma ? "," : "", cdp->cap.buf_size);
comma = 1;
}
printf("%s %s\n", comma ? "," : "", ata_mode2str(cdp->device->mode));
ata_prtdev(cdp->device, "Reads:");
comma = 0;
if (cdp->cap.media & MST_READ_CDR) {
printf(" CDR"); comma = 1;
}
if (cdp->cap.media & MST_READ_CDRW) {
printf("%s CDRW", comma ? "," : ""); comma = 1;
}
if (cdp->cap.capabilities & MST_READ_CDDA) {
if (cdp->cap.capabilities & MST_CDDA_STREAM)
printf("%s CDDA stream", comma ? "," : "");
else
printf("%s CDDA", comma ? "," : "");
comma = 1;
}
if (cdp->cap.media & MST_READ_DVDROM) {
printf("%s DVDROM", comma ? "," : ""); comma = 1;
}
if (cdp->cap.media & MST_READ_DVDR) {
printf("%s DVDR", comma ? "," : ""); comma = 1;
}
if (cdp->cap.media & MST_READ_DVDRAM) {
printf("%s DVDRAM", comma ? "," : ""); comma = 1;
}
if (cdp->cap.media & MST_READ_PACKET)
printf("%s packet", comma ? "," : "");
printf("\n");
ata_prtdev(cdp->device, "Writes:");
if (cdp->cap.media & (MST_WRITE_CDR | MST_WRITE_CDRW |
MST_WRITE_DVDR | MST_WRITE_DVDRAM)) {
comma = 0;
if (cdp->cap.media & MST_WRITE_CDR) {
printf(" CDR" ); comma = 1;
}
if (cdp->cap.media & MST_WRITE_CDRW) {
printf("%s CDRW", comma ? "," : ""); comma = 1;
}
if (cdp->cap.media & MST_WRITE_DVDR) {
printf("%s DVDR", comma ? "," : ""); comma = 1;
}
if (cdp->cap.media & MST_WRITE_DVDRAM) {
printf("%s DVDRAM", comma ? "," : ""); comma = 1;
}
if (cdp->cap.media & MST_WRITE_TEST) {
printf("%s test write", comma ? "," : ""); comma = 1;
}
if (cdp->cap.capabilities & MST_BURNPROOF)
printf("%s burnproof", comma ? "," : "");
}
printf("\n");
if (cdp->cap.capabilities & MST_AUDIO_PLAY) {
ata_prtdev(cdp->device, "Audio: ");
if (cdp->cap.capabilities & MST_AUDIO_PLAY)
printf("play");
if (cdp->cap.max_vol_levels)
printf(", %d volume levels", cdp->cap.max_vol_levels);
printf("\n");
}
ata_prtdev(cdp->device, "Mechanism: ");
switch (cdp->cap.mechanism & MST_MECH_MASK) {
case MST_MECH_CADDY:
mechanism = "caddy"; break;
case MST_MECH_TRAY:
mechanism = "tray"; break;
case MST_MECH_POPUP:
mechanism = "popup"; break;
case MST_MECH_CHANGER:
mechanism = "changer"; break;
case MST_MECH_CARTRIDGE:
mechanism = "cartridge"; break;
default:
mechanism = 0; break;
}
if (mechanism)
printf("%s%s", (cdp->cap.mechanism & MST_EJECT) ?
"ejectable " : "", mechanism);
else if (cdp->cap.mechanism & MST_EJECT)
printf("ejectable");
if (cdp->cap.mechanism & MST_LOCKABLE)
printf((cdp->cap.mechanism & MST_LOCKED) ? ", locked":", unlocked");
if (cdp->cap.mechanism & MST_PREVENT)
printf(", lock protected");
printf("\n");
if ((cdp->cap.mechanism & MST_MECH_MASK) != MST_MECH_CHANGER) {
ata_prtdev(cdp->device, "Medium: ");
switch (cdp->cap.medium_type & MST_TYPE_MASK_HIGH) {
case MST_CDROM:
printf("CD-ROM "); break;
case MST_CDR:
printf("CD-R "); break;
case MST_CDRW:
printf("CD-RW "); break;
case MST_DOOR_OPEN:
printf("door open"); break;
case MST_NO_DISC:
printf("no/blank disc"); break;
case MST_FMT_ERROR:
printf("medium format error"); break;
}
if ((cdp->cap.medium_type & MST_TYPE_MASK_HIGH)<MST_TYPE_MASK_HIGH){
switch (cdp->cap.medium_type & MST_TYPE_MASK_LOW) {
case MST_DATA_120:
printf("120mm data disc"); break;
case MST_AUDIO_120:
printf("120mm audio disc"); break;
case MST_COMB_120:
printf("120mm data/audio disc"); break;
case MST_PHOTO_120:
printf("120mm photo disc"); break;
case MST_DATA_80:
printf("80mm data disc"); break;
case MST_AUDIO_80:
printf("80mm audio disc"); break;
case MST_COMB_80:
printf("80mm data/audio disc"); break;
case MST_PHOTO_80:
printf("80mm photo disc"); break;
case MST_FMT_NONE:
switch (cdp->cap.medium_type & MST_TYPE_MASK_HIGH) {
case MST_CDROM:
printf("unknown"); break;
case MST_CDR:
case MST_CDRW:
printf("blank"); break;
}
break;
default:
printf("unknown (0x%x)", cdp->cap.medium_type); break;
}
}
printf("\n");
}
}
else {
ata_prtdev(cdp->device, "%s ",
(cdp->cap.media & MST_WRITE_DVDR) ? "DVDR" :
(cdp->cap.media & MST_WRITE_DVDRAM) ? "DVDRAM" :
(cdp->cap.media & MST_WRITE_CDRW) ? "CDRW" :
(cdp->cap.media & MST_WRITE_CDR) ? "CDR" :
(cdp->cap.media & MST_READ_DVDROM) ? "DVDROM" : "CDROM");
if (cdp->changer_info)
printf("with %d CD changer ", cdp->changer_info->slots);
printf("<%.40s> at ata%d-%s %s\n", cdp->device->param->model,
device_get_unit(cdp->device->channel->dev),
(cdp->device->unit == ATA_MASTER) ? "master" : "slave",
ata_mode2str(cdp->device->mode) );
}
}
static __inline void
lba2msf(u_int32_t lba, u_int8_t *m, u_int8_t *s, u_int8_t *f)
{
lba += 150;
lba &= 0xffffff;
*m = lba / (60 * 75);
lba %= (60 * 75);
*s = lba / 75;
*f = lba % 75;
}
static __inline u_int32_t
msf2lba(u_int8_t m, u_int8_t s, u_int8_t f)
{
return (m * 60 + s) * 75 + f - 150;
}
static int
acd_open(dev_t dev, int flags, int fmt, struct thread *td)
{
struct acd_softc *cdp = dev->si_drv1;
int timeout = 60;
if (!cdp || cdp->device->flags & ATA_D_DETACHING)
return ENXIO;
