freebsd-skq/sys/kern/vfs_bio.c
2020-08-19 02:51:17 +00:00

5476 lines
144 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2004 Poul-Henning Kamp
* Copyright (c) 1994,1997 John S. Dyson
* Copyright (c) 2013 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by Konstantin Belousov
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* this file contains a new buffer I/O scheme implementing a coherent
* VM object and buffer cache scheme. Pains have been taken to make
* sure that the performance degradation associated with schemes such
* as this is not realized.
*
* Author: John S. Dyson
* Significant help during the development and debugging phases
* had been provided by David Greenman, also of the FreeBSD core team.
*
* see man buf(9) for more info.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/bitset.h>
#include <sys/conf.h>
#include <sys/counter.h>
#include <sys/buf.h>
#include <sys/devicestat.h>
#include <sys/eventhandler.h>
#include <sys/fail.h>
#include <sys/ktr.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/proc.h>
#include <sys/racct.h>
#include <sys/refcount.h>
#include <sys/resourcevar.h>
#include <sys/rwlock.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/syscallsubr.h>
#include <sys/vmem.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <sys/watchdog.h>
#include <geom/geom.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/vm_extern.h>
#include <vm/vm_map.h>
#include <vm/swap_pager.h>
static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
struct bio_ops bioops; /* I/O operation notification */
struct buf_ops buf_ops_bio = {
.bop_name = "buf_ops_bio",
.bop_write = bufwrite,
.bop_strategy = bufstrategy,
.bop_sync = bufsync,
.bop_bdflush = bufbdflush,
};
struct bufqueue {
struct mtx_padalign bq_lock;
TAILQ_HEAD(, buf) bq_queue;
uint8_t bq_index;
uint16_t bq_subqueue;
int bq_len;
} __aligned(CACHE_LINE_SIZE);
#define BQ_LOCKPTR(bq) (&(bq)->bq_lock)
#define BQ_LOCK(bq) mtx_lock(BQ_LOCKPTR((bq)))
#define BQ_UNLOCK(bq) mtx_unlock(BQ_LOCKPTR((bq)))
#define BQ_ASSERT_LOCKED(bq) mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
struct bufdomain {
struct bufqueue bd_subq[MAXCPU + 1]; /* Per-cpu sub queues + global */
struct bufqueue bd_dirtyq;
struct bufqueue *bd_cleanq;
struct mtx_padalign bd_run_lock;
/* Constants */
long bd_maxbufspace;
long bd_hibufspace;
long bd_lobufspace;
long bd_bufspacethresh;
int bd_hifreebuffers;
int bd_lofreebuffers;
int bd_hidirtybuffers;
int bd_lodirtybuffers;
int bd_dirtybufthresh;
int bd_lim;
/* atomics */
int bd_wanted;
int __aligned(CACHE_LINE_SIZE) bd_numdirtybuffers;
int __aligned(CACHE_LINE_SIZE) bd_running;
long __aligned(CACHE_LINE_SIZE) bd_bufspace;
int __aligned(CACHE_LINE_SIZE) bd_freebuffers;
} __aligned(CACHE_LINE_SIZE);
#define BD_LOCKPTR(bd) (&(bd)->bd_cleanq->bq_lock)
#define BD_LOCK(bd) mtx_lock(BD_LOCKPTR((bd)))
#define BD_UNLOCK(bd) mtx_unlock(BD_LOCKPTR((bd)))
#define BD_ASSERT_LOCKED(bd) mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
#define BD_RUN_LOCKPTR(bd) (&(bd)->bd_run_lock)
#define BD_RUN_LOCK(bd) mtx_lock(BD_RUN_LOCKPTR((bd)))
#define BD_RUN_UNLOCK(bd) mtx_unlock(BD_RUN_LOCKPTR((bd)))
#define BD_DOMAIN(bd) (bd - bdomain)
static struct buf *buf; /* buffer header pool */
extern struct buf *swbuf; /* Swap buffer header pool. */
caddr_t __read_mostly unmapped_buf;
/* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
struct proc *bufdaemonproc;
static int inmem(struct vnode *vp, daddr_t blkno);
static void vm_hold_free_pages(struct buf *bp, int newbsize);
static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
vm_offset_t to);
static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
vm_page_t m);
static void vfs_clean_pages_dirty_buf(struct buf *bp);
static void vfs_setdirty_range(struct buf *bp);
static void vfs_vmio_invalidate(struct buf *bp);
static void vfs_vmio_truncate(struct buf *bp, int npages);
static void vfs_vmio_extend(struct buf *bp, int npages, int size);
static int vfs_bio_clcheck(struct vnode *vp, int size,
daddr_t lblkno, daddr_t blkno);
static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
void (*)(struct buf *));
static int buf_flush(struct vnode *vp, struct bufdomain *, int);
static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
static void buf_daemon(void);
static __inline void bd_wakeup(void);
static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
static void bufkva_reclaim(vmem_t *, int);
static void bufkva_free(struct buf *);
static int buf_import(void *, void **, int, int, int);
static void buf_release(void *, void **, int);
static void maxbcachebuf_adjust(void);
static inline struct bufdomain *bufdomain(struct buf *);
static void bq_remove(struct bufqueue *bq, struct buf *bp);
static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
static int buf_recycle(struct bufdomain *, bool kva);
static void bq_init(struct bufqueue *bq, int qindex, int cpu,
const char *lockname);
static void bd_init(struct bufdomain *bd);
static int bd_flushall(struct bufdomain *bd);
static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
int vmiodirenable = TRUE;
SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
"Use the VM system for directory writes");
long runningbufspace;
SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
"Amount of presently outstanding async buffer io");
SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
static counter_u64_t bufkvaspace;
SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
"Kernel virtual memory used for buffers");
static long maxbufspace;
SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
__offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
"Maximum allowed value of bufspace (including metadata)");
static long bufmallocspace;
SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
"Amount of malloced memory for buffers");
static long maxbufmallocspace;
SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
0, "Maximum amount of malloced memory for buffers");
static long lobufspace;
SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
__offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
"Minimum amount of buffers we want to have");
long hibufspace;
SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
__offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
"Maximum allowed value of bufspace (excluding metadata)");
long bufspacethresh;
SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
__offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
"Bufspace consumed before waking the daemon to free some");
static counter_u64_t buffreekvacnt;
SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
"Number of times we have freed the KVA space from some buffer");
static counter_u64_t bufdefragcnt;
SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
"Number of times we have had to repeat buffer allocation to defragment");
static long lorunningspace;
SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
"Minimum preferred space used for in-progress I/O");
static long hirunningspace;
SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
"Maximum amount of space to use for in-progress I/O");
int dirtybufferflushes;
SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
int bdwriteskip;
SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
int altbufferflushes;
SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW | CTLFLAG_STATS,
&altbufferflushes, 0, "Number of fsync flushes to limit dirty buffers");
static int recursiveflushes;
SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW | CTLFLAG_STATS,
&recursiveflushes, 0, "Number of flushes skipped due to being recursive");
static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
"Number of buffers that are dirty (has unwritten changes) at the moment");
static int lodirtybuffers;
SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
__offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
"How many buffers we want to have free before bufdaemon can sleep");
static int hidirtybuffers;
SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
__offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
"When the number of dirty buffers is considered severe");
int dirtybufthresh;
SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
__offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
"Number of bdwrite to bawrite conversions to clear dirty buffers");
static int numfreebuffers;
SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
"Number of free buffers");
static int lofreebuffers;
SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
__offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
"Target number of free buffers");
static int hifreebuffers;
SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
__offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
"Threshold for clean buffer recycling");
static counter_u64_t getnewbufcalls;
SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
&getnewbufcalls, "Number of calls to getnewbuf");
static counter_u64_t getnewbufrestarts;
SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
&getnewbufrestarts,
"Number of times getnewbuf has had to restart a buffer acquisition");
static counter_u64_t mappingrestarts;
SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
&mappingrestarts,
"Number of times getblk has had to restart a buffer mapping for "
"unmapped buffer");
static counter_u64_t numbufallocfails;
SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
&numbufallocfails, "Number of times buffer allocations failed");
static int flushbufqtarget = 100;
SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
"Amount of work to do in flushbufqueues when helping bufdaemon");
static counter_u64_t notbufdflushes;
SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes,
"Number of dirty buffer flushes done by the bufdaemon helpers");
static long barrierwrites;
SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW | CTLFLAG_STATS,
&barrierwrites, 0, "Number of barrier writes");
SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
&unmapped_buf_allowed, 0,
"Permit the use of the unmapped i/o");
int maxbcachebuf = MAXBCACHEBUF;
SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
"Maximum size of a buffer cache block");
/*
* This lock synchronizes access to bd_request.
*/
static struct mtx_padalign __exclusive_cache_line bdlock;
/*
* This lock protects the runningbufreq and synchronizes runningbufwakeup and
* waitrunningbufspace().
*/
static struct mtx_padalign __exclusive_cache_line rbreqlock;
/*
* Lock that protects bdirtywait.
*/
static struct mtx_padalign __exclusive_cache_line bdirtylock;
/*
* Wakeup point for bufdaemon, as well as indicator of whether it is already
* active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it
* is idling.
*/
static int bd_request;
/*
* Request for the buf daemon to write more buffers than is indicated by
* lodirtybuf. This may be necessary to push out excess dependencies or
* defragment the address space where a simple count of the number of dirty
* buffers is insufficient to characterize the demand for flushing them.
*/
static int bd_speedupreq;
/*
* Synchronization (sleep/wakeup) variable for active buffer space requests.
* Set when wait starts, cleared prior to wakeup().
* Used in runningbufwakeup() and waitrunningbufspace().
*/
static int runningbufreq;
/*
* Synchronization for bwillwrite() waiters.
*/
static int bdirtywait;
/*
* Definitions for the buffer free lists.
*/
#define QUEUE_NONE 0 /* on no queue */
#define QUEUE_EMPTY 1 /* empty buffer headers */
#define QUEUE_DIRTY 2 /* B_DELWRI buffers */
#define QUEUE_CLEAN 3 /* non-B_DELWRI buffers */
#define QUEUE_SENTINEL 4 /* not an queue index, but mark for sentinel */
/* Maximum number of buffer domains. */
#define BUF_DOMAINS 8
struct bufdomainset bdlodirty; /* Domains > lodirty */
struct bufdomainset bdhidirty; /* Domains > hidirty */
/* Configured number of clean queues. */
static int __read_mostly buf_domains;
BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
struct bufqueue __exclusive_cache_line bqempty;
/*
* per-cpu empty buffer cache.
*/
uma_zone_t buf_zone;
/*
* Single global constant for BUF_WMESG, to avoid getting multiple references.
* buf_wmesg is referred from macros.
