fc2ffbe604
fondling implementation details. Created with: sed(1) Reviewed by: md5(1)
6382 lines
164 KiB
C
6382 lines
164 KiB
C
/*
|
|
* Implementation of the Common Access Method Transport (XPT) layer.
|
|
*
|
|
* Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
|
|
* Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification, immediately at the beginning of the file.
|
|
* 2. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/types.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/time.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/md5.h>
|
|
#include <sys/devicestat.h>
|
|
#include <sys/interrupt.h>
|
|
|
|
#ifdef PC98
|
|
#include <pc98/pc98/pc98_machdep.h> /* geometry translation */
|
|
#endif
|
|
|
|
#include <sys/ipl.h>
|
|
|
|
#include <cam/cam.h>
|
|
#include <cam/cam_ccb.h>
|
|
#include <cam/cam_periph.h>
|
|
#include <cam/cam_sim.h>
|
|
#include <cam/cam_xpt.h>
|
|
#include <cam/cam_xpt_sim.h>
|
|
#include <cam/cam_xpt_periph.h>
|
|
#include <cam/cam_debug.h>
|
|
|
|
#include <cam/scsi/scsi_all.h>
|
|
#include <cam/scsi/scsi_message.h>
|
|
#include <cam/scsi/scsi_pass.h>
|
|
#include "opt_cam.h"
|
|
|
|
/* Datastructures internal to the xpt layer */
|
|
|
|
/*
|
|
* Definition of an async handler callback block. These are used to add
|
|
* SIMs and peripherals to the async callback lists.
|
|
*/
|
|
struct async_node {
|
|
SLIST_ENTRY(async_node) links;
|
|
u_int32_t event_enable; /* Async Event enables */
|
|
void (*callback)(void *arg, u_int32_t code,
|
|
struct cam_path *path, void *args);
|
|
void *callback_arg;
|
|
};
|
|
|
|
SLIST_HEAD(async_list, async_node);
|
|
SLIST_HEAD(periph_list, cam_periph);
|
|
static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
|
|
|
|
/*
|
|
* This is the maximum number of high powered commands (e.g. start unit)
|
|
* that can be outstanding at a particular time.
|
|
*/
|
|
#ifndef CAM_MAX_HIGHPOWER
|
|
#define CAM_MAX_HIGHPOWER 4
|
|
#endif
|
|
|
|
/* number of high powered commands that can go through right now */
|
|
static int num_highpower = CAM_MAX_HIGHPOWER;
|
|
|
|
/*
|
|
* Structure for queueing a device in a run queue.
|
|
* There is one run queue for allocating new ccbs,
|
|
* and another for sending ccbs to the controller.
|
|
*/
|
|
struct cam_ed_qinfo {
|
|
cam_pinfo pinfo;
|
|
struct cam_ed *device;
|
|
};
|
|
|
|
/*
|
|
* The CAM EDT (Existing Device Table) contains the device information for
|
|
* all devices for all busses in the system. The table contains a
|
|
* cam_ed structure for each device on the bus.
|
|
*/
|
|
struct cam_ed {
|
|
TAILQ_ENTRY(cam_ed) links;
|
|
struct cam_ed_qinfo alloc_ccb_entry;
|
|
struct cam_ed_qinfo send_ccb_entry;
|
|
struct cam_et *target;
|
|
lun_id_t lun_id;
|
|
struct camq drvq; /*
|
|
* Queue of type drivers wanting to do
|
|
* work on this device.
|
|
*/
|
|
struct cam_ccbq ccbq; /* Queue of pending ccbs */
|
|
struct async_list asyncs; /* Async callback info for this B/T/L */
|
|
struct periph_list periphs; /* All attached devices */
|
|
u_int generation; /* Generation number */
|
|
struct cam_periph *owner; /* Peripheral driver's ownership tag */
|
|
struct xpt_quirk_entry *quirk; /* Oddities about this device */
|
|
/* Storage for the inquiry data */
|
|
struct scsi_inquiry_data inq_data;
|
|
u_int8_t inq_flags; /*
|
|
* Current settings for inquiry flags.
|
|
* This allows us to override settings
|
|
* like disconnection and tagged
|
|
* queuing for a device.
|
|
*/
|
|
u_int8_t queue_flags; /* Queue flags from the control page */
|
|
u_int8_t serial_num_len;
|
|
u_int8_t *serial_num;
|
|
u_int32_t qfrozen_cnt;
|
|
u_int32_t flags;
|
|
#define CAM_DEV_UNCONFIGURED 0x01
|
|
#define CAM_DEV_REL_TIMEOUT_PENDING 0x02
|
|
#define CAM_DEV_REL_ON_COMPLETE 0x04
|
|
#define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08
|
|
#define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10
|
|
#define CAM_DEV_TAG_AFTER_COUNT 0x20
|
|
#define CAM_DEV_INQUIRY_DATA_VALID 0x40
|
|
u_int32_t tag_delay_count;
|
|
#define CAM_TAG_DELAY_COUNT 5
|
|
u_int32_t refcount;
|
|
struct callout_handle c_handle;
|
|
};
|
|
|
|
/*
|
|
* Each target is represented by an ET (Existing Target). These
|
|
* entries are created when a target is successfully probed with an
|
|
* identify, and removed when a device fails to respond after a number
|
|
* of retries, or a bus rescan finds the device missing.
|
|
*/
|
|
struct cam_et {
|
|
TAILQ_HEAD(, cam_ed) ed_entries;
|
|
TAILQ_ENTRY(cam_et) links;
|
|
struct cam_eb *bus;
|
|
target_id_t target_id;
|
|
u_int32_t refcount;
|
|
u_int generation;
|
|
struct timeval last_reset;
|
|
};
|
|
|
|
/*
|
|
* Each bus is represented by an EB (Existing Bus). These entries
|
|
* are created by calls to xpt_bus_register and deleted by calls to
|
|
* xpt_bus_deregister.
|
|
*/
|
|
struct cam_eb {
|
|
TAILQ_HEAD(, cam_et) et_entries;
|
|
TAILQ_ENTRY(cam_eb) links;
|
|
path_id_t path_id;
|
|
struct cam_sim *sim;
|
|
struct timeval last_reset;
|
|
u_int32_t flags;
|
|
#define CAM_EB_RUNQ_SCHEDULED 0x01
|
|
u_int32_t refcount;
|
|
u_int generation;
|
|
};
|
|
|
|
struct cam_path {
|
|
struct cam_periph *periph;
|
|
struct cam_eb *bus;
|
|
struct cam_et *target;
|
|
struct cam_ed *device;
|
|
};
|
|
|
|
struct xpt_quirk_entry {
|
|
struct scsi_inquiry_pattern inq_pat;
|
|
u_int8_t quirks;
|
|
#define CAM_QUIRK_NOLUNS 0x01
|
|
#define CAM_QUIRK_NOSERIAL 0x02
|
|
#define CAM_QUIRK_HILUNS 0x04
|
|
u_int mintags;
|
|
u_int maxtags;
|
|
};
|
|
#define CAM_SCSI2_MAXLUN 8
|
|
|
|
typedef enum {
|
|
XPT_FLAG_OPEN = 0x01
|
|
} xpt_flags;
|
|
|
|
struct xpt_softc {
|
|
xpt_flags flags;
|
|
u_int32_t generation;
|
|
};
|
|
|
|
static const char quantum[] = "QUANTUM";
|
|
static const char sony[] = "SONY";
|
|
static const char west_digital[] = "WDIGTL";
|
|
static const char samsung[] = "SAMSUNG";
|
|
static const char seagate[] = "SEAGATE";
|
|
static const char microp[] = "MICROP";
|
|
|
|
static struct xpt_quirk_entry xpt_quirk_table[] =
|
|
{
|
|
{
|
|
/* Reports QUEUE FULL for temporary resource shortages */
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
|
|
/*quirks*/0, /*mintags*/24, /*maxtags*/32
|
|
},
|
|
{
|
|
/* Reports QUEUE FULL for temporary resource shortages */
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
|
|
/*quirks*/0, /*mintags*/24, /*maxtags*/32
|
|
},
|
|
{
|
|
/* Reports QUEUE FULL for temporary resource shortages */
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
|
|
/*quirks*/0, /*mintags*/24, /*maxtags*/32
|
|
},
|
|
{
|
|
/* Broken tagged queuing drive */
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
|
|
/*quirks*/0, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
/* Broken tagged queuing drive */
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
|
|
/*quirks*/0, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
/* Broken tagged queuing drive */
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
|
|
/*quirks*/0, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
/*
|
|
* Unfortunately, the Quantum Atlas III has the same
|
|
* problem as the Atlas II drives above.
|
|
* Reported by: "Johan Granlund" <johan@granlund.nu>
|
|
*
|
|
* For future reference, the drive with the problem was:
|
|
* QUANTUM QM39100TD-SW N1B0
|
|
*
|
|
* It's possible that Quantum will fix the problem in later
|
|
* firmware revisions. If that happens, the quirk entry
|
|
* will need to be made specific to the firmware revisions
|
|
* with the problem.
|
|
*
|
|
*/
|
|
/* Reports QUEUE FULL for temporary resource shortages */
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
|
|
/*quirks*/0, /*mintags*/24, /*maxtags*/32
|
|
},
|
|
{
|
|
/*
|
|
* 18 Gig Atlas III, same problem as the 9G version.
|
|
* Reported by: Andre Albsmeier
|
|
* <andre.albsmeier@mchp.siemens.de>
|
|
*
|
|
* For future reference, the drive with the problem was:
|
|
* QUANTUM QM318000TD-S N491
|
|
*/
|
|
/* Reports QUEUE FULL for temporary resource shortages */
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
|
|
/*quirks*/0, /*mintags*/24, /*maxtags*/32
|
|
},
|
|
{
|
|
/*
|
|
* Broken tagged queuing drive
|
|
* Reported by: Bret Ford <bford@uop.cs.uop.edu>
|
|
* and: Martin Renters <martin@tdc.on.ca>
|
|
*/
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
|
|
/*quirks*/0, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
/*
|
|
* The Seagate Medalist Pro drives have very poor write
|
|
* performance with anything more than 2 tags.
|
|
*
|
|
* Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl>
|
|
* Drive: <SEAGATE ST36530N 1444>
|
|
*
|
|
* Reported by: Jeremy Lea <reg@shale.csir.co.za>
|
|
* Drive: <SEAGATE ST34520W 1281>
|
|
*
|
|
* No one has actually reported that the 9G version
|
|
* (ST39140*) of the Medalist Pro has the same problem, but
|
|
* we're assuming that it does because the 4G and 6.5G
|
|
* versions of the drive are broken.
|
|
*/
|
|
{
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
|
|
/*quirks*/0, /*mintags*/2, /*maxtags*/2
|
|
},
|
|
{
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
|
|
/*quirks*/0, /*mintags*/2, /*maxtags*/2
|
|
},
|
|
{
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
|
|
/*quirks*/0, /*mintags*/2, /*maxtags*/2
|
|
},
|
|
{
|
|
/*
|
|
* Slow when tagged queueing is enabled. Write performance
|
|
* steadily drops off with more and more concurrent
|
|
* transactions. Best sequential write performance with
|
|
* tagged queueing turned off and write caching turned on.
|
|
*
|
|
* PR: kern/10398
|
|
* Submitted by: Hideaki Okada <hokada@isl.melco.co.jp>
|
|
* Drive: DCAS-34330 w/ "S65A" firmware.
|
|
*
|
|
* The drive with the problem had the "S65A" firmware
|
|
* revision, and has also been reported (by Stephen J.
|
|
* Roznowski <sjr@home.net>) for a drive with the "S61A"
|
|
* firmware revision.
|
|
*
|
|
* Although no one has reported problems with the 2 gig
|
|
* version of the DCAS drive, the assumption is that it
|
|
* has the same problems as the 4 gig version. Therefore
|
|
* this quirk entries disables tagged queueing for all
|
|
* DCAS drives.
|
|
*/
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
|
|
/*quirks*/0, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
/* Broken tagged queuing drive */
|
|
{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
|
|
/*quirks*/0, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
/* Broken tagged queuing drive */
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
|
|
/*quirks*/0, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
/*
|
|
* Broken tagged queuing drive.
|
|
* Submitted by:
|
|
* NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
|
|
* in PR kern/9535
|
|
*/
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
|
|
/*quirks*/0, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
/*
|
|
* Slow when tagged queueing is enabled. (1.5MB/sec versus
|
|
* 8MB/sec.)
|
|
* Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
|
|
* Best performance with these drives is achieved with
|
|
* tagged queueing turned off, and write caching turned on.
|
|
*/
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
|
|
/*quirks*/0, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
/*
|
|
* Slow when tagged queueing is enabled. (1.5MB/sec versus
|
|
* 8MB/sec.)
|
|
* Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
|
|
* Best performance with these drives is achieved with
|
|
* tagged queueing turned off, and write caching turned on.
|
|
*/
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
|
|
/*quirks*/0, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
/*
|
|
* Doesn't handle queue full condition correctly,
|
|
* so we need to limit maxtags to what the device
|
|
* can handle instead of determining this automatically.
|
|
*/
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
|
|
/*quirks*/0, /*mintags*/2, /*maxtags*/32
|
|
},
|
|
{
|
|
/* Really only one LUN */
|
|
{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA*", "*" },
|
|
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
/* I can't believe we need a quirk for DPT volumes. */
|
|
{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
|
|
CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS,
|
|
/*mintags*/0, /*maxtags*/255
|
|
},
|
|
{
|
|
/*
|
|
* Many Sony CDROM drives don't like multi-LUN probing.
|
|
*/
|
|
{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
|
|
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
/*
|
|
* This drive doesn't like multiple LUN probing.
|
|
* Submitted by: Parag Patel <parag@cgt.com>
|
|
*/
|
|
{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" },
|
|
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
|
|
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
/*
|
|
* The 8200 doesn't like multi-lun probing, and probably
|
|
* don't like serial number requests either.
|
|
*/
|
|
{
|
|
T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
|
|
"EXB-8200*", "*"
|
|
},
|
|
CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
/*
|
|
* These Hitachi drives don't like multi-lun probing.
|
|
* The PR submitter has a DK319H, but says that the Linux
|
|
* kernel has a similar work-around for the DK312 and DK314,
|
|
* so all DK31* drives are quirked here.
|
|
* PR: misc/18793
|
|
* Submitted by: Paul Haddad <paul@pth.com>
|
|
*/
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
|
|
CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
|
|
},
|
|
{
|
|
/*
|
|
* This old revision of the TDC3600 is also SCSI-1, and
|
|
* hangs upon serial number probing.
|
|
*/
|
|
{
|
|
T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
|
|
" TDC 3600", "U07:"
|
|
},
|
|
CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
/*
|
|
* Would repond to all LUNs if asked for.
|
|
*/
|
|
{
|
|
T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
|
|
"CP150", "*"
|
|
},
|
|
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
/*
|
|
* Would repond to all LUNs if asked for.
|
|
*/
|
|
{
|
|
T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
|
|
"96X2*", "*"
|
|
},
|
|
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
/* Submitted by: Matthew Dodd <winter@jurai.net> */
|
|
{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
|
|
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
/* Submitted by: Matthew Dodd <winter@jurai.net> */
|
|
{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
|
|
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
/* TeraSolutions special settings for TRC-22 RAID */
|
|
{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
|
|
/*quirks*/0, /*mintags*/55, /*maxtags*/255
|
|
},
|
|
{
|
|
/*
|
|
* Would respond to all LUNs. Device type and removable
|
|
* flag are jumper-selectable.
|
|
*/
|
|
{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
|
|
"Tahiti 1", "*"
|
|
},
|
|
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
|
|
},
|
|
{
|
|
/* Default tagged queuing parameters for all devices */
|
|
{
|
|
T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
|
|
/*vendor*/"*", /*product*/"*", /*revision*/"*"
|
|
},
|
|
/*quirks*/0, /*mintags*/2, /*maxtags*/255
|
|
},
|
|
};
|
|
|
|
static const int xpt_quirk_table_size =
|
|
sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
|
|
|
|
typedef enum {
|
|
DM_RET_COPY = 0x01,
|
|
DM_RET_FLAG_MASK = 0x0f,
|
|
DM_RET_NONE = 0x00,
|
|
DM_RET_STOP = 0x10,
|
|
DM_RET_DESCEND = 0x20,
|
|
DM_RET_ERROR = 0x30,
|
|
DM_RET_ACTION_MASK = 0xf0
|
|
} dev_match_ret;
|
|
|
|
typedef enum {
|
|
XPT_DEPTH_BUS,
|
|
XPT_DEPTH_TARGET,
|
|
XPT_DEPTH_DEVICE,
|
|
XPT_DEPTH_PERIPH
|
|
} xpt_traverse_depth;
|
|
|
|
struct xpt_traverse_config {
|
|
xpt_traverse_depth depth;
|
|
void *tr_func;
|
|
void *tr_arg;
|
|
};
|
|
|
|
typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
|
|
typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
|
|
typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
|
|
typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
|
|
typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
|
|
|
|
/* Transport layer configuration information */
|
|
static struct xpt_softc xsoftc;
|
|
|
|
/* Queues for our software interrupt handler */
|
|
typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
|
|
static cam_isrq_t cam_bioq;
|
|
static cam_isrq_t cam_netq;
|
|
|
|
/* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */
|
|
static SLIST_HEAD(,ccb_hdr) ccb_freeq;
|
|
static u_int xpt_max_ccbs; /*
|
|
* Maximum size of ccb pool. Modified as
|
|
* devices are added/removed or have their
|
|
* opening counts changed.
|
|
*/
|
|
static u_int xpt_ccb_count; /* Current count of allocated ccbs */
|
|
|
|
struct cam_periph *xpt_periph;
|
|
|
|
static periph_init_t xpt_periph_init;
|
|
|
|
static periph_init_t probe_periph_init;
|
|
|
|
static struct periph_driver xpt_driver =
|
|
{
|
|
xpt_periph_init, "xpt",
|
|
TAILQ_HEAD_INITIALIZER(xpt_driver.units)
|
|
};
|
|
|
|
static struct periph_driver probe_driver =
|
|
{
|
|
probe_periph_init, "probe",
|
|
TAILQ_HEAD_INITIALIZER(probe_driver.units)
|
|
};
|
|
|
|
DATA_SET(periphdriver_set, xpt_driver);
|
|
DATA_SET(periphdriver_set, probe_driver);
|
|
|
|
#define XPT_CDEV_MAJOR 104
|
|
|
|
static d_open_t xptopen;
|
|
static d_close_t xptclose;
|
|
static d_ioctl_t xptioctl;
|
|
|
|
static struct cdevsw xpt_cdevsw = {
|
|
/* open */ xptopen,
|
|
/* close */ xptclose,
|
|
/* read */ noread,
|
|
/* write */ nowrite,
|
|
/* ioctl */ xptioctl,
|
|
/* poll */ nopoll,
|
|
/* mmap */ nommap,
|
|
/* strategy */ nostrategy,
|
|
/* name */ "xpt",
|
|
/* maj */ XPT_CDEV_MAJOR,
|
|
/* dump */ nodump,
|
|
/* psize */ nopsize,
|
|
/* flags */ 0,
|
|
/* bmaj */ -1
|
|
};
|
|
|
|
static struct intr_config_hook *xpt_config_hook;
|
|
|
|
/* Registered busses */
|
|
static TAILQ_HEAD(,cam_eb) xpt_busses;
|
|
static u_int bus_generation;
|
|
|
|
/* Storage for debugging datastructures */
|
|
#ifdef CAMDEBUG
|
|
struct cam_path *cam_dpath;
|
|
u_int32_t cam_dflags;
|
|
u_int32_t cam_debug_delay;
|
|
#endif
|
|
|
|
/* Pointers to software interrupt handlers */
|
|
struct intrhand *camnet_ih;
|
|
struct intrhand *cambio_ih;
|
|
|
|
#if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
|
|
#error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
|
|
#endif
|
|
|
|
/*
|
|
* In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
|
|
* enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS,
|
|
* CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
|
|
*/
|
|
#if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
|
|
|| defined(CAM_DEBUG_LUN)
|
|
#ifdef CAMDEBUG
|
|
#if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
|
|
|| !defined(CAM_DEBUG_LUN)
|
|
#error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
|
|
and CAM_DEBUG_LUN"
|
|
#endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
|
|
#else /* !CAMDEBUG */
|
|
#error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
|
|
#endif /* CAMDEBUG */
|
|
#endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
|
|
|
|
/* Our boot-time initialization hook */
|
|
static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
|
|
|
|
static moduledata_t cam_moduledata = {
|
|
"cam",
|
|
cam_module_event_handler,
|
|
NULL
|
|
};
|
|
|
|
static void xpt_init(void *);
|
|
|
|
DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
|
|
MODULE_VERSION(cam, 1);
|
|
|
|
|
|
static cam_status xpt_compile_path(struct cam_path *new_path,
|
|
struct cam_periph *perph,
|
|
path_id_t path_id,
|
|
target_id_t target_id,
|
|
lun_id_t lun_id);
|
|
|
|
static void xpt_release_path(struct cam_path *path);
|
|
|
|
static void xpt_async_bcast(struct async_list *async_head,
|
|
u_int32_t async_code,
|
|
struct cam_path *path,
|
|
void *async_arg);
|
|
static void xpt_dev_async(u_int32_t async_code,
|
|
struct cam_eb *bus,
|
|
struct cam_et *target,
|
|
struct cam_ed *device,
|
|
void *async_arg);
|
|
static path_id_t xptnextfreepathid(void);
|
|
static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
|
|
static union ccb *xpt_get_ccb(struct cam_ed *device);
|
|
static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
|
|
u_int32_t new_priority);
|
|
static void xpt_run_dev_allocq(struct cam_eb *bus);
|
|
static void xpt_run_dev_sendq(struct cam_eb *bus);
|
|
static timeout_t xpt_release_devq_timeout;
|
|
static timeout_t xpt_release_simq_timeout;
|
|
static void xpt_release_bus(struct cam_eb *bus);
|
|
static void xpt_release_devq_device(struct cam_ed *dev, u_int count,
|
|
int run_queue);
|
|
static struct cam_et*
|
|
xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
|
|
static void xpt_release_target(struct cam_eb *bus, struct cam_et *target);
|
|
static struct cam_ed*
|
|
xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
|
|
lun_id_t lun_id);
|
|
static void xpt_release_device(struct cam_eb *bus, struct cam_et *target,
|
|
struct cam_ed *device);
|
|
static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
|
|
static struct cam_eb*
|
|
xpt_find_bus(path_id_t path_id);
|
|
static struct cam_et*
|
|
xpt_find_target(struct cam_eb *bus, target_id_t target_id);
|
|
static struct cam_ed*
|
|
xpt_find_device(struct cam_et *target, lun_id_t lun_id);
|
|
static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
|
|
static void xpt_scan_lun(struct cam_periph *periph,
|
|
struct cam_path *path, cam_flags flags,
|
|
union ccb *ccb);
|
|
static void xptscandone(struct cam_periph *periph, union ccb *done_ccb);
|
|
static xpt_busfunc_t xptconfigbuscountfunc;
|
|
static xpt_busfunc_t xptconfigfunc;
|
|
static void xpt_config(void *arg);
|
|
static xpt_devicefunc_t xptpassannouncefunc;
|
|
static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
|
|
static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
|
|
static void xptpoll(struct cam_sim *sim);
|
|
static void camisr(void *);
|
|
#if 0
|
|
static void xptstart(struct cam_periph *periph, union ccb *work_ccb);
|
|
static void xptasync(struct cam_periph *periph,
|
|
u_int32_t code, cam_path *path);
|
|
#endif
|
|
static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
|
|
int num_patterns, struct cam_eb *bus);
|
|
static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
|
|
int num_patterns, struct cam_ed *device);
|
|
static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
|
|
int num_patterns,
|
|
struct cam_periph *periph);
|
|
static xpt_busfunc_t xptedtbusfunc;
|
|
static xpt_targetfunc_t xptedttargetfunc;
|
|
static xpt_devicefunc_t xptedtdevicefunc;
|
|
static xpt_periphfunc_t xptedtperiphfunc;
|
|
static xpt_pdrvfunc_t xptplistpdrvfunc;
|
|
static xpt_periphfunc_t xptplistperiphfunc;
|
|
static int xptedtmatch(struct ccb_dev_match *cdm);
|
|
static int xptperiphlistmatch(struct ccb_dev_match *cdm);
|
|
static int xptbustraverse(struct cam_eb *start_bus,
|
|
xpt_busfunc_t *tr_func, void *arg);
|
|
static int xpttargettraverse(struct cam_eb *bus,
|
|
struct cam_et *start_target,
|
|
xpt_targetfunc_t *tr_func, void *arg);
|
|
static int xptdevicetraverse(struct cam_et *target,
|
|
struct cam_ed *start_device,
|
|
xpt_devicefunc_t *tr_func, void *arg);
|
|
static int xptperiphtraverse(struct cam_ed *device,
|
|
struct cam_periph *start_periph,
|
|
xpt_periphfunc_t *tr_func, void *arg);
|
|
static int xptpdrvtraverse(struct periph_driver **start_pdrv,
|
|
xpt_pdrvfunc_t *tr_func, void *arg);
|
|
static int xptpdperiphtraverse(struct periph_driver **pdrv,
|
|
struct cam_periph *start_periph,
|
|
xpt_periphfunc_t *tr_func,
|
|
void *arg);
|
|
static xpt_busfunc_t xptdefbusfunc;
|
|
static xpt_targetfunc_t xptdeftargetfunc;
|
|
static xpt_devicefunc_t xptdefdevicefunc;
|
|
static xpt_periphfunc_t xptdefperiphfunc;
|
|
static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
|
|
#ifdef notusedyet
|
|
static int xpt_for_all_targets(xpt_targetfunc_t *tr_func,
|
|
void *arg);
|
|
#endif
|
|
static int xpt_for_all_devices(xpt_devicefunc_t *tr_func,
|
|
void *arg);
|
|
#ifdef notusedyet
|
|
static int xpt_for_all_periphs(xpt_periphfunc_t *tr_func,
|
|
void *arg);
|
|
#endif
|
|
static xpt_devicefunc_t xptsetasyncfunc;
|
|
static xpt_busfunc_t xptsetasyncbusfunc;
|
|
static cam_status xptregister(struct cam_periph *periph,
|
|
void *arg);
|
|
static cam_status proberegister(struct cam_periph *periph,
|
|
void *arg);
|
|
static void probeschedule(struct cam_periph *probe_periph);
|
|
static void probestart(struct cam_periph *periph, union ccb *start_ccb);
|
|
static void proberequestdefaultnegotiation(struct cam_periph *periph);
|
|
static void probedone(struct cam_periph *periph, union ccb *done_ccb);
|
|
static void probecleanup(struct cam_periph *periph);
|
|
static void xpt_find_quirk(struct cam_ed *device);
|
|
static void xpt_set_transfer_settings(struct ccb_trans_settings *cts,
|
|
struct cam_ed *device,
|
|
int async_update);
|
|
static void xpt_toggle_tags(struct cam_path *path);
|
|
static void xpt_start_tags(struct cam_path *path);
|
|
static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
|
|
struct cam_ed *dev);
|
|
static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
|
|
struct cam_ed *dev);
|
|
static __inline int periph_is_queued(struct cam_periph *periph);
|
|
static __inline int device_is_alloc_queued(struct cam_ed *device);
|
|
static __inline int device_is_send_queued(struct cam_ed *device);
|
|
static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
|
|
|
|
static __inline int
|
|
xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
|
|
{
|
|
int retval;
|
|
|
|
if (dev->ccbq.devq_openings > 0) {
|
|
if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
|
|
cam_ccbq_resize(&dev->ccbq,
|
|
dev->ccbq.dev_openings
|
|
+ dev->ccbq.dev_active);
|
|
dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
|
|
}
|
|
/*
|
|
* The priority of a device waiting for CCB resources
|
|
* is that of the the highest priority peripheral driver
|
|
* enqueued.