/* wait if drive is not finished loading the medium */
while (timeout--) {
struct atapi_sense sense;
if (!acd_test_ready(cdp->device))
break;
acd_request_sense(cdp->device, &sense);
if (sense.sense_key == 2 && sense.asc == 4 && sense.ascq == 1)
tsleep(&timeout, PRIBIO, "acdld", hz / 2);
else
break;
}
if (count_dev(dev) == 1) {
if (cdp->changer_info && cdp->slot != cdp->changer_info->current_slot) {
acd_select_slot(cdp);
tsleep(&cdp->changer_info, PRIBIO, "acdopn", 0);
}
acd_prevent_allow(cdp, 1);
cdp->flags |= F_LOCKED;
acd_read_toc(cdp);
}
return 0;
}
static int
acd_close(dev_t dev, int flags, int fmt, struct thread *td)
{
struct acd_softc *cdp = dev->si_drv1;
if (!cdp)
return ENXIO;
if (count_dev(dev) == 1) {
if (cdp->changer_info && cdp->slot != cdp->changer_info->current_slot) {
acd_select_slot(cdp);
tsleep(&cdp->changer_info, PRIBIO, "acdclo", 0);
}
acd_prevent_allow(cdp, 0);
cdp->flags &= ~F_LOCKED;
}
return 0;
}
static int
acd_ioctl(dev_t dev, u_long cmd, caddr_t addr, int flags, struct thread *td)
{
struct acd_softc *cdp = dev->si_drv1;
int error = 0;
if (!cdp)
return ENXIO;
if (cdp->changer_info && cdp->slot != cdp->changer_info->current_slot) {
acd_select_slot(cdp);
tsleep(&cdp->changer_info, PRIBIO, "acdctl", 0);
}
if (cdp->device->flags & ATA_D_MEDIA_CHANGED)
switch (cmd) {
case CDIOCRESET:
acd_test_ready(cdp->device);
break;
default:
acd_read_toc(cdp);
acd_prevent_allow(cdp, 1);
cdp->flags |= F_LOCKED;
break;
}
switch (cmd) {
case CDIOCRESUME:
error = acd_pause_resume(cdp, 1);
break;
case CDIOCPAUSE:
error = acd_pause_resume(cdp, 0);
break;
case CDIOCSTART:
error = acd_start_stop(cdp, 1);
break;
case CDIOCSTOP:
error = acd_start_stop(cdp, 0);
break;
case CDIOCALLOW:
error = acd_prevent_allow(cdp, 0);
cdp->flags &= ~F_LOCKED;
break;
case CDIOCPREVENT:
error = acd_prevent_allow(cdp, 1);
cdp->flags |= F_LOCKED;
break;
case CDIOCRESET:
error = suser(td);
if (error)
break;
error = acd_test_ready(cdp->device);
break;
case CDIOCEJECT:
if (count_dev(dev) > 1) {
error = EBUSY;
break;
}
error = acd_eject(cdp, 0);
break;
case CDIOCCLOSE:
if (count_dev(dev) > 1)
break;
error = acd_eject(cdp, 1);
break;
case CDIOREADTOCHEADER:
if (!cdp->toc.hdr.ending_track) {
error = EIO;
break;
}
bcopy(&cdp->toc.hdr, addr, sizeof(cdp->toc.hdr));
break;
case CDIOREADTOCENTRYS:
{
struct ioc_read_toc_entry *te = (struct ioc_read_toc_entry *)addr;
struct toc *toc = &cdp->toc;
int starting_track = te->starting_track;
int len;
if (!toc->hdr.ending_track) {
error = EIO;
break;
}
if (te->data_len < sizeof(toc->tab[0]) ||
(te->data_len % sizeof(toc->tab[0])) != 0 ||
(te->address_format != CD_MSF_FORMAT &&
te->address_format != CD_LBA_FORMAT)) {
error = EINVAL;
break;
}
if (!starting_track)
starting_track = toc->hdr.starting_track;
else if (starting_track == 170)
starting_track = toc->hdr.ending_track + 1;
else if (starting_track < toc->hdr.starting_track ||
starting_track > toc->hdr.ending_track + 1) {
error = EINVAL;
break;
}
len = ((toc->hdr.ending_track + 1 - starting_track) + 1) *
sizeof(toc->tab[0]);
if (te->data_len < len)
len = te->data_len;
if (len > sizeof(toc->tab)) {
error = EINVAL;
break;
}
if (te->address_format == CD_MSF_FORMAT) {
struct cd_toc_entry *entry;
toc = malloc(sizeof(struct toc), M_ACD, M_NOWAIT | M_ZERO);
bcopy(&cdp->toc, toc, sizeof(struct toc));
entry = toc->tab + (toc->hdr.ending_track + 1 -
toc->hdr.starting_track) + 1;
while (--entry >= toc->tab)
lba2msf(ntohl(entry->addr.lba), &entry->addr.msf.minute,
&entry->addr.msf.second, &entry->addr.msf.frame);
}
error = copyout(toc->tab + starting_track - toc->hdr.starting_track,
te->data, len);
if (te->address_format == CD_MSF_FORMAT)
free(toc, M_ACD);
}
break;
case CDIOREADTOCENTRY:
{
struct ioc_read_toc_single_entry *te =
(struct ioc_read_toc_single_entry *)addr;
struct toc *toc = &cdp->toc;
u_char track = te->track;
if (!toc->hdr.ending_track) {
error = EIO;
break;
}
if (te->address_format != CD_MSF_FORMAT &&
te->address_format != CD_LBA_FORMAT) {
error = EINVAL;
break;
}
if (!track)
track = toc->hdr.starting_track;
else if (track == 170)
track = toc->hdr.ending_track + 1;
else if (track < toc->hdr.starting_track ||
track > toc->hdr.ending_track + 1) {
error = EINVAL;
break;
}
if (te->address_format == CD_MSF_FORMAT) {
struct cd_toc_entry *entry;
toc = malloc(sizeof(struct toc), M_ACD, M_NOWAIT | M_ZERO);
bcopy(&cdp->toc, toc, sizeof(struct toc));
entry = toc->tab + (track - toc->hdr.starting_track);
lba2msf(ntohl(entry->addr.lba), &entry->addr.msf.minute,
&entry->addr.msf.second, &entry->addr.msf.frame);
}
bcopy(toc->tab + track - toc->hdr.starting_track,
&te->entry, sizeof(struct cd_toc_entry));
if (te->address_format == CD_MSF_FORMAT)
free(toc, M_ACD);
}
break;
case CDIOCREADSUBCHANNEL:
{
struct ioc_read_subchannel *args =
(struct ioc_read_subchannel *)addr;
u_int8_t format;