*/
const char *buf_wmesg = BUF_WMESG;
static int
sysctl_runningspace(SYSCTL_HANDLER_ARGS)
{
long value;
int error;
value = *(long *)arg1;
error = sysctl_handle_long(oidp, &value, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
mtx_lock(&rbreqlock);
if (arg1 == &hirunningspace) {
if (value < lorunningspace)
error = EINVAL;
else
hirunningspace = value;
} else {
KASSERT(arg1 == &lorunningspace,
("%s: unknown arg1", __func__));
if (value > hirunningspace)
error = EINVAL;
else
lorunningspace = value;
}
mtx_unlock(&rbreqlock);
return (error);
}
static int
sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
{
int error;
int value;
int i;
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
*(int *)arg1 = value;
for (i = 0; i < buf_domains; i++)
*(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
value / buf_domains;
return (error);
}
static int
sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
{
long value;
int error;
int i;
value = *(long *)arg1;
error = sysctl_handle_long(oidp, &value, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
*(long *)arg1 = value;
for (i = 0; i < buf_domains; i++)
*(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
value / buf_domains;
return (error);
}
#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
static int
sysctl_bufspace(SYSCTL_HANDLER_ARGS)
{
long lvalue;
int ivalue;
int i;
lvalue = 0;
for (i = 0; i < buf_domains; i++)
lvalue += bdomain[i].bd_bufspace;
if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
return (sysctl_handle_long(oidp, &lvalue, 0, req));
if (lvalue > INT_MAX)
/* On overflow, still write out a long to trigger ENOMEM. */
return (sysctl_handle_long(oidp, &lvalue, 0, req));
ivalue = lvalue;
return (sysctl_handle_int(oidp, &ivalue, 0, req));
}
#else
static int
sysctl_bufspace(SYSCTL_HANDLER_ARGS)
{
long lvalue;
int i;
lvalue = 0;
for (i = 0; i < buf_domains; i++)
lvalue += bdomain[i].bd_bufspace;
return (sysctl_handle_long(oidp, &lvalue, 0, req));
}
#endif
static int
sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
{
int value;
int i;
value = 0;
for (i = 0; i < buf_domains; i++)
value += bdomain[i].bd_numdirtybuffers;
return (sysctl_handle_int(oidp, &value, 0, req));
}
/*
* bdirtywakeup:
*
* Wakeup any bwillwrite() waiters.
*/
static void
bdirtywakeup(void)
{
mtx_lock(&bdirtylock);
if (bdirtywait) {
bdirtywait = 0;
wakeup(&bdirtywait);
}
mtx_unlock(&bdirtylock);
}
/*
* bd_clear:
*
* Clear a domain from the appropriate bitsets when dirtybuffers
* is decremented.
*/
static void
bd_clear(struct bufdomain *bd)
{
mtx_lock(&bdirtylock);
if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
mtx_unlock(&bdirtylock);
}
/*
* bd_set:
*
* Set a domain in the appropriate bitsets when dirtybuffers
* is incremented.
*/
static void
bd_set(struct bufdomain *bd)
{
mtx_lock(&bdirtylock);
if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
mtx_unlock(&bdirtylock);
}
/*
* bdirtysub:
*
* Decrement the numdirtybuffers count by one and wakeup any
* threads blocked in bwillwrite().
*/
static void
bdirtysub(struct buf *bp)
{
struct bufdomain *bd;
int num;
bd = bufdomain(bp);
num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
bdirtywakeup();
if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
bd_clear(bd);
}
/*
* bdirtyadd:
*
* Increment the numdirtybuffers count by one and wakeup the buf
* daemon if needed.
*/
static void
bdirtyadd(struct buf *bp)
{
struct bufdomain *bd;
int num;
/*
* Only do the wakeup once as we cross the boundary. The
* buf daemon will keep running until the condition clears.
*/
bd = bufdomain(bp);
num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
bd_wakeup();
if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
bd_set(bd);
}
/*
* bufspace_daemon_wakeup:
*
* Wakeup the daemons responsible for freeing clean bufs.
*/
static void
bufspace_daemon_wakeup(struct bufdomain *bd)
{
/*
* avoid the lock if the daemon is running.
*/
if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
BD_RUN_LOCK(bd);
atomic_store_int(&bd->bd_running, 1);
wakeup(&bd->bd_running);
BD_RUN_UNLOCK(bd);
}
}
/*
* bufspace_daemon_wait:
*
* Sleep until the domain falls below a limit or one second passes.
*/
static void
bufspace_daemon_wait(struct bufdomain *bd)
{
/*
* Re-check our limits and sleep. bd_running must be
* cleared prior to checking the limits to avoid missed
* wakeups. The waker will adjust one of bufspace or
* freebuffers prior to checking bd_running.
*/
BD_RUN_LOCK(bd);
atomic_store_int(&bd->bd_running, 0);
if (bd->bd_bufspace < bd->bd_bufspacethresh &&
bd->bd_freebuffers > bd->bd_lofreebuffers) {
msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd), PRIBIO|PDROP,
"-", hz);
} else {
/* Avoid spurious wakeups while running. */
atomic_store_int(&bd->bd_running, 1);
BD_RUN_UNLOCK(bd);
}
}
/*
* bufspace_adjust:
*
* Adjust the reported bufspace for a KVA managed buffer, possibly
* waking any waiters.
*/
static void
bufspace_adjust(struct buf *bp, int bufsize)
{
struct bufdomain *bd;
long space;
int diff;
KASSERT((bp->b_flags & B_MALLOC) == 0,
("bufspace_adjust: malloc buf %p", bp));
bd = bufdomain(bp);
diff = bufsize - bp->b_bufsize;
if (diff < 0) {
atomic_subtract_long(&bd->bd_bufspace, -diff);
} else if (diff > 0) {
space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
/* Wake up the daemon on the transition. */
if (space < bd->bd_bufspacethresh &&
space + diff >= bd->bd_bufspacethresh)
bufspace_daemon_wakeup(bd);
}
bp->b_bufsize = bufsize;
}
/*
* bufspace_reserve:
*
* Reserve bufspace before calling allocbuf(). metadata has a
* different space limit than data.
*/
static int
bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
{
long limit, new;
long space;
if (metadata)
limit = bd->bd_maxbufspace;
else
limit = bd->bd_hibufspace;
space = atomic_fetchadd_long(&bd->bd_bufspace, size);
new = space + size;
if (new > limit) {
atomic_subtract_long(&bd->bd_bufspace, size);
return (ENOSPC);
}
/* Wake up the daemon on the transition. */
if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
bufspace_daemon_wakeup(bd);
return (0);
}
/*
* bufspace_release:
*
* Release reserved bufspace after bufspace_adjust() has consumed it.
*/
static void
bufspace_release(struct bufdomain *bd, int size)
{
atomic_subtract_long(&bd->bd_bufspace, size);
}
/*
* bufspace_wait:
*
* Wait for bufspace, acting as the buf daemon if a locked vnode is
* supplied. bd_wanted must be set prior to polling for space. The
* operation must be re-tried on return.
*/
static void
bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
int slpflag, int slptimeo)
{
struct thread *td;
int error, fl, norunbuf;
if ((gbflags & GB_NOWAIT_BD) != 0)
return;
td = curthread;
BD_LOCK(bd);
while (bd->bd_wanted) {
if (vp != NULL && vp->v_type != VCHR &&
(td->td_pflags & TDP_BUFNEED) == 0) {
BD_UNLOCK(bd);
/*
* getblk() is called with a vnode locked, and
* some majority of the dirty buffers may as
* well belong to the vnode. Flushing the
* buffers there would make a progress that
* cannot be achieved by the buf_daemon, that
* cannot lock the vnode.
*/
norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
(td->td_pflags & TDP_NORUNNINGBUF);
/*
* Play bufdaemon. The getnewbuf() function
* may be called while the thread owns lock
* for another dirty buffer for the same
* vnode, which makes it impossible to use
* VOP_FSYNC() there, due to the buffer lock
* recursion.
*/
td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
fl = buf_flush(vp, bd, flushbufqtarget);
td->td_pflags &= norunbuf;
BD_LOCK(bd);
if (fl != 0)
continue;
if (bd->bd_wanted == 0)
break;
}
error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
(PRIBIO + 4) | slpflag, "newbuf", slptimeo);
if (error != 0)
break;
}
BD_UNLOCK(bd);
}
/*
* bufspace_daemon:
*
* buffer space management daemon. Tries to maintain some marginal
* amount of free buffer space so that requesting processes neither
* block nor work to reclaim buffers.
*/
static void
bufspace_daemon(void *arg)
{
struct bufdomain *bd;
EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread,
SHUTDOWN_PRI_LAST + 100);
bd = arg;
for (;;) {
kthread_suspend_check();
/*
* Free buffers from the clean queue until we meet our
* targets.
*
* Theory of operation: The buffer cache is most efficient
* when some free buffer headers and space are always
* available to getnewbuf(). This daemon attempts to prevent
* the excessive blocking and synchronization associated
* with shortfall. It goes through three phases according
* demand:
*
* 1) The daemon wakes up voluntarily once per-second
* during idle periods when the counters are below
* the wakeup thresholds (bufspacethresh, lofreebuffers).
*
* 2) The daemon wakes up as we cross the thresholds
* ahead of any potential blocking. This may bounce
* slightly according to the rate of consumption and
* release.
*
* 3) The daemon and consumers are starved for working
* clean buffers. This is the 'bufspace' sleep below
* which will inefficiently trade bufs with bqrelse
* until we return to condition 2.
*/
while (bd->bd_bufspace > bd->bd_lobufspace ||
bd->bd_freebuffers < bd->bd_hifreebuffers) {
if (buf_recycle(bd, false) != 0) {
if (bd_flushall(bd))
continue;
/*
* Speedup dirty if we've run out of clean
* buffers. This is possible in particular
* because softdep may held many bufs locked
* pending writes to other bufs which are
* marked for delayed write, exhausting
* clean space until they are written.
*/
bd_speedup();
BD_LOCK(bd);
if (bd->bd_wanted) {
msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
PRIBIO|PDROP, "bufspace", hz/10);
} else
BD_UNLOCK(bd);
}
maybe_yield();
}
bufspace_daemon_wait(bd);
}
}
/*
* bufmallocadjust:
*
* Adjust the reported bufspace for a malloc managed buffer, possibly
* waking any waiters.
*/
static void
bufmallocadjust(struct buf *bp, int bufsize)
{
int diff;
KASSERT((bp->b_flags & B_MALLOC) != 0,
("bufmallocadjust: non-malloc buf %p", bp));
diff = bufsize - bp->b_bufsize;
if (diff < 0)
atomic_subtract_long(&bufmallocspace, -diff);
else
atomic_add_long(&bufmallocspace, diff);
bp->b_bufsize = bufsize;
}
/*
* runningwakeup:
*
* Wake up processes that are waiting on asynchronous writes to fall
* below lorunningspace.
*/
static void
runningwakeup(void)
{
mtx_lock(&rbreqlock);
if (runningbufreq) {
runningbufreq = 0;
wakeup(&runningbufreq);
}
mtx_unlock(&rbreqlock);
}
/*
* runningbufwakeup:
*
* Decrement the outstanding write count according.
*/
void
runningbufwakeup(struct buf *bp)
{
long space, bspace;
bspace = bp->b_runningbufspace;
if (bspace == 0)
return;
space = atomic_fetchadd_long(&runningbufspace, -bspace);
KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
space, bspace));
bp->b_runningbufspace = 0;
/*
* Only acquire the lock and wakeup on the transition from exceeding
* the threshold to falling below it.