|
|
*/
|
|
retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
|
|
&dev->alloc_ccb_entry.pinfo,
|
|
CAMQ_GET_HEAD(&dev->drvq)->priority);
|
|
} else {
|
|
retval = 0;
|
|
}
|
|
|
|
return (retval);
|
|
}
|
|
|
|
static __inline int
|
|
xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
|
|
{
|
|
int retval;
|
|
|
|
if (dev->ccbq.dev_openings > 0) {
|
|
/*
|
|
* The priority of a device waiting for controller
|
|
* resources is that of the the highest priority CCB
|
|
* enqueued.
|
|
*/
|
|
retval =
|
|
xpt_schedule_dev(&bus->sim->devq->send_queue,
|
|
&dev->send_ccb_entry.pinfo,
|
|
CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
|
|
} else {
|
|
retval = 0;
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
static __inline int
|
|
periph_is_queued(struct cam_periph *periph)
|
|
{
|
|
return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
|
|
}
|
|
|
|
static __inline int
|
|
device_is_alloc_queued(struct cam_ed *device)
|
|
{
|
|
return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
|
|
}
|
|
|
|
static __inline int
|
|
device_is_send_queued(struct cam_ed *device)
|
|
{
|
|
return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
|
|
}
|
|
|
|
static __inline int
|
|
dev_allocq_is_runnable(struct cam_devq *devq)
|
|
{
|
|
/*
|
|
* Have work to do.
|
|
* Have space to do more work.
|
|
* Allowed to do work.
|
|
*/
|
|
return ((devq->alloc_queue.qfrozen_cnt == 0)
|
|
&& (devq->alloc_queue.entries > 0)
|
|
&& (devq->alloc_openings > 0));
|
|
}
|
|
|
|
static void
|
|
xpt_periph_init()
|
|
{
|
|
make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
|
|
}
|
|
|
|
static void
|
|
probe_periph_init()
|
|
{
|
|
}
|
|
|
|
|
|
static void
|
|
xptdone(struct cam_periph *periph, union ccb *done_ccb)
|
|
{
|
|
/* Caller will release the CCB */
|
|
wakeup(&done_ccb->ccb_h.cbfcnp);
|
|
}
|
|
|
|
static int
|
|
xptopen(dev_t dev, int flags, int fmt, struct proc *p)
|
|
{
|
|
int unit;
|
|
|
|
unit = minor(dev) & 0xff;
|
|
|
|
/*
|
|
* Only allow read-write access.
|
|
*/
|
|
if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
|
|
return(EPERM);
|
|
|
|
/*
|
|
* We don't allow nonblocking access.
|
|
*/
|
|
if ((flags & O_NONBLOCK) != 0) {
|
|
printf("xpt%d: can't do nonblocking accesss\n", unit);
|
|
return(ENODEV);
|
|
}
|
|
|
|
/*
|
|
* We only have one transport layer right now. If someone accesses
|
|
* us via something other than minor number 1, point out their
|
|
* mistake.
|
|
*/
|
|
if (unit != 0) {
|
|
printf("xptopen: got invalid xpt unit %d\n", unit);
|
|
return(ENXIO);
|
|
}
|
|
|
|
/* Mark ourselves open */
|
|
xsoftc.flags |= XPT_FLAG_OPEN;
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int
|
|
xptclose(dev_t dev, int flag, int fmt, struct proc *p)
|
|
{
|
|
int unit;
|
|
|
|
unit = minor(dev) & 0xff;
|
|
|
|
/*
|
|
* We only have one transport layer right now. If someone accesses
|
|
* us via something other than minor number 1, point out their
|
|
* mistake.
|
|
*/
|
|
if (unit != 0) {
|
|
printf("xptclose: got invalid xpt unit %d\n", unit);
|
|
return(ENXIO);
|
|
}
|
|
|
|
/* Mark ourselves closed */
|
|
xsoftc.flags &= ~XPT_FLAG_OPEN;
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int
|
|
xptioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct proc *p)
|
|
{
|
|
int unit, error;
|
|
|
|
error = 0;
|
|
unit = minor(dev) & 0xff;
|
|
|
|
/*
|
|
* We only have one transport layer right now. If someone accesses
|
|
* us via something other than minor number 1, point out their
|
|
* mistake.
|
|
*/
|
|
if (unit != 0) {
|
|
printf("xptioctl: got invalid xpt unit %d\n", unit);
|
|
return(ENXIO);
|
|
}
|
|
|
|
switch(cmd) {
|
|
/*
|
|
* For the transport layer CAMIOCOMMAND ioctl, we really only want
|
|
* to accept CCB types that don't quite make sense to send through a
|
|
* passthrough driver. XPT_PATH_INQ is an exception to this, as stated
|
|
* in the CAM spec.
|
|
*/
|
|
case CAMIOCOMMAND: {
|
|
union ccb *ccb;
|
|
union ccb *inccb;
|
|
|
|
inccb = (union ccb *)addr;
|
|
|
|
switch(inccb->ccb_h.func_code) {
|
|
case XPT_SCAN_BUS:
|
|
case XPT_RESET_BUS:
|
|
if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
|
|
|| (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case XPT_PATH_INQ:
|
|
case XPT_ENG_INQ:
|
|
case XPT_SCAN_LUN:
|
|
|
|
ccb = xpt_alloc_ccb();
|
|
|
|
/*
|
|
* Create a path using the bus, target, and lun the
|
|
* user passed in.
|
|
*/
|
|
if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
|
|
inccb->ccb_h.path_id,
|
|
inccb->ccb_h.target_id,
|
|
inccb->ccb_h.target_lun) !=
|
|
CAM_REQ_CMP){
|
|
error = EINVAL;
|
|
xpt_free_ccb(ccb);
|
|
break;
|
|
}
|
|
/* Ensure all of our fields are correct */
|
|
xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
|
|
inccb->ccb_h.pinfo.priority);
|
|
xpt_merge_ccb(ccb, inccb);
|
|
ccb->ccb_h.cbfcnp = xptdone;
|
|
cam_periph_runccb(ccb, NULL, 0, 0, NULL);
|
|
bcopy(ccb, inccb, sizeof(union ccb));
|
|
xpt_free_path(ccb->ccb_h.path);
|
|
xpt_free_ccb(ccb);
|
|
break;
|
|
|
|
case XPT_DEBUG: {
|
|
union ccb ccb;
|
|
|
|
/*
|
|
* This is an immediate CCB, so it's okay to
|
|
* allocate it on the stack.
|
|
*/
|
|
|
|
/*
|
|
* Create a path using the bus, target, and lun the
|
|
* user passed in.
|
|
*/
|
|
if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
|
|
inccb->ccb_h.path_id,
|
|
inccb->ccb_h.target_id,
|
|
inccb->ccb_h.target_lun) !=
|
|
CAM_REQ_CMP){
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
/* Ensure all of our fields are correct */
|
|
xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
|
|
inccb->ccb_h.pinfo.priority);
|
|
xpt_merge_ccb(&ccb, inccb);
|
|
ccb.ccb_h.cbfcnp = xptdone;
|
|
xpt_action(&ccb);
|
|
bcopy(&ccb, inccb, sizeof(union ccb));
|
|
xpt_free_path(ccb.ccb_h.path);
|
|
break;
|
|
|
|
}
|
|
case XPT_DEV_MATCH: {
|
|
struct cam_periph_map_info mapinfo;
|
|
struct cam_path *old_path;
|
|
|
|
/*
|
|
* We can't deal with physical addresses for this
|
|
* type of transaction.
|
|
*/
|
|
if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Save this in case the caller had it set to
|
|
* something in particular.
|
|
*/
|
|
old_path = inccb->ccb_h.path;
|
|
|
|
/*
|
|
* We really don't need a path for the matching
|
|
* code. The path is needed because of the
|
|
* debugging statements in xpt_action(). They
|
|
* assume that the CCB has a valid path.
|
|
*/
|
|
inccb->ccb_h.path = xpt_periph->path;
|
|
|
|
bzero(&mapinfo, sizeof(mapinfo));
|
|
|
|
/*
|
|
* Map the pattern and match buffers into kernel
|
|
* virtual address space.
|
|
*/
|
|
error = cam_periph_mapmem(inccb, &mapinfo);
|
|
|
|
if (error) {
|
|
inccb->ccb_h.path = old_path;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* This is an immediate CCB, we can send it on directly.
|
|
*/
|
|
xpt_action(inccb);
|
|
|
|
/*
|
|
* Map the buffers back into user space.
|
|
*/
|
|
cam_periph_unmapmem(inccb, &mapinfo);
|
|
|
|
inccb->ccb_h.path = old_path;
|
|
|
|
error = 0;
|
|
break;
|
|
}
|
|
default:
|
|
error = ENOTSUP;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
/*
|
|
* This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
|
|
* with the periphal driver name and unit name filled in. The other
|
|
* fields don't really matter as input. The passthrough driver name
|
|
* ("pass"), and unit number are passed back in the ccb. The current
|
|
* device generation number, and the index into the device peripheral
|
|
* driver list, and the status are also passed back. Note that
|
|
* since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
|
|
* we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
|
|
* (or rather should be) impossible for the device peripheral driver
|
|
* list to change since we look at the whole thing in one pass, and
|
|
* we do it with splcam protection.
|
|
*
|
|
*/
|
|
case CAMGETPASSTHRU: {
|
|
union ccb *ccb;
|
|
struct cam_periph *periph;
|
|
struct periph_driver **p_drv;
|
|
char *name;
|
|
int unit;
|
|
int cur_generation;
|
|
int base_periph_found;
|
|
int splbreaknum;
|
|
int s;
|
|
|
|
ccb = (union ccb *)addr;
|
|
unit = ccb->cgdl.unit_number;
|
|
name = ccb->cgdl.periph_name;
|
|
/*
|
|
* Every 100 devices, we want to drop our spl protection to
|
|
* give the software interrupt handler a chance to run.
|
|
* Most systems won't run into this check, but this should
|
|
* avoid starvation in the software interrupt handler in
|
|
* large systems.
|
|
*/
|
|
splbreaknum = 100;
|
|
|
|
ccb = (union ccb *)addr;
|
|
|
|
base_periph_found = 0;
|
|
|
|
/*
|
|
* Sanity check -- make sure we don't get a null peripheral
|
|
* driver name.
|
|
*/
|
|
if (*ccb->cgdl.periph_name == '\0') {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* Keep the list from changing while we traverse it */
|
|
s = splcam();
|
|
ptstartover:
|
|
cur_generation = xsoftc.generation;
|
|
|
|
/* first find our driver in the list of drivers */
|
|
for (p_drv = (struct periph_driver **)periphdriver_set.ls_items;
|
|
*p_drv != NULL; p_drv++)
|
|
if (strcmp((*p_drv)->driver_name, name) == 0)
|
|
break;
|
|
|
|
if (*p_drv == NULL) {
|
|
splx(s);
|
|
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
|
|
ccb->cgdl.status = CAM_GDEVLIST_ERROR;
|
|
*ccb->cgdl.periph_name = '\0';
|
|
ccb->cgdl.unit_number = 0;
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Run through every peripheral instance of this driver
|
|
* and check to see whether it matches the unit passed
|
|
* in by the user. If it does, get out of the loops and
|
|
* find the passthrough driver associated with that
|
|
* peripheral driver.
|
|
*/
|
|
for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
|
|
periph = TAILQ_NEXT(periph, unit_links)) {
|
|
|
|
if (periph->unit_number == unit) {
|
|
break;
|
|
} else if (--splbreaknum == 0) {
|
|
splx(s);
|
|
s = splcam();
|
|
splbreaknum = 100;
|
|
if (cur_generation != xsoftc.generation)
|
|
goto ptstartover;
|
|
}
|
|
}
|
|
/*
|
|
* If we found the peripheral driver that the user passed
|
|
* in, go through all of the peripheral drivers for that
|
|
* particular device and look for a passthrough driver.
|
|
*/
|
|
if (periph != NULL) {
|
|
struct cam_ed *device;
|
|
int i;
|
|
|
|
base_periph_found = 1;
|
|
device = periph->path->device;
|
|
for (i = 0, periph = SLIST_FIRST(&device->periphs);
|
|
periph != NULL;
|
|
periph = SLIST_NEXT(periph, periph_links), i++) {
|
|
/*
|
|
* Check to see whether we have a
|
|
* passthrough device or not.
|
|
*/
|
|
if (strcmp(periph->periph_name, "pass") == 0) {
|
|
/*
|
|
* Fill in the getdevlist fields.
|
|
*/
|
|
strcpy(ccb->cgdl.periph_name,
|
|
periph->periph_name);
|
|
ccb->cgdl.unit_number =
|
|
periph->unit_number;
|
|
if (SLIST_NEXT(periph, periph_links))
|
|
ccb->cgdl.status =
|
|
CAM_GDEVLIST_MORE_DEVS;
|
|
else
|
|
ccb->cgdl.status =
|
|
CAM_GDEVLIST_LAST_DEVICE;
|
|
ccb->cgdl.generation =
|
|
device->generation;
|
|
ccb->cgdl.index = i;
|
|
/*
|
|
* Fill in some CCB header fields
|
|
* that the user may want.
|
|
*/
|
|
ccb->ccb_h.path_id =
|
|
periph->path->bus->path_id;
|
|
ccb->ccb_h.target_id =
|
|
periph->path->target->target_id;
|
|
ccb->ccb_h.target_lun =
|
|
periph->path->device->lun_id;
|
|
ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the periph is null here, one of two things has
|
|
* happened. The first possibility is that we couldn't
|
|
* find the unit number of the particular peripheral driver
|
|
* that the user is asking about. e.g. the user asks for
|
|
* the passthrough driver for "da11". We find the list of
|
|
* "da" peripherals all right, but there is no unit 11.
|
|
* The other possibility is that we went through the list
|
|
* of peripheral drivers attached to the device structure,
|
|
* but didn't find one with the name "pass". Either way,
|
|
* we return ENOENT, since we couldn't find something.
|
|
*/
|
|
if (periph == NULL) {
|
|
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
|
|
ccb->cgdl.status = CAM_GDEVLIST_ERROR;
|
|
*ccb->cgdl.periph_name = '\0';
|
|
ccb->cgdl.unit_number = 0;
|
|
error = ENOENT;
|
|
/*
|
|
* It is unfortunate that this is even necessary,
|
|
* but there are many, many clueless users out there.
|
|
* If this is true, the user is looking for the
|
|
* passthrough driver, but doesn't have one in his
|
|
* kernel.
|
|
*/
|
|
if (base_periph_found == 1) {
|
|
printf("xptioctl: pass driver is not in the "
|
|
"kernel\n");
|
|
printf("xptioctl: put \"device pass0\" in "
|
|
"your kernel config file\n");
|
|
}
|
|
}
|
|
splx(s);
|
|
break;
|
|
}
|
|
default:
|
|
error = ENOTTY;
|
|
break;
|
|
}
|
|
|
|
return(error);
|
|
}
|
|
|
|
static int
|
|
cam_module_event_handler(module_t mod, int what, void *arg)
|
|
{
|
|
if (what == MOD_LOAD) {
|
|
xpt_init(NULL);
|
|
} else if (what == MOD_UNLOAD) {
|
|
return EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Functions accessed by the peripheral drivers */
|
|
static void
|
|
xpt_init(dummy)
|
|
void *dummy;
|
|
{
|
|
struct cam_sim *xpt_sim;
|
|
struct cam_path *path;
|
|
struct cam_devq *devq;
|
|
cam_status status;
|
|
|
|
TAILQ_INIT(&xpt_busses);
|
|
TAILQ_INIT(&cam_bioq);
|
|
TAILQ_INIT(&cam_netq);
|
|
SLIST_INIT(&ccb_freeq);
|
|
STAILQ_INIT(&highpowerq);
|
|
|
|
/*
|
|
* The xpt layer is, itself, the equivelent of a SIM.
|
|
* Allow 16 ccbs in the ccb pool for it. This should
|
|
* give decent parallelism when we probe busses and
|
|
* perform other XPT functions.
|
|
*/
|
|
devq = cam_simq_alloc(16);
|
|
xpt_sim = cam_sim_alloc(xptaction,
|
|
xptpoll,
|
|
"xpt",
|
|
/*softc*/NULL,
|
|
/*unit*/0,
|
|
/*max_dev_transactions*/0,
|
|
/*max_tagged_dev_transactions*/0,
|
|
devq);
|
|
xpt_max_ccbs = 16;
|
|
|
|
xpt_bus_register(xpt_sim, /*bus #*/0);
|
|
|
|
/*
|
|
* Looking at the XPT from the SIM layer, the XPT is
|
|
* the equivelent of a peripheral driver. Allocate
|
|
* a peripheral driver entry for us.
|
|
*/
|
|
if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
|
|
CAM_TARGET_WILDCARD,
|
|
CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
|
|
printf("xpt_init: xpt_create_path failed with status %#x,"
|
|
" failing attach\n", status);
|
|
return;
|
|
}
|
|
|
|
cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
|
|
path, NULL, 0, NULL);
|
|
xpt_free_path(path);
|
|
|
|
xpt_sim->softc = xpt_periph;
|
|
|
|
/*
|
|
* Register a callback for when interrupts are enabled.
|
|
*/
|
|
xpt_config_hook =
|
|
(struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
|
|
M_TEMP, M_NOWAIT | M_ZERO);
|
|
if (xpt_config_hook == NULL) {
|
|
printf("xpt_init: Cannot malloc config hook "
|
|
"- failing attach\n");
|
|
return;
|
|
}
|
|
|
|
xpt_config_hook->ich_func = xpt_config;
|
|
if (config_intrhook_establish(xpt_config_hook) != 0) {
|
|
free (xpt_config_hook, M_TEMP);
|
|
printf("xpt_init: config_intrhook_establish failed "
|
|
"- failing attach\n");
|
|
}
|
|
|
|
/* Install our software interrupt handlers */
|
|
camnet_ih = sinthand_add("camnet", NULL, camisr, &cam_netq,
|
|
SWI_CAMNET, 0);
|
|
cambio_ih = sinthand_add("cambio", NULL, camisr, &cam_bioq,
|
|
SWI_CAMBIO, 0);
|
|
}
|
|
|
|
static cam_status
|
|
xptregister(struct cam_periph *periph, void *arg)
|
|
{
|
|
if (periph == NULL) {
|
|
printf("xptregister: periph was NULL!!\n");
|
|
return(CAM_REQ_CMP_ERR);
|
|
}
|
|
|
|
periph->softc = NULL;
|
|
|
|
xpt_periph = periph;
|
|
|
|
return(CAM_REQ_CMP);
|
|
}
|
|
|
|
int32_t
|
|
xpt_add_periph(struct cam_periph *periph)
|
|
{
|
|
struct cam_ed *device;
|
|
int32_t status;
|
|
struct periph_list *periph_head;
|
|
|
|
device = periph->path->device;
|
|
|
|
periph_head = &device->periphs;
|
|
|
|
status = CAM_REQ_CMP;
|
|
|
|
if (device != NULL) {
|
|
int s;
|
|
|
|
/*
|
|
* Make room for this peripheral
|
|
* so it will fit in the queue
|
|
* when it's scheduled to run
|
|
*/
|
|
s = splsoftcam();
|
|
status = camq_resize(&device->drvq,
|
|
device->drvq.array_size + 1);
|
|
|
|
device->generation++;
|
|
|
|
SLIST_INSERT_HEAD(periph_head, periph, periph_links);
|
|
|
|
splx(s);
|
|
}
|
|
|
|
xsoftc.generation++;
|
|
|
|
return (status);
|
|
}
|
|
|
|
void
|
|
xpt_remove_periph(struct cam_periph *periph)
|
|
{
|
|
struct cam_ed *device;
|
|
|
|
device = periph->path->device;
|
|
|
|
if (device != NULL) {
|
|
int s;
|
|
struct periph_list *periph_head;
|
|
|
|
periph_head = &device->periphs;
|
|
|
|
/* Release the slot for this peripheral */
|
|
s = splsoftcam();
|
|
camq_resize(&device->drvq, device->drvq.array_size - 1);
|
|
|
|
device->generation++;
|
|
|
|
SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
|
|
|
|
splx(s);
|
|
}
|
|
|
|
xsoftc.generation++;
|
|
|
|
}
|
|
|
|
void
|
|
xpt_announce_periph(struct cam_periph *periph, char *announce_string)
|
|
{
|
|
int s;
|
|
u_int mb;
|
|
struct cam_path *path;
|
|
struct ccb_trans_settings cts;
|
|
|
|
path = periph->path;
|
|
/*
|
|
* To ensure that this is printed in one piece,
|
|
* mask out CAM interrupts.
|
|
*/
|
|
s = splsoftcam();
|
|
printf("%s%d at %s%d bus %d target %d lun %d\n",
|
|
periph->periph_name, periph->unit_number,
|
|
path->bus->sim->sim_name,
|
|
path->bus->sim->unit_number,
|
|
path->bus->sim->bus_id,
|
|
path->target->target_id,
|
|
path->device->lun_id);
|
|
printf("%s%d: ", periph->periph_name, periph->unit_number);
|
|
scsi_print_inquiry(&path->device->inq_data);
|
|
if ((bootverbose)
|
|
&& (path->device->serial_num_len > 0)) {
|
|
/* Don't wrap the screen - print only the first 60 chars */
|
|
printf("%s%d: Serial Number %.60s\n", periph->periph_name,
|
|
periph->unit_number, path->device->serial_num);
|
|
}
|
|
xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
|
|
cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
|
|
cts.flags = CCB_TRANS_CURRENT_SETTINGS;
|
|
xpt_action((union ccb*)&cts);
|
|
if (cts.ccb_h.status == CAM_REQ_CMP) {
|
|
u_int speed;
|
|
u_int freq;
|
|
|
|
if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
|
|
&& cts.sync_offset != 0) {
|
|
freq = scsi_calc_syncsrate(cts.sync_period);
|
|
speed = freq;
|
|
} else {
|
|
struct ccb_pathinq cpi;
|
|
|
|
/* Ask the SIM for its base transfer speed */
|
|
xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
|
|
cpi.ccb_h.func_code = XPT_PATH_INQ;
|
|
xpt_action((union ccb *)&cpi);
|
|
|
|
speed = cpi.base_transfer_speed;
|
|
freq = 0;
|
|
}
|
|
if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
|
|
speed *= (0x01 << cts.bus_width);
|
|
mb = speed / 1000;
|
|
if (mb > 0)
|
|
printf("%s%d: %d.%03dMB/s transfers",
|
|
periph->periph_name, periph->unit_number,
|
|
mb, speed % 1000);
|
|
else
|
|
printf("%s%d: %dKB/s transfers", periph->periph_name,
|
|
periph->unit_number, speed);
|
|
if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
|
|
&& cts.sync_offset != 0) {
|
|
printf(" (%d.%03dMHz, offset %d", freq / 1000,
|
|
freq % 1000, cts.sync_offset);
|
|
}
|
|
if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0
|
|
&& cts.bus_width > 0) {
|
|
if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
|
|
&& cts.sync_offset != 0) {
|
|
printf(", ");
|
|
} else {
|
|
printf(" (");
|
|
}
|
|
printf("%dbit)", 8 * (0x01 << cts.bus_width));
|
|
} else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
|
|
&& cts.sync_offset != 0) {
|
|
printf(")");
|
|
}
|
|
|
|
if (path->device->inq_flags & SID_CmdQue
|
|
|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
|
|
printf(", Tagged Queueing Enabled");
|
|
}
|
|
|
|
printf("\n");
|
|
} else if (path->device->inq_flags & SID_CmdQue
|
|
|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
|
|
printf("%s%d: Tagged Queueing Enabled\n",
|
|
periph->periph_name, periph->unit_number);
|
|
}
|
|
|
|
/*
|
|
* We only want to print the caller's announce string if they've
|
|
* passed one in..