int8_t ccb[16] = { ATAPI_READ_SUBCHANNEL, 0, 0x40, 1, 0, 0, 0,
sizeof(cdp->subchan)>>8, sizeof(cdp->subchan),
0, 0, 0, 0, 0, 0, 0 };
if (args->data_len > sizeof(struct cd_sub_channel_info) ||
args->data_len < sizeof(struct cd_sub_channel_header)) {
error = EINVAL;
break;
}
format = args->data_format;
if ((format != CD_CURRENT_POSITION) &&
(format != CD_MEDIA_CATALOG) && (format != CD_TRACK_INFO)) {
error = EINVAL;
break;
}
ccb[1] = args->address_format & CD_MSF_FORMAT;
if ((error = ata_atapicmd(cdp->device, ccb, (caddr_t)&cdp->subchan,
sizeof(cdp->subchan), ATA_R_READ, 10)))
break;
if ((format == CD_MEDIA_CATALOG) || (format == CD_TRACK_INFO)) {
if (cdp->subchan.header.audio_status == 0x11) {
error = EINVAL;
break;
}
ccb[3] = format;
if (format == CD_TRACK_INFO)
ccb[6] = args->track;
if ((error = ata_atapicmd(cdp->device, ccb,
(caddr_t)&cdp->subchan,
sizeof(cdp->subchan),ATA_R_READ,10))){
break;
}
}
error = copyout(&cdp->subchan, args->data, args->data_len);
}
break;
case CDIOCPLAYMSF:
{
struct ioc_play_msf *args = (struct ioc_play_msf *)addr;
error =
acd_play(cdp,
msf2lba(args->start_m, args->start_s, args->start_f),
msf2lba(args->end_m, args->end_s, args->end_f));
}
break;
case CDIOCPLAYBLOCKS:
{
struct ioc_play_blocks *args = (struct ioc_play_blocks *)addr;
error = acd_play(cdp, args->blk, args->blk + args->len);
}
break;
case CDIOCPLAYTRACKS:
{
struct ioc_play_track *args = (struct ioc_play_track *)addr;
int t1, t2;
if (!cdp->toc.hdr.ending_track) {
error = EIO;
break;
}
if (args->end_track < cdp->toc.hdr.ending_track + 1)
++args->end_track;
if (args->end_track > cdp->toc.hdr.ending_track + 1)
args->end_track = cdp->toc.hdr.ending_track + 1;
t1 = args->start_track - cdp->toc.hdr.starting_track;
t2 = args->end_track - cdp->toc.hdr.starting_track;
if (t1 < 0 || t2 < 0 ||
t1 > (cdp->toc.hdr.ending_track-cdp->toc.hdr.starting_track)) {
error = EINVAL;
break;
}
error = acd_play(cdp, ntohl(cdp->toc.tab[t1].addr.lba),
ntohl(cdp->toc.tab[t2].addr.lba));
}
break;
case CDIOCGETVOL:
{
struct ioc_vol *arg = (struct ioc_vol *)addr;
if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE,
(caddr_t)&cdp->au, sizeof(cdp->au))))
break;
if (cdp->au.page_code != ATAPI_CDROM_AUDIO_PAGE) {
error = EIO;
break;
}
arg->vol[0] = cdp->au.port[0].volume;
arg->vol[1] = cdp->au.port[1].volume;
arg->vol[2] = cdp->au.port[2].volume;
arg->vol[3] = cdp->au.port[3].volume;
}
break;
case CDIOCSETVOL:
{
struct ioc_vol *arg = (struct ioc_vol *)addr;
if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE,
(caddr_t)&cdp->au, sizeof(cdp->au))))
break;
if (cdp->au.page_code != ATAPI_CDROM_AUDIO_PAGE) {
error = EIO;
break;
}
if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE_MASK,
(caddr_t)&cdp->aumask,
sizeof(cdp->aumask))))
break;
cdp->au.data_length = 0;
cdp->au.port[0].channels = CHANNEL_0;
cdp->au.port[1].channels = CHANNEL_1;
cdp->au.port[0].volume = arg->vol[0] & cdp->aumask.port[0].volume;
cdp->au.port[1].volume = arg->vol[1] & cdp->aumask.port[1].volume;
cdp->au.port[2].volume = arg->vol[2] & cdp->aumask.port[2].volume;
cdp->au.port[3].volume = arg->vol[3] & cdp->aumask.port[3].volume;
error = acd_mode_select(cdp, (caddr_t)&cdp->au, sizeof(cdp->au));
}
break;
case CDIOCSETPATCH:
{
struct ioc_patch *arg = (struct ioc_patch *)addr;
error = acd_setchan(cdp, arg->patch[0], arg->patch[1],
arg->patch[2], arg->patch[3]);
}
break;
case CDIOCSETMONO:
error = acd_setchan(cdp, CHANNEL_0|CHANNEL_1, CHANNEL_0|CHANNEL_1, 0,0);
break;
case CDIOCSETSTEREO:
error = acd_setchan(cdp, CHANNEL_0, CHANNEL_1, 0, 0);
break;
case CDIOCSETMUTE:
error = acd_setchan(cdp, 0, 0, 0, 0);
break;
case CDIOCSETLEFT:
error = acd_setchan(cdp, CHANNEL_0, CHANNEL_0, 0, 0);
break;
case CDIOCSETRIGHT:
error = acd_setchan(cdp, CHANNEL_1, CHANNEL_1, 0, 0);
break;
case CDRIOCBLANK:
error = acd_blank(cdp, (*(int *)addr));
break;
case CDRIOCNEXTWRITEABLEADDR:
{
struct acd_track_info track_info;
if ((error = acd_read_track_info(cdp, 0xff, &track_info)))
break;
if (!track_info.nwa_valid) {
error = EINVAL;
break;
}
*(int*)addr = track_info.next_writeable_addr;
}
break;
case CDRIOCINITWRITER:
error = acd_init_writer(cdp, (*(int *)addr));
break;
case CDRIOCINITTRACK:
error = acd_init_track(cdp, (struct cdr_track *)addr);
break;
case CDRIOCFLUSH:
error = acd_flush(cdp);
break;
case CDRIOCFIXATE:
error = acd_fixate(cdp, (*(int *)addr));
break;
case CDRIOCREADSPEED:
{
int speed = *(int *)addr;
/* Preserve old behavior: units in multiples of CDROM speed */
if (speed < 177)
speed *= 177;
error = acd_set_speed(cdp, speed, CDR_MAX_SPEED);
}
break;
case CDRIOCWRITESPEED:
{
int speed = *(int *)addr;
if (speed < 177)
speed *= 177;
error = acd_set_speed(cdp, CDR_MAX_SPEED, speed);
}
break;
case CDRIOCGETBLOCKSIZE:
*(int *)addr = cdp->block_size;
break;
case CDRIOCSETBLOCKSIZE:
cdp->block_size = *(int *)addr;
acd_set_ioparm(cdp);
