c6a4447b64
be overridden when hardware sqrt is available.
160 lines
4.2 KiB
C
160 lines
4.2 KiB
C
/*-
|
|
* Copyright (c) 2007 Steven G. Kargl
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <fenv.h>
|
|
#include <float.h>
|
|
|
|
#include "fpmath.h"
|
|
#include "math.h"
|
|
|
|
/* Return (x + ulp) for normal positive x. Assumes no overflow. */
|
|
static inline long double
|
|
inc(long double x)
|
|
{
|
|
union IEEEl2bits u;
|
|
|
|
u.e = x;
|
|
if (++u.bits.manl == 0) {
|
|
if (++u.bits.manh == 0) {
|
|
u.bits.exp++;
|
|
u.bits.manh |= LDBL_NBIT;
|
|
}
|
|
}
|
|
return (u.e);
|
|
}
|
|
|
|
/* Return (x - ulp) for normal positive x. Assumes no underflow. */
|
|
static inline long double
|
|
dec(long double x)
|
|
{
|
|
union IEEEl2bits u;
|
|
|
|
u.e = x;
|
|
if (u.bits.manl-- == 0) {
|
|
if (u.bits.manh-- == LDBL_NBIT) {
|
|
u.bits.exp--;
|
|
u.bits.manh |= LDBL_NBIT;
|
|
}
|
|
}
|
|
return (u.e);
|
|
}
|
|
|
|
#pragma STDC FENV_ACCESS ON
|
|
|
|
/*
|
|
* This is slow, but simple and portable. You should use hardware sqrt
|
|
* if possible.
|
|
*/
|
|
|
|
long double
|
|
sqrtl(long double x)
|
|
{
|
|
union IEEEl2bits u;
|
|
int k, r;
|
|
long double lo, xn;
|
|
fenv_t env;
|
|
|
|
u.e = x;
|
|
|
|
/* If x = NaN, then sqrt(x) = NaN. */
|
|
/* If x = Inf, then sqrt(x) = Inf. */
|
|
/* If x = -Inf, then sqrt(x) = NaN. */
|
|
if (u.bits.exp == LDBL_MAX_EXP * 2 - 1)
|
|
return (x * x + x);
|
|
|
|
/* If x = +-0, then sqrt(x) = +-0. */
|
|
if ((u.bits.manh | u.bits.manl | u.bits.exp) == 0)
|
|
return (x);
|
|
|
|
/* If x < 0, then raise invalid and return NaN */
|
|
if (u.bits.sign)
|
|
return ((x - x) / (x - x));
|
|
|
|
feholdexcept(&env);
|
|
|
|
if (u.bits.exp == 0) {
|
|
/* Adjust subnormal numbers. */
|
|
u.e *= 0x1.0p514;
|
|
k = -514;
|
|
} else {
|
|
k = 0;
|
|
}
|
|
/*
|
|
* u.e is a normal number, so break it into u.e = e*2^n where
|
|
* u.e = (2*e)*2^2k for odd n and u.e = (4*e)*2^2k for even n.
|
|
*/
|
|
if ((u.bits.exp - 0x3ffe) & 1) { /* n is odd. */
|
|
k += u.bits.exp - 0x3fff; /* 2k = n - 1. */
|
|
u.bits.exp = 0x3fff; /* u.e in [1,2). */
|
|
} else {
|
|
k += u.bits.exp - 0x4000; /* 2k = n - 2. */
|
|
u.bits.exp = 0x4000; /* u.e in [2,4). */
|
|
}
|
|
|
|
/*
|
|
* Newton's iteration.
|
|
* Split u.e into a high and low part to achieve additional precision.
|
|
*/
|
|
xn = sqrt(u.e); /* 53-bit estimate of sqrtl(x). */
|
|
#if LDBL_MANT_DIG > 100
|
|
xn = (xn + (u.e / xn)) * 0.5; /* 106-bit estimate. */
|
|
#endif
|
|
lo = u.e;
|
|
u.bits.manl = 0; /* Zero out lower bits. */
|
|
lo = (lo - u.e) / xn; /* Low bits divided by xn. */
|
|
xn = xn + (u.e / xn); /* High portion of estimate. */
|
|
u.e = xn + lo; /* Combine everything. */
|
|
u.bits.exp += (k >> 1) - 1;
|
|
|
|
feclearexcept(FE_INEXACT);
|
|
r = fegetround();
|
|
fesetround(FE_TOWARDZERO); /* Set to round-toward-zero. */
|
|
xn = x / u.e; /* Chopped quotient (inexact?). */
|
|
|
|
if (!fetestexcept(FE_INEXACT)) { /* Quotient is exact. */
|
|
if (xn == u.e) {
|
|
fesetenv(&env);
|
|
return (u.e);
|
|
}
|
|
/* Round correctly for inputs like x = y**2 - ulp. */
|
|
xn = dec(xn); /* xn = xn - ulp. */
|
|
}
|
|
|
|
if (r == FE_TONEAREST) {
|
|
xn = inc(xn); /* xn = xn + ulp. */
|
|
} else if (r == FE_UPWARD) {
|
|
u.e = inc(u.e); /* u.e = u.e + ulp. */
|
|
xn = inc(xn); /* xn = xn + ulp. */
|
|
}
|
|
u.e = u.e + xn; /* Chopped sum. */
|
|
feupdateenv(&env); /* Restore env and raise inexact */
|
|
u.bits.exp--;
|
|
return (u.e);
|
|
}
|