|
|
*/
|
|
if (announce_string != NULL)
|
|
printf("%s%d: %s\n", periph->periph_name,
|
|
periph->unit_number, announce_string);
|
|
splx(s);
|
|
}
|
|
|
|
|
|
static dev_match_ret
|
|
xptbusmatch(struct dev_match_pattern *patterns, int num_patterns,
|
|
struct cam_eb *bus)
|
|
{
|
|
dev_match_ret retval;
|
|
int i;
|
|
|
|
retval = DM_RET_NONE;
|
|
|
|
/*
|
|
* If we aren't given something to match against, that's an error.
|
|
*/
|
|
if (bus == NULL)
|
|
return(DM_RET_ERROR);
|
|
|
|
/*
|
|
* If there are no match entries, then this bus matches no
|
|
* matter what.
|
|
*/
|
|
if ((patterns == NULL) || (num_patterns == 0))
|
|
return(DM_RET_DESCEND | DM_RET_COPY);
|
|
|
|
for (i = 0; i < num_patterns; i++) {
|
|
struct bus_match_pattern *cur_pattern;
|
|
|
|
/*
|
|
* If the pattern in question isn't for a bus node, we
|
|
* aren't interested. However, we do indicate to the
|
|
* calling routine that we should continue descending the
|
|
* tree, since the user wants to match against lower-level
|
|
* EDT elements.
|
|
*/
|
|
if (patterns[i].type != DEV_MATCH_BUS) {
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
|
|
retval |= DM_RET_DESCEND;
|
|
continue;
|
|
}
|
|
|
|
cur_pattern = &patterns[i].pattern.bus_pattern;
|
|
|
|
/*
|
|
* If they want to match any bus node, we give them any
|
|
* device node.
|
|
*/
|
|
if (cur_pattern->flags == BUS_MATCH_ANY) {
|
|
/* set the copy flag */
|
|
retval |= DM_RET_COPY;
|
|
|
|
/*
|
|
* If we've already decided on an action, go ahead
|
|
* and return.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* Not sure why someone would do this...
|
|
*/
|
|
if (cur_pattern->flags == BUS_MATCH_NONE)
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
|
|
&& (cur_pattern->path_id != bus->path_id))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
|
|
&& (cur_pattern->bus_id != bus->sim->bus_id))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
|
|
&& (cur_pattern->unit_number != bus->sim->unit_number))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
|
|
&& (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
|
|
DEV_IDLEN) != 0))
|
|
continue;
|
|
|
|
/*
|
|
* If we get to this point, the user definitely wants
|
|
* information on this bus. So tell the caller to copy the
|
|
* data out.
|
|
*/
|
|
retval |= DM_RET_COPY;
|
|
|
|
/*
|
|
* If the return action has been set to descend, then we
|
|
* know that we've already seen a non-bus matching
|
|
* expression, therefore we need to further descend the tree.
|
|
* This won't change by continuing around the loop, so we
|
|
* go ahead and return. If we haven't seen a non-bus
|
|
* matching expression, we keep going around the loop until
|
|
* we exhaust the matching expressions. We'll set the stop
|
|
* flag once we fall out of the loop.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* If the return action hasn't been set to descend yet, that means
|
|
* we haven't seen anything other than bus matching patterns. So
|
|
* tell the caller to stop descending the tree -- the user doesn't
|
|
* want to match against lower level tree elements.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
|
|
retval |= DM_RET_STOP;
|
|
|
|
return(retval);
|
|
}
|
|
|
|
static dev_match_ret
|
|
xptdevicematch(struct dev_match_pattern *patterns, int num_patterns,
|
|
struct cam_ed *device)
|
|
{
|
|
dev_match_ret retval;
|
|
int i;
|
|
|
|
retval = DM_RET_NONE;
|
|
|
|
/*
|
|
* If we aren't given something to match against, that's an error.
|
|
*/
|
|
if (device == NULL)
|
|
return(DM_RET_ERROR);
|
|
|
|
/*
|
|
* If there are no match entries, then this device matches no
|
|
* matter what.
|
|
*/
|
|
if ((patterns == NULL) || (patterns == 0))
|
|
return(DM_RET_DESCEND | DM_RET_COPY);
|
|
|
|
for (i = 0; i < num_patterns; i++) {
|
|
struct device_match_pattern *cur_pattern;
|
|
|
|
/*
|
|
* If the pattern in question isn't for a device node, we
|
|
* aren't interested.
|
|
*/
|
|
if (patterns[i].type != DEV_MATCH_DEVICE) {
|
|
if ((patterns[i].type == DEV_MATCH_PERIPH)
|
|
&& ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
|
|
retval |= DM_RET_DESCEND;
|
|
continue;
|
|
}
|
|
|
|
cur_pattern = &patterns[i].pattern.device_pattern;
|
|
|
|
/*
|
|
* If they want to match any device node, we give them any
|
|
* device node.
|
|
*/
|
|
if (cur_pattern->flags == DEV_MATCH_ANY) {
|
|
/* set the copy flag */
|
|
retval |= DM_RET_COPY;
|
|
|
|
|
|
/*
|
|
* If we've already decided on an action, go ahead
|
|
* and return.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* Not sure why someone would do this...
|
|
*/
|
|
if (cur_pattern->flags == DEV_MATCH_NONE)
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
|
|
&& (cur_pattern->path_id != device->target->bus->path_id))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
|
|
&& (cur_pattern->target_id != device->target->target_id))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
|
|
&& (cur_pattern->target_lun != device->lun_id))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
|
|
&& (cam_quirkmatch((caddr_t)&device->inq_data,
|
|
(caddr_t)&cur_pattern->inq_pat,
|
|
1, sizeof(cur_pattern->inq_pat),
|
|
scsi_static_inquiry_match) == NULL))
|
|
continue;
|
|
|
|
/*
|
|
* If we get to this point, the user definitely wants
|
|
* information on this device. So tell the caller to copy
|
|
* the data out.
|
|
*/
|
|
retval |= DM_RET_COPY;
|
|
|
|
/*
|
|
* If the return action has been set to descend, then we
|
|
* know that we've already seen a peripheral matching
|
|
* expression, therefore we need to further descend the tree.
|
|
* This won't change by continuing around the loop, so we
|
|
* go ahead and return. If we haven't seen a peripheral
|
|
* matching expression, we keep going around the loop until
|
|
* we exhaust the matching expressions. We'll set the stop
|
|
* flag once we fall out of the loop.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* If the return action hasn't been set to descend yet, that means
|
|
* we haven't seen any peripheral matching patterns. So tell the
|
|
* caller to stop descending the tree -- the user doesn't want to
|
|
* match against lower level tree elements.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
|
|
retval |= DM_RET_STOP;
|
|
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* Match a single peripheral against any number of match patterns.
|
|
*/
|
|
static dev_match_ret
|
|
xptperiphmatch(struct dev_match_pattern *patterns, int num_patterns,
|
|
struct cam_periph *periph)
|
|
{
|
|
dev_match_ret retval;
|
|
int i;
|
|
|
|
/*
|
|
* If we aren't given something to match against, that's an error.
|
|
*/
|
|
if (periph == NULL)
|
|
return(DM_RET_ERROR);
|
|
|
|
/*
|
|
* If there are no match entries, then this peripheral matches no
|
|
* matter what.
|
|
*/
|
|
if ((patterns == NULL) || (num_patterns == 0))
|
|
return(DM_RET_STOP | DM_RET_COPY);
|
|
|
|
/*
|
|
* There aren't any nodes below a peripheral node, so there's no
|
|
* reason to descend the tree any further.
|
|
*/
|
|
retval = DM_RET_STOP;
|
|
|
|
for (i = 0; i < num_patterns; i++) {
|
|
struct periph_match_pattern *cur_pattern;
|
|
|
|
/*
|
|
* If the pattern in question isn't for a peripheral, we
|
|
* aren't interested.
|
|
*/
|
|
if (patterns[i].type != DEV_MATCH_PERIPH)
|
|
continue;
|
|
|
|
cur_pattern = &patterns[i].pattern.periph_pattern;
|
|
|
|
/*
|
|
* If they want to match on anything, then we will do so.
|
|
*/
|
|
if (cur_pattern->flags == PERIPH_MATCH_ANY) {
|
|
/* set the copy flag */
|
|
retval |= DM_RET_COPY;
|
|
|
|
/*
|
|
* We've already set the return action to stop,
|
|
* since there are no nodes below peripherals in
|
|
* the tree.
|
|
*/
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* Not sure why someone would do this...
|
|
*/
|
|
if (cur_pattern->flags == PERIPH_MATCH_NONE)
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
|
|
&& (cur_pattern->path_id != periph->path->bus->path_id))
|
|
continue;
|
|
|
|
/*
|
|
* For the target and lun id's, we have to make sure the
|
|
* target and lun pointers aren't NULL. The xpt peripheral
|
|
* has a wildcard target and device.
|
|
*/
|
|
if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
|
|
&& ((periph->path->target == NULL)
|
|
||(cur_pattern->target_id != periph->path->target->target_id)))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
|
|
&& ((periph->path->device == NULL)
|
|
|| (cur_pattern->target_lun != periph->path->device->lun_id)))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
|
|
&& (cur_pattern->unit_number != periph->unit_number))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
|
|
&& (strncmp(cur_pattern->periph_name, periph->periph_name,
|
|
DEV_IDLEN) != 0))
|
|
continue;
|
|
|
|
/*
|
|
* If we get to this point, the user definitely wants
|
|
* information on this peripheral. So tell the caller to
|
|
* copy the data out.
|
|
*/
|
|
retval |= DM_RET_COPY;
|
|
|
|
/*
|
|
* The return action has already been set to stop, since
|
|
* peripherals don't have any nodes below them in the EDT.
|
|
*/
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* If we get to this point, the peripheral that was passed in
|
|
* doesn't match any of the patterns.
|
|
*/
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xptedtbusfunc(struct cam_eb *bus, void *arg)
|
|
{
|
|
struct ccb_dev_match *cdm;
|
|
dev_match_ret retval;
|
|
|
|
cdm = (struct ccb_dev_match *)arg;
|
|
|
|
/*
|
|
* If our position is for something deeper in the tree, that means
|
|
* that we've already seen this node. So, we keep going down.
|
|
*/
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (cdm->pos.cookie.bus == bus)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
|
|
&& (cdm->pos.cookie.target != NULL))
|
|
retval = DM_RET_DESCEND;
|
|
else
|
|
retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
|
|
|
|
/*
|
|
* If we got an error, bail out of the search.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
|
|
cdm->status = CAM_DEV_MATCH_ERROR;
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* If the copy flag is set, copy this bus out.
|
|
*/
|
|
if (retval & DM_RET_COPY) {
|
|
int spaceleft, j;
|
|
|
|
spaceleft = cdm->match_buf_len - (cdm->num_matches *
|
|
sizeof(struct dev_match_result));
|
|
|
|
/*
|
|
* If we don't have enough space to put in another
|
|
* match result, save our position and tell the
|
|
* user there are more devices to check.
|
|
*/
|
|
if (spaceleft < sizeof(struct dev_match_result)) {
|
|
bzero(&cdm->pos, sizeof(cdm->pos));
|
|
cdm->pos.position_type =
|
|
CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
|
|
|
|
cdm->pos.cookie.bus = bus;
|
|
cdm->pos.generations[CAM_BUS_GENERATION]=
|
|
bus_generation;
|
|
cdm->status = CAM_DEV_MATCH_MORE;
|
|
return(0);
|
|
}
|
|
j = cdm->num_matches;
|
|
cdm->num_matches++;
|
|
cdm->matches[j].type = DEV_MATCH_BUS;
|
|
cdm->matches[j].result.bus_result.path_id = bus->path_id;
|
|
cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
|
|
cdm->matches[j].result.bus_result.unit_number =
|
|
bus->sim->unit_number;
|
|
strncpy(cdm->matches[j].result.bus_result.dev_name,
|
|
bus->sim->sim_name, DEV_IDLEN);
|
|
}
|
|
|
|
/*
|
|
* If the user is only interested in busses, there's no
|
|
* reason to descend to the next level in the tree.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
|
|
return(1);
|
|
|
|
/*
|
|
* If there is a target generation recorded, check it to
|
|
* make sure the target list hasn't changed.
|
|
*/
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (bus == cdm->pos.cookie.bus)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
|
|
&& (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
|
|
&& (cdm->pos.generations[CAM_TARGET_GENERATION] !=
|
|
bus->generation)) {
|
|
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
|
|
return(0);
|
|
}
|
|
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (cdm->pos.cookie.bus == bus)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
|
|
&& (cdm->pos.cookie.target != NULL))
|
|
return(xpttargettraverse(bus,
|
|
(struct cam_et *)cdm->pos.cookie.target,
|
|
xptedttargetfunc, arg));
|
|
else
|
|
return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptedttargetfunc(struct cam_et *target, void *arg)
|
|
{
|
|
struct ccb_dev_match *cdm;
|
|
|
|
cdm = (struct ccb_dev_match *)arg;
|
|
|
|
/*
|
|
* If there is a device list generation recorded, check it to
|
|
* make sure the device list hasn't changed.
|
|
*/
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (cdm->pos.cookie.bus == target->bus)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
|
|
&& (cdm->pos.cookie.target == target)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
|
|
&& (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
|
|
&& (cdm->pos.generations[CAM_DEV_GENERATION] !=
|
|
target->generation)) {
|
|
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
|
|
return(0);
|
|
}
|
|
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (cdm->pos.cookie.bus == target->bus)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
|
|
&& (cdm->pos.cookie.target == target)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
|
|
&& (cdm->pos.cookie.device != NULL))
|
|
return(xptdevicetraverse(target,
|
|
(struct cam_ed *)cdm->pos.cookie.device,
|
|
xptedtdevicefunc, arg));
|
|
else
|
|
return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptedtdevicefunc(struct cam_ed *device, void *arg)
|
|
{
|
|
|
|
struct ccb_dev_match *cdm;
|
|
dev_match_ret retval;
|
|
|
|
cdm = (struct ccb_dev_match *)arg;
|
|
|
|
/*
|
|
* If our position is for something deeper in the tree, that means
|
|
* that we've already seen this node. So, we keep going down.
|
|
*/
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
|
|
&& (cdm->pos.cookie.device == device)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
|
|
&& (cdm->pos.cookie.periph != NULL))
|
|
retval = DM_RET_DESCEND;
|
|
else
|
|
retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
|
|
device);
|
|
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
|
|
cdm->status = CAM_DEV_MATCH_ERROR;
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* If the copy flag is set, copy this device out.
|
|
*/
|
|
if (retval & DM_RET_COPY) {
|
|
int spaceleft, j;
|
|
|
|
spaceleft = cdm->match_buf_len - (cdm->num_matches *
|
|
sizeof(struct dev_match_result));
|
|
|
|
/*
|
|
* If we don't have enough space to put in another
|
|
* match result, save our position and tell the
|
|
* user there are more devices to check.
|
|
*/
|
|
if (spaceleft < sizeof(struct dev_match_result)) {
|
|
bzero(&cdm->pos, sizeof(cdm->pos));
|
|
cdm->pos.position_type =
|
|
CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
|
|
CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
|
|
|
|
cdm->pos.cookie.bus = device->target->bus;
|
|
cdm->pos.generations[CAM_BUS_GENERATION]=
|
|
bus_generation;
|
|
cdm->pos.cookie.target = device->target;
|
|
cdm->pos.generations[CAM_TARGET_GENERATION] =
|
|
device->target->bus->generation;
|
|
cdm->pos.cookie.device = device;
|
|
cdm->pos.generations[CAM_DEV_GENERATION] =
|
|
device->target->generation;
|
|
cdm->status = CAM_DEV_MATCH_MORE;
|
|
return(0);
|
|
}
|
|
j = cdm->num_matches;
|
|
cdm->num_matches++;
|
|
cdm->matches[j].type = DEV_MATCH_DEVICE;
|
|
cdm->matches[j].result.device_result.path_id =
|
|
device->target->bus->path_id;
|
|
cdm->matches[j].result.device_result.target_id =
|
|
device->target->target_id;
|
|
cdm->matches[j].result.device_result.target_lun =
|
|
device->lun_id;
|
|
bcopy(&device->inq_data,
|
|
&cdm->matches[j].result.device_result.inq_data,
|
|
sizeof(struct scsi_inquiry_data));
|
|
|
|
/* Let the user know whether this device is unconfigured */
|
|
if (device->flags & CAM_DEV_UNCONFIGURED)
|
|
cdm->matches[j].result.device_result.flags =
|
|
DEV_RESULT_UNCONFIGURED;
|
|
else
|
|
cdm->matches[j].result.device_result.flags =
|
|
DEV_RESULT_NOFLAG;
|
|
}
|
|
|
|
/*
|
|
* If the user isn't interested in peripherals, don't descend
|
|
* the tree any further.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
|
|
return(1);
|
|
|
|
/*
|
|
* If there is a peripheral list generation recorded, make sure
|
|
* it hasn't changed.
|
|
*/
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (device->target->bus == cdm->pos.cookie.bus)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
|
|
&& (device->target == cdm->pos.cookie.target)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
|
|
&& (device == cdm->pos.cookie.device)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
|
|
&& (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
|
|
&& (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
|
|
device->generation)){
|
|
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
|
|
return(0);
|
|
}
|
|
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (cdm->pos.cookie.bus == device->target->bus)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
|
|
&& (cdm->pos.cookie.target == device->target)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
|
|
&& (cdm->pos.cookie.device == device)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
|
|
&& (cdm->pos.cookie.periph != NULL))
|
|
return(xptperiphtraverse(device,
|
|
(struct cam_periph *)cdm->pos.cookie.periph,
|
|
xptedtperiphfunc, arg));
|
|
else
|
|
return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptedtperiphfunc(struct cam_periph *periph, void *arg)
|
|
{
|
|
struct ccb_dev_match *cdm;
|
|
dev_match_ret retval;
|
|
|
|
cdm = (struct ccb_dev_match *)arg;
|
|
|
|
retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
|
|
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
|
|
cdm->status = CAM_DEV_MATCH_ERROR;
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* If the copy flag is set, copy this peripheral out.
|
|
*/
|
|
if (retval & DM_RET_COPY) {
|
|
int spaceleft, j;
|
|
|
|
spaceleft = cdm->match_buf_len - (cdm->num_matches *
|
|
sizeof(struct dev_match_result));
|
|
|
|
/*
|
|
* If we don't have enough space to put in another
|
|
* match result, save our position and tell the
|
|
* user there are more devices to check.
|
|
*/
|
|
if (spaceleft < sizeof(struct dev_match_result)) {
|
|
bzero(&cdm->pos, sizeof(cdm->pos));
|
|
cdm->pos.position_type =
|
|
CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
|
|
CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
|
|
CAM_DEV_POS_PERIPH;
|
|
|
|
cdm->pos.cookie.bus = periph->path->bus;
|
|
cdm->pos.generations[CAM_BUS_GENERATION]=
|
|
bus_generation;
|
|
cdm->pos.cookie.target = periph->path->target;
|
|
cdm->pos.generations[CAM_TARGET_GENERATION] =
|
|
periph->path->bus->generation;
|
|
cdm->pos.cookie.device = periph->path->device;
|
|
cdm->pos.generations[CAM_DEV_GENERATION] =
|
|
periph->path->target->generation;
|
|
cdm->pos.cookie.periph = periph;
|
|
cdm->pos.generations[CAM_PERIPH_GENERATION] =
|
|
periph->path->device->generation;
|
|
cdm->status = CAM_DEV_MATCH_MORE;
|
|
return(0);
|
|
}
|
|
|
|
j = cdm->num_matches;
|
|
cdm->num_matches++;
|
|
cdm->matches[j].type = DEV_MATCH_PERIPH;
|
|
cdm->matches[j].result.periph_result.path_id =
|
|
periph->path->bus->path_id;
|
|
cdm->matches[j].result.periph_result.target_id =
|
|
periph->path->target->target_id;
|
|
cdm->matches[j].result.periph_result.target_lun =
|
|
periph->path->device->lun_id;
|
|
cdm->matches[j].result.periph_result.unit_number =
|
|
periph->unit_number;
|
|
strncpy(cdm->matches[j].result.periph_result.periph_name,
|
|
periph->periph_name, DEV_IDLEN);
|
|
}
|
|
|
|
return(1);
|
|
}
|
|
|
|
static int
|
|
xptedtmatch(struct ccb_dev_match *cdm)
|
|
{
|
|
int ret;
|
|
|
|
cdm->num_matches = 0;
|
|
|
|
/*
|
|
* Check the bus list generation. If it has changed, the user
|
|
* needs to reset everything and start over.
|
|
*/
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
|
|
&& (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) {
|
|
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
|
|
return(0);
|
|
}
|
|
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (cdm->pos.cookie.bus != NULL))
|
|
ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
|
|
xptedtbusfunc, cdm);
|
|
else
|
|
ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
|
|
|
|
/*
|
|
* If we get back 0, that means that we had to stop before fully
|
|
* traversing the EDT. It also means that one of the subroutines
|
|
* has set the status field to the proper value. If we get back 1,
|
|
* we've fully traversed the EDT and copied out any matching entries.
|
|
*/
|
|
if (ret == 1)
|
|
cdm->status = CAM_DEV_MATCH_LAST;
|
|
|
|
return(ret);
|
|
}
|
|
|
|
static int
|
|
xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
|
|
{
|
|
struct ccb_dev_match *cdm;
|
|
|
|
cdm = (struct ccb_dev_match *)arg;
|
|
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
|
|
&& (cdm->pos.cookie.pdrv == pdrv)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
|
|
&& (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
|
|
&& (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
|
|
(*pdrv)->generation)) {
|
|
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
|
|
return(0);
|
|
}
|
|
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
|
|
&& (cdm->pos.cookie.pdrv == pdrv)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
|
|
&& (cdm->pos.cookie.periph != NULL))
|
|
return(xptpdperiphtraverse(pdrv,
|
|
(struct cam_periph *)cdm->pos.cookie.periph,
|
|
xptplistperiphfunc, arg));
|
|
else
|
|
return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptplistperiphfunc(struct cam_periph *periph, void *arg)
|
|
{
|
|
struct ccb_dev_match *cdm;
|
|
dev_match_ret retval;
|
|
|
|
cdm = (struct ccb_dev_match *)arg;
|
|
|
|
retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
|
|
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
|
|
cdm->status = CAM_DEV_MATCH_ERROR;
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* If the copy flag is set, copy this peripheral out.
|
|
*/
|
|
if (retval & DM_RET_COPY) {
|
|
int spaceleft, j;
|
|
|
|
spaceleft = cdm->match_buf_len - (cdm->num_matches *
|
|
sizeof(struct dev_match_result));
|
|
|
|
/*
|
|
* If we don't have enough space to put in another
|
|
* match result, save our position and tell the
|
|
* user there are more devices to check.
|
|
*/
|
|
if (spaceleft < sizeof(struct dev_match_result)) {
|
|
struct periph_driver **pdrv;
|
|
|
|
pdrv = NULL;
|
|
bzero(&cdm->pos, sizeof(cdm->pos));
|
|
cdm->pos.position_type =
|
|
CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
|
|
CAM_DEV_POS_PERIPH;
|
|
|
|
/*
|
|
* This may look a bit non-sensical, but it is
|
|
* actually quite logical. There are very few
|
|
* peripheral drivers, and bloating every peripheral
|
|
* structure with a pointer back to its parent
|
|
* peripheral driver linker set entry would cost
|
|
* more in the long run than doing this quick lookup.
|
|
*/
|
|
for (pdrv =
|
|
(struct periph_driver **)periphdriver_set.ls_items;
|
|
*pdrv != NULL; pdrv++) {
|
|
if (strcmp((*pdrv)->driver_name,
|
|
periph->periph_name) == 0)
|
|
break;
|
|
}
|
|
|
|
if (pdrv == NULL) {
|
|
cdm->status = CAM_DEV_MATCH_ERROR;
|
|
return(0);
|
|
}
|
|
|
|
cdm->pos.cookie.pdrv = pdrv;
|
|
/*
|
|
* The periph generation slot does double duty, as
|
|
* does the periph pointer slot. They are used for
|
|
* both edt and pdrv lookups and positioning.
|
|
*/
|
|
cdm->pos.cookie.periph = periph;
|
|
cdm->pos.generations[CAM_PERIPH_GENERATION] =
|
|
(*pdrv)->generation;
|
|
cdm->status = CAM_DEV_MATCH_MORE;
|
|
return(0);
|
|
}
|
|
|
|
j = cdm->num_matches;
|
|
cdm->num_matches++;
|
|
cdm->matches[j].type = DEV_MATCH_PERIPH;
|
|
cdm->matches[j].result.periph_result.path_id =
|
|
periph->path->bus->path_id;
|
|
|
|
/*
|
|
* The transport layer peripheral doesn't have a target or
|
|
* lun.
|
|
*/
|
|
if (periph->path->target)
|
|
cdm->matches[j].result.periph_result.target_id =
|
|
periph->path->target->target_id;
|
|
else
|
|
cdm->matches[j].result.periph_result.target_id = -1;
|
|
|
|
if (periph->path->device)
|
|
cdm->matches[j].result.periph_result.target_lun =
|
|
periph->path->device->lun_id;
|
|
else
|
|
cdm->matches[j].result.periph_result.target_lun = -1;
|
|
|
|
cdm->matches[j].result.periph_result.unit_number =
|
|
periph->unit_number;
|
|
strncpy(cdm->matches[j].result.periph_result.periph_name,
|
|
periph->periph_name, DEV_IDLEN);
|
|
}
|
|
|
|
return(1);
|
|
}
|
|
|
|
static int
|
|
xptperiphlistmatch(struct ccb_dev_match *cdm)
|
|
{
|
|
int ret;
|
|
|
|
cdm->num_matches = 0;
|
|
|
|
/*
|
|
* At this point in the edt traversal function, we check the bus
|
|
* list generation to make sure that no busses have been added or
|
|
* removed since the user last sent a XPT_DEV_MATCH ccb through.