*/
if (space < lorunningspace)
return;
if (space - bspace > lorunningspace)
return;
runningwakeup();
}
/*
* waitrunningbufspace()
*
* runningbufspace is a measure of the amount of I/O currently
* running. This routine is used in async-write situations to
* prevent creating huge backups of pending writes to a device.
* Only asynchronous writes are governed by this function.
*
* This does NOT turn an async write into a sync write. It waits
* for earlier writes to complete and generally returns before the
* caller's write has reached the device.
*/
void
waitrunningbufspace(void)
{
mtx_lock(&rbreqlock);
while (runningbufspace > hirunningspace) {
runningbufreq = 1;
msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
}
mtx_unlock(&rbreqlock);
}
/*
* vfs_buf_test_cache:
*
* Called when a buffer is extended. This function clears the B_CACHE
* bit if the newly extended portion of the buffer does not contain
* valid data.
*/
static __inline void
vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
vm_offset_t size, vm_page_t m)
{
/*
* This function and its results are protected by higher level
* synchronization requiring vnode and buf locks to page in and
* validate pages.
*/
if (bp->b_flags & B_CACHE) {
int base = (foff + off) & PAGE_MASK;
if (vm_page_is_valid(m, base, size) == 0)
bp->b_flags &= ~B_CACHE;
}
}
/* Wake up the buffer daemon if necessary */
static void
bd_wakeup(void)
{
mtx_lock(&bdlock);
if (bd_request == 0) {
bd_request = 1;
wakeup(&bd_request);
}
mtx_unlock(&bdlock);
}
/*
* Adjust the maxbcachbuf tunable.
*/
static void
maxbcachebuf_adjust(void)
{
int i;
/*
* maxbcachebuf must be a power of 2 >= MAXBSIZE.
*/
i = 2;
while (i * 2 <= maxbcachebuf)
i *= 2;
maxbcachebuf = i;
if (maxbcachebuf < MAXBSIZE)
maxbcachebuf = MAXBSIZE;
if (maxbcachebuf > MAXPHYS)
maxbcachebuf = MAXPHYS;
if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
printf("maxbcachebuf=%d\n", maxbcachebuf);
}
/*
* bd_speedup - speedup the buffer cache flushing code
*/
void
bd_speedup(void)
{
int needwake;
mtx_lock(&bdlock);
needwake = 0;
if (bd_speedupreq == 0 || bd_request == 0)
needwake = 1;
bd_speedupreq = 1;
bd_request = 1;
if (needwake)
wakeup(&bd_request);
mtx_unlock(&bdlock);
}
#ifdef __i386__
#define TRANSIENT_DENOM 5
#else
#define TRANSIENT_DENOM 10
#endif
/*
* Calculating buffer cache scaling values and reserve space for buffer
* headers. This is called during low level kernel initialization and
* may be called more then once. We CANNOT write to the memory area
* being reserved at this time.
*/
caddr_t
kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
{
int tuned_nbuf;
long maxbuf, maxbuf_sz, buf_sz, biotmap_sz;
/*
* physmem_est is in pages. Convert it to kilobytes (assumes
* PAGE_SIZE is >= 1K)
*/
physmem_est = physmem_est * (PAGE_SIZE / 1024);
maxbcachebuf_adjust();
/*
* The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
* For the first 64MB of ram nominally allocate sufficient buffers to
* cover 1/4 of our ram. Beyond the first 64MB allocate additional
* buffers to cover 1/10 of our ram over 64MB. When auto-sizing
* the buffer cache we limit the eventual kva reservation to
* maxbcache bytes.
*
* factor represents the 1/4 x ram conversion.
*/
if (nbuf == 0) {
int factor = 4 * BKVASIZE / 1024;
nbuf = 50;
if (physmem_est > 4096)
nbuf += min((physmem_est - 4096) / factor,
65536 / factor);
if (physmem_est > 65536)
nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
32 * 1024 * 1024 / (factor * 5));
if (maxbcache && nbuf > maxbcache / BKVASIZE)
nbuf = maxbcache / BKVASIZE;
tuned_nbuf = 1;
} else
tuned_nbuf = 0;
/* XXX Avoid unsigned long overflows later on with maxbufspace. */
maxbuf = (LONG_MAX / 3) / BKVASIZE;
if (nbuf > maxbuf) {
if (!tuned_nbuf)
printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
maxbuf);
nbuf = maxbuf;
}
/*
* Ideal allocation size for the transient bio submap is 10%
* of the maximal space buffer map. This roughly corresponds
* to the amount of the buffer mapped for typical UFS load.
*
* Clip the buffer map to reserve space for the transient
* BIOs, if its extent is bigger than 90% (80% on i386) of the
* maximum buffer map extent on the platform.
*
* The fall-back to the maxbuf in case of maxbcache unset,
* allows to not trim the buffer KVA for the architectures
* with ample KVA space.
*/
if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
buf_sz = (long)nbuf * BKVASIZE;
if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
(TRANSIENT_DENOM - 1)) {
/*
* There is more KVA than memory. Do not
* adjust buffer map size, and assign the rest
* of maxbuf to transient map.
*/
biotmap_sz = maxbuf_sz - buf_sz;
} else {
/*
* Buffer map spans all KVA we could afford on
* this platform. Give 10% (20% on i386) of
* the buffer map to the transient bio map.
*/
biotmap_sz = buf_sz / TRANSIENT_DENOM;
buf_sz -= biotmap_sz;
}
if (biotmap_sz / INT_MAX > MAXPHYS)
bio_transient_maxcnt = INT_MAX;
else
bio_transient_maxcnt = biotmap_sz / MAXPHYS;
/*
* Artificially limit to 1024 simultaneous in-flight I/Os
* using the transient mapping.
*/
if (bio_transient_maxcnt > 1024)
bio_transient_maxcnt = 1024;
if (tuned_nbuf)
nbuf = buf_sz / BKVASIZE;
}
if (nswbuf == 0) {
nswbuf = min(nbuf / 4, 256);
if (nswbuf < NSWBUF_MIN)
nswbuf = NSWBUF_MIN;
}
/*
* Reserve space for the buffer cache buffers
*/
buf = (void *)v;
v = (caddr_t)(buf + nbuf);
return(v);
}
/* Initialize the buffer subsystem. Called before use of any buffers. */
void
bufinit(void)
{
struct buf *bp;
int i;
KASSERT(maxbcachebuf >= MAXBSIZE,
("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
MAXBSIZE));
bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
unmapped_buf = (caddr_t)kva_alloc(MAXPHYS);
/* finally, initialize each buffer header and stick on empty q */
for (i = 0; i < nbuf; i++) {
bp = &buf[i];
bzero(bp, sizeof *bp);
bp->b_flags = B_INVAL;
bp->b_rcred = NOCRED;
bp->b_wcred = NOCRED;
bp->b_qindex = QUEUE_NONE;
bp->b_domain = -1;
bp->b_subqueue = mp_maxid + 1;
bp->b_xflags = 0;
bp->b_data = bp->b_kvabase = unmapped_buf;
LIST_INIT(&bp->b_dep);
BUF_LOCKINIT(bp);
bq_insert(&bqempty, bp, false);
}
/*
* maxbufspace is the absolute maximum amount of buffer space we are
* allowed to reserve in KVM and in real terms. The absolute maximum
* is nominally used by metadata. hibufspace is the nominal maximum
* used by most other requests. The differential is required to
* ensure that metadata deadlocks don't occur.
*
* maxbufspace is based on BKVASIZE. Allocating buffers larger then
* this may result in KVM fragmentation which is not handled optimally
* by the system. XXX This is less true with vmem. We could use
* PAGE_SIZE.
*/
maxbufspace = (long)nbuf * BKVASIZE;
hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
lobufspace = (hibufspace / 20) * 19; /* 95% */
bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
/*
* Note: The 16 MiB upper limit for hirunningspace was chosen
* arbitrarily and may need further tuning. It corresponds to
* 128 outstanding write IO requests (if IO size is 128 KiB),
* which fits with many RAID controllers' tagged queuing limits.
* The lower 1 MiB limit is the historical upper limit for
* hirunningspace.
*/
hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
16 * 1024 * 1024), 1024 * 1024);
lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
/*
* Limit the amount of malloc memory since it is wired permanently into
* the kernel space. Even though this is accounted for in the buffer
* allocation, we don't want the malloced region to grow uncontrolled.
* The malloc scheme improves memory utilization significantly on
* average (small) directories.
*/
maxbufmallocspace = hibufspace / 20;
/*
* Reduce the chance of a deadlock occurring by limiting the number
* of delayed-write dirty buffers we allow to stack up.
*/
hidirtybuffers = nbuf / 4 + 20;
dirtybufthresh = hidirtybuffers * 9 / 10;
/*
* To support extreme low-memory systems, make sure hidirtybuffers
* cannot eat up all available buffer space. This occurs when our
* minimum cannot be met. We try to size hidirtybuffers to 3/4 our
* buffer space assuming BKVASIZE'd buffers.
*/
while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
hidirtybuffers >>= 1;
}
lodirtybuffers = hidirtybuffers / 2;
/*
* lofreebuffers should be sufficient to avoid stalling waiting on
* buf headers under heavy utilization. The bufs in per-cpu caches
* are counted as free but will be unavailable to threads executing
* on other cpus.
*
* hifreebuffers is the free target for the bufspace daemon. This
* should be set appropriately to limit work per-iteration.
*/
lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
hifreebuffers = (3 * lofreebuffers) / 2;
numfreebuffers = nbuf;
/* Setup the kva and free list allocators. */
vmem_set_reclaim(buffer_arena, bufkva_reclaim);
buf_zone = uma_zcache_create("buf free cache", sizeof(struct buf),
NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
/*
* Size the clean queue according to the amount of buffer space.
* One queue per-256mb up to the max. More queues gives better
* concurrency but less accurate LRU.