break;
case CDRIOCGETPROGRESS:
error = acd_get_progress(cdp, (int *)addr);
break;
case CDRIOCSENDCUE:
error = acd_send_cue(cdp, (struct cdr_cuesheet *)addr);
break;
case CDRIOCREADFORMATCAPS:
error = acd_read_format_caps(cdp, (struct cdr_format_capacities *)addr);
break;
case CDRIOCFORMAT:
error = acd_format(cdp, (struct cdr_format_params *)addr);
break;
case DVDIOCREPORTKEY:
if (cdp->cap.media & MST_READ_DVDROM)
error = acd_report_key(cdp, (struct dvd_authinfo *)addr);
else
error = EINVAL;
break;
case DVDIOCSENDKEY:
if (cdp->cap.media & MST_READ_DVDROM)
error = acd_send_key(cdp, (struct dvd_authinfo *)addr);
else
error = EINVAL;
break;
case DVDIOCREADSTRUCTURE:
if (cdp->cap.media & MST_READ_DVDROM)
error = acd_read_structure(cdp, (struct dvd_struct *)addr);
else
error = EINVAL;
break;
default:
error = ENOTTY;
}
return error;
}
static void
acd_strategy(struct bio *bp)
{
struct acd_softc *cdp = bp->bio_dev->si_drv1;
if (cdp->device->flags & ATA_D_DETACHING) {
biofinish(bp, NULL, ENXIO);
return;
}
/* if it's a null transfer, return immediatly. */
if (bp->bio_bcount == 0) {
bp->bio_resid = 0;
biodone(bp);
return;
}
bp->bio_pblkno = bp->bio_blkno;
bp->bio_resid = bp->bio_bcount;
mtx_lock(&cdp->queue_mtx);
bioq_disksort(&cdp->queue, bp);
mtx_unlock(&cdp->queue_mtx);
ata_start(cdp->device->channel);
}
static void
acd_start(struct ata_device *atadev)
{
struct acd_softc *cdp = atadev->softc;
struct bio *bp;
struct ata_request *request;
u_int32_t lba, lastlba, count;
int8_t ccb[16];
int track, blocksize;
if (cdp->changer_info) {
int i;
cdp = cdp->driver[cdp->changer_info->current_slot];
mtx_lock(&cdp->queue_mtx);
bp = bioq_first(&cdp->queue);
mtx_unlock(&cdp->queue_mtx);
/* check for work pending on any other slot */
for (i = 0; i < cdp->changer_info->slots; i++) {
if (i == cdp->changer_info->current_slot)
continue;
mtx_lock(&cdp->queue_mtx);
if (bioq_first(&(cdp->driver[i]->queue))) {
if (!bp || time_second > (cdp->timestamp + 10)) {
mtx_unlock(&cdp->queue_mtx);
acd_select_slot(cdp->driver[i]);
return;
}
}
mtx_unlock(&cdp->queue_mtx);
}
}
mtx_lock(&cdp->queue_mtx);
bp = bioq_first(&cdp->queue);
if (!bp) {
mtx_unlock(&cdp->queue_mtx);
return;
}
bioq_remove(&cdp->queue, bp);
mtx_unlock(&cdp->queue_mtx);
/* reject all queued entries if media changed */
if (cdp->device->flags & ATA_D_MEDIA_CHANGED) {
biofinish(bp, NULL, EIO);
return;
}
bzero(ccb, sizeof(ccb));
track = (bp->bio_dev->si_udev & 0x00ff0000) >> 16;
if (track) {
blocksize = (cdp->toc.tab[track - 1].control & 4) ? 2048 : 2352;
lastlba = ntohl(cdp->toc.tab[track].addr.lba);
lba = bp->bio_offset / blocksize;
lba += ntohl(cdp->toc.tab[track - 1].addr.lba);
}
else {
blocksize = cdp->block_size;
lastlba = cdp->disk_size;
lba = bp->bio_offset / blocksize;
}
if (bp->bio_bcount % blocksize != 0) {
biofinish(bp, NULL, EINVAL);
return;
}
count = bp->bio_bcount / blocksize;
if (bp->bio_cmd == BIO_READ) {
/* if transfer goes beyond range adjust it to be within limits */
if (lba + count > lastlba) {
/* if we are entirely beyond EOM return EOF */
if (lastlba <= lba) {
bp->bio_resid = bp->bio_bcount;
biodone(bp);
return;
}
count = lastlba - lba;
}
switch (blocksize) {
case 2048:
ccb[0] = ATAPI_READ_BIG;
break;
case 2352:
ccb[0] = ATAPI_READ_CD;
ccb[9] = 0xf8;
break;
default:
ccb[0] = ATAPI_READ_CD;
ccb[9] = 0x10;
}
}
else
ccb[0] = ATAPI_WRITE_BIG;
ccb[1] = 0;
ccb[2] = lba>>24;
ccb[3] = lba>>16;
ccb[4] = lba>>8;
ccb[5] = lba;
ccb[6] = count>>16;
ccb[7] = count>>8;
ccb[8] = count;
bp->bio_caller1 = cdp;
if (!(request = ata_alloc_request())) {
biofinish(bp, NULL, EIO);
return;
}
request->device = atadev;
request->driver = bp;
bcopy(ccb, request->u.atapi.ccb,
(request->device->param->config & ATA_PROTO_MASK) ==
ATA_PROTO_ATAPI_12 ? 16 : 12);
request->data = bp->bio_data;
request->bytecount = count * blocksize;
request->transfersize = min(request->bytecount, 65534);
request->timeout = (ccb[0] == ATAPI_WRITE_BIG) ? 60 : 30;
request->retries = 2;
request->callback = acd_done;
request->flags = ATA_R_SKIPSTART | ATA_R_ATAPI;
if (request->device->mode >= ATA_DMA)
request->flags |= ATA_R_DMA;
switch (bp->bio_cmd) {
case BIO_READ:
request->flags |= ATA_R_READ;
break;
case BIO_WRITE:
request->flags |= ATA_R_WRITE;
break;
default:
ata_prtdev(atadev, "unknown BIO operation\n");
ata_free_request(request);
biofinish(bp, NULL, EIO);
return;
}
devstat_start_transaction_bio(cdp->stats, bp);
ata_queue_request(request);
}
static void
acd_done(struct ata_request *request)
{
struct bio *bp = request->driver;
struct acd_softc *cdp = bp->bio_caller1;
/* finish up transfer */
if ((bp->bio_error = request->result))
bp->bio_flags |= BIO_ERROR;
bp->bio_resid = bp->bio_bcount - request->donecount;
biofinish(bp, cdp->stats, 0);
ata_free_request(request);
}
static void
acd_read_toc(struct acd_softc *cdp)
{
struct acd_devlist *entry;