|
|
* For the peripheral driver list traversal function, however, we
|
|
* don't have to worry about new peripheral driver types coming or
|
|
* going; they're in a linker set, and therefore can't change
|
|
* without a recompile.
|
|
*/
|
|
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
|
|
&& (cdm->pos.cookie.pdrv != NULL))
|
|
ret = xptpdrvtraverse(
|
|
(struct periph_driver **)cdm->pos.cookie.pdrv,
|
|
xptplistpdrvfunc, cdm);
|
|
else
|
|
ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
|
|
|
|
/*
|
|
* If we get back 0, that means that we had to stop before fully
|
|
* traversing the peripheral driver tree. It also means that one of
|
|
* the subroutines has set the status field to the proper value. If
|
|
* we get back 1, we've fully traversed the EDT and copied out any
|
|
* matching entries.
|
|
*/
|
|
if (ret == 1)
|
|
cdm->status = CAM_DEV_MATCH_LAST;
|
|
|
|
return(ret);
|
|
}
|
|
|
|
static int
|
|
xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
|
|
{
|
|
struct cam_eb *bus, *next_bus;
|
|
int retval;
|
|
|
|
retval = 1;
|
|
|
|
for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses));
|
|
bus != NULL;
|
|
bus = next_bus) {
|
|
next_bus = TAILQ_NEXT(bus, links);
|
|
|
|
retval = tr_func(bus, arg);
|
|
if (retval == 0)
|
|
return(retval);
|
|
}
|
|
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
|
|
xpt_targetfunc_t *tr_func, void *arg)
|
|
{
|
|
struct cam_et *target, *next_target;
|
|
int retval;
|
|
|
|
retval = 1;
|
|
for (target = (start_target ? start_target :
|
|
TAILQ_FIRST(&bus->et_entries));
|
|
target != NULL; target = next_target) {
|
|
|
|
next_target = TAILQ_NEXT(target, links);
|
|
|
|
retval = tr_func(target, arg);
|
|
|
|
if (retval == 0)
|
|
return(retval);
|
|
}
|
|
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
|
|
xpt_devicefunc_t *tr_func, void *arg)
|
|
{
|
|
struct cam_ed *device, *next_device;
|
|
int retval;
|
|
|
|
retval = 1;
|
|
for (device = (start_device ? start_device :
|
|
TAILQ_FIRST(&target->ed_entries));
|
|
device != NULL;
|
|
device = next_device) {
|
|
|
|
next_device = TAILQ_NEXT(device, links);
|
|
|
|
retval = tr_func(device, arg);
|
|
|
|
if (retval == 0)
|
|
return(retval);
|
|
}
|
|
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
|
|
xpt_periphfunc_t *tr_func, void *arg)
|
|
{
|
|
struct cam_periph *periph, *next_periph;
|
|
int retval;
|
|
|
|
retval = 1;
|
|
|
|
for (periph = (start_periph ? start_periph :
|
|
SLIST_FIRST(&device->periphs));
|
|
periph != NULL;
|
|
periph = next_periph) {
|
|
|
|
next_periph = SLIST_NEXT(periph, periph_links);
|
|
|
|
retval = tr_func(periph, arg);
|
|
if (retval == 0)
|
|
return(retval);
|
|
}
|
|
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xptpdrvtraverse(struct periph_driver **start_pdrv,
|
|
xpt_pdrvfunc_t *tr_func, void *arg)
|
|
{
|
|
struct periph_driver **pdrv;
|
|
int retval;
|
|
|
|
retval = 1;
|
|
|
|
/*
|
|
* We don't traverse the peripheral driver list like we do the
|
|
* other lists, because it is a linker set, and therefore cannot be
|
|
* changed during runtime. If the peripheral driver list is ever
|
|
* re-done to be something other than a linker set (i.e. it can
|
|
* change while the system is running), the list traversal should
|
|
* be modified to work like the other traversal functions.
|
|
*/
|
|
for (pdrv = (start_pdrv ? start_pdrv :
|
|
(struct periph_driver **)periphdriver_set.ls_items);
|
|
*pdrv != NULL; pdrv++) {
|
|
retval = tr_func(pdrv, arg);
|
|
|
|
if (retval == 0)
|
|
return(retval);
|
|
}
|
|
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xptpdperiphtraverse(struct periph_driver **pdrv,
|
|
struct cam_periph *start_periph,
|
|
xpt_periphfunc_t *tr_func, void *arg)
|
|
{
|
|
struct cam_periph *periph, *next_periph;
|
|
int retval;
|
|
|
|
retval = 1;
|
|
|
|
for (periph = (start_periph ? start_periph :
|
|
TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
|
|
periph = next_periph) {
|
|
|
|
next_periph = TAILQ_NEXT(periph, unit_links);
|
|
|
|
retval = tr_func(periph, arg);
|
|
if (retval == 0)
|
|
return(retval);
|
|
}
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xptdefbusfunc(struct cam_eb *bus, void *arg)
|
|
{
|
|
struct xpt_traverse_config *tr_config;
|
|
|
|
tr_config = (struct xpt_traverse_config *)arg;
|
|
|
|
if (tr_config->depth == XPT_DEPTH_BUS) {
|
|
xpt_busfunc_t *tr_func;
|
|
|
|
tr_func = (xpt_busfunc_t *)tr_config->tr_func;
|
|
|
|
return(tr_func(bus, tr_config->tr_arg));
|
|
} else
|
|
return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptdeftargetfunc(struct cam_et *target, void *arg)
|
|
{
|
|
struct xpt_traverse_config *tr_config;
|
|
|
|
tr_config = (struct xpt_traverse_config *)arg;
|
|
|
|
if (tr_config->depth == XPT_DEPTH_TARGET) {
|
|
xpt_targetfunc_t *tr_func;
|
|
|
|
tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
|
|
|
|
return(tr_func(target, tr_config->tr_arg));
|
|
} else
|
|
return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptdefdevicefunc(struct cam_ed *device, void *arg)
|
|
{
|
|
struct xpt_traverse_config *tr_config;
|
|
|
|
tr_config = (struct xpt_traverse_config *)arg;
|
|
|
|
if (tr_config->depth == XPT_DEPTH_DEVICE) {
|
|
xpt_devicefunc_t *tr_func;
|
|
|
|
tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
|
|
|
|
return(tr_func(device, tr_config->tr_arg));
|
|
} else
|
|
return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptdefperiphfunc(struct cam_periph *periph, void *arg)
|
|
{
|
|
struct xpt_traverse_config *tr_config;
|
|
xpt_periphfunc_t *tr_func;
|
|
|
|
tr_config = (struct xpt_traverse_config *)arg;
|
|
|
|
tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
|
|
|
|
/*
|
|
* Unlike the other default functions, we don't check for depth
|
|
* here. The peripheral driver level is the last level in the EDT,
|
|
* so if we're here, we should execute the function in question.
|
|
*/
|
|
return(tr_func(periph, tr_config->tr_arg));
|
|
}
|
|
|
|
/*
|
|
* Execute the given function for every bus in the EDT.
|
|
*/
|
|
static int
|
|
xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
|
|
{
|
|
struct xpt_traverse_config tr_config;
|
|
|
|
tr_config.depth = XPT_DEPTH_BUS;
|
|
tr_config.tr_func = tr_func;
|
|
tr_config.tr_arg = arg;
|
|
|
|
return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
|
|
}
|
|
|
|
#ifdef notusedyet
|
|
/*
|
|
* Execute the given function for every target in the EDT.
|
|
*/
|
|
static int
|
|
xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg)
|
|
{
|
|
struct xpt_traverse_config tr_config;
|
|
|
|
tr_config.depth = XPT_DEPTH_TARGET;
|
|
tr_config.tr_func = tr_func;
|
|
tr_config.tr_arg = arg;
|
|
|
|
return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
|
|
}
|
|
#endif /* notusedyet */
|
|
|
|
/*
|
|
* Execute the given function for every device in the EDT.
|
|
*/
|
|
static int
|
|
xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
|
|
{
|
|
struct xpt_traverse_config tr_config;
|
|
|
|
tr_config.depth = XPT_DEPTH_DEVICE;
|
|
tr_config.tr_func = tr_func;
|
|
tr_config.tr_arg = arg;
|
|
|
|
return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
|
|
}
|
|
|
|
#ifdef notusedyet
|
|
/*
|
|
* Execute the given function for every peripheral in the EDT.
|
|
*/
|
|
static int
|
|
xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg)
|
|
{
|
|
struct xpt_traverse_config tr_config;
|
|
|
|
tr_config.depth = XPT_DEPTH_PERIPH;
|
|
tr_config.tr_func = tr_func;
|
|
tr_config.tr_arg = arg;
|
|
|
|
return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
|
|
}
|
|
#endif /* notusedyet */
|
|
|
|
static int
|
|
xptsetasyncfunc(struct cam_ed *device, void *arg)
|
|
{
|
|
struct cam_path path;
|
|
struct ccb_getdev cgd;
|
|
struct async_node *cur_entry;
|
|
|
|
cur_entry = (struct async_node *)arg;
|
|
|
|
/*
|
|
* Don't report unconfigured devices (Wildcard devs,
|
|
* devices only for target mode, device instances
|
|
* that have been invalidated but are waiting for
|
|
* their last reference count to be released).
|
|
*/
|
|
if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
|
|
return (1);
|
|
|
|
xpt_compile_path(&path,
|
|
NULL,
|
|
device->target->bus->path_id,
|
|
device->target->target_id,
|
|
device->lun_id);
|
|
xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
|
|
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
|
|
xpt_action((union ccb *)&cgd);
|
|
cur_entry->callback(cur_entry->callback_arg,
|
|
AC_FOUND_DEVICE,
|
|
&path, &cgd);
|
|
xpt_release_path(&path);
|
|
|
|
return(1);
|
|
}
|
|
|
|
static int
|
|
xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
|
|
{
|
|
struct cam_path path;
|
|
struct ccb_pathinq cpi;
|
|
struct async_node *cur_entry;
|
|
|
|
cur_entry = (struct async_node *)arg;
|
|
|
|
xpt_compile_path(&path, /*periph*/NULL,
|
|
bus->sim->path_id,
|
|
CAM_TARGET_WILDCARD,
|
|
CAM_LUN_WILDCARD);
|
|
xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
|
|
cpi.ccb_h.func_code = XPT_PATH_INQ;
|
|
xpt_action((union ccb *)&cpi);
|
|
cur_entry->callback(cur_entry->callback_arg,
|
|
AC_PATH_REGISTERED,
|
|
&path, &cpi);
|
|
xpt_release_path(&path);
|
|
|
|
return(1);
|
|
}
|
|
|
|
void
|
|
xpt_action(union ccb *start_ccb)
|
|
{
|
|
int iopl;
|
|
|
|
CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
|
|
|
|
start_ccb->ccb_h.status = CAM_REQ_INPROG;
|
|
|
|
iopl = splsoftcam();
|
|
switch (start_ccb->ccb_h.func_code) {
|
|
case XPT_SCSI_IO:
|
|
{
|
|
#ifdef CAMDEBUG
|
|
char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
|
|
struct cam_path *path;
|
|
|
|
path = start_ccb->ccb_h.path;
|
|
#endif
|
|
|
|
/*
|
|
* For the sake of compatibility with SCSI-1
|
|
* devices that may not understand the identify
|
|
* message, we include lun information in the
|
|
* second byte of all commands. SCSI-1 specifies
|
|
* that luns are a 3 bit value and reserves only 3
|
|
* bits for lun information in the CDB. Later
|
|
* revisions of the SCSI spec allow for more than 8
|
|
* luns, but have deprecated lun information in the
|
|
* CDB. So, if the lun won't fit, we must omit.
|
|
*
|
|
* Also be aware that during initial probing for devices,
|
|
* the inquiry information is unknown but initialized to 0.
|
|
* This means that this code will be exercised while probing
|
|
* devices with an ANSI revision greater than 2.
|
|
*/
|
|
if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2
|
|
&& start_ccb->ccb_h.target_lun < 8
|
|
&& (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
|
|
|
|
start_ccb->csio.cdb_io.cdb_bytes[1] |=
|
|
start_ccb->ccb_h.target_lun << 5;
|
|
}
|
|
start_ccb->csio.scsi_status = SCSI_STATUS_OK;
|
|
CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
|
|
scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
|
|
&path->device->inq_data),
|
|
scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
|
|
cdb_str, sizeof(cdb_str))));
|
|
/* FALLTHROUGH */
|
|
}
|
|
case XPT_TARGET_IO:
|
|
case XPT_CONT_TARGET_IO:
|
|
start_ccb->csio.sense_resid = 0;
|
|
start_ccb->csio.resid = 0;
|
|
/* FALLTHROUGH */
|
|
case XPT_RESET_DEV:
|
|
case XPT_ENG_EXEC:
|
|
{
|
|
struct cam_path *path;
|
|
int s;
|
|
int runq;
|
|
|
|
path = start_ccb->ccb_h.path;
|
|
s = splsoftcam();
|
|
|
|
cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
|
|
if (path->device->qfrozen_cnt == 0)
|
|
runq = xpt_schedule_dev_sendq(path->bus, path->device);
|
|
else
|
|
runq = 0;
|
|
splx(s);
|
|
if (runq != 0)
|
|
xpt_run_dev_sendq(path->bus);
|
|
break;
|
|
}
|
|
case XPT_SET_TRAN_SETTINGS:
|
|
{
|
|
xpt_set_transfer_settings(&start_ccb->cts,
|
|
start_ccb->ccb_h.path->device,
|
|
/*async_update*/FALSE);
|
|
break;
|
|
}
|
|
case XPT_CALC_GEOMETRY:
|
|
{
|
|
struct cam_sim *sim;
|
|
|
|
/* Filter out garbage */
|
|
if (start_ccb->ccg.block_size == 0
|
|
|| start_ccb->ccg.volume_size == 0) {
|
|
start_ccb->ccg.cylinders = 0;
|
|
start_ccb->ccg.heads = 0;
|
|
start_ccb->ccg.secs_per_track = 0;
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
#ifdef PC98
|
|
/*
|
|
* In a PC-98 system, geometry translation depens on
|
|
* the "real" device geometry obtained from mode page 4.
|
|
* SCSI geometry translation is performed in the
|
|
* initialization routine of the SCSI BIOS and the result
|
|
* stored in host memory. If the translation is available
|
|
* in host memory, use it. If not, rely on the default
|
|
* translation the device driver performs.
|
|
*/
|
|
if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
#endif
|
|
sim = start_ccb->ccb_h.path->bus->sim;
|
|
(*(sim->sim_action))(sim, start_ccb);
|
|
break;
|
|
}
|
|
case XPT_ABORT:
|
|
{
|
|
union ccb* abort_ccb;
|
|
int s;
|
|
|
|
abort_ccb = start_ccb->cab.abort_ccb;
|
|
if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
|
|
|
|
if (abort_ccb->ccb_h.pinfo.index >= 0) {
|
|
struct cam_ccbq *ccbq;
|
|
|
|
ccbq = &abort_ccb->ccb_h.path->device->ccbq;
|
|
cam_ccbq_remove_ccb(ccbq, abort_ccb);
|
|
abort_ccb->ccb_h.status =
|
|
CAM_REQ_ABORTED|CAM_DEV_QFRZN;
|
|
xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
|
|
s = splcam();
|
|
xpt_done(abort_ccb);
|
|
splx(s);
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
|
|
&& (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
|
|
/*
|
|
* We've caught this ccb en route to
|
|
* the SIM. Flag it for abort and the
|
|
* SIM will do so just before starting
|
|
* real work on the CCB.
|
|
*/
|
|
abort_ccb->ccb_h.status =
|
|
CAM_REQ_ABORTED|CAM_DEV_QFRZN;
|
|
xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
}
|
|
if (XPT_FC_IS_QUEUED(abort_ccb)
|
|
&& (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
|
|
/*
|
|
* It's already completed but waiting
|
|
* for our SWI to get to it.
|
|
*/
|
|
start_ccb->ccb_h.status = CAM_UA_ABORT;
|
|
break;
|
|
}
|
|
/*
|
|
* If we weren't able to take care of the abort request
|
|
* in the XPT, pass the request down to the SIM for processing.
|
|
*/
|
|
/* FALLTHROUGH */
|
|
}
|
|
case XPT_ACCEPT_TARGET_IO:
|
|
case XPT_EN_LUN:
|
|
case XPT_IMMED_NOTIFY:
|
|
case XPT_NOTIFY_ACK:
|
|
case XPT_GET_TRAN_SETTINGS:
|
|
case XPT_RESET_BUS:
|
|
{
|
|
struct cam_sim *sim;
|
|
|
|
sim = start_ccb->ccb_h.path->bus->sim;
|
|
(*(sim->sim_action))(sim, start_ccb);
|
|
break;
|
|
}
|
|
case XPT_PATH_INQ:
|
|
{
|
|
struct cam_sim *sim;
|
|
|
|
sim = start_ccb->ccb_h.path->bus->sim;
|
|
(*(sim->sim_action))(sim, start_ccb);
|
|
break;
|
|
}
|
|
case XPT_PATH_STATS:
|
|
start_ccb->cpis.last_reset =
|
|
start_ccb->ccb_h.path->bus->last_reset;
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
case XPT_GDEV_TYPE:
|
|
{
|
|
struct cam_ed *dev;
|
|
int s;
|
|
|
|
dev = start_ccb->ccb_h.path->device;
|
|
s = splcam();
|
|
if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
|
|
start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
|
|
} else {
|
|
struct ccb_getdev *cgd;
|
|
struct cam_eb *bus;
|
|
struct cam_et *tar;
|
|
|
|
cgd = &start_ccb->cgd;
|
|
bus = cgd->ccb_h.path->bus;
|
|
tar = cgd->ccb_h.path->target;
|
|
cgd->inq_data = dev->inq_data;
|
|
cgd->ccb_h.status = CAM_REQ_CMP;
|
|
cgd->serial_num_len = dev->serial_num_len;
|
|
if ((dev->serial_num_len > 0)
|
|
&& (dev->serial_num != NULL))
|
|
bcopy(dev->serial_num, cgd->serial_num,
|
|
dev->serial_num_len);
|
|
}
|
|
splx(s);
|
|
break;
|
|
}
|
|
case XPT_GDEV_STATS:
|
|
{
|
|
struct cam_ed *dev;
|
|
int s;
|
|
|
|
dev = start_ccb->ccb_h.path->device;
|
|
s = splcam();
|
|
if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
|
|
start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
|
|
} else {
|
|
struct ccb_getdevstats *cgds;
|
|
struct cam_eb *bus;
|
|
struct cam_et *tar;
|
|
|
|
cgds = &start_ccb->cgds;
|
|
bus = cgds->ccb_h.path->bus;
|
|
tar = cgds->ccb_h.path->target;
|
|
cgds->dev_openings = dev->ccbq.dev_openings;
|
|
cgds->dev_active = dev->ccbq.dev_active;
|
|
cgds->devq_openings = dev->ccbq.devq_openings;
|
|
cgds->devq_queued = dev->ccbq.queue.entries;
|
|
cgds->held = dev->ccbq.held;
|
|
cgds->last_reset = tar->last_reset;
|
|
cgds->maxtags = dev->quirk->maxtags;
|
|
cgds->mintags = dev->quirk->mintags;
|
|
if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
|
|
cgds->last_reset = bus->last_reset;
|
|
cgds->ccb_h.status = CAM_REQ_CMP;
|
|
}
|
|
splx(s);
|
|
break;
|
|
}
|
|
case XPT_GDEVLIST:
|
|
{
|
|
struct cam_periph *nperiph;
|
|
struct periph_list *periph_head;
|
|
struct ccb_getdevlist *cgdl;
|
|
int i;
|
|
int s;
|
|
struct cam_ed *device;
|
|
int found;
|
|
|
|
|
|
found = 0;
|
|
|
|
/*
|
|
* Don't want anyone mucking with our data.
|
|
*/
|
|
s = splcam();
|
|
device = start_ccb->ccb_h.path->device;
|
|
periph_head = &device->periphs;
|
|
cgdl = &start_ccb->cgdl;
|
|
|
|
/*
|
|
* Check and see if the list has changed since the user
|
|
* last requested a list member. If so, tell them that the
|
|
* list has changed, and therefore they need to start over
|
|
* from the beginning.
|
|
*/
|
|
if ((cgdl->index != 0) &&
|
|
(cgdl->generation != device->generation)) {
|
|
cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
|
|
splx(s);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Traverse the list of peripherals and attempt to find
|
|
* the requested peripheral.
|
|
*/
|
|
for (nperiph = SLIST_FIRST(periph_head), i = 0;
|
|
(nperiph != NULL) && (i <= cgdl->index);
|
|
nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
|
|
if (i == cgdl->index) {
|
|
strncpy(cgdl->periph_name,
|
|
nperiph->periph_name,
|
|
DEV_IDLEN);
|
|
cgdl->unit_number = nperiph->unit_number;
|
|
found = 1;
|
|
}
|
|
}
|
|
if (found == 0) {
|
|
cgdl->status = CAM_GDEVLIST_ERROR;
|
|
splx(s);
|
|
break;
|
|
}
|
|
|
|
if (nperiph == NULL)
|
|
cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
|
|
else
|
|
cgdl->status = CAM_GDEVLIST_MORE_DEVS;
|
|
|
|
cgdl->index++;
|
|
cgdl->generation = device->generation;
|
|
|
|
splx(s);
|
|
cgdl->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
case XPT_DEV_MATCH:
|
|
{
|
|
int s;
|
|
dev_pos_type position_type;
|
|
struct ccb_dev_match *cdm;
|
|
int ret;
|
|
|
|
cdm = &start_ccb->cdm;
|
|
|
|
/*
|
|
* Prevent EDT changes while we traverse it.
|
|
*/
|
|
s = splcam();
|
|
/*
|
|
* There are two ways of getting at information in the EDT.
|
|
* The first way is via the primary EDT tree. It starts
|
|
* with a list of busses, then a list of targets on a bus,
|
|
* then devices/luns on a target, and then peripherals on a
|
|
* device/lun. The "other" way is by the peripheral driver
|
|
* lists. The peripheral driver lists are organized by
|
|
* peripheral driver. (obviously) So it makes sense to
|
|
* use the peripheral driver list if the user is looking
|
|
* for something like "da1", or all "da" devices. If the
|
|
* user is looking for something on a particular bus/target
|
|
* or lun, it's generally better to go through the EDT tree.
|
|
*/
|
|
|
|
if (cdm->pos.position_type != CAM_DEV_POS_NONE)
|
|
position_type = cdm->pos.position_type;
|
|
else {
|
|
int i;
|
|
|
|
position_type = CAM_DEV_POS_NONE;
|
|
|
|
for (i = 0; i < cdm->num_patterns; i++) {
|
|
if ((cdm->patterns[i].type == DEV_MATCH_BUS)
|
|
||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
|
|
position_type = CAM_DEV_POS_EDT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (cdm->num_patterns == 0)
|
|
position_type = CAM_DEV_POS_EDT;
|
|
else if (position_type == CAM_DEV_POS_NONE)
|
|
position_type = CAM_DEV_POS_PDRV;
|
|
}
|
|
|
|
switch(position_type & CAM_DEV_POS_TYPEMASK) {
|
|
case CAM_DEV_POS_EDT:
|
|
ret = xptedtmatch(cdm);
|
|
break;
|
|
case CAM_DEV_POS_PDRV:
|
|
ret = xptperiphlistmatch(cdm);
|
|
break;
|
|
default:
|
|
cdm->status = CAM_DEV_MATCH_ERROR;
|
|
break;
|
|
}
|
|
|
|
splx(s);
|
|
|
|
if (cdm->status == CAM_DEV_MATCH_ERROR)
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
|
|
else
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
|
|
break;
|
|
}
|
|
case XPT_SASYNC_CB:
|
|
{
|
|
struct ccb_setasync *csa;
|
|
struct async_node *cur_entry;
|
|
struct async_list *async_head;
|
|
u_int32_t added;
|
|
int s;
|
|
|
|
csa = &start_ccb->csa;
|
|
added = csa->event_enable;
|
|
async_head = &csa->ccb_h.path->device->asyncs;
|
|
|
|
/*
|
|
* If there is already an entry for us, simply
|
|
* update it.
|
|
*/
|
|
s = splcam();
|
|
cur_entry = SLIST_FIRST(async_head);
|
|
while (cur_entry != NULL) {
|
|
if ((cur_entry->callback_arg == csa->callback_arg)
|
|
&& (cur_entry->callback == csa->callback))
|
|
break;
|
|
cur_entry = SLIST_NEXT(cur_entry, links);
|
|
}
|
|
|
|
if (cur_entry != NULL) {
|
|
/*
|
|
* If the request has no flags set,
|
|
* remove the entry.
|
|
*/
|
|
added &= ~cur_entry->event_enable;
|
|
if (csa->event_enable == 0) {
|
|
SLIST_REMOVE(async_head, cur_entry,
|
|
async_node, links);
|
|
csa->ccb_h.path->device->refcount--;
|
|
free(cur_entry, M_DEVBUF);
|
|
} else {
|
|
cur_entry->event_enable = csa->event_enable;
|
|
}
|
|
} else {
|
|
cur_entry = malloc(sizeof(*cur_entry), M_DEVBUF,
|
|
M_NOWAIT);
|
|
if (cur_entry == NULL) {
|
|
splx(s);
|
|
csa->ccb_h.status = CAM_RESRC_UNAVAIL;
|
|
break;
|
|
}
|
|
cur_entry->event_enable = csa->event_enable;
|
|
cur_entry->callback_arg = csa->callback_arg;
|
|
cur_entry->callback = csa->callback;
|
|
SLIST_INSERT_HEAD(async_head, cur_entry, links);
|
|
csa->ccb_h.path->device->refcount++;
|
|
}
|
|
|
|
if ((added & AC_FOUND_DEVICE) != 0) {
|
|
/*
|
|
* Get this peripheral up to date with all
|
|
* the currently existing devices.