*/
buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
for (i = 0 ; i < buf_domains; i++) {
struct bufdomain *bd;
bd = &bdomain[i];
bd_init(bd);
bd->bd_freebuffers = nbuf / buf_domains;
bd->bd_hifreebuffers = hifreebuffers / buf_domains;
bd->bd_lofreebuffers = lofreebuffers / buf_domains;
bd->bd_bufspace = 0;
bd->bd_maxbufspace = maxbufspace / buf_domains;
bd->bd_hibufspace = hibufspace / buf_domains;
bd->bd_lobufspace = lobufspace / buf_domains;
bd->bd_bufspacethresh = bufspacethresh / buf_domains;
bd->bd_numdirtybuffers = 0;
bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
/* Don't allow more than 2% of bufs in the per-cpu caches. */
bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
}
getnewbufcalls = counter_u64_alloc(M_WAITOK);
getnewbufrestarts = counter_u64_alloc(M_WAITOK);
mappingrestarts = counter_u64_alloc(M_WAITOK);
numbufallocfails = counter_u64_alloc(M_WAITOK);
notbufdflushes = counter_u64_alloc(M_WAITOK);
buffreekvacnt = counter_u64_alloc(M_WAITOK);
bufdefragcnt = counter_u64_alloc(M_WAITOK);
bufkvaspace = counter_u64_alloc(M_WAITOK);
}
#ifdef INVARIANTS
static inline void
vfs_buf_check_mapped(struct buf *bp)
{
KASSERT(bp->b_kvabase != unmapped_buf,
("mapped buf: b_kvabase was not updated %p", bp));
KASSERT(bp->b_data != unmapped_buf,
("mapped buf: b_data was not updated %p", bp));
KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
MAXPHYS, ("b_data + b_offset unmapped %p", bp));
}
static inline void
vfs_buf_check_unmapped(struct buf *bp)
{
KASSERT(bp->b_data == unmapped_buf,
("unmapped buf: corrupted b_data %p", bp));
}
#define BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
#define BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
#else
#define BUF_CHECK_MAPPED(bp) do {} while (0)
#define BUF_CHECK_UNMAPPED(bp) do {} while (0)
#endif
static int
isbufbusy(struct buf *bp)
{
if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
return (1);
return (0);
}
/*
* Shutdown the system cleanly to prepare for reboot, halt, or power off.
*/
void
bufshutdown(int show_busybufs)
{
static int first_buf_printf = 1;
struct buf *bp;
int iter, nbusy, pbusy;
#ifndef PREEMPTION
int subiter;
#endif
/*
* Sync filesystems for shutdown
*/
wdog_kern_pat(WD_LASTVAL);
kern_sync(curthread);
/*
* With soft updates, some buffers that are
* written will be remarked as dirty until other
* buffers are written.
*/
for (iter = pbusy = 0; iter < 20; iter++) {
nbusy = 0;
for (bp = &buf[nbuf]; --bp >= buf; )
if (isbufbusy(bp))
nbusy++;
if (nbusy == 0) {
if (first_buf_printf)
printf("All buffers synced.");
break;
}
if (first_buf_printf) {
printf("Syncing disks, buffers remaining... ");
first_buf_printf = 0;
}
printf("%d ", nbusy);
if (nbusy < pbusy)
iter = 0;
pbusy = nbusy;
wdog_kern_pat(WD_LASTVAL);
kern_sync(curthread);
#ifdef PREEMPTION
/*
* Spin for a while to allow interrupt threads to run.
*/
DELAY(50000 * iter);
#else
/*
* Context switch several times to allow interrupt
* threads to run.
*/
for (subiter = 0; subiter < 50 * iter; subiter++) {
thread_lock(curthread);
mi_switch(SW_VOL);
DELAY(1000);
}
#endif
}
printf("\n");
/*
* Count only busy local buffers to prevent forcing
* a fsck if we're just a client of a wedged NFS server
*/
nbusy = 0;
for (bp = &buf[nbuf]; --bp >= buf; ) {
if (isbufbusy(bp)) {
#if 0
/* XXX: This is bogus. We should probably have a BO_REMOTE flag instead */
if (bp->b_dev == NULL) {
TAILQ_REMOVE(&mountlist,
bp->b_vp->v_mount, mnt_list);
continue;
}
#endif
nbusy++;
if (show_busybufs > 0) {
printf(
"%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
nbusy, bp, bp->b_vp, bp->b_flags,
(intmax_t)bp->b_blkno,
(intmax_t)bp->b_lblkno);
BUF_LOCKPRINTINFO(bp);
if (show_busybufs > 1)
vn_printf(bp->b_vp,
"vnode content: ");
}
}
}
if (nbusy) {
/*
* Failed to sync all blocks. Indicate this and don't
* unmount filesystems (thus forcing an fsck on reboot).
*/
printf("Giving up on %d buffers\n", nbusy);
DELAY(5000000); /* 5 seconds */
} else {
if (!first_buf_printf)
printf("Final sync complete\n");
/*
* Unmount filesystems
*/
if (!KERNEL_PANICKED())
vfs_unmountall();
}
swapoff_all();
DELAY(100000); /* wait for console output to finish */
}
static void
bpmap_qenter(struct buf *bp)
{
BUF_CHECK_MAPPED(bp);
/*
* bp->b_data is relative to bp->b_offset, but
* bp->b_offset may be offset into the first page.
*/
bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
(vm_offset_t)(bp->b_offset & PAGE_MASK));
}
static inline struct bufdomain *
bufdomain(struct buf *bp)
{
return (&bdomain[bp->b_domain]);
}
static struct bufqueue *
bufqueue(struct buf *bp)
{
switch (bp->b_qindex) {
case QUEUE_NONE:
/* FALLTHROUGH */
case QUEUE_SENTINEL:
return (NULL);
case QUEUE_EMPTY:
return (&bqempty);
case QUEUE_DIRTY:
return (&bufdomain(bp)->bd_dirtyq);
case QUEUE_CLEAN:
return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
default:
break;
}
panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
}
/*
* Return the locked bufqueue that bp is a member of.
*/
static struct bufqueue *
bufqueue_acquire(struct buf *bp)
{
struct bufqueue *bq, *nbq;
/*
* bp can be pushed from a per-cpu queue to the
* cleanq while we're waiting on the lock. Retry
* if the queues don't match.
*/
bq = bufqueue(bp);
BQ_LOCK(bq);
for (;;) {
nbq = bufqueue(bp);
if (bq == nbq)
break;
BQ_UNLOCK(bq);
BQ_LOCK(nbq);
bq = nbq;
}
return (bq);
}
/*
* binsfree:
*
* Insert the buffer into the appropriate free list. Requires a
* locked buffer on entry and buffer is unlocked before return.
*/
static void
binsfree(struct buf *bp, int qindex)
{
struct bufdomain *bd;
struct bufqueue *bq;
KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
("binsfree: Invalid qindex %d", qindex));
BUF_ASSERT_XLOCKED(bp);
/*
* Handle delayed bremfree() processing.
*/
if (bp->b_flags & B_REMFREE) {
if (bp->b_qindex == qindex) {
bp->b_flags |= B_REUSE;
bp->b_flags &= ~B_REMFREE;
BUF_UNLOCK(bp);
return;
}
bq = bufqueue_acquire(bp);
bq_remove(bq, bp);
BQ_UNLOCK(bq);
}
bd = bufdomain(bp);
if (qindex == QUEUE_CLEAN) {
if (bd->bd_lim != 0)
bq = &bd->bd_subq[PCPU_GET(cpuid)];
else
bq = bd->bd_cleanq;
} else
bq = &bd->bd_dirtyq;
bq_insert(bq, bp, true);
}
/*
* buf_free:
*
* Free a buffer to the buf zone once it no longer has valid contents.
*/
static void
buf_free(struct buf *bp)
{
if (bp->b_flags & B_REMFREE)
bremfreef(bp);
if (bp->b_vflags & BV_BKGRDINPROG)
panic("losing buffer 1");
if (bp->b_rcred != NOCRED) {
crfree(bp->b_rcred);
bp->b_rcred = NOCRED;
}
if (bp->b_wcred != NOCRED) {
crfree(bp->b_wcred);
bp->b_wcred = NOCRED;
}
if (!LIST_EMPTY(&bp->b_dep))
buf_deallocate(bp);
bufkva_free(bp);
atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
BUF_UNLOCK(bp);
uma_zfree(buf_zone, bp);
}
/*
* buf_import:
*
* Import bufs into the uma cache from the buf list. The system still
* expects a static array of bufs and much of the synchronization
* around bufs assumes type stable storage. As a result, UMA is used
* only as a per-cpu cache of bufs still maintained on a global list.
*/
static int
buf_import(void *arg, void **store, int cnt, int domain, int flags)
{
struct buf *bp;
int i;
BQ_LOCK(&bqempty);
for (i = 0; i < cnt; i++) {
bp = TAILQ_FIRST(&bqempty.bq_queue);
if (bp == NULL)
break;
bq_remove(&bqempty, bp);
store[i] = bp;
}
BQ_UNLOCK(&bqempty);
return (i);
}
/*
* buf_release:
*
* Release bufs from the uma cache back to the buffer queues.
*/
static void
buf_release(void *arg, void **store, int cnt)
{
struct bufqueue *bq;
struct buf *bp;
int i;
bq = &bqempty;
BQ_LOCK(bq);
for (i = 0; i < cnt; i++) {
bp = store[i];
/* Inline bq_insert() to batch locking. */
TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
bp->b_flags &= ~(B_AGE | B_REUSE);
bq->bq_len++;
bp->b_qindex = bq->bq_index;
}
BQ_UNLOCK(bq);
}
/*
* buf_alloc:
*
* Allocate an empty buffer header.
*/
static struct buf *
buf_alloc(struct bufdomain *bd)
{
struct buf *bp;
int freebufs, error;
/*
* We can only run out of bufs in the buf zone if the average buf
* is less than BKVASIZE. In this case the actual wait/block will
* come from buf_reycle() failing to flush one of these small bufs.
*/
bp = NULL;
freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
if (freebufs > 0)
bp = uma_zalloc(buf_zone, M_NOWAIT);
if (bp == NULL) {
atomic_add_int(&bd->bd_freebuffers, 1);
bufspace_daemon_wakeup(bd);
counter_u64_add(numbufallocfails, 1);
return (NULL);
}
/*
* Wake-up the bufspace daemon on transition below threshold.
*/
if (freebufs == bd->bd_lofreebuffers)
bufspace_daemon_wakeup(bd);
error = BUF_LOCK(bp, LK_EXCLUSIVE, NULL);
KASSERT(error == 0, ("%s: BUF_LOCK on free buf %p: %d.", __func__, bp,
error));
(void)error;
KASSERT(bp->b_vp == NULL,
("bp: %p still has vnode %p.", bp, bp->b_vp));
KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
("invalid buffer %p flags %#x", bp, bp->b_flags));
KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
KASSERT(bp->b_npages == 0,
("bp: %p still has %d vm pages\n", bp, bp->b_npages));
KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
bp->b_domain = BD_DOMAIN(bd);
bp->b_flags = 0;
bp->b_ioflags = 0;
bp->b_xflags = 0;
bp->b_vflags = 0;
bp->b_vp = NULL;
bp->b_blkno = bp->b_lblkno = 0;
bp->b_offset = NOOFFSET;
bp->b_iodone = 0;
bp->b_error = 0;
bp->b_resid = 0;
bp->b_bcount = 0;
bp->b_npages = 0;
bp->b_dirtyoff = bp->b_dirtyend = 0;
bp->b_bufobj = NULL;
bp->b_data = bp->b_kvabase = unmapped_buf;
bp->b_fsprivate1 = NULL;
bp->b_fsprivate2 = NULL;
bp->b_fsprivate3 = NULL;
LIST_INIT(&bp->b_dep);
return (bp);
}
/*
* buf_recycle:
*
* Free a buffer from the given bufqueue. kva controls whether the
* freed buf must own some kva resources. This is used for
* defragmenting.