int track, ntracks, len;
u_int32_t sizes[2];
int8_t ccb[16];
bzero(&cdp->toc, sizeof(cdp->toc));
bzero(ccb, sizeof(ccb));
if (acd_test_ready(cdp->device) != 0)
return;
cdp->device->flags &= ~ATA_D_MEDIA_CHANGED;
len = sizeof(struct ioc_toc_header) + sizeof(struct cd_toc_entry);
ccb[0] = ATAPI_READ_TOC;
ccb[7] = len>>8;
ccb[8] = len;
if (ata_atapicmd(cdp->device, ccb, (caddr_t)&cdp->toc, len,
ATA_R_READ | ATA_R_QUIET, 30)) {
bzero(&cdp->toc, sizeof(cdp->toc));
return;
}
ntracks = cdp->toc.hdr.ending_track - cdp->toc.hdr.starting_track + 1;
if (ntracks <= 0 || ntracks > MAXTRK) {
bzero(&cdp->toc, sizeof(cdp->toc));
return;
}
len = sizeof(struct ioc_toc_header)+(ntracks+1)*sizeof(struct cd_toc_entry);
bzero(ccb, sizeof(ccb));
ccb[0] = ATAPI_READ_TOC;
ccb[7] = len>>8;
ccb[8] = len;
if (ata_atapicmd(cdp->device, ccb, (caddr_t)&cdp->toc, len,
ATA_R_READ | ATA_R_QUIET, 30)) {
bzero(&cdp->toc, sizeof(cdp->toc));
return;
}
cdp->toc.hdr.len = ntohs(cdp->toc.hdr.len);
cdp->block_size = (cdp->toc.tab[0].control & 4) ? 2048 : 2352;
acd_set_ioparm(cdp);
bzero(ccb, sizeof(ccb));
ccb[0] = ATAPI_READ_CAPACITY;
if (ata_atapicmd(cdp->device, ccb, (caddr_t)sizes, sizeof(sizes),
ATA_R_READ | ATA_R_QUIET, 30)) {
bzero(&cdp->toc, sizeof(cdp->toc));
return;
}
cdp->disk_size = ntohl(sizes[0]) + 1;
while ((entry = TAILQ_FIRST(&cdp->dev_list))) {
destroy_dev(entry->dev);
TAILQ_REMOVE(&cdp->dev_list, entry, chain);
free(entry, M_ACD);
}
for (track = 1; track <= ntracks; track ++) {
char name[16];
sprintf(name, "acd%dt%02d", cdp->lun, track);
entry = malloc(sizeof(struct acd_devlist), M_ACD, M_NOWAIT | M_ZERO);
entry->dev = make_dev(&acd_cdevsw, (cdp->lun << 3) | (track << 16),
0, 0, 0644, name, NULL);
entry->dev->si_drv1 = cdp->dev->si_drv1;
TAILQ_INSERT_TAIL(&cdp->dev_list, entry, chain);
}
#ifdef ACD_DEBUG
if (cdp->disk_size && cdp->toc.hdr.ending_track) {
ata_prtdev(cdp->device, "(%d sectors (%d bytes)), %d tracks ",
cdp->disk_size, cdp->block_size,
cdp->toc.hdr.ending_track - cdp->toc.hdr.starting_track + 1);
if (cdp->toc.tab[0].control & 4)
printf("%dMB\n", cdp->disk_size / 512);
else
printf("%d:%d audio\n",
cdp->disk_size / 75 / 60, cdp->disk_size / 75 % 60);
}
#endif
}
static int
acd_play(struct acd_softc *cdp, int start, int end)
{
int8_t ccb[16];
bzero(ccb, sizeof(ccb));
ccb[0] = ATAPI_PLAY_MSF;
lba2msf(start, &ccb[3], &ccb[4], &ccb[5]);
lba2msf(end, &ccb[6], &ccb[7], &ccb[8]);
return ata_atapicmd(cdp->device, ccb, NULL, 0, 0, 10);
}
static int
acd_setchan(struct acd_softc *cdp,
u_int8_t c0, u_int8_t c1, u_int8_t c2, u_int8_t c3)
{
int error;
if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE, (caddr_t)&cdp->au,
sizeof(cdp->au))))
return error;
if (cdp->au.page_code != ATAPI_CDROM_AUDIO_PAGE)
return EIO;
cdp->au.data_length = 0;
cdp->au.port[0].channels = c0;
cdp->au.port[1].channels = c1;
cdp->au.port[2].channels = c2;
cdp->au.port[3].channels = c3;
return acd_mode_select(cdp, (caddr_t)&cdp->au, sizeof(cdp->au));
}
static void
acd_load_done(struct ata_request *request)
{
struct acd_softc *cdp = request->driver;
/* finish the slot select and wakeup caller */
cdp->changer_info->current_slot = cdp->slot;
cdp->driver[cdp->changer_info->current_slot]->timestamp = time_second;
wakeup(&cdp->changer_info);
}
static void
acd_unload_done(struct ata_request *request)
{
struct acd_softc *cdp = request->driver;
int8_t ccb[16] = { ATAPI_LOAD_UNLOAD, 0, 0, 0, 3, 0, 0, 0,
cdp->slot, 0, 0, 0, 0, 0, 0, 0 };
/* load the wanted slot */
bcopy(ccb, request->u.atapi.ccb,
(request->device->param->config & ATA_PROTO_MASK) ==
ATA_PROTO_ATAPI_12 ? 16 : 12);
request->callback = acd_load_done;
ata_queue_request(request);
}
static void
acd_select_slot(struct acd_softc *cdp)
{
struct ata_request *request;
int8_t ccb[16] = { ATAPI_LOAD_UNLOAD, 0, 0, 0, 2, 0, 0, 0,
cdp->changer_info->current_slot, 0, 0, 0, 0, 0, 0, 0 };
/* unload the current media from player */
if (!(request = ata_alloc_request())) {
return;
}
request->device = cdp->device;
request->driver = cdp;
bcopy(ccb, request->u.atapi.ccb,
(request->device->param->config & ATA_PROTO_MASK) ==
ATA_PROTO_ATAPI_12 ? 16 : 12);
request->timeout = 30;
request->callback = acd_unload_done;
request->flags |= (ATA_R_ATAPI | ATA_R_AT_HEAD);
ata_queue_request(request);
}
static int
acd_init_writer(struct acd_softc *cdp, int test_write)
{
int8_t ccb[16];
bzero(ccb, sizeof(ccb));
ccb[0] = ATAPI_REZERO;
ata_atapicmd(cdp->device, ccb, NULL, 0, ATA_R_QUIET, 60);
ccb[0] = ATAPI_SEND_OPC_INFO;
ccb[1] = 0x01;
ata_atapicmd(cdp->device, ccb, NULL, 0, ATA_R_QUIET, 30);
return 0;
}
static int
acd_fixate(struct acd_softc *cdp, int multisession)
{
int8_t ccb[16] = { ATAPI_CLOSE_TRACK, 0x01, 0x02, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0 };
int timeout = 5*60*2;
int error;
struct write_param param;