|
|
*/
|
|
xpt_for_all_devices(xptsetasyncfunc, cur_entry);
|
|
}
|
|
if ((added & AC_PATH_REGISTERED) != 0) {
|
|
/*
|
|
* Get this peripheral up to date with all
|
|
* the currently existing busses.
|
|
*/
|
|
xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
|
|
}
|
|
splx(s);
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
case XPT_REL_SIMQ:
|
|
{
|
|
struct ccb_relsim *crs;
|
|
struct cam_ed *dev;
|
|
int s;
|
|
|
|
crs = &start_ccb->crs;
|
|
dev = crs->ccb_h.path->device;
|
|
if (dev == NULL) {
|
|
|
|
crs->ccb_h.status = CAM_DEV_NOT_THERE;
|
|
break;
|
|
}
|
|
|
|
s = splcam();
|
|
|
|
if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
|
|
|
|
if ((dev->inq_data.flags & SID_CmdQue) != 0) {
|
|
|
|
/* Don't ever go below one opening */
|
|
if (crs->openings > 0) {
|
|
xpt_dev_ccbq_resize(crs->ccb_h.path,
|
|
crs->openings);
|
|
|
|
if (bootverbose) {
|
|
xpt_print_path(crs->ccb_h.path);
|
|
printf("tagged openings "
|
|
"now %d\n",
|
|
crs->openings);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
|
|
|
|
if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
|
|
|
|
/*
|
|
* Just extend the old timeout and decrement
|
|
* the freeze count so that a single timeout
|
|
* is sufficient for releasing the queue.
|
|
*/
|
|
start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
|
|
untimeout(xpt_release_devq_timeout,
|
|
dev, dev->c_handle);
|
|
} else {
|
|
|
|
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
|
|
}
|
|
|
|
dev->c_handle =
|
|
timeout(xpt_release_devq_timeout,
|
|
dev,
|
|
(crs->release_timeout * hz) / 1000);
|
|
|
|
dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
|
|
|
|
}
|
|
|
|
if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
|
|
|
|
if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
|
|
/*
|
|
* Decrement the freeze count so that a single
|
|
* completion is still sufficient to unfreeze
|
|
* the queue.
|
|
*/
|
|
start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
|
|
} else {
|
|
|
|
dev->flags |= CAM_DEV_REL_ON_COMPLETE;
|
|
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
|
|
}
|
|
}
|
|
|
|
if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
|
|
|
|
if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
|
|
|| (dev->ccbq.dev_active == 0)) {
|
|
|
|
start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
|
|
} else {
|
|
|
|
dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
|
|
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
|
|
}
|
|
}
|
|
splx(s);
|
|
|
|
if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
|
|
|
|
xpt_release_devq(crs->ccb_h.path, /*count*/1,
|
|
/*run_queue*/TRUE);
|
|
}
|
|
start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
case XPT_SCAN_BUS:
|
|
xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
|
|
break;
|
|
case XPT_SCAN_LUN:
|
|
xpt_scan_lun(start_ccb->ccb_h.path->periph,
|
|
start_ccb->ccb_h.path, start_ccb->crcn.flags,
|
|
start_ccb);
|
|
break;
|
|
case XPT_DEBUG: {
|
|
#ifdef CAMDEBUG
|
|
int s;
|
|
|
|
s = splcam();
|
|
#ifdef CAM_DEBUG_DELAY
|
|
cam_debug_delay = CAM_DEBUG_DELAY;
|
|
#endif
|
|
cam_dflags = start_ccb->cdbg.flags;
|
|
if (cam_dpath != NULL) {
|
|
xpt_free_path(cam_dpath);
|
|
cam_dpath = NULL;
|
|
}
|
|
|
|
if (cam_dflags != CAM_DEBUG_NONE) {
|
|
if (xpt_create_path(&cam_dpath, xpt_periph,
|
|
start_ccb->ccb_h.path_id,
|
|
start_ccb->ccb_h.target_id,
|
|
start_ccb->ccb_h.target_lun) !=
|
|
CAM_REQ_CMP) {
|
|
start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
|
|
cam_dflags = CAM_DEBUG_NONE;
|
|
} else {
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
xpt_print_path(cam_dpath);
|
|
printf("debugging flags now %x\n", cam_dflags);
|
|
}
|
|
} else {
|
|
cam_dpath = NULL;
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
}
|
|
splx(s);
|
|
#else /* !CAMDEBUG */
|
|
start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
|
|
#endif /* CAMDEBUG */
|
|
break;
|
|
}
|
|
case XPT_NOOP:
|
|
if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
|
|
xpt_freeze_devq(start_ccb->ccb_h.path, 1);
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
default:
|
|
case XPT_SDEV_TYPE:
|
|
case XPT_TERM_IO:
|
|
case XPT_ENG_INQ:
|
|
/* XXX Implement */
|
|
start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
|
|
break;
|
|
}
|
|
splx(iopl);
|
|
}
|
|
|
|
void
|
|
xpt_polled_action(union ccb *start_ccb)
|
|
{
|
|
int s;
|
|
u_int32_t timeout;
|
|
struct cam_sim *sim;
|
|
struct cam_devq *devq;
|
|
struct cam_ed *dev;
|
|
|
|
timeout = start_ccb->ccb_h.timeout;
|
|
sim = start_ccb->ccb_h.path->bus->sim;
|
|
devq = sim->devq;
|
|
dev = start_ccb->ccb_h.path->device;
|
|
|
|
s = splcam();
|
|
|
|
/*
|
|
* Steal an opening so that no other queued requests
|
|
* can get it before us while we simulate interrupts.
|
|
*/
|
|
dev->ccbq.devq_openings--;
|
|
dev->ccbq.dev_openings--;
|
|
|
|
while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0)
|
|
&& (--timeout > 0)) {
|
|
DELAY(1000);
|
|
(*(sim->sim_poll))(sim);
|
|
camisr(&cam_netq);
|
|
camisr(&cam_bioq);
|
|
}
|
|
|
|
dev->ccbq.devq_openings++;
|
|
dev->ccbq.dev_openings++;
|
|
|
|
if (timeout != 0) {
|
|
xpt_action(start_ccb);
|
|
while(--timeout > 0) {
|
|
(*(sim->sim_poll))(sim);
|
|
camisr(&cam_netq);
|
|
camisr(&cam_bioq);
|
|
if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
|
|
!= CAM_REQ_INPROG)
|
|
break;
|
|
DELAY(1000);
|
|
}
|
|
if (timeout == 0) {
|
|
/*
|
|
* XXX Is it worth adding a sim_timeout entry
|
|
* point so we can attempt recovery? If
|
|
* this is only used for dumps, I don't think
|
|
* it is.
|
|
*/
|
|
start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
|
|
}
|
|
} else {
|
|
start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Schedule a peripheral driver to receive a ccb when it's
|
|
* target device has space for more transactions.
|
|
*/
|
|
void
|
|
xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
|
|
{
|
|
struct cam_ed *device;
|
|
int s;
|
|
int runq;
|
|
|
|
CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
|
|
device = perph->path->device;
|
|
s = splsoftcam();
|
|
if (periph_is_queued(perph)) {
|
|
/* Simply reorder based on new priority */
|
|
CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
|
|
(" change priority to %d\n", new_priority));
|
|
if (new_priority < perph->pinfo.priority) {
|
|
camq_change_priority(&device->drvq,
|
|
perph->pinfo.index,
|
|
new_priority);
|
|
}
|
|
runq = 0;
|
|
} else {
|
|
/* New entry on the queue */
|
|
CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
|
|
(" added periph to queue\n"));
|
|
perph->pinfo.priority = new_priority;
|
|
perph->pinfo.generation = ++device->drvq.generation;
|
|
camq_insert(&device->drvq, &perph->pinfo);
|
|
runq = xpt_schedule_dev_allocq(perph->path->bus, device);
|
|
}
|
|
splx(s);
|
|
if (runq != 0) {
|
|
CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
|
|
(" calling xpt_run_devq\n"));
|
|
xpt_run_dev_allocq(perph->path->bus);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Schedule a device to run on a given queue.
|
|
* If the device was inserted as a new entry on the queue,
|
|
* return 1 meaning the device queue should be run. If we
|
|
* were already queued, implying someone else has already
|
|
* started the queue, return 0 so the caller doesn't attempt
|
|
* to run the queue. Must be run at either splsoftcam
|
|
* (or splcam since that encompases splsoftcam).
|
|
*/
|
|
static int
|
|
xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
|
|
u_int32_t new_priority)
|
|
{
|
|
int retval;
|
|
u_int32_t old_priority;
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
|
|
|
|
old_priority = pinfo->priority;
|
|
|
|
/*
|
|
* Are we already queued?
|
|
*/
|
|
if (pinfo->index != CAM_UNQUEUED_INDEX) {
|
|
/* Simply reorder based on new priority */
|
|
if (new_priority < old_priority) {
|
|
camq_change_priority(queue, pinfo->index,
|
|
new_priority);
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
|
|
("changed priority to %d\n",
|
|
new_priority));
|
|
}
|
|
retval = 0;
|
|
} else {
|
|
/* New entry on the queue */
|
|
if (new_priority < old_priority)
|
|
pinfo->priority = new_priority;
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
|
|
("Inserting onto queue\n"));
|
|
pinfo->generation = ++queue->generation;
|
|
camq_insert(queue, pinfo);
|
|
retval = 1;
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
static void
|
|
xpt_run_dev_allocq(struct cam_eb *bus)
|
|
{
|
|
struct cam_devq *devq;
|
|
int s;
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
|
|
devq = bus->sim->devq;
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
|
|
(" qfrozen_cnt == 0x%x, entries == %d, "
|
|
"openings == %d, active == %d\n",
|
|
devq->alloc_queue.qfrozen_cnt,
|
|
devq->alloc_queue.entries,
|
|
devq->alloc_openings,
|
|
devq->alloc_active));
|
|
|
|
s = splsoftcam();
|
|
devq->alloc_queue.qfrozen_cnt++;
|
|
while ((devq->alloc_queue.entries > 0)
|
|
&& (devq->alloc_openings > 0)
|
|
&& (devq->alloc_queue.qfrozen_cnt <= 1)) {
|
|
struct cam_ed_qinfo *qinfo;
|
|
struct cam_ed *device;
|
|
union ccb *work_ccb;
|
|
struct cam_periph *drv;
|
|
struct camq *drvq;
|
|
|
|
qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
|
|
CAMQ_HEAD);
|
|
device = qinfo->device;
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
|
|
("running device %p\n", device));
|
|
|
|
drvq = &device->drvq;
|
|
|
|
#ifdef CAMDEBUG
|
|
if (drvq->entries <= 0) {
|
|
panic("xpt_run_dev_allocq: "
|
|
"Device on queue without any work to do");
|
|
}
|
|
#endif
|
|
if ((work_ccb = xpt_get_ccb(device)) != NULL) {
|
|
devq->alloc_openings--;
|
|
devq->alloc_active++;
|
|
drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
|
|
splx(s);
|
|
xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
|
|
drv->pinfo.priority);
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
|
|
("calling periph start\n"));
|
|
drv->periph_start(drv, work_ccb);
|
|
} else {
|
|
/*
|
|
* Malloc failure in alloc_ccb
|
|
*/
|
|
/*
|
|
* XXX add us to a list to be run from free_ccb
|
|
* if we don't have any ccbs active on this
|
|
* device queue otherwise we may never get run
|
|
* again.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/* Raise IPL for possible insertion and test at top of loop */
|
|
s = splsoftcam();
|
|
|
|
if (drvq->entries > 0) {
|
|
/* We have more work. Attempt to reschedule */
|
|
xpt_schedule_dev_allocq(bus, device);
|
|
}
|
|
}
|
|
devq->alloc_queue.qfrozen_cnt--;
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
xpt_run_dev_sendq(struct cam_eb *bus)
|
|
{
|
|
struct cam_devq *devq;
|
|
int s;
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
|
|
|
|
devq = bus->sim->devq;
|
|
|
|
s = splcam();
|
|
devq->send_queue.qfrozen_cnt++;
|
|
splx(s);
|
|
s = splsoftcam();
|
|
while ((devq->send_queue.entries > 0)
|
|
&& (devq->send_openings > 0)) {
|
|
struct cam_ed_qinfo *qinfo;
|
|
struct cam_ed *device;
|
|
union ccb *work_ccb;
|
|
struct cam_sim *sim;
|
|
int ospl;
|
|
|
|
ospl = splcam();
|
|
if (devq->send_queue.qfrozen_cnt > 1) {
|
|
splx(ospl);
|
|
break;
|
|
}
|
|
|
|
qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
|
|
CAMQ_HEAD);
|
|
device = qinfo->device;
|
|
|
|
/*
|
|
* If the device has been "frozen", don't attempt
|
|
* to run it.
|
|
*/
|
|
if (device->qfrozen_cnt > 0) {
|
|
splx(ospl);
|
|
continue;
|
|
}
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
|
|
("running device %p\n", device));
|
|
|
|
work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
|
|
if (work_ccb == NULL) {
|
|
printf("device on run queue with no ccbs???");
|
|
splx(ospl);
|
|
continue;
|
|
}
|
|
|
|
if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
|
|
|
|
if (num_highpower <= 0) {
|
|
/*
|
|
* We got a high power command, but we
|
|
* don't have any available slots. Freeze
|
|
* the device queue until we have a slot
|
|
* available.
|
|
*/
|
|
device->qfrozen_cnt++;
|
|
STAILQ_INSERT_TAIL(&highpowerq,
|
|
&work_ccb->ccb_h,
|
|
xpt_links.stqe);
|
|
|
|
splx(ospl);
|
|
continue;
|
|
} else {
|
|
/*
|
|
* Consume a high power slot while
|
|
* this ccb runs.
|
|
*/
|
|
num_highpower--;
|
|
}
|
|
}
|
|
devq->active_dev = device;
|
|
cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
|
|
|
|
cam_ccbq_send_ccb(&device->ccbq, work_ccb);
|
|
splx(ospl);
|
|
|
|
devq->send_openings--;
|
|
devq->send_active++;
|
|
|
|
if (device->ccbq.queue.entries > 0)
|
|
xpt_schedule_dev_sendq(bus, device);
|
|
|
|
if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
|
|
/*
|
|
* The client wants to freeze the queue
|
|
* after this CCB is sent.
|
|
*/
|
|
ospl = splcam();
|
|
device->qfrozen_cnt++;
|
|
splx(ospl);
|
|
}
|
|
|
|
splx(s);
|
|
|
|
/* In Target mode, the peripheral driver knows best... */
|
|
if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
|
|
if ((device->inq_flags & SID_CmdQue) != 0
|
|
&& work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
|
|
work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
|
|
else
|
|
/*
|
|
* Clear this in case of a retried CCB that
|
|
* failed due to a rejected tag.
|
|
*/
|
|
work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
|
|
}
|
|
|
|
/*
|
|
* Device queues can be shared among multiple sim instances
|
|
* that reside on different busses. Use the SIM in the queue
|
|
* CCB's path, rather than the one in the bus that was passed
|
|
* into this function.
|
|
*/
|
|
sim = work_ccb->ccb_h.path->bus->sim;
|
|
(*(sim->sim_action))(sim, work_ccb);
|
|
|
|
ospl = splcam();
|
|
devq->active_dev = NULL;
|
|
splx(ospl);
|
|
/* Raise IPL for possible insertion and test at top of loop */
|
|
s = splsoftcam();
|
|
}
|
|
splx(s);
|
|
s = splcam();
|
|
devq->send_queue.qfrozen_cnt--;
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* This function merges stuff from the slave ccb into the master ccb, while
|
|
* keeping important fields in the master ccb constant.
|
|
*/
|
|
void
|
|
xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
|
|
{
|
|
/*
|
|
* Pull fields that are valid for peripheral drivers to set
|
|
* into the master CCB along with the CCB "payload".
|
|
*/
|
|
master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
|
|
master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
|
|
master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
|
|
master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
|
|
bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
|
|
sizeof(union ccb) - sizeof(struct ccb_hdr));
|
|
}
|
|
|
|
void
|
|
xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
|
|
{
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
|
|
ccb_h->pinfo.priority = priority;
|
|
ccb_h->path = path;
|
|
ccb_h->path_id = path->bus->path_id;
|
|
if (path->target)
|
|
ccb_h->target_id = path->target->target_id;
|
|
else
|
|
ccb_h->target_id = CAM_TARGET_WILDCARD;
|
|
if (path->device) {
|
|
ccb_h->target_lun = path->device->lun_id;
|
|
ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
|
|
} else {
|
|
ccb_h->target_lun = CAM_TARGET_WILDCARD;
|
|
}
|
|
ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
|
|
ccb_h->flags = 0;
|
|
}
|
|
|
|
/* Path manipulation functions */
|
|
cam_status
|
|
xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
|
|
path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
|
|
{
|
|
struct cam_path *path;
|
|
cam_status status;
|
|
|
|
path = (struct cam_path *)malloc(sizeof(*path), M_DEVBUF, M_NOWAIT);
|
|
|
|
if (path == NULL) {
|
|
status = CAM_RESRC_UNAVAIL;
|
|
return(status);
|
|
}
|
|
status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
|
|
if (status != CAM_REQ_CMP) {
|
|
free(path, M_DEVBUF);
|
|
path = NULL;
|
|
}
|
|
*new_path_ptr = path;
|
|
return (status);
|
|
}
|
|
|
|
static cam_status
|
|
xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
|
|
path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
|
|
{
|
|
struct cam_eb *bus;
|
|
struct cam_et *target;
|
|
struct cam_ed *device;
|
|
cam_status status;
|
|
int s;
|
|
|
|
status = CAM_REQ_CMP; /* Completed without error */
|
|
target = NULL; /* Wildcarded */
|
|
device = NULL; /* Wildcarded */
|
|
|
|
/*
|
|
* We will potentially modify the EDT, so block interrupts
|
|
* that may attempt to create cam paths.
|
|
*/
|
|
s = splcam();
|
|
bus = xpt_find_bus(path_id);
|
|
if (bus == NULL) {
|
|
status = CAM_PATH_INVALID;
|
|
} else {
|
|
target = xpt_find_target(bus, target_id);
|
|
if (target == NULL) {
|
|
/* Create one */
|
|
struct cam_et *new_target;
|
|
|
|
new_target = xpt_alloc_target(bus, target_id);
|
|
if (new_target == NULL) {
|
|
status = CAM_RESRC_UNAVAIL;
|
|
} else {
|
|
target = new_target;
|
|
}
|
|
}
|
|
if (target != NULL) {
|
|
device = xpt_find_device(target, lun_id);
|
|
if (device == NULL) {
|
|
/* Create one */
|
|
struct cam_ed *new_device;
|
|
|
|
new_device = xpt_alloc_device(bus,
|
|
target,
|
|
lun_id);
|
|
if (new_device == NULL) {
|
|
status = CAM_RESRC_UNAVAIL;
|
|
} else {
|
|
device = new_device;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
splx(s);
|
|
|
|
/*
|
|
* Only touch the user's data if we are successful.
|
|
*/
|
|
if (status == CAM_REQ_CMP) {
|
|
new_path->periph = perph;
|
|
new_path->bus = bus;
|
|
new_path->target = target;
|
|
new_path->device = device;
|
|
CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
|
|
} else {
|
|
if (device != NULL)
|
|
xpt_release_device(bus, target, device);
|
|
if (target != NULL)
|
|
xpt_release_target(bus, target);
|
|
if (bus != NULL)
|
|
xpt_release_bus(bus);
|
|
}
|
|
return (status);
|
|
}
|
|
|
|
static void
|
|
xpt_release_path(struct cam_path *path)
|
|
{
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
|
|
if (path->device != NULL) {
|
|
xpt_release_device(path->bus, path->target, path->device);
|
|
path->device = NULL;
|
|
}
|
|
if (path->target != NULL) {
|
|
xpt_release_target(path->bus, path->target);
|
|
path->target = NULL;
|
|
}
|
|
if (path->bus != NULL) {
|
|
xpt_release_bus(path->bus);
|
|
path->bus = NULL;
|
|
}
|
|
}
|
|
|
|
void
|
|
xpt_free_path(struct cam_path *path)
|
|
{
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
|
|
xpt_release_path(path);
|
|
free(path, M_DEVBUF);
|
|
}
|
|
|
|
|
|
/*
|
|
* Return -1 for failure, 0 for exact match, 1 for match with wildcards
|
|
* in path1, 2 for match with wildcards in path2.
|
|
*/
|
|
int
|
|
xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
|
|
{
|
|
int retval = 0;
|
|
|
|
if (path1->bus != path2->bus) {
|
|
if (path1->bus->path_id == CAM_BUS_WILDCARD)
|
|
retval = 1;
|
|
else if (path2->bus->path_id == CAM_BUS_WILDCARD)
|
|
retval = 2;
|
|
else
|
|
return (-1);
|
|
}
|
|
if (path1->target != path2->target) {
|
|
if (path1->target->target_id == CAM_TARGET_WILDCARD) {
|
|
if (retval == 0)
|
|
retval = 1;
|
|
} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
|
|
retval = 2;
|
|
else
|
|
return (-1);
|
|
}
|
|
if (path1->device != path2->device) {
|
|
if (path1->device->lun_id == CAM_LUN_WILDCARD) {
|
|
if (retval == 0)
|
|
retval = 1;
|
|
} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
|
|
retval = 2;
|
|
else
|
|
return (-1);
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
void
|
|
xpt_print_path(struct cam_path *path)
|
|
{
|
|
if (path == NULL)
|
|
printf("(nopath): ");
|
|
else {
|
|
if (path->periph != NULL)
|
|
printf("(%s%d:", path->periph->periph_name,
|
|
path->periph->unit_number);
|
|
else
|
|
printf("(noperiph:");
|
|
|
|
if (path->bus != NULL)
|
|
printf("%s%d:%d:", path->bus->sim->sim_name,
|
|
path->bus->sim->unit_number,
|
|
path->bus->sim->bus_id);
|
|
else
|
|
printf("nobus:");
|
|
|
|
if (path->target != NULL)
|
|
printf("%d:", path->target->target_id);
|
|
else
|
|
printf("X:");
|
|
|
|
if (path->device != NULL)
|
|
printf("%d): ", path->device->lun_id);
|
|
else
|
|
printf("X): ");
|
|
}
|
|
}
|
|
|
|
path_id_t
|
|
xpt_path_path_id(struct cam_path *path)
|
|
{
|
|
return(path->bus->path_id);
|
|
}
|
|
|
|
target_id_t
|
|
xpt_path_target_id(struct cam_path *path)
|
|
{
|
|
if (path->target != NULL)
|
|
return (path->target->target_id);
|
|
else
|
|
return (CAM_TARGET_WILDCARD);
|
|
}
|
|
|
|
lun_id_t
|
|
xpt_path_lun_id(struct cam_path *path)
|
|
{
|
|
if (path->device != NULL)
|
|
return (path->device->lun_id);
|
|
else
|
|
return (CAM_LUN_WILDCARD);
|
|
}
|
|
|
|
struct cam_sim *
|
|
xpt_path_sim(struct cam_path *path)
|
|
{
|
|
return (path->bus->sim);
|
|
}
|
|
|
|
struct cam_periph*
|
|
xpt_path_periph(struct cam_path *path)
|
|
{
|
|
return (path->periph);
|
|
}
|
|
|
|
/*
|
|
* Release a CAM control block for the caller. Remit the cost of the structure
|
|
* to the device referenced by the path. If the this device had no 'credits'
|
|
* and peripheral drivers have registered async callbacks for this notification
|
|
* call them now.
|
|
*/
|
|
void
|
|
xpt_release_ccb(union ccb *free_ccb)
|
|
{
|
|
int s;
|
|
struct cam_path *path;
|
|
struct cam_ed *device;
|
|
struct cam_eb *bus;
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
|
|
path = free_ccb->ccb_h.path;
|
|
device = path->device;
|
|
bus = path->bus;
|
|
s = splsoftcam();
|
|
cam_ccbq_release_opening(&device->ccbq);
|
|
if (xpt_ccb_count > xpt_max_ccbs) {
|
|
xpt_free_ccb(free_ccb);
|
|
xpt_ccb_count--;
|
|
} else {
|
|
SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle);
|
|
}
|
|
bus->sim->devq->alloc_openings++;
|
|
bus->sim->devq->alloc_active--;
|
|
/* XXX Turn this into an inline function - xpt_run_device?? */
|
|
if ((device_is_alloc_queued(device) == 0)
|
|
&& (device->drvq.entries > 0)) {
|
|
xpt_schedule_dev_allocq(bus, device);
|
|
}
|
|
splx(s);
|
|
if (dev_allocq_is_runnable(bus->sim->devq))
|
|
xpt_run_dev_allocq(bus);
|
|
}
|
|
|
|
/* Functions accessed by SIM drivers */
|
|
|
|
/*
|
|
* A sim structure, listing the SIM entry points and instance
|
|
* identification info is passed to xpt_bus_register to hook the SIM
|
|
* into the CAM framework. xpt_bus_register creates a cam_eb entry
|
|
* for this new bus and places it in the array of busses and assigns
|
|
* it a path_id. The path_id may be influenced by "hard wiring"
|
|
* information specified by the user. Once interrupt services are
|
|
* availible, the bus will be probed.