*/
static int
buf_recycle(struct bufdomain *bd, bool kva)
{
struct bufqueue *bq;
struct buf *bp, *nbp;
if (kva)
counter_u64_add(bufdefragcnt, 1);
nbp = NULL;
bq = bd->bd_cleanq;
BQ_LOCK(bq);
KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
("buf_recycle: Locks don't match"));
nbp = TAILQ_FIRST(&bq->bq_queue);
/*
* Run scan, possibly freeing data and/or kva mappings on the fly
* depending.
*/
while ((bp = nbp) != NULL) {
/*
* Calculate next bp (we can only use it if we do not
* release the bqlock).
*/
nbp = TAILQ_NEXT(bp, b_freelist);
/*
* If we are defragging then we need a buffer with
* some kva to reclaim.
*/
if (kva && bp->b_kvasize == 0)
continue;
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
continue;
/*
* Implement a second chance algorithm for frequently
* accessed buffers.
*/
if ((bp->b_flags & B_REUSE) != 0) {
TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
bp->b_flags &= ~B_REUSE;
BUF_UNLOCK(bp);
continue;
}
/*
* Skip buffers with background writes in progress.
*/
if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
BUF_UNLOCK(bp);
continue;
}
KASSERT(bp->b_qindex == QUEUE_CLEAN,
("buf_recycle: inconsistent queue %d bp %p",
bp->b_qindex, bp));
KASSERT(bp->b_domain == BD_DOMAIN(bd),
("getnewbuf: queue domain %d doesn't match request %d",
bp->b_domain, (int)BD_DOMAIN(bd)));
/*
* NOTE: nbp is now entirely invalid. We can only restart
* the scan from this point on.
*/
bq_remove(bq, bp);
BQ_UNLOCK(bq);
/*
* Requeue the background write buffer with error and
* restart the scan.
*/
if ((bp->b_vflags & BV_BKGRDERR) != 0) {
bqrelse(bp);
BQ_LOCK(bq);
nbp = TAILQ_FIRST(&bq->bq_queue);
continue;
}
bp->b_flags |= B_INVAL;
brelse(bp);
return (0);
}
bd->bd_wanted = 1;
BQ_UNLOCK(bq);
return (ENOBUFS);
}
/*
* bremfree:
*
* Mark the buffer for removal from the appropriate free list.
*
*/
void
bremfree(struct buf *bp)
{
CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
KASSERT((bp->b_flags & B_REMFREE) == 0,
("bremfree: buffer %p already marked for delayed removal.", bp));
KASSERT(bp->b_qindex != QUEUE_NONE,
("bremfree: buffer %p not on a queue.", bp));
BUF_ASSERT_XLOCKED(bp);
bp->b_flags |= B_REMFREE;
}
/*
* bremfreef:
*
* Force an immediate removal from a free list. Used only in nfs when
* it abuses the b_freelist pointer.
*/
void
bremfreef(struct buf *bp)
{
struct bufqueue *bq;
bq = bufqueue_acquire(bp);
bq_remove(bq, bp);
BQ_UNLOCK(bq);
}
static void
bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
{
mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
TAILQ_INIT(&bq->bq_queue);
bq->bq_len = 0;
bq->bq_index = qindex;
bq->bq_subqueue = subqueue;
}
static void
bd_init(struct bufdomain *bd)
{
int i;
bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
for (i = 0; i <= mp_maxid; i++)
bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
"bufq clean subqueue lock");
mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
}
/*
* bq_remove:
*
* Removes a buffer from the free list, must be called with the
* correct qlock held.
*/
static void
bq_remove(struct bufqueue *bq, struct buf *bp)
{
CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
bp, bp->b_vp, bp->b_flags);
KASSERT(bp->b_qindex != QUEUE_NONE,
("bq_remove: buffer %p not on a queue.", bp));
KASSERT(bufqueue(bp) == bq,
("bq_remove: Remove buffer %p from wrong queue.", bp));
BQ_ASSERT_LOCKED(bq);
if (bp->b_qindex != QUEUE_EMPTY) {
BUF_ASSERT_XLOCKED(bp);
}
KASSERT(bq->bq_len >= 1,
("queue %d underflow", bp->b_qindex));
TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
bq->bq_len--;
bp->b_qindex = QUEUE_NONE;
bp->b_flags &= ~(B_REMFREE | B_REUSE);
}
static void
bd_flush(struct bufdomain *bd, struct bufqueue *bq)
{
struct buf *bp;
BQ_ASSERT_LOCKED(bq);
if (bq != bd->bd_cleanq) {
BD_LOCK(bd);
while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
b_freelist);
bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
}
bd->bd_cleanq->bq_len += bq->bq_len;
bq->bq_len = 0;
}
if (bd->bd_wanted) {
bd->bd_wanted = 0;
wakeup(&bd->bd_wanted);
}
if (bq != bd->bd_cleanq)
BD_UNLOCK(bd);
}
static int
bd_flushall(struct bufdomain *bd)
{
struct bufqueue *bq;
int flushed;
int i;
if (bd->bd_lim == 0)
return (0);
flushed = 0;
for (i = 0; i <= mp_maxid; i++) {
bq = &bd->bd_subq[i];
if (bq->bq_len == 0)
continue;
BQ_LOCK(bq);
bd_flush(bd, bq);
BQ_UNLOCK(bq);
flushed++;
}
return (flushed);
}
static void
bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
{
struct bufdomain *bd;
if (bp->b_qindex != QUEUE_NONE)
panic("bq_insert: free buffer %p onto another queue?", bp);
bd = bufdomain(bp);
if (bp->b_flags & B_AGE) {
/* Place this buf directly on the real queue. */
if (bq->bq_index == QUEUE_CLEAN)
bq = bd->bd_cleanq;
BQ_LOCK(bq);
TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
} else {
BQ_LOCK(bq);
TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
}
bp->b_flags &= ~(B_AGE | B_REUSE);
bq->bq_len++;
bp->b_qindex = bq->bq_index;
bp->b_subqueue = bq->bq_subqueue;
/*
* Unlock before we notify so that we don't wakeup a waiter that
* fails a trylock on the buf and sleeps again.
*/
if (unlock)
BUF_UNLOCK(bp);
if (bp->b_qindex == QUEUE_CLEAN) {
/*
* Flush the per-cpu queue and notify any waiters.
*/
if (bd->bd_wanted || (bq != bd->bd_cleanq &&
bq->bq_len >= bd->bd_lim))
bd_flush(bd, bq);
}
BQ_UNLOCK(bq);
}
/*
* bufkva_free:
*
* Free the kva allocation for a buffer.
*
*/
static void
bufkva_free(struct buf *bp)
{
#ifdef INVARIANTS
if (bp->b_kvasize == 0) {
KASSERT(bp->b_kvabase == unmapped_buf &&
bp->b_data == unmapped_buf,
("Leaked KVA space on %p", bp));
} else if (buf_mapped(bp))
BUF_CHECK_MAPPED(bp);
else
BUF_CHECK_UNMAPPED(bp);
#endif
if (bp->b_kvasize == 0)
return;
vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
counter_u64_add(bufkvaspace, -bp->b_kvasize);
counter_u64_add(buffreekvacnt, 1);
bp->b_data = bp->b_kvabase = unmapped_buf;
bp->b_kvasize = 0;
}
/*
* bufkva_alloc:
*
* Allocate the buffer KVA and set b_kvasize and b_kvabase.
*/
static int
bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
{
vm_offset_t addr;
int error;
KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
("Invalid gbflags 0x%x in %s", gbflags, __func__));
bufkva_free(bp);
addr = 0;
error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
if (error != 0) {
/*
* Buffer map is too fragmented. Request the caller
* to defragment the map.
*/
return (error);
}
bp->b_kvabase = (caddr_t)addr;
bp->b_kvasize = maxsize;
counter_u64_add(bufkvaspace, bp->b_kvasize);
if ((gbflags & GB_UNMAPPED) != 0) {
bp->b_data = unmapped_buf;
BUF_CHECK_UNMAPPED(bp);
} else {
bp->b_data = bp->b_kvabase;
BUF_CHECK_MAPPED(bp);
}
return (0);
}
/*
* bufkva_reclaim:
*
* Reclaim buffer kva by freeing buffers holding kva. This is a vmem
* callback that fires to avoid returning failure.
*/
static void
bufkva_reclaim(vmem_t *vmem, int flags)
{
bool done;
int q;
int i;
done = false;
for (i = 0; i < 5; i++) {
for (q = 0; q < buf_domains; q++)
if (buf_recycle(&bdomain[q], true) != 0)
done = true;
if (done)
break;
}
return;
}
/*
* Attempt to initiate asynchronous I/O on read-ahead blocks. We must
* clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
* the buffer is valid and we do not have to do anything.
*/
static void
breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
{
struct buf *rabp;
struct thread *td;
int i;
td = curthread;
for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
if (inmem(vp, *rablkno))
continue;
rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
if ((rabp->b_flags & B_CACHE) != 0) {
brelse(rabp);
continue;
}
#ifdef RACCT
if (racct_enable) {
PROC_LOCK(curproc);
racct_add_buf(curproc, rabp, 0);
PROC_UNLOCK(curproc);
}
#endif /* RACCT */
td->td_ru.ru_inblock++;
rabp->b_flags |= B_ASYNC;
rabp->b_flags &= ~B_INVAL;
if ((flags & GB_CKHASH) != 0) {
rabp->b_flags |= B_CKHASH;
rabp->b_ckhashcalc = ckhashfunc;
}
rabp->b_ioflags &= ~BIO_ERROR;
rabp->b_iocmd = BIO_READ;
if (rabp->b_rcred == NOCRED && cred != NOCRED)
rabp->b_rcred = crhold(cred);
vfs_busy_pages(rabp, 0);
BUF_KERNPROC(rabp);
rabp->b_iooffset = dbtob(rabp->b_blkno);
bstrategy(rabp);
}
}
/*
* Entry point for bread() and breadn() via #defines in sys/buf.h.
*
* Get a buffer with the specified data. Look in the cache first. We
* must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
* is set, the buffer is valid and we do not have to do anything, see
* getblk(). Also starts asynchronous I/O on read-ahead blocks.
*
* Always return a NULL buffer pointer (in bpp) when returning an error.
*
* The blkno parameter is the logical block being requested. Normally
* the mapping of logical block number to disk block address is done
* by calling VOP_BMAP(). However, if the mapping is already known, the
* disk block address can be passed using the dblkno parameter. If the
* disk block address is not known, then the same value should be passed
* for blkno and dblkno.
*/
int
breadn_flags(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size,
daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags,
void (*ckhashfunc)(struct buf *), struct buf **bpp)
{
struct buf *bp;
struct thread *td;
int error, readwait, rv;
CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
td = curthread;
/*
* Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags
* are specified.