if ((error = acd_mode_sense(cdp, ATAPI_CDROM_WRITE_PARAMETERS_PAGE,
(caddr_t)&param, sizeof(param))))
return error;
param.data_length = 0;
if (multisession)
param.session_type = CDR_SESS_MULTI;
else
param.session_type = CDR_SESS_NONE;
if ((error = acd_mode_select(cdp, (caddr_t)&param, param.page_length + 10)))
return error;
error = ata_atapicmd(cdp->device, ccb, NULL, 0, 0, 30);
if (error)
return error;
/* some drives just return ready, wait for the expected fixate time */
if ((error = acd_test_ready(cdp->device)) != EBUSY) {
timeout = timeout / (cdp->cap.cur_write_speed / 177);
tsleep(&error, PRIBIO, "acdfix", timeout * hz / 2);
return acd_test_ready(cdp->device);
}
while (timeout-- > 0) {
if ((error = acd_test_ready(cdp->device)) != EBUSY)
return error;
tsleep(&error, PRIBIO, "acdcld", hz/2);
}
return EIO;
}
static int
acd_init_track(struct acd_softc *cdp, struct cdr_track *track)
{
struct write_param param;
int error;
if ((error = acd_mode_sense(cdp, ATAPI_CDROM_WRITE_PARAMETERS_PAGE,
(caddr_t)&param, sizeof(param))))
return error;
param.data_length = 0;
param.page_code = ATAPI_CDROM_WRITE_PARAMETERS_PAGE;
param.page_length = 0x32;
param.test_write = track->test_write ? 1 : 0;
param.write_type = CDR_WTYPE_TRACK;
param.session_type = CDR_SESS_NONE;
param.fp = 0;
param.packet_size = 0;
if (cdp->cap.capabilities & MST_BURNPROOF)
param.burnproof = 1;
switch (track->datablock_type) {
case CDR_DB_RAW:
if (track->preemp)
param.track_mode = CDR_TMODE_AUDIO_PREEMP;
else
param.track_mode = CDR_TMODE_AUDIO;
cdp->block_size = 2352;
param.datablock_type = CDR_DB_RAW;
param.session_format = CDR_SESS_CDROM;
break;
case CDR_DB_ROM_MODE1:
cdp->block_size = 2048;
param.track_mode = CDR_TMODE_DATA;
param.datablock_type = CDR_DB_ROM_MODE1;
param.session_format = CDR_SESS_CDROM;
break;
case CDR_DB_ROM_MODE2:
cdp->block_size = 2336;
param.track_mode = CDR_TMODE_DATA;
param.datablock_type = CDR_DB_ROM_MODE2;
param.session_format = CDR_SESS_CDROM;
break;
case CDR_DB_XA_MODE1:
cdp->block_size = 2048;
param.track_mode = CDR_TMODE_DATA;
param.datablock_type = CDR_DB_XA_MODE1;
param.session_format = CDR_SESS_CDROM_XA;
break;
case CDR_DB_XA_MODE2_F1:
cdp->block_size = 2056;
param.track_mode = CDR_TMODE_DATA;
param.datablock_type = CDR_DB_XA_MODE2_F1;
param.session_format = CDR_SESS_CDROM_XA;
break;
case CDR_DB_XA_MODE2_F2:
cdp->block_size = 2324;
param.track_mode = CDR_TMODE_DATA;
param.datablock_type = CDR_DB_XA_MODE2_F2;
param.session_format = CDR_SESS_CDROM_XA;
break;
case CDR_DB_XA_MODE2_MIX:
cdp->block_size = 2332;
param.track_mode = CDR_TMODE_DATA;
param.datablock_type = CDR_DB_XA_MODE2_MIX;
param.session_format = CDR_SESS_CDROM_XA;
break;
}
acd_set_ioparm(cdp);
return acd_mode_select(cdp, (caddr_t)&param, param.page_length + 10);
}
static int
acd_flush(struct acd_softc *cdp)
{
int8_t ccb[16] = { ATAPI_SYNCHRONIZE_CACHE, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0 };
return ata_atapicmd(cdp->device, ccb, NULL, 0, ATA_R_QUIET, 60);
}
static int
acd_read_track_info(struct acd_softc *cdp,
int32_t lba, struct acd_track_info *info)
{
int8_t ccb[16] = { ATAPI_READ_TRACK_INFO, 1,
lba>>24, lba>>16, lba>>8, lba,
0,
sizeof(*info)>>8, sizeof(*info),
0, 0, 0, 0, 0, 0, 0 };
int error;
if ((error = ata_atapicmd(cdp->device, ccb, (caddr_t)info, sizeof(*info),
ATA_R_READ, 30)))
return error;
info->track_start_addr = ntohl(info->track_start_addr);
info->next_writeable_addr = ntohl(info->next_writeable_addr);
info->free_blocks = ntohl(info->free_blocks);
info->fixed_packet_size = ntohl(info->fixed_packet_size);
info->track_length = ntohl(info->track_length);
return 0;
}
static int
acd_get_progress(struct acd_softc *cdp, int *finished)
{
int8_t ccb[16] = { ATAPI_READ_CAPACITY, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0 };
struct atapi_sense sense;
int8_t dummy[8];
ata_atapicmd(cdp->device, ccb, dummy, sizeof(dummy), ATA_R_READ, 30);
acd_request_sense(cdp->device, &sense);
if (sense.sksv)
*finished = ((sense.sk_specific2|(sense.sk_specific1<<8))*100)/65535;
else
*finished = 0;
return 0;
}
static int
acd_send_cue(struct acd_softc *cdp, struct cdr_cuesheet *cuesheet)
{
struct write_param param;
int8_t ccb[16] = { ATAPI_SEND_CUE_SHEET, 0, 0, 0, 0, 0,
cuesheet->len>>16, cuesheet->len>>8, cuesheet->len,
0, 0, 0, 0, 0, 0, 0 };
int8_t *buffer;
int32_t error;
#ifdef ACD_DEBUG
int i;
#endif
if ((error = acd_mode_sense(cdp, ATAPI_CDROM_WRITE_PARAMETERS_PAGE,
(caddr_t)&param, sizeof(param))))
return error;
param.data_length = 0;
param.page_code = ATAPI_CDROM_WRITE_PARAMETERS_PAGE;
param.page_length = 0x32;
param.test_write = cuesheet->test_write ? 1 : 0;
param.write_type = CDR_WTYPE_SESSION;
param.session_type = cuesheet->session_type;
param.fp = 0;
param.packet_size = 0;
param.track_mode = CDR_TMODE_AUDIO;
param.datablock_type = CDR_DB_RAW;
param.session_format = cuesheet->session_format;