|
|
*/
|
|
int32_t
|
|
xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
|
|
{
|
|
struct cam_eb *new_bus;
|
|
struct cam_eb *old_bus;
|
|
struct ccb_pathinq cpi;
|
|
int s;
|
|
|
|
sim->bus_id = bus;
|
|
new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
|
|
M_DEVBUF, M_NOWAIT);
|
|
if (new_bus == NULL) {
|
|
/* Couldn't satisfy request */
|
|
return (CAM_RESRC_UNAVAIL);
|
|
}
|
|
|
|
if (strcmp(sim->sim_name, "xpt") != 0) {
|
|
|
|
sim->path_id =
|
|
xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
|
|
}
|
|
|
|
TAILQ_INIT(&new_bus->et_entries);
|
|
new_bus->path_id = sim->path_id;
|
|
new_bus->sim = sim;
|
|
timevalclear(&new_bus->last_reset);
|
|
new_bus->flags = 0;
|
|
new_bus->refcount = 1; /* Held until a bus_deregister event */
|
|
new_bus->generation = 0;
|
|
s = splcam();
|
|
old_bus = TAILQ_FIRST(&xpt_busses);
|
|
while (old_bus != NULL
|
|
&& old_bus->path_id < new_bus->path_id)
|
|
old_bus = TAILQ_NEXT(old_bus, links);
|
|
if (old_bus != NULL)
|
|
TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
|
|
else
|
|
TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links);
|
|
bus_generation++;
|
|
splx(s);
|
|
|
|
/* Notify interested parties */
|
|
if (sim->path_id != CAM_XPT_PATH_ID) {
|
|
struct cam_path path;
|
|
|
|
xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
|
|
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
|
|
xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
|
|
cpi.ccb_h.func_code = XPT_PATH_INQ;
|
|
xpt_action((union ccb *)&cpi);
|
|
xpt_async(AC_PATH_REGISTERED, xpt_periph->path, &cpi);
|
|
xpt_release_path(&path);
|
|
}
|
|
return (CAM_SUCCESS);
|
|
}
|
|
|
|
int32_t
|
|
xpt_bus_deregister(path_id_t pathid)
|
|
{
|
|
struct cam_path bus_path;
|
|
cam_status status;
|
|
|
|
status = xpt_compile_path(&bus_path, NULL, pathid,
|
|
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
|
|
if (status != CAM_REQ_CMP)
|
|
return (status);
|
|
|
|
xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
|
|
xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
|
|
|
|
/* Release the reference count held while registered. */
|
|
xpt_release_bus(bus_path.bus);
|
|
xpt_release_path(&bus_path);
|
|
|
|
return (CAM_REQ_CMP);
|
|
}
|
|
|
|
static path_id_t
|
|
xptnextfreepathid(void)
|
|
{
|
|
struct cam_eb *bus;
|
|
path_id_t pathid;
|
|
char *strval;
|
|
|
|
pathid = 0;
|
|
bus = TAILQ_FIRST(&xpt_busses);
|
|
retry:
|
|
/* Find an unoccupied pathid */
|
|
while (bus != NULL
|
|
&& bus->path_id <= pathid) {
|
|
if (bus->path_id == pathid)
|
|
pathid++;
|
|
bus = TAILQ_NEXT(bus, links);
|
|
}
|
|
|
|
/*
|
|
* Ensure that this pathid is not reserved for
|
|
* a bus that may be registered in the future.
|
|
*/
|
|
if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
|
|
++pathid;
|
|
/* Start the search over */
|
|
goto retry;
|
|
}
|
|
return (pathid);
|
|
}
|
|
|
|
static path_id_t
|
|
xptpathid(const char *sim_name, int sim_unit, int sim_bus)
|
|
{
|
|
path_id_t pathid;
|
|
int i, dunit, val;
|
|
char buf[32];
|
|
|
|
pathid = CAM_XPT_PATH_ID;
|
|
snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
|
|
i = -1;
|
|
while ((i = resource_query_string(i, "at", buf)) != -1) {
|
|
if (strcmp(resource_query_name(i), "scbus")) {
|
|
/* Avoid a bit of foot shooting. */
|
|
continue;
|
|
}
|
|
dunit = resource_query_unit(i);
|
|
if (dunit < 0) /* unwired?! */
|
|
continue;
|
|
if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
|
|
if (sim_bus == val) {
|
|
pathid = dunit;
|
|
break;
|
|
}
|
|
} else if (sim_bus == 0) {
|
|
/* Unspecified matches bus 0 */
|
|
pathid = dunit;
|
|
break;
|
|
} else {
|
|
printf("Ambiguous scbus configuration for %s%d "
|
|
"bus %d, cannot wire down. The kernel "
|
|
"config entry for scbus%d should "
|
|
"specify a controller bus.\n"
|
|
"Scbus will be assigned dynamically.\n",
|
|
sim_name, sim_unit, sim_bus, dunit);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (pathid == CAM_XPT_PATH_ID)
|
|
pathid = xptnextfreepathid();
|
|
return (pathid);
|
|
}
|
|
|
|
void
|
|
xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
|
|
{
|
|
struct cam_eb *bus;
|
|
struct cam_et *target, *next_target;
|
|
struct cam_ed *device, *next_device;
|
|
int s;
|
|
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
|
|
|
|
/*
|
|
* Most async events come from a CAM interrupt context. In
|
|
* a few cases, the error recovery code at the peripheral layer,
|
|
* which may run from our SWI or a process context, may signal
|
|
* deferred events with a call to xpt_async. Ensure async
|
|
* notifications are serialized by blocking cam interrupts.
|
|
*/
|
|
s = splcam();
|
|
|
|
bus = path->bus;
|
|
|
|
if (async_code == AC_BUS_RESET) {
|
|
int s;
|
|
|
|
s = splclock();
|
|
/* Update our notion of when the last reset occurred */
|
|
microtime(&bus->last_reset);
|
|
splx(s);
|
|
}
|
|
|
|
for (target = TAILQ_FIRST(&bus->et_entries);
|
|
target != NULL;
|
|
target = next_target) {
|
|
|
|
next_target = TAILQ_NEXT(target, links);
|
|
|
|
if (path->target != target
|
|
&& path->target->target_id != CAM_TARGET_WILDCARD
|
|
&& target->target_id != CAM_TARGET_WILDCARD)
|
|
continue;
|
|
|
|
if (async_code == AC_SENT_BDR) {
|
|
int s;
|
|
|
|
/* Update our notion of when the last reset occurred */
|
|
s = splclock();
|
|
microtime(&path->target->last_reset);
|
|
splx(s);
|
|
}
|
|
|
|
for (device = TAILQ_FIRST(&target->ed_entries);
|
|
device != NULL;
|
|
device = next_device) {
|
|
|
|
next_device = TAILQ_NEXT(device, links);
|
|
|
|
if (path->device != device
|
|
&& path->device->lun_id != CAM_LUN_WILDCARD
|
|
&& device->lun_id != CAM_LUN_WILDCARD)
|
|
continue;
|
|
|
|
xpt_dev_async(async_code, bus, target,
|
|
device, async_arg);
|
|
|
|
xpt_async_bcast(&device->asyncs, async_code,
|
|
path, async_arg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this wasn't a fully wildcarded async, tell all
|
|
* clients that want all async events.
|
|
*/
|
|
if (bus != xpt_periph->path->bus)
|
|
xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
|
|
path, async_arg);
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
xpt_async_bcast(struct async_list *async_head,
|
|
u_int32_t async_code,
|
|
struct cam_path *path, void *async_arg)
|
|
{
|
|
struct async_node *cur_entry;
|
|
|
|
cur_entry = SLIST_FIRST(async_head);
|
|
while (cur_entry != NULL) {
|
|
struct async_node *next_entry;
|
|
/*
|
|
* Grab the next list entry before we call the current
|
|
* entry's callback. This is because the callback function
|
|
* can delete its async callback entry.
|
|
*/
|
|
next_entry = SLIST_NEXT(cur_entry, links);
|
|
if ((cur_entry->event_enable & async_code) != 0)
|
|
cur_entry->callback(cur_entry->callback_arg,
|
|
async_code, path,
|
|
async_arg);
|
|
cur_entry = next_entry;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle any per-device event notifications that require action by the XPT.
|
|
*/
|
|
static void
|
|
xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
|
|
struct cam_ed *device, void *async_arg)
|
|
{
|
|
cam_status status;
|
|
struct cam_path newpath;
|
|
|
|
/*
|
|
* We only need to handle events for real devices.
|
|
*/
|
|
if (target->target_id == CAM_TARGET_WILDCARD
|
|
|| device->lun_id == CAM_LUN_WILDCARD)
|
|
return;
|
|
|
|
/*
|
|
* We need our own path with wildcards expanded to
|
|
* handle certain types of events.
|
|
*/
|
|
if ((async_code == AC_SENT_BDR)
|
|
|| (async_code == AC_BUS_RESET)
|
|
|| (async_code == AC_INQ_CHANGED))
|
|
status = xpt_compile_path(&newpath, NULL,
|
|
bus->path_id,
|
|
target->target_id,
|
|
device->lun_id);
|
|
else
|
|
status = CAM_REQ_CMP_ERR;
|
|
|
|
if (status == CAM_REQ_CMP) {
|
|
|
|
/*
|
|
* Allow transfer negotiation to occur in a
|
|
* tag free environment.
|
|
*/
|
|
if (async_code == AC_SENT_BDR
|
|
|| async_code == AC_BUS_RESET)
|
|
xpt_toggle_tags(&newpath);
|
|
|
|
if (async_code == AC_INQ_CHANGED) {
|
|
/*
|
|
* We've sent a start unit command, or
|
|
* something similar to a device that
|
|
* may have caused its inquiry data to
|
|
* change. So we re-scan the device to
|
|
* refresh the inquiry data for it.
|
|
*/
|
|
xpt_scan_lun(newpath.periph, &newpath,
|
|
CAM_EXPECT_INQ_CHANGE, NULL);
|
|
}
|
|
xpt_release_path(&newpath);
|
|
} else if (async_code == AC_LOST_DEVICE) {
|
|
device->flags |= CAM_DEV_UNCONFIGURED;
|
|
} else if (async_code == AC_TRANSFER_NEG) {
|
|
struct ccb_trans_settings *settings;
|
|
|
|
settings = (struct ccb_trans_settings *)async_arg;
|
|
xpt_set_transfer_settings(settings, device,
|
|
/*async_update*/TRUE);
|
|
}
|
|
}
|
|
|
|
u_int32_t
|
|
xpt_freeze_devq(struct cam_path *path, u_int count)
|
|
{
|
|
int s;
|
|
struct ccb_hdr *ccbh;
|
|
|
|
s = splcam();
|
|
path->device->qfrozen_cnt += count;
|
|
|
|
/*
|
|
* Mark the last CCB in the queue as needing
|
|
* to be requeued if the driver hasn't
|
|
* changed it's state yet. This fixes a race
|
|
* where a ccb is just about to be queued to
|
|
* a controller driver when it's interrupt routine
|
|
* freezes the queue. To completly close the
|
|
* hole, controller drives must check to see
|
|
* if a ccb's status is still CAM_REQ_INPROG
|
|
* under spl protection just before they queue
|
|
* the CCB. See ahc_action/ahc_freeze_devq for
|
|
* an example.
|
|
*/
|
|
ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
|
|
if (ccbh && ccbh->status == CAM_REQ_INPROG)
|
|
ccbh->status = CAM_REQUEUE_REQ;
|
|
splx(s);
|
|
return (path->device->qfrozen_cnt);
|
|
}
|
|
|
|
u_int32_t
|
|
xpt_freeze_simq(struct cam_sim *sim, u_int count)
|
|
{
|
|
sim->devq->send_queue.qfrozen_cnt += count;
|
|
if (sim->devq->active_dev != NULL) {
|
|
struct ccb_hdr *ccbh;
|
|
|
|
ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
|
|
ccb_hdr_tailq);
|
|
if (ccbh && ccbh->status == CAM_REQ_INPROG)
|
|
ccbh->status = CAM_REQUEUE_REQ;
|
|
}
|
|
return (sim->devq->send_queue.qfrozen_cnt);
|
|
}
|
|
|
|
static void
|
|
xpt_release_devq_timeout(void *arg)
|
|
{
|
|
struct cam_ed *device;
|
|
|
|
device = (struct cam_ed *)arg;
|
|
|
|
xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
|
|
}
|
|
|
|
void
|
|
xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
|
|
{
|
|
xpt_release_devq_device(path->device, count, run_queue);
|
|
}
|
|
|
|
static void
|
|
xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
|
|
{
|
|
int rundevq;
|
|
int s0, s1;
|
|
|
|
rundevq = 0;
|
|
s0 = splsoftcam();
|
|
s1 = splcam();
|
|
if (dev->qfrozen_cnt > 0) {
|
|
|
|
count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
|
|
dev->qfrozen_cnt -= count;
|
|
if (dev->qfrozen_cnt == 0) {
|
|
|
|
/*
|
|
* No longer need to wait for a successful
|
|
* command completion.
|
|
*/
|
|
dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
|
|
|
|
/*
|
|
* Remove any timeouts that might be scheduled
|
|
* to release this queue.
|
|
*/
|
|
if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
|
|
untimeout(xpt_release_devq_timeout, dev,
|
|
dev->c_handle);
|
|
dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
|
|
}
|
|
|
|
/*
|
|
* Now that we are unfrozen schedule the
|
|
* device so any pending transactions are
|
|
* run.
|
|
*/
|
|
if ((dev->ccbq.queue.entries > 0)
|
|
&& (xpt_schedule_dev_sendq(dev->target->bus, dev))
|
|
&& (run_queue != 0)) {
|
|
rundevq = 1;
|
|
}
|
|
}
|
|
}
|
|
splx(s1);
|
|
if (rundevq != 0)
|
|
xpt_run_dev_sendq(dev->target->bus);
|
|
splx(s0);
|
|
}
|
|
|
|
void
|
|
xpt_release_simq(struct cam_sim *sim, int run_queue)
|
|
{
|
|
int s;
|
|
struct camq *sendq;
|
|
|
|
sendq = &(sim->devq->send_queue);
|
|
s = splcam();
|
|
if (sendq->qfrozen_cnt > 0) {
|
|
|
|
sendq->qfrozen_cnt--;
|
|
if (sendq->qfrozen_cnt == 0) {
|
|
struct cam_eb *bus;
|
|
|
|
/*
|
|
* If there is a timeout scheduled to release this
|
|
* sim queue, remove it. The queue frozen count is
|
|
* already at 0.
|
|
*/
|
|
if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
|
|
untimeout(xpt_release_simq_timeout, sim,
|
|
sim->c_handle);
|
|
sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
|
|
}
|
|
bus = xpt_find_bus(sim->path_id);
|
|
splx(s);
|
|
|
|
if (run_queue) {
|
|
/*
|
|
* Now that we are unfrozen run the send queue.
|
|
*/
|
|
xpt_run_dev_sendq(bus);
|
|
}
|
|
xpt_release_bus(bus);
|
|
} else
|
|
splx(s);
|
|
} else
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
xpt_release_simq_timeout(void *arg)
|
|
{
|
|
struct cam_sim *sim;
|
|
|
|
sim = (struct cam_sim *)arg;
|
|
xpt_release_simq(sim, /* run_queue */ TRUE);
|
|
}
|
|
|
|
void
|
|
xpt_done(union ccb *done_ccb)
|
|
{
|
|
int s;
|
|
|
|
s = splcam();
|
|
|
|
CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
|
|
if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
|
|
/*
|
|
* Queue up the request for handling by our SWI handler
|
|
* any of the "non-immediate" type of ccbs.
|
|
*/
|
|
switch (done_ccb->ccb_h.path->periph->type) {
|
|
case CAM_PERIPH_BIO:
|
|
TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h,
|
|
sim_links.tqe);
|
|
done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
|
|
sched_swi(cambio_ih, SWI_NOSWITCH);
|
|
break;
|
|
case CAM_PERIPH_NET:
|
|
TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h,
|
|
sim_links.tqe);
|
|
done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
|
|
sched_swi(camnet_ih, SWI_NOSWITCH);
|
|
break;
|
|
}
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
union ccb *
|
|
xpt_alloc_ccb()
|
|
{
|
|
union ccb *new_ccb;
|
|
|
|
new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_WAITOK);
|
|
return (new_ccb);
|
|
}
|
|
|
|
void
|
|
xpt_free_ccb(union ccb *free_ccb)
|
|
{
|
|
free(free_ccb, M_DEVBUF);
|
|
}
|
|
|
|
|
|
|
|
/* Private XPT functions */
|
|
|
|
/*
|
|
* Get a CAM control block for the caller. Charge the structure to the device
|
|
* referenced by the path. If the this device has no 'credits' then the
|
|
* device already has the maximum number of outstanding operations under way
|
|
* and we return NULL. If we don't have sufficient resources to allocate more
|
|
* ccbs, we also return NULL.
|
|
*/
|
|
static union ccb *
|
|
xpt_get_ccb(struct cam_ed *device)
|
|
{
|
|
union ccb *new_ccb;
|
|
int s;
|
|
|
|
s = splsoftcam();
|
|
if ((new_ccb = (union ccb *)SLIST_FIRST(&ccb_freeq)) == NULL) {
|
|
new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_NOWAIT);
|
|
if (new_ccb == NULL) {
|
|
splx(s);
|
|
return (NULL);
|
|
}
|
|
callout_handle_init(&new_ccb->ccb_h.timeout_ch);
|
|
SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h,
|
|
xpt_links.sle);
|
|
xpt_ccb_count++;
|
|
}
|
|
cam_ccbq_take_opening(&device->ccbq);
|
|
SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle);
|
|
splx(s);
|
|
return (new_ccb);
|
|
}
|
|
|
|
static void
|
|
xpt_release_bus(struct cam_eb *bus)
|
|
{
|
|
int s;
|
|
|
|
s = splcam();
|
|
if ((--bus->refcount == 0)
|
|
&& (TAILQ_FIRST(&bus->et_entries) == NULL)) {
|
|
TAILQ_REMOVE(&xpt_busses, bus, links);
|
|
bus_generation++;
|
|
splx(s);
|
|
free(bus, M_DEVBUF);
|
|
} else
|
|
splx(s);
|
|
}
|
|
|
|
static struct cam_et *
|
|
xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
|
|
{
|
|
struct cam_et *target;
|
|
|
|
target = (struct cam_et *)malloc(sizeof(*target), M_DEVBUF, M_NOWAIT);
|
|
if (target != NULL) {
|
|
struct cam_et *cur_target;
|
|
|
|
TAILQ_INIT(&target->ed_entries);
|
|
target->bus = bus;
|
|
target->target_id = target_id;
|
|
target->refcount = 1;
|
|
target->generation = 0;
|
|
timevalclear(&target->last_reset);
|
|
/*
|
|
* Hold a reference to our parent bus so it
|
|
* will not go away before we do.
|
|
*/
|
|
bus->refcount++;
|
|
|
|
/* Insertion sort into our bus's target list */
|
|
cur_target = TAILQ_FIRST(&bus->et_entries);
|
|
while (cur_target != NULL && cur_target->target_id < target_id)
|
|
cur_target = TAILQ_NEXT(cur_target, links);
|
|
|
|
if (cur_target != NULL) {
|
|
TAILQ_INSERT_BEFORE(cur_target, target, links);
|
|
} else {
|
|
TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
|
|
}
|
|
bus->generation++;
|
|
}
|
|
return (target);
|
|
}
|
|
|
|
static void
|
|
xpt_release_target(struct cam_eb *bus, struct cam_et *target)
|
|
{
|
|
int s;
|
|
|
|
s = splcam();
|
|
if ((--target->refcount == 0)
|
|
&& (TAILQ_FIRST(&target->ed_entries) == NULL)) {
|
|
TAILQ_REMOVE(&bus->et_entries, target, links);
|
|
bus->generation++;
|
|
splx(s);
|
|
free(target, M_DEVBUF);
|
|
xpt_release_bus(bus);
|
|
} else
|
|
splx(s);
|
|
}
|
|
|
|
static struct cam_ed *
|
|
xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
|
|
{
|
|
struct cam_ed *device;
|
|
struct cam_devq *devq;
|
|
cam_status status;
|
|
|
|
/* Make space for us in the device queue on our bus */
|
|
devq = bus->sim->devq;
|
|
status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
|
|
|
|
if (status != CAM_REQ_CMP) {
|
|
device = NULL;
|
|
} else {
|
|
device = (struct cam_ed *)malloc(sizeof(*device),
|
|
M_DEVBUF, M_NOWAIT);
|
|
}
|
|
|
|
if (device != NULL) {
|
|
struct cam_ed *cur_device;
|
|
|
|
cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
|
|
device->alloc_ccb_entry.device = device;
|
|
cam_init_pinfo(&device->send_ccb_entry.pinfo);
|
|
device->send_ccb_entry.device = device;
|
|
device->target = target;
|
|
device->lun_id = lun_id;
|
|
/* Initialize our queues */
|
|
if (camq_init(&device->drvq, 0) != 0) {
|
|
free(device, M_DEVBUF);
|
|
return (NULL);
|
|
}
|
|
if (cam_ccbq_init(&device->ccbq,
|
|
bus->sim->max_dev_openings) != 0) {
|
|
camq_fini(&device->drvq);
|
|
free(device, M_DEVBUF);
|
|
return (NULL);
|
|
}
|
|
SLIST_INIT(&device->asyncs);
|
|
SLIST_INIT(&device->periphs);
|
|
device->generation = 0;
|
|
device->owner = NULL;
|
|
/*
|
|
* Take the default quirk entry until we have inquiry
|
|
* data and can determine a better quirk to use.
|
|
*/
|
|
device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
|
|
bzero(&device->inq_data, sizeof(device->inq_data));
|
|
device->inq_flags = 0;
|
|
device->queue_flags = 0;
|
|
device->serial_num = NULL;
|
|
device->serial_num_len = 0;
|
|
device->qfrozen_cnt = 0;
|
|
device->flags = CAM_DEV_UNCONFIGURED;
|
|
device->tag_delay_count = 0;
|
|
device->refcount = 1;
|
|
callout_handle_init(&device->c_handle);
|
|
|
|
/*
|
|
* Hold a reference to our parent target so it
|
|
* will not go away before we do.
|
|
*/
|
|
target->refcount++;
|
|
|
|
/*
|
|
* XXX should be limited by number of CCBs this bus can
|
|
* do.
|
|
*/
|
|
xpt_max_ccbs += device->ccbq.devq_openings;
|
|
/* Insertion sort into our target's device list */
|
|
cur_device = TAILQ_FIRST(&target->ed_entries);
|
|
while (cur_device != NULL && cur_device->lun_id < lun_id)
|
|
cur_device = TAILQ_NEXT(cur_device, links);
|
|
if (cur_device != NULL) {
|
|
TAILQ_INSERT_BEFORE(cur_device, device, links);
|
|
} else {
|
|
TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
|
|
}
|
|
target->generation++;
|
|
}
|
|
return (device);
|
|
}
|
|
|
|
static void
|
|
xpt_release_device(struct cam_eb *bus, struct cam_et *target,
|
|
struct cam_ed *device)
|
|
{
|
|
int s;
|
|
|
|
s = splcam();
|
|
if ((--device->refcount == 0)
|
|
&& ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) {
|
|
struct cam_devq *devq;
|
|
|
|
if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
|
|
|| device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
|
|
panic("Removing device while still queued for ccbs");
|
|
|
|
if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
|
|
untimeout(xpt_release_devq_timeout, device,
|
|
device->c_handle);
|
|
|
|
TAILQ_REMOVE(&target->ed_entries, device,links);
|
|
target->generation++;
|
|
xpt_max_ccbs -= device->ccbq.devq_openings;
|
|
/* Release our slot in the devq */
|
|
devq = bus->sim->devq;
|
|
cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
|
|
splx(s);
|
|
free(device, M_DEVBUF);
|
|
xpt_release_target(bus, target);
|
|
} else
|
|
splx(s);
|
|
}
|
|
|
|
static u_int32_t
|
|
xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
|
|
{
|
|
int s;
|
|
int diff;
|
|
int result;
|
|
struct cam_ed *dev;
|
|
|
|
dev = path->device;
|
|
s = splsoftcam();
|
|
|
|
diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
|
|
result = cam_ccbq_resize(&dev->ccbq, newopenings);
|
|
if (result == CAM_REQ_CMP && (diff < 0)) {
|
|
dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
|
|
}
|
|
/* Adjust the global limit */
|
|
xpt_max_ccbs += diff;
|
|
splx(s);
|
|
return (result);
|
|
}
|
|
|
|
static struct cam_eb *
|
|
xpt_find_bus(path_id_t path_id)
|
|
{
|
|
struct cam_eb *bus;
|
|
|
|
for (bus = TAILQ_FIRST(&xpt_busses);
|
|
bus != NULL;
|
|
bus = TAILQ_NEXT(bus, links)) {
|
|
if (bus->path_id == path_id) {
|
|
bus->refcount++;
|
|
break;
|
|
}
|
|
}
|
|
return (bus);
|
|
}
|
|
|
|
static struct cam_et *
|
|
xpt_find_target(struct cam_eb *bus, target_id_t target_id)
|
|
{
|
|
struct cam_et *target;
|
|
|
|
for (target = TAILQ_FIRST(&bus->et_entries);
|
|
target != NULL;
|
|
target = TAILQ_NEXT(target, links)) {
|
|
if (target->target_id == target_id) {
|
|
target->refcount++;
|
|
break;
|
|
}
|
|
}
|
|
return (target);
|
|
}
|
|
|
|
static struct cam_ed *
|
|
xpt_find_device(struct cam_et *target, lun_id_t lun_id)
|
|
{
|
|
struct cam_ed *device;
|
|
|
|
for (device = TAILQ_FIRST(&target->ed_entries);
|
|
device != NULL;
|
|
device = TAILQ_NEXT(device, links)) {
|
|
if (device->lun_id == lun_id) {
|
|
device->refcount++;
|
|
break;
|
|
}
|
|
}
|
|
return (device);
|
|
}
|
|
|
|
typedef struct {
|
|
union ccb *request_ccb;
|
|
struct ccb_pathinq *cpi;
|
|
int pending_count;
|
|
} xpt_scan_bus_info;
|
|
|
|
/*
|
|
* To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
|
|
* As the scan progresses, xpt_scan_bus is used as the
|
|
* callback on completion function.