*/
error = getblkx(vp, blkno, dblkno, size, 0, 0, flags, &bp);
if (error != 0) {
*bpp = NULL;
return (error);
}
KASSERT(blkno == bp->b_lblkno,
("getblkx returned buffer for blkno %jd instead of blkno %jd",
(intmax_t)bp->b_lblkno, (intmax_t)blkno));
flags &= ~GB_NOSPARSE;
*bpp = bp;
/*
* If not found in cache, do some I/O
*/
readwait = 0;
if ((bp->b_flags & B_CACHE) == 0) {
#ifdef RACCT
if (racct_enable) {
PROC_LOCK(td->td_proc);
racct_add_buf(td->td_proc, bp, 0);
PROC_UNLOCK(td->td_proc);
}
#endif /* RACCT */
td->td_ru.ru_inblock++;
bp->b_iocmd = BIO_READ;
bp->b_flags &= ~B_INVAL;
if ((flags & GB_CKHASH) != 0) {
bp->b_flags |= B_CKHASH;
bp->b_ckhashcalc = ckhashfunc;
}
if ((flags & GB_CVTENXIO) != 0)
bp->b_xflags |= BX_CVTENXIO;
bp->b_ioflags &= ~BIO_ERROR;
if (bp->b_rcred == NOCRED && cred != NOCRED)
bp->b_rcred = crhold(cred);
vfs_busy_pages(bp, 0);
bp->b_iooffset = dbtob(bp->b_blkno);
bstrategy(bp);
++readwait;
}
/*
* Attempt to initiate asynchronous I/O on read-ahead blocks.
*/
breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
rv = 0;
if (readwait) {
rv = bufwait(bp);
if (rv != 0) {
brelse(bp);
*bpp = NULL;
}
}
return (rv);
}
/*
* Write, release buffer on completion. (Done by iodone
* if async). Do not bother writing anything if the buffer
* is invalid.
*
* Note that we set B_CACHE here, indicating that buffer is
* fully valid and thus cacheable. This is true even of NFS
* now so we set it generally. This could be set either here
* or in biodone() since the I/O is synchronous. We put it
* here.
*/
int
bufwrite(struct buf *bp)
{
int oldflags;
struct vnode *vp;
long space;
int vp_md;
CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
bp->b_flags |= B_INVAL | B_RELBUF;
bp->b_flags &= ~B_CACHE;
brelse(bp);
return (ENXIO);
}
if (bp->b_flags & B_INVAL) {
brelse(bp);
return (0);
}
if (bp->b_flags & B_BARRIER)
atomic_add_long(&barrierwrites, 1);
oldflags = bp->b_flags;
KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
("FFS background buffer should not get here %p", bp));
vp = bp->b_vp;
if (vp)
vp_md = vp->v_vflag & VV_MD;
else
vp_md = 0;
/*
* Mark the buffer clean. Increment the bufobj write count
* before bundirty() call, to prevent other thread from seeing
* empty dirty list and zero counter for writes in progress,
* falsely indicating that the bufobj is clean.
*/
bufobj_wref(bp->b_bufobj);
bundirty(bp);
bp->b_flags &= ~B_DONE;
bp->b_ioflags &= ~BIO_ERROR;
bp->b_flags |= B_CACHE;
bp->b_iocmd = BIO_WRITE;
vfs_busy_pages(bp, 1);
/*
* Normal bwrites pipeline writes
*/
bp->b_runningbufspace = bp->b_bufsize;
space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
#ifdef RACCT
if (racct_enable) {
PROC_LOCK(curproc);
racct_add_buf(curproc, bp, 1);
PROC_UNLOCK(curproc);
}
#endif /* RACCT */
curthread->td_ru.ru_oublock++;
if (oldflags & B_ASYNC)
BUF_KERNPROC(bp);
bp->b_iooffset = dbtob(bp->b_blkno);
buf_track(bp, __func__);
bstrategy(bp);
if ((oldflags & B_ASYNC) == 0) {
int rtval = bufwait(bp);
brelse(bp);
return (rtval);
} else if (space > hirunningspace) {
/*
* don't allow the async write to saturate the I/O
* system. We will not deadlock here because
* we are blocking waiting for I/O that is already in-progress
* to complete. We do not block here if it is the update
* or syncer daemon trying to clean up as that can lead
* to deadlock.
*/
if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
waitrunningbufspace();
}
return (0);
}
void
bufbdflush(struct bufobj *bo, struct buf *bp)
{
struct buf *nbp;
if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
altbufferflushes++;
} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
BO_LOCK(bo);
/*
* Try to find a buffer to flush.
*/
TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
if ((nbp->b_vflags & BV_BKGRDINPROG) ||
BUF_LOCK(nbp,
LK_EXCLUSIVE | LK_NOWAIT, NULL))
continue;
if (bp == nbp)
panic("bdwrite: found ourselves");
BO_UNLOCK(bo);
/* Don't countdeps with the bo lock held. */
if (buf_countdeps(nbp, 0)) {
BO_LOCK(bo);
BUF_UNLOCK(nbp);
continue;
}
if (nbp->b_flags & B_CLUSTEROK) {
vfs_bio_awrite(nbp);
} else {
bremfree(nbp);
bawrite(nbp);
}
dirtybufferflushes++;
break;
}
if (nbp == NULL)
BO_UNLOCK(bo);
}
}
/*
* Delayed write. (Buffer is marked dirty). Do not bother writing
* anything if the buffer is marked invalid.
*
* Note that since the buffer must be completely valid, we can safely
* set B_CACHE. In fact, we have to set B_CACHE here rather then in
* biodone() in order to prevent getblk from writing the buffer
* out synchronously.
*/
void
bdwrite(struct buf *bp)
{
struct thread *td = curthread;
struct vnode *vp;
struct bufobj *bo;
CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
KASSERT((bp->b_flags & B_BARRIER) == 0,
("Barrier request in delayed write %p", bp));
if (bp->b_flags & B_INVAL) {
brelse(bp);
return;
}
/*
* If we have too many dirty buffers, don't create any more.
* If we are wildly over our limit, then force a complete
* cleanup. Otherwise, just keep the situation from getting
* out of control. Note that we have to avoid a recursive
* disaster and not try to clean up after our own cleanup!
*/
vp = bp->b_vp;
bo = bp->b_bufobj;
if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
td->td_pflags |= TDP_INBDFLUSH;
BO_BDFLUSH(bo, bp);
td->td_pflags &= ~TDP_INBDFLUSH;
} else
recursiveflushes++;
bdirty(bp);
/*
* Set B_CACHE, indicating that the buffer is fully valid. This is
* true even of NFS now.
*/
bp->b_flags |= B_CACHE;
/*
* This bmap keeps the system from needing to do the bmap later,
* perhaps when the system is attempting to do a sync. Since it
* is likely that the indirect block -- or whatever other datastructure
* that the filesystem needs is still in memory now, it is a good
* thing to do this. Note also, that if the pageout daemon is
* requesting a sync -- there might not be enough memory to do
* the bmap then... So, this is important to do.
*/
if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
}
buf_track(bp, __func__);
/*
* Set the *dirty* buffer range based upon the VM system dirty
* pages.
*
* Mark the buffer pages as clean. We need to do this here to
* satisfy the vnode_pager and the pageout daemon, so that it
* thinks that the pages have been "cleaned". Note that since
* the pages are in a delayed write buffer -- the VFS layer
* "will" see that the pages get written out on the next sync,
* or perhaps the cluster will be completed.
*/
vfs_clean_pages_dirty_buf(bp);
bqrelse(bp);
/*
* note: we cannot initiate I/O from a bdwrite even if we wanted to,
* due to the softdep code.
*/
}
/*
* bdirty:
*
* Turn buffer into delayed write request. We must clear BIO_READ and
* B_RELBUF, and we must set B_DELWRI. We reassign the buffer to
* itself to properly update it in the dirty/clean lists. We mark it
* B_DONE to ensure that any asynchronization of the buffer properly
* clears B_DONE ( else a panic will occur later ).
*
* bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
* might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty()
* should only be called if the buffer is known-good.
*
* Since the buffer is not on a queue, we do not update the numfreebuffers
* count.
*
* The buffer must be on QUEUE_NONE.
*/
void
bdirty(struct buf *bp)
{
CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
bp, bp->b_vp, bp->b_flags);
KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
bp->b_flags &= ~(B_RELBUF);
bp->b_iocmd = BIO_WRITE;
if ((bp->b_flags & B_DELWRI) == 0) {
bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
reassignbuf(bp);
bdirtyadd(bp);
}
}
/*
* bundirty:
*
* Clear B_DELWRI for buffer.
*
* Since the buffer is not on a queue, we do not update the numfreebuffers
* count.
*
* The buffer must be on QUEUE_NONE.
*/
void
bundirty(struct buf *bp)
{
CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
if (bp->b_flags & B_DELWRI) {
bp->b_flags &= ~B_DELWRI;
reassignbuf(bp);
bdirtysub(bp);
}
/*
* Since it is now being written, we can clear its deferred write flag.
*/
bp->b_flags &= ~B_DEFERRED;
}
/*
* bawrite:
*
* Asynchronous write. Start output on a buffer, but do not wait for
* it to complete. The buffer is released when the output completes.
*
* bwrite() ( or the VOP routine anyway ) is responsible for handling
* B_INVAL buffers. Not us.
*/
void
bawrite(struct buf *bp)
{
bp->b_flags |= B_ASYNC;
(void) bwrite(bp);
}
/*
* babarrierwrite:
*
* Asynchronous barrier write. Start output on a buffer, but do not
* wait for it to complete. Place a write barrier after this write so
* that this buffer and all buffers written before it are committed to
* the disk before any buffers written after this write are committed
* to the disk. The buffer is released when the output completes.
*/
void
babarrierwrite(struct buf *bp)
{
bp->b_flags |= B_ASYNC | B_BARRIER;
(void) bwrite(bp);
}
/*
* bbarrierwrite:
*
* Synchronous barrier write. Start output on a buffer and wait for
* it to complete. Place a write barrier after this write so that
* this buffer and all buffers written before it are committed to
* the disk before any buffers written after this write are committed
* to the disk. The buffer is released when the output completes.
*/
int
bbarrierwrite(struct buf *bp)
{
bp->b_flags |= B_BARRIER;
return (bwrite(bp));
}
/*
* bwillwrite:
*
* Called prior to the locking of any vnodes when we are expecting to
* write. We do not want to starve the buffer cache with too many
* dirty buffers so we block here. By blocking prior to the locking
* of any vnodes we attempt to avoid the situation where a locked vnode
* prevents the various system daemons from flushing related buffers.
*/
void
bwillwrite(void)
{
if (buf_dirty_count_severe()) {
mtx_lock(&bdirtylock);
while (buf_dirty_count_severe()) {
bdirtywait = 1;
msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
"flswai", 0);
}
mtx_unlock(&bdirtylock);
}
}
/*
* Return true if we have too many dirty buffers.
*/
int
buf_dirty_count_severe(void)
{
return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
}
/*
* brelse:
*
* Release a busy buffer and, if requested, free its resources. The
* buffer will be stashed in the appropriate bufqueue[] allowing it
* to be accessed later as a cache entity or reused for other purposes.
*/
void
brelse(struct buf *bp)
{
struct mount *v_mnt;
int qindex;
/*
* Many functions erroneously call brelse with a NULL bp under rare
* error conditions. Simply return when called with a NULL bp.