if (cdp->cap.capabilities & MST_BURNPROOF)
param.burnproof = 1;
if ((error = acd_mode_select(cdp, (caddr_t)&param, param.page_length + 10)))
return error;
if (!(buffer = malloc(cuesheet->len, M_ACD, M_NOWAIT)))
return ENOMEM;
if (!(error = copyin(cuesheet->entries, buffer, cuesheet->len))) {
#ifdef ACD_DEBUG
printf("acd: cuesheet lenght = %d\n", cuesheet->len);
for (i=0; i<cuesheet->len; i++)
if (i%8)
printf(" %02x", buffer[i]);
else
printf("\n%02x", buffer[i]);
printf("\n");
#endif
error = ata_atapicmd(cdp->device, ccb, buffer, cuesheet->len, 0, 30);
}
free(buffer, M_ACD);
return error;
}
static int
acd_report_key(struct acd_softc *cdp, struct dvd_authinfo *ai)
{
struct dvd_miscauth *d;
u_int32_t lba = 0;
int16_t length;
int8_t ccb[16];
int error;
switch (ai->format) {
case DVD_REPORT_AGID:
case DVD_REPORT_ASF:
case DVD_REPORT_RPC:
length = 8;
break;
case DVD_REPORT_KEY1:
length = 12;
break;
case DVD_REPORT_TITLE_KEY:
length = 12;
lba = ai->lba;
break;
case DVD_REPORT_CHALLENGE:
length = 16;
break;
case DVD_INVALIDATE_AGID:
length = 0;
break;
default:
return EINVAL;
}
bzero(ccb, sizeof(ccb));
ccb[0] = ATAPI_REPORT_KEY;
ccb[2] = (lba >> 24) & 0xff;
ccb[3] = (lba >> 16) & 0xff;
ccb[4] = (lba >> 8) & 0xff;
ccb[5] = lba & 0xff;
ccb[8] = (length >> 8) & 0xff;
ccb[9] = length & 0xff;
ccb[10] = (ai->agid << 6) | ai->format;
d = malloc(length, M_ACD, M_NOWAIT | M_ZERO);
d->length = htons(length - 2);
error = ata_atapicmd(cdp->device, ccb, (caddr_t)d, length,
ai->format == DVD_INVALIDATE_AGID ? 0 : ATA_R_READ,10);
if (error) {
free(d, M_ACD);
return error;
}
switch (ai->format) {
case DVD_REPORT_AGID:
ai->agid = d->data[3] >> 6;
break;
case DVD_REPORT_CHALLENGE:
bcopy(&d->data[0], &ai->keychal[0], 10);
break;
case DVD_REPORT_KEY1:
bcopy(&d->data[0], &ai->keychal[0], 5);
break;
case DVD_REPORT_TITLE_KEY:
ai->cpm = (d->data[0] >> 7);
ai->cp_sec = (d->data[0] >> 6) & 0x1;
ai->cgms = (d->data[0] >> 4) & 0x3;
bcopy(&d->data[1], &ai->keychal[0], 5);
break;
case DVD_REPORT_ASF:
ai->asf = d->data[3] & 1;
break;
case DVD_REPORT_RPC:
ai->reg_type = (d->data[0] >> 6);
ai->vend_rsts = (d->data[0] >> 3) & 0x7;
ai->user_rsts = d->data[0] & 0x7;
ai->region = d->data[1];
ai->rpc_scheme = d->data[2];
break;
case DVD_INVALIDATE_AGID:
break;
default:
error = EINVAL;
}
free(d, M_ACD);
return error;
}
static int
acd_send_key(struct acd_softc *cdp, struct dvd_authinfo *ai)
{
struct dvd_miscauth *d;
int16_t length;
int8_t ccb[16];
int error;
switch (ai->format) {
case DVD_SEND_CHALLENGE:
length = 16;
d = malloc(length, M_ACD, M_NOWAIT | M_ZERO);
bcopy(ai->keychal, &d->data[0], 10);
break;
case DVD_SEND_KEY2:
length = 12;
d = malloc(length, M_ACD, M_NOWAIT | M_ZERO);
bcopy(&ai->keychal[0], &d->data[0], 5);
break;
case DVD_SEND_RPC:
length = 8;
d = malloc(length, M_ACD, M_NOWAIT | M_ZERO);
d->data[0] = ai->region;
break;
default:
return EINVAL;
}
bzero(ccb, sizeof(ccb));
ccb[0] = ATAPI_SEND_KEY;
ccb[8] = (length >> 8) & 0xff;
ccb[9] = length & 0xff;
ccb[10] = (ai->agid << 6) | ai->format;
d->length = htons(length - 2);
error = ata_atapicmd(cdp->device, ccb, (caddr_t)d, length, 0, 10);
free(d, M_ACD);
return error;
}
static int
acd_read_structure(struct acd_softc *cdp, struct dvd_struct *s)
{
struct dvd_miscauth *d;
u_int16_t length;
int8_t ccb[16];
int error = 0;
switch(s->format) {
case DVD_STRUCT_PHYSICAL:
length = 21;
break;
case DVD_STRUCT_COPYRIGHT:
length = 8;
break;
case DVD_STRUCT_DISCKEY:
length = 2052;
break;
case DVD_STRUCT_BCA:
length = 192;
break;
case DVD_STRUCT_MANUFACT:
length = 2052;
break;
case DVD_STRUCT_DDS:
case DVD_STRUCT_PRERECORDED:
case DVD_STRUCT_UNIQUEID:
case DVD_STRUCT_LIST:
case DVD_STRUCT_CMI:
case DVD_STRUCT_RMD_LAST:
case DVD_STRUCT_RMD_RMA:
case DVD_STRUCT_DCB:
return ENOSYS;
default:
return EINVAL;
}
d = malloc(length, M_ACD, M_NOWAIT | M_ZERO);
d->length = htons(length - 2);
bzero(ccb, sizeof(ccb));
ccb[0] = ATAPI_READ_STRUCTURE;
ccb[6] = s->layer_num;
ccb[7] = s->format;
ccb[8] = (length >> 8) & 0xff;
ccb[9] = length & 0xff;
ccb[10] = s->agid << 6;
error = ata_atapicmd(cdp->device, ccb, (caddr_t)d, length, ATA_R_READ, 30);
if (error) {
free(d, M_ACD);
return error;
}
switch (s->format) {
case DVD_STRUCT_PHYSICAL: {
struct dvd_layer *layer = (struct dvd_layer *)&s->data[0];
layer->book_type = d->data[0] >> 4;
layer->book_version = d->data[0] & 0xf;
layer->disc_size = d->data[1] >> 4;
layer->max_rate = d->data[1] & 0xf;
layer->nlayers = (d->data[2] >> 5) & 3;
layer->track_path = (d->data[2] >> 4) & 1;
layer->layer_type = d->data[2] & 0xf;
layer->linear_density = d->data[3] >> 4;
layer->track_density = d->data[3] & 0xf;
layer->start_sector = d->data[5] << 16 | d->data[6] << 8 | d->data[7];
layer->end_sector = d->data[9] << 16 | d->data[10] << 8 | d->data[11];
layer->end_sector_l0 = d->data[13] << 16 | d->data[14] << 8|d->data[15];