|
|
*/
|
|
static void
|
|
xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
|
|
{
|
|
CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
|
|
("xpt_scan_bus\n"));
|
|
switch (request_ccb->ccb_h.func_code) {
|
|
case XPT_SCAN_BUS:
|
|
{
|
|
xpt_scan_bus_info *scan_info;
|
|
union ccb *work_ccb;
|
|
struct cam_path *path;
|
|
u_int i;
|
|
u_int max_target;
|
|
u_int initiator_id;
|
|
|
|
/* Find out the characteristics of the bus */
|
|
work_ccb = xpt_alloc_ccb();
|
|
xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
|
|
request_ccb->ccb_h.pinfo.priority);
|
|
work_ccb->ccb_h.func_code = XPT_PATH_INQ;
|
|
xpt_action(work_ccb);
|
|
if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
|
|
request_ccb->ccb_h.status = work_ccb->ccb_h.status;
|
|
xpt_free_ccb(work_ccb);
|
|
xpt_done(request_ccb);
|
|
return;
|
|
}
|
|
|
|
if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
|
|
/*
|
|
* Can't scan the bus on an adapter that
|
|
* cannot perform the initiator role.
|
|
*/
|
|
request_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
xpt_free_ccb(work_ccb);
|
|
xpt_done(request_ccb);
|
|
return;
|
|
}
|
|
|
|
/* Save some state for use while we probe for devices */
|
|
scan_info = (xpt_scan_bus_info *)
|
|
malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK);
|
|
scan_info->request_ccb = request_ccb;
|
|
scan_info->cpi = &work_ccb->cpi;
|
|
|
|
/* Cache on our stack so we can work asynchronously */
|
|
max_target = scan_info->cpi->max_target;
|
|
initiator_id = scan_info->cpi->initiator_id;
|
|
|
|
/*
|
|
* Don't count the initiator if the
|
|
* initiator is addressable.
|
|
*/
|
|
scan_info->pending_count = max_target + 1;
|
|
if (initiator_id <= max_target)
|
|
scan_info->pending_count--;
|
|
|
|
for (i = 0; i <= max_target; i++) {
|
|
cam_status status;
|
|
if (i == initiator_id)
|
|
continue;
|
|
|
|
status = xpt_create_path(&path, xpt_periph,
|
|
request_ccb->ccb_h.path_id,
|
|
i, 0);
|
|
if (status != CAM_REQ_CMP) {
|
|
printf("xpt_scan_bus: xpt_create_path failed"
|
|
" with status %#x, bus scan halted\n",
|
|
status);
|
|
break;
|
|
}
|
|
work_ccb = xpt_alloc_ccb();
|
|
xpt_setup_ccb(&work_ccb->ccb_h, path,
|
|
request_ccb->ccb_h.pinfo.priority);
|
|
work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
|
|
work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
|
|
work_ccb->ccb_h.ppriv_ptr0 = scan_info;
|
|
work_ccb->crcn.flags = request_ccb->crcn.flags;
|
|
#if 0
|
|
printf("xpt_scan_bus: probing %d:%d:%d\n",
|
|
request_ccb->ccb_h.path_id, i, 0);
|
|
#endif
|
|
xpt_action(work_ccb);
|
|
}
|
|
break;
|
|
}
|
|
case XPT_SCAN_LUN:
|
|
{
|
|
xpt_scan_bus_info *scan_info;
|
|
path_id_t path_id;
|
|
target_id_t target_id;
|
|
lun_id_t lun_id;
|
|
|
|
/* Reuse the same CCB to query if a device was really found */
|
|
scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
|
|
xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
|
|
request_ccb->ccb_h.pinfo.priority);
|
|
request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
|
|
|
|
path_id = request_ccb->ccb_h.path_id;
|
|
target_id = request_ccb->ccb_h.target_id;
|
|
lun_id = request_ccb->ccb_h.target_lun;
|
|
xpt_action(request_ccb);
|
|
|
|
#if 0
|
|
printf("xpt_scan_bus: got back probe from %d:%d:%d\n",
|
|
path_id, target_id, lun_id);
|
|
#endif
|
|
|
|
if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
|
|
struct cam_ed *device;
|
|
struct cam_et *target;
|
|
int s, phl;
|
|
|
|
/*
|
|
* If we already probed lun 0 successfully, or
|
|
* we have additional configured luns on this
|
|
* target that might have "gone away", go onto
|
|
* the next lun.
|
|
*/
|
|
target = request_ccb->ccb_h.path->target;
|
|
/*
|
|
* We may touch devices that we don't
|
|
* hold references too, so ensure they
|
|
* don't disappear out from under us.
|
|
* The target above is referenced by the
|
|
* path in the request ccb.
|
|
*/
|
|
phl = 0;
|
|
s = splcam();
|
|
device = TAILQ_FIRST(&target->ed_entries);
|
|
if (device != NULL) {
|
|
phl = device->quirk->quirks & CAM_QUIRK_HILUNS;
|
|
if (device->lun_id == 0)
|
|
device = TAILQ_NEXT(device, links);
|
|
}
|
|
splx(s);
|
|
if ((lun_id != 0) || (device != NULL)) {
|
|
if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
|
|
lun_id++;
|
|
}
|
|
} else {
|
|
struct cam_ed *device;
|
|
|
|
device = request_ccb->ccb_h.path->device;
|
|
|
|
if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
|
|
/* Try the next lun */
|
|
if (lun_id < (CAM_SCSI2_MAXLUN-1) ||
|
|
(device->quirk->quirks & CAM_QUIRK_HILUNS))
|
|
lun_id++;
|
|
}
|
|
}
|
|
|
|
xpt_free_path(request_ccb->ccb_h.path);
|
|
|
|
/* Check Bounds */
|
|
if ((lun_id == request_ccb->ccb_h.target_lun)
|
|
|| lun_id > scan_info->cpi->max_lun) {
|
|
/* We're done */
|
|
|
|
xpt_free_ccb(request_ccb);
|
|
scan_info->pending_count--;
|
|
if (scan_info->pending_count == 0) {
|
|
xpt_free_ccb((union ccb *)scan_info->cpi);
|
|
request_ccb = scan_info->request_ccb;
|
|
free(scan_info, M_TEMP);
|
|
request_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
xpt_done(request_ccb);
|
|
}
|
|
} else {
|
|
/* Try the next device */
|
|
struct cam_path *path;
|
|
cam_status status;
|
|
|
|
path = request_ccb->ccb_h.path;
|
|
status = xpt_create_path(&path, xpt_periph,
|
|
path_id, target_id, lun_id);
|
|
if (status != CAM_REQ_CMP) {
|
|
printf("xpt_scan_bus: xpt_create_path failed "
|
|
"with status %#x, halting LUN scan\n",
|
|
status);
|
|
xpt_free_ccb(request_ccb);
|
|
scan_info->pending_count--;
|
|
if (scan_info->pending_count == 0) {
|
|
xpt_free_ccb(
|
|
(union ccb *)scan_info->cpi);
|
|
request_ccb = scan_info->request_ccb;
|
|
free(scan_info, M_TEMP);
|
|
request_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
xpt_done(request_ccb);
|
|
break;
|
|
}
|
|
}
|
|
xpt_setup_ccb(&request_ccb->ccb_h, path,
|
|
request_ccb->ccb_h.pinfo.priority);
|
|
request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
|
|
request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
|
|
request_ccb->ccb_h.ppriv_ptr0 = scan_info;
|
|
request_ccb->crcn.flags =
|
|
scan_info->request_ccb->crcn.flags;
|
|
#if 0
|
|
xpt_print_path(path);
|
|
printf("xpt_scan bus probing\n");
|
|
#endif
|
|
xpt_action(request_ccb);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
typedef enum {
|
|
PROBE_TUR,
|
|
PROBE_INQUIRY,
|
|
PROBE_FULL_INQUIRY,
|
|
PROBE_MODE_SENSE,
|
|
PROBE_SERIAL_NUM,
|
|
PROBE_TUR_FOR_NEGOTIATION
|
|
} probe_action;
|
|
|
|
typedef enum {
|
|
PROBE_INQUIRY_CKSUM = 0x01,
|
|
PROBE_SERIAL_CKSUM = 0x02,
|
|
PROBE_NO_ANNOUNCE = 0x04
|
|
} probe_flags;
|
|
|
|
typedef struct {
|
|
TAILQ_HEAD(, ccb_hdr) request_ccbs;
|
|
probe_action action;
|
|
union ccb saved_ccb;
|
|
probe_flags flags;
|
|
MD5_CTX context;
|
|
u_int8_t digest[16];
|
|
} probe_softc;
|
|
|
|
static void
|
|
xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
|
|
cam_flags flags, union ccb *request_ccb)
|
|
{
|
|
struct ccb_pathinq cpi;
|
|
cam_status status;
|
|
struct cam_path *new_path;
|
|
struct cam_periph *old_periph;
|
|
int s;
|
|
|
|
CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
|
|
("xpt_scan_lun\n"));
|
|
|
|
xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
|
|
cpi.ccb_h.func_code = XPT_PATH_INQ;
|
|
xpt_action((union ccb *)&cpi);
|
|
|
|
if (cpi.ccb_h.status != CAM_REQ_CMP) {
|
|
if (request_ccb != NULL) {
|
|
request_ccb->ccb_h.status = cpi.ccb_h.status;
|
|
xpt_done(request_ccb);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
|
|
/*
|
|
* Can't scan the bus on an adapter that
|
|
* cannot perform the initiator role.
|
|
*/
|
|
if (request_ccb != NULL) {
|
|
request_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
xpt_done(request_ccb);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (request_ccb == NULL) {
|
|
request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT);
|
|
if (request_ccb == NULL) {
|
|
xpt_print_path(path);
|
|
printf("xpt_scan_lun: can't allocate CCB, can't "
|
|
"continue\n");
|
|
return;
|
|
}
|
|
new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT);
|
|
if (new_path == NULL) {
|
|
xpt_print_path(path);
|
|
printf("xpt_scan_lun: can't allocate path, can't "
|
|
"continue\n");
|
|
free(request_ccb, M_TEMP);
|
|
return;
|
|
}
|
|
status = xpt_compile_path(new_path, xpt_periph,
|
|
path->bus->path_id,
|
|
path->target->target_id,
|
|
path->device->lun_id);
|
|
|
|
if (status != CAM_REQ_CMP) {
|
|
xpt_print_path(path);
|
|
printf("xpt_scan_lun: can't compile path, can't "
|
|
"continue\n");
|
|
free(request_ccb, M_TEMP);
|
|
free(new_path, M_TEMP);
|
|
return;
|
|
}
|
|
xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
|
|
request_ccb->ccb_h.cbfcnp = xptscandone;
|
|
request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
|
|
request_ccb->crcn.flags = flags;
|
|
}
|
|
|
|
s = splsoftcam();
|
|
if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
|
|
probe_softc *softc;
|
|
|
|
softc = (probe_softc *)old_periph->softc;
|
|
TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
|
|
periph_links.tqe);
|
|
} else {
|
|
status = cam_periph_alloc(proberegister, NULL, probecleanup,
|
|
probestart, "probe",
|
|
CAM_PERIPH_BIO,
|
|
request_ccb->ccb_h.path, NULL, 0,
|
|
request_ccb);
|
|
|
|
if (status != CAM_REQ_CMP) {
|
|
xpt_print_path(path);
|
|
printf("xpt_scan_lun: cam_alloc_periph returned an "
|
|
"error, can't continue probe\n");
|
|
request_ccb->ccb_h.status = status;
|
|
xpt_done(request_ccb);
|
|
}
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
xptscandone(struct cam_periph *periph, union ccb *done_ccb)
|
|
{
|
|
xpt_release_path(done_ccb->ccb_h.path);
|
|
free(done_ccb->ccb_h.path, M_TEMP);
|
|
free(done_ccb, M_TEMP);
|
|
}
|
|
|
|
static cam_status
|
|
proberegister(struct cam_periph *periph, void *arg)
|
|
{
|
|
union ccb *request_ccb; /* CCB representing the probe request */
|
|
probe_softc *softc;
|
|
|
|
request_ccb = (union ccb *)arg;
|
|
if (periph == NULL) {
|
|
printf("proberegister: periph was NULL!!\n");
|
|
return(CAM_REQ_CMP_ERR);
|
|
}
|
|
|
|
if (request_ccb == NULL) {
|
|
printf("proberegister: no probe CCB, "
|
|
"can't register device\n");
|
|
return(CAM_REQ_CMP_ERR);
|
|
}
|
|
|
|
softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT);
|
|
|
|
if (softc == NULL) {
|
|
printf("proberegister: Unable to probe new device. "
|
|
"Unable to allocate softc\n");
|
|
return(CAM_REQ_CMP_ERR);
|
|
}
|
|
TAILQ_INIT(&softc->request_ccbs);
|
|
TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
|
|
periph_links.tqe);
|
|
softc->flags = 0;
|
|
periph->softc = softc;
|
|
cam_periph_acquire(periph);
|
|
/*
|
|
* Ensure we've waited at least a bus settle
|
|
* delay before attempting to probe the device.
|
|
* For HBAs that don't do bus resets, this won't make a difference.
|
|
*/
|
|
cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
|
|
SCSI_DELAY);
|
|
probeschedule(periph);
|
|
return(CAM_REQ_CMP);
|
|
}
|
|
|
|
static void
|
|
probeschedule(struct cam_periph *periph)
|
|
{
|
|
struct ccb_pathinq cpi;
|
|
union ccb *ccb;
|
|
probe_softc *softc;
|
|
|
|
softc = (probe_softc *)periph->softc;
|
|
ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
|
|
|
|
xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
|
|
cpi.ccb_h.func_code = XPT_PATH_INQ;
|
|
xpt_action((union ccb *)&cpi);
|
|
|
|
/*
|
|
* If a device has gone away and another device, or the same one,
|
|
* is back in the same place, it should have a unit attention
|
|
* condition pending. It will not report the unit attention in
|
|
* response to an inquiry, which may leave invalid transfer
|
|
* negotiations in effect. The TUR will reveal the unit attention
|
|
* condition. Only send the TUR for lun 0, since some devices
|
|
* will get confused by commands other than inquiry to non-existent
|
|
* luns. If you think a device has gone away start your scan from
|
|
* lun 0. This will insure that any bogus transfer settings are
|
|
* invalidated.
|
|
*
|
|
* If we haven't seen the device before and the controller supports
|
|
* some kind of transfer negotiation, negotiate with the first
|
|
* sent command if no bus reset was performed at startup. This
|
|
* ensures that the device is not confused by transfer negotiation
|
|
* settings left over by loader or BIOS action.
|
|
*/
|
|
if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
|
|
&& (ccb->ccb_h.target_lun == 0)) {
|
|
softc->action = PROBE_TUR;
|
|
} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
|
|
&& (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
|
|
proberequestdefaultnegotiation(periph);
|
|
softc->action = PROBE_INQUIRY;
|
|
} else {
|
|
softc->action = PROBE_INQUIRY;
|
|
}
|
|
|
|
if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
|
|
softc->flags |= PROBE_NO_ANNOUNCE;
|
|
else
|
|
softc->flags &= ~PROBE_NO_ANNOUNCE;
|
|
|
|
xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
|
|
}
|
|
|
|
static void
|
|
probestart(struct cam_periph *periph, union ccb *start_ccb)
|
|
{
|
|
/* Probe the device that our peripheral driver points to */
|
|
struct ccb_scsiio *csio;
|
|
probe_softc *softc;
|
|
|
|
CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
|
|
|
|
softc = (probe_softc *)periph->softc;
|
|
csio = &start_ccb->csio;
|
|
|
|
switch (softc->action) {
|
|
case PROBE_TUR:
|
|
case PROBE_TUR_FOR_NEGOTIATION:
|
|
{
|
|
scsi_test_unit_ready(csio,
|
|
/*retries*/4,
|
|
probedone,
|
|
MSG_SIMPLE_Q_TAG,
|
|
SSD_FULL_SIZE,
|
|
/*timeout*/60000);
|
|
break;
|
|
}
|
|
case PROBE_INQUIRY:
|
|
case PROBE_FULL_INQUIRY:
|
|
{
|
|
u_int inquiry_len;
|
|
struct scsi_inquiry_data *inq_buf;
|
|
|
|
inq_buf = &periph->path->device->inq_data;
|
|
/*
|
|
* If the device is currently configured, we calculate an
|
|
* MD5 checksum of the inquiry data, and if the serial number
|
|
* length is greater than 0, add the serial number data
|
|
* into the checksum as well. Once the inquiry and the
|
|
* serial number check finish, we attempt to figure out
|
|
* whether we still have the same device.
|
|
*/
|
|
if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
|
|
|
|
MD5Init(&softc->context);
|
|
MD5Update(&softc->context, (unsigned char *)inq_buf,
|
|
sizeof(struct scsi_inquiry_data));
|
|
softc->flags |= PROBE_INQUIRY_CKSUM;
|
|
if (periph->path->device->serial_num_len > 0) {
|
|
MD5Update(&softc->context,
|
|
periph->path->device->serial_num,
|
|
periph->path->device->serial_num_len);
|
|
softc->flags |= PROBE_SERIAL_CKSUM;
|
|
}
|
|
MD5Final(softc->digest, &softc->context);
|
|
}
|
|
|
|
if (softc->action == PROBE_INQUIRY)
|
|
inquiry_len = SHORT_INQUIRY_LENGTH;
|
|
else
|
|
inquiry_len = inq_buf->additional_length + 4;
|
|
|
|
scsi_inquiry(csio,
|
|
/*retries*/4,
|
|
probedone,
|
|
MSG_SIMPLE_Q_TAG,
|
|
(u_int8_t *)inq_buf,
|
|
inquiry_len,
|
|
/*evpd*/FALSE,
|
|
/*page_code*/0,
|
|
SSD_MIN_SIZE,
|
|
/*timeout*/60 * 1000);
|
|
break;
|
|
}
|
|
case PROBE_MODE_SENSE:
|
|
{
|
|
void *mode_buf;
|
|
int mode_buf_len;
|
|
|
|
mode_buf_len = sizeof(struct scsi_mode_header_6)
|
|
+ sizeof(struct scsi_mode_blk_desc)
|
|
+ sizeof(struct scsi_control_page);
|
|
mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT);
|
|
if (mode_buf != NULL) {
|
|
scsi_mode_sense(csio,
|
|
/*retries*/4,
|
|
probedone,
|
|
MSG_SIMPLE_Q_TAG,
|
|
/*dbd*/FALSE,
|
|
SMS_PAGE_CTRL_CURRENT,
|
|
SMS_CONTROL_MODE_PAGE,
|
|
mode_buf,
|
|
mode_buf_len,
|
|
SSD_FULL_SIZE,
|
|
/*timeout*/60000);
|
|
break;
|
|
}
|
|
xpt_print_path(periph->path);
|
|
printf("Unable to mode sense control page - malloc failure\n");
|
|
softc->action = PROBE_SERIAL_NUM;
|
|
/* FALLTHROUGH */
|
|
}
|
|
case PROBE_SERIAL_NUM:
|
|
{
|
|
struct scsi_vpd_unit_serial_number *serial_buf;
|
|
struct cam_ed* device;
|
|
|
|
serial_buf = NULL;
|
|
device = periph->path->device;
|
|
device->serial_num = NULL;
|
|
device->serial_num_len = 0;
|
|
|
|
if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0)
|
|
serial_buf = (struct scsi_vpd_unit_serial_number *)
|
|
malloc(sizeof(*serial_buf), M_TEMP,
|
|
M_NOWAIT | M_ZERO);
|
|
|
|
if (serial_buf != NULL) {
|
|
scsi_inquiry(csio,
|
|
/*retries*/4,
|
|
probedone,
|
|
MSG_SIMPLE_Q_TAG,
|
|
(u_int8_t *)serial_buf,
|
|
sizeof(*serial_buf),
|
|
/*evpd*/TRUE,
|
|
SVPD_UNIT_SERIAL_NUMBER,
|
|
SSD_MIN_SIZE,
|
|
/*timeout*/60 * 1000);
|
|
break;
|
|
}
|
|
/*
|
|
* We'll have to do without, let our probedone
|
|
* routine finish up for us.
|
|
*/
|
|
start_ccb->csio.data_ptr = NULL;
|
|
probedone(periph, start_ccb);
|
|
return;
|
|
}
|
|
}
|
|
xpt_action(start_ccb);
|
|
}
|
|
|
|
static void
|
|
proberequestdefaultnegotiation(struct cam_periph *periph)
|
|
{
|
|
struct ccb_trans_settings cts;
|
|
|
|
xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
|
|
cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
|
|
cts.flags = CCB_TRANS_USER_SETTINGS;
|
|
xpt_action((union ccb *)&cts);
|
|
cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
|
|
cts.flags &= ~CCB_TRANS_USER_SETTINGS;
|
|
cts.flags |= CCB_TRANS_CURRENT_SETTINGS;
|
|
xpt_action((union ccb *)&cts);
|
|
}
|
|
|
|
static void
|
|
probedone(struct cam_periph *periph, union ccb *done_ccb)
|
|
{
|
|
probe_softc *softc;
|
|
struct cam_path *path;
|
|
u_int32_t priority;
|
|
|
|
CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
|
|
|
|
softc = (probe_softc *)periph->softc;
|
|
path = done_ccb->ccb_h.path;
|
|
priority = done_ccb->ccb_h.pinfo.priority;
|
|
|
|
switch (softc->action) {
|
|
case PROBE_TUR:
|
|
{
|
|
if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
|
|
|
|
if (cam_periph_error(done_ccb, 0,
|
|
SF_NO_PRINT, NULL) == ERESTART)
|
|
return;
|
|
else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
|
|
/* Don't wedge the queue */
|
|
xpt_release_devq(done_ccb->ccb_h.path,
|
|
/*count*/1,
|
|
/*run_queue*/TRUE);
|
|
}
|
|
softc->action = PROBE_INQUIRY;
|
|
xpt_release_ccb(done_ccb);
|
|
xpt_schedule(periph, priority);
|
|
return;
|
|
}
|
|
case PROBE_INQUIRY:
|
|
case PROBE_FULL_INQUIRY:
|
|
{
|
|
if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
|
|
struct scsi_inquiry_data *inq_buf;
|
|
u_int8_t periph_qual;
|
|
u_int8_t periph_dtype;
|
|
|
|
path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
|
|
inq_buf = &path->device->inq_data;
|
|
|
|
periph_qual = SID_QUAL(inq_buf);
|
|
periph_dtype = SID_TYPE(inq_buf);
|
|
|
|
if (periph_dtype != T_NODEVICE) {
|
|
switch(periph_qual) {
|
|
case SID_QUAL_LU_CONNECTED:
|
|
{
|
|
u_int8_t alen;
|
|
|
|
/*
|
|
* We conservatively request only
|
|
* SHORT_INQUIRY_LEN bytes of inquiry
|
|
* information during our first try
|
|
* at sending an INQUIRY. If the device
|
|
* has more information to give,
|
|
* perform a second request specifying
|
|
* the amount of information the device
|
|
* is willing to give.
|
|
*/
|
|
alen = inq_buf->additional_length;
|
|
if (softc->action == PROBE_INQUIRY
|
|
&& alen > (SHORT_INQUIRY_LENGTH - 4)) {
|
|
softc->action =
|
|
PROBE_FULL_INQUIRY;
|
|
xpt_release_ccb(done_ccb);
|
|
xpt_schedule(periph, priority);
|
|
return;
|
|
}
|
|
|
|
xpt_find_quirk(path->device);
|
|
|
|
if ((inq_buf->flags & SID_CmdQue) != 0)
|
|
softc->action =
|
|
PROBE_MODE_SENSE;
|
|
else
|
|
softc->action =
|
|
PROBE_SERIAL_NUM;
|
|
|
|
path->device->flags &=
|
|
~CAM_DEV_UNCONFIGURED;
|
|
|
|
xpt_release_ccb(done_ccb);
|
|
xpt_schedule(periph, priority);
|
|
return;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
} else if (cam_periph_error(done_ccb, 0,
|
|
done_ccb->ccb_h.target_lun > 0
|
|
? SF_RETRY_UA|SF_QUIET_IR
|
|
: SF_RETRY_UA,
|
|
&softc->saved_ccb) == ERESTART) {
|
|
return;
|
|
} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
|
|
/* Don't wedge the queue */
|
|
xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
|
|
/*run_queue*/TRUE);
|
|
}
|
|
/*
|
|
* If we get to this point, we got an error status back
|
|
* from the inquiry and the error status doesn't require
|
|
* automatically retrying the command. Therefore, the
|
|
* inquiry failed. If we had inquiry information before
|
|
* for this device, but this latest inquiry command failed,
|
|
* the device has probably gone away. If this device isn't
|
|
* already marked unconfigured, notify the peripheral
|
|
* drivers that this device is no more.