*/
if (bp == NULL)
return;
CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
bp, bp->b_vp, bp->b_flags);
KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
("brelse: non-VMIO buffer marked NOREUSE"));
if (BUF_LOCKRECURSED(bp)) {
/*
* Do not process, in particular, do not handle the
* B_INVAL/B_RELBUF and do not release to free list.
*/
BUF_UNLOCK(bp);
return;
}
if (bp->b_flags & B_MANAGED) {
bqrelse(bp);
return;
}
if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
BO_LOCK(bp->b_bufobj);
bp->b_vflags &= ~BV_BKGRDERR;
BO_UNLOCK(bp->b_bufobj);
bdirty(bp);
}
if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
(bp->b_flags & B_INVALONERR)) {
/*
* Forced invalidation of dirty buffer contents, to be used
* after a failed write in the rare case that the loss of the
* contents is acceptable. The buffer is invalidated and
* freed.
*/
bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE;
bp->b_flags &= ~(B_ASYNC | B_CACHE);
}
if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
(bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
!(bp->b_flags & B_INVAL)) {
/*
* Failed write, redirty. All errors except ENXIO (which
* means the device is gone) are treated as being
* transient.
*
* XXX Treating EIO as transient is not correct; the
* contract with the local storage device drivers is that
* they will only return EIO once the I/O is no longer
* retriable. Network I/O also respects this through the
* guarantees of TCP and/or the internal retries of NFS.
* ENOMEM might be transient, but we also have no way of
* knowing when its ok to retry/reschedule. In general,
* this entire case should be made obsolete through better
* error handling/recovery and resource scheduling.
*
* Do this also for buffers that failed with ENXIO, but have
* non-empty dependencies - the soft updates code might need
* to access the buffer to untangle them.
*
* Must clear BIO_ERROR to prevent pages from being scrapped.
*/
bp->b_ioflags &= ~BIO_ERROR;
bdirty(bp);
} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
(bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
/*
* Either a failed read I/O, or we were asked to free or not
* cache the buffer, or we failed to write to a device that's
* no longer present.
*/
bp->b_flags |= B_INVAL;
if (!LIST_EMPTY(&bp->b_dep))
buf_deallocate(bp);
if (bp->b_flags & B_DELWRI)
bdirtysub(bp);
bp->b_flags &= ~(B_DELWRI | B_CACHE);
if ((bp->b_flags & B_VMIO) == 0) {
allocbuf(bp, 0);
if (bp->b_vp)
brelvp(bp);
}
}
/*
* We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_truncate()
* is called with B_DELWRI set, the underlying pages may wind up
* getting freed causing a previous write (bdwrite()) to get 'lost'
* because pages associated with a B_DELWRI bp are marked clean.
*
* We still allow the B_INVAL case to call vfs_vmio_truncate(), even
* if B_DELWRI is set.
*/
if (bp->b_flags & B_DELWRI)
bp->b_flags &= ~B_RELBUF;
/*
* VMIO buffer rundown. It is not very necessary to keep a VMIO buffer
* constituted, not even NFS buffers now. Two flags effect this. If
* B_INVAL, the struct buf is invalidated but the VM object is kept
* around ( i.e. so it is trivial to reconstitute the buffer later ).
*
* If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
* invalidated. BIO_ERROR cannot be set for a failed write unless the
* buffer is also B_INVAL because it hits the re-dirtying code above.
*
* Normally we can do this whether a buffer is B_DELWRI or not. If
* the buffer is an NFS buffer, it is tracking piecemeal writes or
* the commit state and we cannot afford to lose the buffer. If the
* buffer has a background write in progress, we need to keep it
* around to prevent it from being reconstituted and starting a second
* background write.
*/
v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
(bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
(v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
vn_isdisk(bp->b_vp) || (bp->b_flags & B_DELWRI) == 0)) {
vfs_vmio_invalidate(bp);
allocbuf(bp, 0);
}
if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
(bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
allocbuf(bp, 0);
bp->b_flags &= ~B_NOREUSE;
if (bp->b_vp != NULL)
brelvp(bp);
}
/*
* If the buffer has junk contents signal it and eventually
* clean up B_DELWRI and diassociate the vnode so that gbincore()
* doesn't find it.
*/
if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
(bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
bp->b_flags |= B_INVAL;
if (bp->b_flags & B_INVAL) {
if (bp->b_flags & B_DELWRI)
bundirty(bp);
if (bp->b_vp)
brelvp(bp);
}
buf_track(bp, __func__);
/* buffers with no memory */
if (bp->b_bufsize == 0) {
buf_free(bp);
return;
}
/* buffers with junk contents */
if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
(bp->b_ioflags & BIO_ERROR)) {
bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
if (bp->b_vflags & BV_BKGRDINPROG)
panic("losing buffer 2");
qindex = QUEUE_CLEAN;
bp->b_flags |= B_AGE;
/* remaining buffers */
} else if (bp->b_flags & B_DELWRI)
qindex = QUEUE_DIRTY;
else
qindex = QUEUE_CLEAN;
if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
panic("brelse: not dirty");
bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
bp->b_xflags &= ~(BX_CVTENXIO);
/* binsfree unlocks bp. */
binsfree(bp, qindex);
}
/*
* Release a buffer back to the appropriate queue but do not try to free
* it. The buffer is expected to be used again soon.
*
* bqrelse() is used by bdwrite() to requeue a delayed write, and used by
* biodone() to requeue an async I/O on completion. It is also used when
* known good buffers need to be requeued but we think we may need the data
* again soon.
*
* XXX we should be able to leave the B_RELBUF hint set on completion.
*/
void
bqrelse(struct buf *bp)
{
int qindex;
CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
qindex = QUEUE_NONE;
if (BUF_LOCKRECURSED(bp)) {
/* do not release to free list */
BUF_UNLOCK(bp);
return;
}
bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
bp->b_xflags &= ~(BX_CVTENXIO);
if (bp->b_flags & B_MANAGED) {
if (bp->b_flags & B_REMFREE)
bremfreef(bp);
goto out;
}
/* buffers with stale but valid contents */
if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
BV_BKGRDERR)) == BV_BKGRDERR) {
BO_LOCK(bp->b_bufobj);
bp->b_vflags &= ~BV_BKGRDERR;
BO_UNLOCK(bp->b_bufobj);
qindex = QUEUE_DIRTY;
} else {
if ((bp->b_flags & B_DELWRI) == 0 &&
(bp->b_xflags & BX_VNDIRTY))
panic("bqrelse: not dirty");
if ((bp->b_flags & B_NOREUSE) != 0) {
brelse(bp);
return;
}
qindex = QUEUE_CLEAN;
}
buf_track(bp, __func__);
/* binsfree unlocks bp. */
binsfree(bp, qindex);
return;
out:
buf_track(bp, __func__);
/* unlock */
BUF_UNLOCK(bp);
}
/*
* Complete I/O to a VMIO backed page. Validate the pages as appropriate,
* restore bogus pages.
*/
static void
vfs_vmio_iodone(struct buf *bp)
{
vm_ooffset_t foff;
vm_page_t m;
vm_object_t obj;
struct vnode *vp __unused;
int i, iosize, resid;
bool bogus;
obj = bp->b_bufobj->bo_object;
KASSERT(blockcount_read(&obj->paging_in_progress) >= bp->b_npages,
("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
blockcount_read(&obj->paging_in_progress), bp->b_npages));
vp = bp->b_vp;
VNPASS(vp->v_holdcnt > 0, vp);
VNPASS(vp->v_object != NULL, vp);
foff = bp->b_offset;
KASSERT(bp->b_offset != NOOFFSET,
("vfs_vmio_iodone: bp %p has no buffer offset", bp));
bogus = false;
iosize = bp->b_bcount - bp->b_resid;
for (i = 0; i < bp->b_npages; i++) {
resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
if (resid > iosize)
resid = iosize;
/*
* cleanup bogus pages, restoring the originals
*/
m = bp->b_pages[i];
if (m == bogus_page) {
bogus = true;
m = vm_page_relookup(obj, OFF_TO_IDX(foff));
if (m == NULL)
panic("biodone: page disappeared!");
bp->b_pages[i] = m;
} else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
/*
* In the write case, the valid and clean bits are
* already changed correctly ( see bdwrite() ), so we
* only need to do this here in the read case.
*/
KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
resid)) == 0, ("vfs_vmio_iodone: page %p "
"has unexpected dirty bits", m));
vfs_page_set_valid(bp, foff, m);
}
KASSERT(OFF_TO_IDX(foff) == m->pindex,
("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
(intmax_t)foff, (uintmax_t)m->pindex));
vm_page_sunbusy(m);
foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
iosize -= resid;
}
vm_object_pip_wakeupn(obj, bp->b_npages);
if (bogus && buf_mapped(bp)) {
BUF_CHECK_MAPPED(bp);
pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
bp->b_pages, bp->b_npages);
}
}
/*
* Perform page invalidation when a buffer is released. The fully invalid
* pages will be reclaimed later in vfs_vmio_truncate().
*/
static void
vfs_vmio_invalidate(struct buf *bp)
{
vm_object_t obj;
vm_page_t m;
int flags, i, resid, poffset, presid;
if (buf_mapped(bp)) {
BUF_CHECK_MAPPED(bp);
pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
} else
BUF_CHECK_UNMAPPED(bp);
/*
* Get the base offset and length of the buffer. Note that
* in the VMIO case if the buffer block size is not
* page-aligned then b_data pointer may not be page-aligned.
* But our b_pages[] array *IS* page aligned.
*
* block sizes less then DEV_BSIZE (usually 512) are not
* supported due to the page granularity bits (m->valid,
* m->dirty, etc...).
*
* See man buf(9) for more information
*/
flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
obj = bp->b_bufobj->bo_object;
resid = bp->b_bufsize;
poffset = bp->b_offset & PAGE_MASK;
VM_OBJECT_WLOCK(obj);
for (i = 0; i < bp->b_npages; i++) {
m = bp->b_pages[i];
if (m == bogus_page)
panic("vfs_vmio_invalidate: Unexpected bogus page.");
bp->b_pages[i] = NULL;
presid = resid > (PAGE_SIZE - poffset) ?
(PAGE_SIZE - poffset) : resid;
KASSERT(presid >= 0, ("brelse: extra page"));
vm_page_busy_acquire(m, VM_ALLOC_SBUSY);
if (pmap_page_wired_mappings(m) == 0)
vm_page_set_invalid(m, poffset, presid);
vm_page_sunbusy(m);
vm_page_release_locked(m, flags);
resid -= presid;
poffset = 0;
}
VM_OBJECT_WUNLOCK(obj);
bp->b_npages = 0;
}
/*
* Page-granular truncation of an existing VMIO buffer.
*/
static void
vfs_vmio_truncate(struct buf *bp, int desiredpages)
{
vm_object_t obj;
vm_page_t m;
int flags, i;
if (bp->b_npages == desiredpages)
return;
if (buf_mapped(bp)) {
BUF_CHECK_MAPPED(bp);
pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
(desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
} else
BUF_CHECK_UNMAPPED(bp);
/*
* The object lock is needed only if we will attempt to free pages.