layer->bca = d->data[16] >> 7;
break;
}
case DVD_STRUCT_COPYRIGHT:
s->cpst = d->data[0];
s->rmi = d->data[0];
break;
case DVD_STRUCT_DISCKEY:
bcopy(&d->data[0], &s->data[0], 2048);
break;
case DVD_STRUCT_BCA:
s->length = ntohs(d->length);
bcopy(&d->data[0], &s->data[0], s->length);
break;
case DVD_STRUCT_MANUFACT:
s->length = ntohs(d->length);
bcopy(&d->data[0], &s->data[0], s->length);
break;
default:
error = EINVAL;
}
free(d, M_ACD);
return error;
}
static int
acd_eject(struct acd_softc *cdp, int close)
{
int error;
if ((error = acd_start_stop(cdp, 0)) == EBUSY) {
if (!close)
return 0;
if ((error = acd_start_stop(cdp, 3)))
return error;
acd_read_toc(cdp);
acd_prevent_allow(cdp, 1);
cdp->flags |= F_LOCKED;
return 0;
}
if (error)
return error;
if (close)
return 0;
acd_prevent_allow(cdp, 0);
cdp->flags &= ~F_LOCKED;
cdp->device->flags |= ATA_D_MEDIA_CHANGED;
return acd_start_stop(cdp, 2);
}
static int
acd_blank(struct acd_softc *cdp, int blanktype)
{
int8_t ccb[16] = { ATAPI_BLANK, 0x10 | (blanktype & 0x7), 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0 };
cdp->device->flags |= ATA_D_MEDIA_CHANGED;
return ata_atapicmd(cdp->device, ccb, NULL, 0, 0, 30);
}
static int
acd_prevent_allow(struct acd_softc *cdp, int lock)
{
int8_t ccb[16] = { ATAPI_PREVENT_ALLOW, 0, 0, 0, lock,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
return ata_atapicmd(cdp->device, ccb, NULL, 0, 0, 30);
}
static int
acd_start_stop(struct acd_softc *cdp, int start)
{
int8_t ccb[16] = { ATAPI_START_STOP, 0, 0, 0, start,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
return ata_atapicmd(cdp->device, ccb, NULL, 0, 0, 30);
}
static int
acd_pause_resume(struct acd_softc *cdp, int pause)
{
int8_t ccb[16] = { ATAPI_PAUSE, 0, 0, 0, 0, 0, 0, 0, pause,
0, 0, 0, 0, 0, 0, 0 };
return ata_atapicmd(cdp->device, ccb, NULL, 0, 0, 30);
}
static int
acd_mode_sense(struct acd_softc *cdp, int page, caddr_t pagebuf, int pagesize)
{
int8_t ccb[16] = { ATAPI_MODE_SENSE_BIG, 0, page, 0, 0, 0, 0,
pagesize>>8, pagesize, 0, 0, 0, 0, 0, 0, 0 };
int error;
error = ata_atapicmd(cdp->device, ccb, pagebuf, pagesize, ATA_R_READ, 10);
#ifdef ACD_DEBUG
atapi_dump("acd: mode sense ", pagebuf, pagesize);
#endif
return error;
}
static int
acd_mode_select(struct acd_softc *cdp, caddr_t pagebuf, int pagesize)
{
int8_t ccb[16] = { ATAPI_MODE_SELECT_BIG, 0x10, 0, 0, 0, 0, 0,
pagesize>>8, pagesize, 0, 0, 0, 0, 0, 0, 0 };
#ifdef ACD_DEBUG
ata_prtdev(cdp->device,
"modeselect pagesize=%d\n", pagesize);
atapi_dump("mode select ", pagebuf, pagesize);
#endif
return ata_atapicmd(cdp->device, ccb, pagebuf, pagesize, 0, 30);
}
static int
acd_set_speed(struct acd_softc *cdp, int rdspeed, int wrspeed)
{
int8_t ccb[16] = { ATAPI_SET_SPEED, 0, rdspeed >> 8, rdspeed,
wrspeed >> 8, wrspeed, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
int error;
error = ata_atapicmd(cdp->device, ccb, NULL, 0, 0, 30);
if (!error)
acd_get_cap(cdp);
return error;
}
static void
acd_get_cap(struct acd_softc *cdp)
{
int count;
/* get drive capabilities, some bugridden drives needs this repeated */
for (count = 0 ; count < 5 ; count++) {
if (!acd_mode_sense(cdp, ATAPI_CDROM_CAP_PAGE,
(caddr_t)&cdp->cap, sizeof(cdp->cap)) &&
cdp->cap.page_code == ATAPI_CDROM_CAP_PAGE) {
cdp->cap.max_read_speed = ntohs(cdp->cap.max_read_speed);
cdp->cap.cur_read_speed = ntohs(cdp->cap.cur_read_speed);
cdp->cap.max_write_speed = ntohs(cdp->cap.max_write_speed);
cdp->cap.cur_write_speed = max(ntohs(cdp->cap.cur_write_speed),177);
cdp->cap.max_vol_levels = ntohs(cdp->cap.max_vol_levels);
cdp->cap.buf_size = ntohs(cdp->cap.buf_size);
}
}
}
static int
acd_read_format_caps(struct acd_softc *cdp, struct cdr_format_capacities *caps)
{
int8_t ccb[16] = { ATAPI_READ_FORMAT_CAPACITIES, 0, 0, 0, 0, 0, 0,
(sizeof(struct cdr_format_capacities) >> 8) & 0xff,
sizeof(struct cdr_format_capacities) & 0xff,
0, 0, 0, 0, 0, 0, 0 };
return ata_atapicmd(cdp->device, ccb, (caddr_t)caps,
sizeof(struct cdr_format_capacities), ATA_R_READ, 30);
}
static int
acd_format(struct acd_softc *cdp, struct cdr_format_params* params)
{
int error;
int8_t ccb[16] = { ATAPI_FORMAT, 0x11, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0 };
error = ata_atapicmd(cdp->device, ccb, (u_int8_t *)params,
sizeof(struct cdr_format_params), 0, 30);
return error;
}
static int
acd_test_ready(struct ata_device *atadev)
{
int8_t ccb[16] = { ATAPI_TEST_UNIT_READY, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
return ata_atapicmd(atadev, ccb, NULL, 0, 0, 30);
}
static int
acd_request_sense(struct ata_device *atadev, struct atapi_sense *sense)
{
int8_t ccb[16] = { ATAPI_REQUEST_SENSE, 0, 0, 0, sizeof(struct atapi_sense),
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
return ata_atapicmd(atadev, ccb, (caddr_t)sense,
sizeof(struct atapi_sense), ATA_R_READ, 30);
}