|
|
*/
|
|
if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
|
|
/* Send the async notification. */
|
|
xpt_async(AC_LOST_DEVICE, path, NULL);
|
|
|
|
xpt_release_ccb(done_ccb);
|
|
break;
|
|
}
|
|
case PROBE_MODE_SENSE:
|
|
{
|
|
struct ccb_scsiio *csio;
|
|
struct scsi_mode_header_6 *mode_hdr;
|
|
|
|
csio = &done_ccb->csio;
|
|
mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
|
|
if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
|
|
struct scsi_control_page *page;
|
|
u_int8_t *offset;
|
|
|
|
offset = ((u_int8_t *)&mode_hdr[1])
|
|
+ mode_hdr->blk_desc_len;
|
|
page = (struct scsi_control_page *)offset;
|
|
path->device->queue_flags = page->queue_flags;
|
|
} else if (cam_periph_error(done_ccb, 0,
|
|
SF_RETRY_UA|SF_NO_PRINT,
|
|
&softc->saved_ccb) == ERESTART) {
|
|
return;
|
|
} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
|
|
/* Don't wedge the queue */
|
|
xpt_release_devq(done_ccb->ccb_h.path,
|
|
/*count*/1, /*run_queue*/TRUE);
|
|
}
|
|
xpt_release_ccb(done_ccb);
|
|
free(mode_hdr, M_TEMP);
|
|
softc->action = PROBE_SERIAL_NUM;
|
|
xpt_schedule(periph, priority);
|
|
return;
|
|
}
|
|
case PROBE_SERIAL_NUM:
|
|
{
|
|
struct ccb_scsiio *csio;
|
|
struct scsi_vpd_unit_serial_number *serial_buf;
|
|
u_int32_t priority;
|
|
int changed;
|
|
int have_serialnum;
|
|
|
|
changed = 1;
|
|
have_serialnum = 0;
|
|
csio = &done_ccb->csio;
|
|
priority = done_ccb->ccb_h.pinfo.priority;
|
|
serial_buf =
|
|
(struct scsi_vpd_unit_serial_number *)csio->data_ptr;
|
|
|
|
/* Clean up from previous instance of this device */
|
|
if (path->device->serial_num != NULL) {
|
|
free(path->device->serial_num, M_DEVBUF);
|
|
path->device->serial_num = NULL;
|
|
path->device->serial_num_len = 0;
|
|
}
|
|
|
|
if (serial_buf == NULL) {
|
|
/*
|
|
* Don't process the command as it was never sent
|
|
*/
|
|
} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
|
|
&& (serial_buf->length > 0)) {
|
|
|
|
have_serialnum = 1;
|
|
path->device->serial_num =
|
|
(u_int8_t *)malloc((serial_buf->length + 1),
|
|
M_DEVBUF, M_NOWAIT);
|
|
if (path->device->serial_num != NULL) {
|
|
bcopy(serial_buf->serial_num,
|
|
path->device->serial_num,
|
|
serial_buf->length);
|
|
path->device->serial_num_len =
|
|
serial_buf->length;
|
|
path->device->serial_num[serial_buf->length]
|
|
= '\0';
|
|
}
|
|
} else if (cam_periph_error(done_ccb, 0,
|
|
SF_RETRY_UA|SF_NO_PRINT,
|
|
&softc->saved_ccb) == ERESTART) {
|
|
return;
|
|
} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
|
|
/* Don't wedge the queue */
|
|
xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
|
|
/*run_queue*/TRUE);
|
|
}
|
|
|
|
/*
|
|
* Let's see if we have seen this device before.
|
|
*/
|
|
if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
|
|
MD5_CTX context;
|
|
u_int8_t digest[16];
|
|
|
|
MD5Init(&context);
|
|
|
|
MD5Update(&context,
|
|
(unsigned char *)&path->device->inq_data,
|
|
sizeof(struct scsi_inquiry_data));
|
|
|
|
if (have_serialnum)
|
|
MD5Update(&context, serial_buf->serial_num,
|
|
serial_buf->length);
|
|
|
|
MD5Final(digest, &context);
|
|
if (bcmp(softc->digest, digest, 16) == 0)
|
|
changed = 0;
|
|
|
|
/*
|
|
* XXX Do we need to do a TUR in order to ensure
|
|
* that the device really hasn't changed???
|
|
*/
|
|
if ((changed != 0)
|
|
&& ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
|
|
xpt_async(AC_LOST_DEVICE, path, NULL);
|
|
}
|
|
if (serial_buf != NULL)
|
|
free(serial_buf, M_TEMP);
|
|
|
|
if (changed != 0) {
|
|
/*
|
|
* Now that we have all the necessary
|
|
* information to safely perform transfer
|
|
* negotiations... Controllers don't perform
|
|
* any negotiation or tagged queuing until
|
|
* after the first XPT_SET_TRAN_SETTINGS ccb is
|
|
* received. So, on a new device, just retreive
|
|
* the user settings, and set them as the current
|
|
* settings to set the device up.
|
|
*/
|
|
proberequestdefaultnegotiation(periph);
|
|
xpt_release_ccb(done_ccb);
|
|
|
|
/*
|
|
* Perform a TUR to allow the controller to
|
|
* perform any necessary transfer negotiation.
|
|
*/
|
|
softc->action = PROBE_TUR_FOR_NEGOTIATION;
|
|
xpt_schedule(periph, priority);
|
|
return;
|
|
}
|
|
xpt_release_ccb(done_ccb);
|
|
break;
|
|
}
|
|
case PROBE_TUR_FOR_NEGOTIATION:
|
|
if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
|
|
/* Don't wedge the queue */
|
|
xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
|
|
/*run_queue*/TRUE);
|
|
}
|
|
|
|
path->device->flags &= ~CAM_DEV_UNCONFIGURED;
|
|
|
|
if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
|
|
/* Inform the XPT that a new device has been found */
|
|
done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
|
|
xpt_action(done_ccb);
|
|
|
|
xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb);
|
|
}
|
|
xpt_release_ccb(done_ccb);
|
|
break;
|
|
}
|
|
done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
|
|
TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
|
|
done_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
xpt_done(done_ccb);
|
|
if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
|
|
cam_periph_invalidate(periph);
|
|
cam_periph_release(periph);
|
|
} else {
|
|
probeschedule(periph);
|
|
}
|
|
}
|
|
|
|
static void
|
|
probecleanup(struct cam_periph *periph)
|
|
{
|
|
free(periph->softc, M_TEMP);
|
|
}
|
|
|
|
static void
|
|
xpt_find_quirk(struct cam_ed *device)
|
|
{
|
|
caddr_t match;
|
|
|
|
match = cam_quirkmatch((caddr_t)&device->inq_data,
|
|
(caddr_t)xpt_quirk_table,
|
|
sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
|
|
sizeof(*xpt_quirk_table), scsi_inquiry_match);
|
|
|
|
if (match == NULL)
|
|
panic("xpt_find_quirk: device didn't match wildcard entry!!");
|
|
|
|
device->quirk = (struct xpt_quirk_entry *)match;
|
|
}
|
|
|
|
static void
|
|
xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
|
|
int async_update)
|
|
{
|
|
struct cam_sim *sim;
|
|
int qfrozen;
|
|
|
|
sim = cts->ccb_h.path->bus->sim;
|
|
if (async_update == FALSE) {
|
|
struct scsi_inquiry_data *inq_data;
|
|
struct ccb_pathinq cpi;
|
|
struct ccb_trans_settings cur_cts;
|
|
|
|
if (device == NULL) {
|
|
cts->ccb_h.status = CAM_PATH_INVALID;
|
|
xpt_done((union ccb *)cts);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Perform sanity checking against what the
|
|
* controller and device can do.
|
|
*/
|
|
xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
|
|
cpi.ccb_h.func_code = XPT_PATH_INQ;
|
|
xpt_action((union ccb *)&cpi);
|
|
xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
|
|
cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
|
|
cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS;
|
|
xpt_action((union ccb *)&cur_cts);
|
|
inq_data = &device->inq_data;
|
|
|
|
/* Fill in any gaps in what the user gave us */
|
|
if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0)
|
|
cts->sync_period = cur_cts.sync_period;
|
|
if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
|
|
cts->sync_offset = cur_cts.sync_offset;
|
|
if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0)
|
|
cts->bus_width = cur_cts.bus_width;
|
|
if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) {
|
|
cts->flags &= ~CCB_TRANS_DISC_ENB;
|
|
cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB;
|
|
}
|
|
if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) {
|
|
cts->flags &= ~CCB_TRANS_TAG_ENB;
|
|
cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB;
|
|
}
|
|
if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
|
|
&& (inq_data->flags & SID_Sync) == 0)
|
|
|| (cpi.hba_inquiry & PI_SDTR_ABLE) == 0) {
|
|
/* Force async */
|
|
cts->sync_period = 0;
|
|
cts->sync_offset = 0;
|
|
}
|
|
|
|
/*
|
|
* Don't allow DT transmission rates if the
|
|
* device does not support it.
|
|
*/
|
|
if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
|
|
&& (inq_data->spi3data & SID_SPI_CLOCK_DT) == 0
|
|
&& cts->sync_period <= 0x9)
|
|
cts->sync_period = 0xa;
|
|
|
|
switch (cts->bus_width) {
|
|
case MSG_EXT_WDTR_BUS_32_BIT:
|
|
if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
|
|
|| (inq_data->flags & SID_WBus32) != 0)
|
|
&& (cpi.hba_inquiry & PI_WIDE_32) != 0)
|
|
break;
|
|
/* Fall Through to 16-bit */
|
|
case MSG_EXT_WDTR_BUS_16_BIT:
|
|
if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
|
|
|| (inq_data->flags & SID_WBus16) != 0)
|
|
&& (cpi.hba_inquiry & PI_WIDE_16) != 0) {
|
|
cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
|
|
break;
|
|
}
|
|
/* Fall Through to 8-bit */
|
|
default: /* New bus width?? */
|
|
case MSG_EXT_WDTR_BUS_8_BIT:
|
|
/* All targets can do this */
|
|
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
|
|
break;
|
|
}
|
|
|
|
if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) {
|
|
/*
|
|
* Can't tag queue without disconnection.
|
|
*/
|
|
cts->flags &= ~CCB_TRANS_TAG_ENB;
|
|
cts->valid |= CCB_TRANS_TQ_VALID;
|
|
}
|
|
|
|
if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
|
|
|| (inq_data->flags & SID_CmdQue) == 0
|
|
|| (device->queue_flags & SCP_QUEUE_DQUE) != 0
|
|
|| (device->quirk->mintags == 0)) {
|
|
/*
|
|
* Can't tag on hardware that doesn't support,
|
|
* doesn't have it enabled, or has broken tag support.
|
|
*/
|
|
cts->flags &= ~CCB_TRANS_TAG_ENB;
|
|
}
|
|
}
|
|
|
|
qfrozen = FALSE;
|
|
if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
|
|
int device_tagenb;
|
|
|
|
/*
|
|
* If we are transitioning from tags to no-tags or
|
|
* vice-versa, we need to carefully freeze and restart
|
|
* the queue so that we don't overlap tagged and non-tagged
|
|
* commands. We also temporarily stop tags if there is
|
|
* a change in transfer negotiation settings to allow
|
|
* "tag-less" negotiation.
|
|
*/
|
|
if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
|
|
|| (device->inq_flags & SID_CmdQue) != 0)
|
|
device_tagenb = TRUE;
|
|
else
|
|
device_tagenb = FALSE;
|
|
|
|
if (((cts->flags & CCB_TRANS_TAG_ENB) != 0
|
|
&& device_tagenb == FALSE)
|
|
|| ((cts->flags & CCB_TRANS_TAG_ENB) == 0
|
|
&& device_tagenb == TRUE)) {
|
|
|
|
if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) {
|
|
/*
|
|
* Delay change to use tags until after a
|
|
* few commands have gone to this device so
|
|
* the controller has time to perform transfer
|
|
* negotiations without tagged messages getting
|
|
* in the way.
|
|
*/
|
|
device->tag_delay_count = CAM_TAG_DELAY_COUNT;
|
|
device->flags |= CAM_DEV_TAG_AFTER_COUNT;
|
|
} else {
|
|
xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
|
|
qfrozen = TRUE;
|
|
device->inq_flags &= ~SID_CmdQue;
|
|
xpt_dev_ccbq_resize(cts->ccb_h.path,
|
|
sim->max_dev_openings);
|
|
device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
|
|
device->tag_delay_count = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (async_update == FALSE) {
|
|
/*
|
|
* If we are currently performing tagged transactions to
|
|
* this device and want to change its negotiation parameters,
|
|
* go non-tagged for a bit to give the controller a chance to
|
|
* negotiate unhampered by tag messages.
|
|
*/
|
|
if ((device->inq_flags & SID_CmdQue) != 0
|
|
&& (cts->flags & (CCB_TRANS_SYNC_RATE_VALID|
|
|
CCB_TRANS_SYNC_OFFSET_VALID|
|
|
CCB_TRANS_BUS_WIDTH_VALID)) != 0)
|
|
xpt_toggle_tags(cts->ccb_h.path);
|
|
|
|
(*(sim->sim_action))(sim, (union ccb *)cts);
|
|
}
|
|
|
|
if (qfrozen) {
|
|
struct ccb_relsim crs;
|
|
|
|
xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
|
|
/*priority*/1);
|
|
crs.ccb_h.func_code = XPT_REL_SIMQ;
|
|
crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
|
|
crs.openings
|
|
= crs.release_timeout
|
|
= crs.qfrozen_cnt
|
|
= 0;
|
|
xpt_action((union ccb *)&crs);
|
|
}
|
|
}
|
|
|
|
static void
|
|
xpt_toggle_tags(struct cam_path *path)
|
|
{
|
|
struct cam_ed *dev;
|
|
|
|
/*
|
|
* Give controllers a chance to renegotiate
|
|
* before starting tag operations. We
|
|
* "toggle" tagged queuing off then on
|
|
* which causes the tag enable command delay
|
|
* counter to come into effect.
|
|
*/
|
|
dev = path->device;
|
|
if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
|
|
|| ((dev->inq_flags & SID_CmdQue) != 0
|
|
&& (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
|
|
struct ccb_trans_settings cts;
|
|
|
|
xpt_setup_ccb(&cts.ccb_h, path, 1);
|
|
cts.flags = 0;
|
|
cts.valid = CCB_TRANS_TQ_VALID;
|
|
xpt_set_transfer_settings(&cts, path->device,
|
|
/*async_update*/TRUE);
|
|
cts.flags = CCB_TRANS_TAG_ENB;
|
|
xpt_set_transfer_settings(&cts, path->device,
|
|
/*async_update*/TRUE);
|
|
}
|
|
}
|
|
|
|
static void
|
|
xpt_start_tags(struct cam_path *path)
|
|
{
|
|
struct ccb_relsim crs;
|
|
struct cam_ed *device;
|
|
struct cam_sim *sim;
|
|
int newopenings;
|
|
|
|
device = path->device;
|
|
sim = path->bus->sim;
|
|
device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
|
|
xpt_freeze_devq(path, /*count*/1);
|
|
device->inq_flags |= SID_CmdQue;
|
|
newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings);
|
|
xpt_dev_ccbq_resize(path, newopenings);
|
|
xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
|
|
crs.ccb_h.func_code = XPT_REL_SIMQ;
|
|
crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
|
|
crs.openings
|
|
= crs.release_timeout
|
|
= crs.qfrozen_cnt
|
|
= 0;
|
|
xpt_action((union ccb *)&crs);
|
|
}
|
|
|
|
static int busses_to_config;
|
|
static int busses_to_reset;
|
|
|
|
static int
|
|
xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
|
|
{
|
|
if (bus->path_id != CAM_XPT_PATH_ID) {
|
|
struct cam_path path;
|
|
struct ccb_pathinq cpi;
|
|
int can_negotiate;
|
|
|
|
busses_to_config++;
|
|
xpt_compile_path(&path, NULL, bus->path_id,
|
|
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
|
|
xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
|
|
cpi.ccb_h.func_code = XPT_PATH_INQ;
|
|
xpt_action((union ccb *)&cpi);
|
|
can_negotiate = cpi.hba_inquiry;
|
|
can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
|
|
if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
|
|
&& can_negotiate)
|
|
busses_to_reset++;
|
|
xpt_release_path(&path);
|
|
}
|
|
|
|
return(1);
|
|
}
|
|
|
|
static int
|
|
xptconfigfunc(struct cam_eb *bus, void *arg)
|
|
{
|
|
struct cam_path *path;
|
|
union ccb *work_ccb;
|
|
|
|
if (bus->path_id != CAM_XPT_PATH_ID) {
|
|
cam_status status;
|
|
int can_negotiate;
|
|
|
|
work_ccb = xpt_alloc_ccb();
|
|
if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
|
|
CAM_TARGET_WILDCARD,
|
|
CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
|
|
printf("xptconfigfunc: xpt_create_path failed with "
|
|
"status %#x for bus %d\n", status, bus->path_id);
|
|
printf("xptconfigfunc: halting bus configuration\n");
|
|
xpt_free_ccb(work_ccb);
|
|
busses_to_config--;
|
|
xpt_finishconfig(xpt_periph, NULL);
|
|
return(0);
|
|
}
|
|
xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
|
|
work_ccb->ccb_h.func_code = XPT_PATH_INQ;
|
|
xpt_action(work_ccb);
|
|
if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
|
|
printf("xptconfigfunc: CPI failed on bus %d "
|
|
"with status %d\n", bus->path_id,
|
|
work_ccb->ccb_h.status);
|
|
xpt_finishconfig(xpt_periph, work_ccb);
|
|
return(1);
|
|
}
|
|
|
|
can_negotiate = work_ccb->cpi.hba_inquiry;
|
|
can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
|
|
if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
|
|
&& (can_negotiate != 0)) {
|
|
xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
|
|
work_ccb->ccb_h.func_code = XPT_RESET_BUS;
|
|
work_ccb->ccb_h.cbfcnp = NULL;
|
|
CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
|
|
("Resetting Bus\n"));
|
|
xpt_action(work_ccb);
|
|
xpt_finishconfig(xpt_periph, work_ccb);
|
|
} else {
|
|
/* Act as though we performed a successful BUS RESET */
|
|
work_ccb->ccb_h.func_code = XPT_RESET_BUS;
|
|
xpt_finishconfig(xpt_periph, work_ccb);
|
|
}
|
|
}
|
|
|
|
return(1);
|
|
}
|
|
|
|
static void
|
|
xpt_config(void *arg)
|
|
{
|
|
/* Now that interrupts are enabled, go find our devices */
|
|
|
|
#ifdef CAMDEBUG
|
|
/* Setup debugging flags and path */
|
|
#ifdef CAM_DEBUG_FLAGS
|
|
cam_dflags = CAM_DEBUG_FLAGS;
|
|
#else /* !CAM_DEBUG_FLAGS */
|
|
cam_dflags = CAM_DEBUG_NONE;
|
|
#endif /* CAM_DEBUG_FLAGS */
|
|
#ifdef CAM_DEBUG_BUS
|
|
if (cam_dflags != CAM_DEBUG_NONE) {
|
|
if (xpt_create_path(&cam_dpath, xpt_periph,
|
|
CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
|
|
CAM_DEBUG_LUN) != CAM_REQ_CMP) {
|
|
printf("xpt_config: xpt_create_path() failed for debug"
|
|
" target %d:%d:%d, debugging disabled\n",
|
|
CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
|
|
cam_dflags = CAM_DEBUG_NONE;
|
|
}
|
|
} else
|
|
cam_dpath = NULL;
|
|
#else /* !CAM_DEBUG_BUS */
|
|
cam_dpath = NULL;
|
|
#endif /* CAM_DEBUG_BUS */
|
|
#endif /* CAMDEBUG */
|
|
|
|
/*
|
|
* Scan all installed busses.
|
|
*/
|
|
xpt_for_all_busses(xptconfigbuscountfunc, NULL);
|
|
|
|
if (busses_to_config == 0) {
|
|
/* Call manually because we don't have any busses */
|
|
xpt_finishconfig(xpt_periph, NULL);
|
|
} else {
|
|
if (busses_to_reset > 0 && SCSI_DELAY >= 2000) {
|
|
printf("Waiting %d seconds for SCSI "
|
|
"devices to settle\n", SCSI_DELAY/1000);
|
|
}
|
|
xpt_for_all_busses(xptconfigfunc, NULL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the given device only has one peripheral attached to it, and if that
|
|
* peripheral is the passthrough driver, announce it. This insures that the
|
|
* user sees some sort of announcement for every peripheral in their system.
|
|
*/
|
|
static int
|
|
xptpassannouncefunc(struct cam_ed *device, void *arg)
|
|
{
|
|
struct cam_periph *periph;
|
|
int i;
|
|
|
|
for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
|
|
periph = SLIST_NEXT(periph, periph_links), i++);
|
|
|
|
periph = SLIST_FIRST(&device->periphs);
|
|
if ((i == 1)
|
|
&& (strncmp(periph->periph_name, "pass", 4) == 0))
|
|
xpt_announce_periph(periph, NULL);
|
|
|
|
return(1);
|
|
}
|
|
|
|
static void
|
|
xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
|
|
{
|
|
struct periph_driver **p_drv;
|
|
int i;
|
|
|
|
if (done_ccb != NULL) {
|
|
CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
|
|
("xpt_finishconfig\n"));
|
|
switch(done_ccb->ccb_h.func_code) {
|
|
case XPT_RESET_BUS:
|
|
if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
|
|
done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
|
|
done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
|
|
xpt_action(done_ccb);
|
|
return;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case XPT_SCAN_BUS:
|
|
default:
|
|
xpt_free_path(done_ccb->ccb_h.path);
|
|
busses_to_config--;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (busses_to_config == 0) {
|
|
/* Register all the peripheral drivers */
|
|
/* XXX This will have to change when we have loadable modules */
|
|
p_drv = (struct periph_driver **)periphdriver_set.ls_items;
|
|
for (i = 0; p_drv[i] != NULL; i++) {
|
|
(*p_drv[i]->init)();
|
|
}
|
|
|
|
/*
|
|
* Check for devices with no "standard" peripheral driver
|
|
* attached. For any devices like that, announce the
|
|
* passthrough driver so the user will see something.
|
|
*/
|
|
xpt_for_all_devices(xptpassannouncefunc, NULL);
|
|
|
|
/* Release our hook so that the boot can continue. */
|
|
config_intrhook_disestablish(xpt_config_hook);
|
|
free(xpt_config_hook, M_TEMP);
|
|
xpt_config_hook = NULL;
|
|
}
|
|
if (done_ccb != NULL)
|
|
xpt_free_ccb(done_ccb);
|
|
}
|
|
|
|
static void
|
|
xptaction(struct cam_sim *sim, union ccb *work_ccb)
|
|
{
|
|
CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
|
|
|
|
switch (work_ccb->ccb_h.func_code) {
|
|
/* Common cases first */
|
|
case XPT_PATH_INQ: /* Path routing inquiry */
|
|
{
|
|
struct ccb_pathinq *cpi;
|
|
|
|
cpi = &work_ccb->cpi;
|
|
cpi->version_num = 1; /* XXX??? */
|
|
cpi->hba_inquiry = 0;
|
|
cpi->target_sprt = 0;
|
|
cpi->hba_misc = 0;
|
|
cpi->hba_eng_cnt = 0;
|
|
cpi->max_target = 0;
|
|
cpi->max_lun = 0;
|
|
cpi->initiator_id = 0;
|
|
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
|
|
strncpy(cpi->hba_vid, "", HBA_IDLEN);
|
|
strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
|
|
cpi->unit_number = sim->unit_number;
|
|
cpi->bus_id = sim->bus_id;
|
|
cpi->base_transfer_speed = 0;
|
|
cpi->ccb_h.status = CAM_REQ_CMP;
|
|
xpt_done(work_ccb);
|
|
break;
|
|
}
|
|
default:
|
|
work_ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
xpt_done(work_ccb);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The xpt as a "controller" has no interrupt sources, so polling
|
|
* is a no-op.
|
|
*/
|
|
static void
|
|
xptpoll(struct cam_sim *sim)
|
|
{
|
|
}
|
|
|
|
static void
|
|
camisr(void *V_queue)
|
|
{
|
|
cam_isrq_t *queue = V_queue;
|
|
int s;
|
|
struct ccb_hdr *ccb_h;
|
|
|
|
s = splcam();
|
|
while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
|
|
int runq;
|
|
|
|
TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
|
|
ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
|
|
splx(s);
|
|
|
|
CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
|
|
("camisr"));
|
|
|
|
runq = FALSE;
|
|
|
|
if (ccb_h->flags & CAM_HIGH_POWER) {
|
|
struct highpowerlist *hphead;
|
|
struct cam_ed *device;
|
|
union ccb *send_ccb;
|
|
|
|
hphead = &highpowerq;
|
|
|
|
send_ccb = (union ccb *)STAILQ_FIRST(hphead);
|
|
|
|
/*
|
|
* Increment the count since this command is done.
|
|
*/
|
|
num_highpower++;
|
|
|
|
/*
|
|
* Any high powered commands queued up?
|
|
*/
|
|
if (send_ccb != NULL) {
|
|
device = send_ccb->ccb_h.path->device;
|
|
|
|
STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
|
|
|
|
xpt_release_devq(send_ccb->ccb_h.path,
|
|
/*count*/1, /*runqueue*/TRUE);
|
|
}
|
|
}
|
|
if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
|
|
struct cam_ed *dev;
|
|
|
|
dev = ccb_h->path->device;
|
|
|
|
s = splcam();
|
|
cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
|
|
|
|
ccb_h->path->bus->sim->devq->send_active--;
|
|
ccb_h->path->bus->sim->devq->send_openings++;
|
|
splx(s);
|
|
|
|
if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
|
|
|| ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
|
|
&& (dev->ccbq.dev_active == 0))) {
|
|
|
|
xpt_release_devq(ccb_h->path, /*count*/1,
|
|
/*run_queue*/TRUE);
|
|
}
|
|
|
|
if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
|
|
&& (--dev->tag_delay_count == 0))
|
|
xpt_start_tags(ccb_h->path);
|
|
|
|
if ((dev->ccbq.queue.entries > 0)
|
|
&& (dev->qfrozen_cnt == 0)
|
|
&& (device_is_send_queued(dev) == 0)) {
|
|
runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
|
|
dev);
|
|
}
|
|
}
|
|
|
|
if (ccb_h->status & CAM_RELEASE_SIMQ) {
|
|
xpt_release_simq(ccb_h->path->bus->sim,
|
|
/*run_queue*/TRUE);
|
|
ccb_h->status &= ~CAM_RELEASE_SIMQ;
|
|
runq = FALSE;
|
|
}
|
|
|
|
if ((ccb_h->flags & CAM_DEV_QFRZDIS)
|
|
&& (ccb_h->status & CAM_DEV_QFRZN)) {
|
|
xpt_release_devq(ccb_h->path, /*count*/1,
|
|
/*run_queue*/TRUE);
|
|
ccb_h->status &= ~CAM_DEV_QFRZN;
|
|
} else if (runq) {
|
|
xpt_run_dev_sendq(ccb_h->path->bus);
|
|
}
|
|
|
|
/* Call the peripheral driver's callback */
|
|
(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
|
|
|
|
/* Raise IPL for while test */
|
|
s = splcam();
|
|
}
|
|
splx(s);
|
|
}
|