*/
flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
if ((bp->b_flags & B_DIRECT) != 0) {
flags |= VPR_TRYFREE;
obj = bp->b_bufobj->bo_object;
VM_OBJECT_WLOCK(obj);
} else {
obj = NULL;
}
for (i = desiredpages; i < bp->b_npages; i++) {
m = bp->b_pages[i];
KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
bp->b_pages[i] = NULL;
if (obj != NULL)
vm_page_release_locked(m, flags);
else
vm_page_release(m, flags);
}
if (obj != NULL)
VM_OBJECT_WUNLOCK(obj);
bp->b_npages = desiredpages;
}
/*
* Byte granular extension of VMIO buffers.
*/
static void
vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
{
/*
* We are growing the buffer, possibly in a
* byte-granular fashion.
*/
vm_object_t obj;
vm_offset_t toff;
vm_offset_t tinc;
vm_page_t m;
/*
* Step 1, bring in the VM pages from the object, allocating
* them if necessary. We must clear B_CACHE if these pages
* are not valid for the range covered by the buffer.
*/
obj = bp->b_bufobj->bo_object;
if (bp->b_npages < desiredpages) {
/*
* We must allocate system pages since blocking
* here could interfere with paging I/O, no
* matter which process we are.
*
* Only exclusive busy can be tested here.
* Blocking on shared busy might lead to
* deadlocks once allocbuf() is called after
* pages are vfs_busy_pages().
*/
(void)vm_page_grab_pages_unlocked(obj,
OFF_TO_IDX(bp->b_offset) + bp->b_npages,
VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
&bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
bp->b_npages = desiredpages;
}
/*
* Step 2. We've loaded the pages into the buffer,
* we have to figure out if we can still have B_CACHE
* set. Note that B_CACHE is set according to the
* byte-granular range ( bcount and size ), not the
* aligned range ( newbsize ).
*
* The VM test is against m->valid, which is DEV_BSIZE
* aligned. Needless to say, the validity of the data
* needs to also be DEV_BSIZE aligned. Note that this
* fails with NFS if the server or some other client
* extends the file's EOF. If our buffer is resized,
* B_CACHE may remain set! XXX
*/
toff = bp->b_bcount;
tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
while ((bp->b_flags & B_CACHE) && toff < size) {
vm_pindex_t pi;
if (tinc > (size - toff))
tinc = size - toff;
pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
m = bp->b_pages[pi];
vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
toff += tinc;
tinc = PAGE_SIZE;
}
/*
* Step 3, fixup the KVA pmap.
*/
if (buf_mapped(bp))
bpmap_qenter(bp);
else
BUF_CHECK_UNMAPPED(bp);
}
/*
* Check to see if a block at a particular lbn is available for a clustered
* write.
*/
static int
vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
{
struct buf *bpa;
int match;
match = 0;
/* If the buf isn't in core skip it */
if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
return (0);
/* If the buf is busy we don't want to wait for it */
if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
return (0);
/* Only cluster with valid clusterable delayed write buffers */
if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
(B_DELWRI | B_CLUSTEROK))
goto done;
if (bpa->b_bufsize != size)
goto done;
/*
* Check to see if it is in the expected place on disk and that the
* block has been mapped.
*/
if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
match = 1;
done:
BUF_UNLOCK(bpa);
return (match);
}
/*
* vfs_bio_awrite:
*
* Implement clustered async writes for clearing out B_DELWRI buffers.
* This is much better then the old way of writing only one buffer at
* a time. Note that we may not be presented with the buffers in the
* correct order, so we search for the cluster in both directions.
*/
int
vfs_bio_awrite(struct buf *bp)
{
struct bufobj *bo;
int i;
int j;
daddr_t lblkno = bp->b_lblkno;
struct vnode *vp = bp->b_vp;
int ncl;
int nwritten;
int size;
int maxcl;
int gbflags;
bo = &vp->v_bufobj;
gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
/*
* right now we support clustered writing only to regular files. If
* we find a clusterable block we could be in the middle of a cluster
* rather then at the beginning.
*/
if ((vp->v_type == VREG) &&
(vp->v_mount != 0) && /* Only on nodes that have the size info */
(bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
size = vp->v_mount->mnt_stat.f_iosize;
maxcl = MAXPHYS / size;
BO_RLOCK(bo);
for (i = 1; i < maxcl; i++)
if (vfs_bio_clcheck(vp, size, lblkno + i,
bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
break;
for (j = 1; i + j <= maxcl && j <= lblkno; j++)
if (vfs_bio_clcheck(vp, size, lblkno - j,
bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
break;
BO_RUNLOCK(bo);
--j;
ncl = i + j;
/*
* this is a possible cluster write
*/
if (ncl != 1) {
BUF_UNLOCK(bp);
nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
gbflags);
return (nwritten);
}
}
bremfree(bp);
bp->b_flags |= B_ASYNC;
/*
* default (old) behavior, writing out only one block
*
* XXX returns b_bufsize instead of b_bcount for nwritten?
*/
nwritten = bp->b_bufsize;
(void) bwrite(bp);
return (nwritten);
}
/*
* getnewbuf_kva:
*
* Allocate KVA for an empty buf header according to gbflags.
*/
static int
getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
{
if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
/*
* In order to keep fragmentation sane we only allocate kva
* in BKVASIZE chunks. XXX with vmem we can do page size.
*/
maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
if (maxsize != bp->b_kvasize &&
bufkva_alloc(bp, maxsize, gbflags))
return (ENOSPC);
}
return (0);
}
/*
* getnewbuf:
*
* Find and initialize a new buffer header, freeing up existing buffers
* in the bufqueues as necessary. The new buffer is returned locked.
*
* We block if:
* We have insufficient buffer headers
* We have insufficient buffer space
* buffer_arena is too fragmented ( space reservation fails )
* If we have to flush dirty buffers ( but we try to avoid this )
*
* The caller is responsible for releasing the reserved bufspace after
* allocbuf() is called.
*/
static struct buf *
getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
{
struct bufdomain *bd;
struct buf *bp;
bool metadata, reserved;
bp = NULL;
KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
if (!unmapped_buf_allowed)
gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
vp->v_type == VCHR)
metadata = true;
else
metadata = false;
if (vp == NULL)
bd = &bdomain[0];
else
bd = &bdomain[vp->v_bufobj.bo_domain];
counter_u64_add(getnewbufcalls, 1);
reserved = false;
do {
if (reserved == false &&
bufspace_reserve(bd, maxsize, metadata) != 0) {
counter_u64_add(getnewbufrestarts, 1);
continue;
}
reserved = true;
if ((bp = buf_alloc(bd)) == NULL) {
counter_u64_add(getnewbufrestarts, 1);
continue;
}
if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
return (bp);
break;
} while (buf_recycle(bd, false) == 0);
if (reserved)
bufspace_release(bd, maxsize);
if (bp != NULL) {
bp->b_flags |= B_INVAL;
brelse(bp);
}
bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
return (NULL);
}
/*
* buf_daemon:
*
* buffer flushing daemon. Buffers are normally flushed by the
* update daemon but if it cannot keep up this process starts to
* take the load in an attempt to prevent getnewbuf() from blocking.
*/
static struct kproc_desc buf_kp = {
"bufdaemon",
buf_daemon,
&bufdaemonproc
};
SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
static int
buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
{
int flushed;
flushed = flushbufqueues(vp, bd, target, 0);
if (flushed == 0) {
/*
* Could not find any buffers without rollback
* dependencies, so just write the first one
* in the hopes of eventually making progress.
*/
if (vp != NULL && target > 2)
target /= 2;
flushbufqueues(vp, bd, target, 1);
}
return (flushed);
}
static void
buf_daemon()
{
struct bufdomain *bd;
int speedupreq;
int lodirty;
int i;
/*
* This process needs to be suspended prior to shutdown sync.
*/
EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread,
SHUTDOWN_PRI_LAST + 100);
/*
* Start the buf clean daemons as children threads.
*/
for (i = 0 ; i < buf_domains; i++) {
int error;
error = kthread_add((void (*)(void *))bufspace_daemon,
&bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
if (error)
panic("error %d spawning bufspace daemon", error);
}
/*
* This process is allowed to take the buffer cache to the limit
*/
curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
mtx_lock(&bdlock);
for (;;) {
bd_request = 0;
mtx_unlock(&bdlock);
kthread_suspend_check();
/*
* Save speedupreq for this pass and reset to capture new
* requests.
*/
speedupreq = bd_speedupreq;
bd_speedupreq = 0;
/*
* Flush each domain sequentially according to its level and
* the speedup request.
*/
for (i = 0; i < buf_domains; i++) {
bd = &bdomain[i];
if (speedupreq)
lodirty = bd->bd_numdirtybuffers / 2;
else
lodirty = bd->bd_lodirtybuffers;
while (bd->bd_numdirtybuffers > lodirty) {
if (buf_flush(NULL, bd,
bd->bd_numdirtybuffers - lodirty) == 0)
break;
kern_yield(PRI_USER);
}
}
/*
* Only clear bd_request if we have reached our low water
* mark. The buf_daemon normally waits 1 second and
* then incrementally flushes any dirty buffers that have
* built up, within reason.
*
* If we were unable to hit our low water mark and couldn't
* find any flushable buffers, we sleep for a short period
* to avoid endless loops on unlockable buffers.
*/
mtx_lock(&bdlock);
if (!BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
/*
* We reached our low water mark, reset the
* request and sleep until we are needed again.
* The sleep is just so the suspend code works.
*/
bd_request = 0;
/*
* Do an extra wakeup in case dirty threshold
* changed via sysctl and the explicit transition
* out of shortfall was missed.
*/
bdirtywakeup();
if (runningbufspace <= lorunningspace)
runningwakeup();
msleep(&bd_request, &bdlock, PVM, "psleep", hz);
} else {
/*
* We couldn't find any flushable dirty buffers but
* still have too many dirty buffers, we
* have to sleep and try again. (rare)
*/
msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
}
}
}
/*
* flushbufqueues:
*
* Try to flush a buffer in the dirty queue. We must be careful to
* free up B_INVAL buffers instead of write them, which NFS is
* particularly sensitive to.
*/
static int flushwithdeps = 0;
SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW | CTLFLAG_STATS,
&flushwithdeps, 0,
"Number of buffers flushed with dependecies that require rollbacks");
static int
flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
int flushdeps)
{
struct bufqueue *bq;
struct buf *sentinel;
struct vnode *vp;
struct mount *mp;
struct buf *bp;
int hasdeps;
int flushed;
int error;
bool unlock;
flushed = 0;
bq = &bd->bd_dirtyq;
bp = NULL;
sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
sentinel->b_qindex = QUEUE_SENTINEL;
BQ_LOCK(bq);
TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
BQ_UNLOCK(bq);
while (flushed != target) {
maybe_yield();
BQ_LOCK(bq);
bp = TAILQ_NEXT(sentinel, b_freelist);
if (bp != NULL) {
TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
b_freelist);
} else {
BQ_UNLOCK(bq);
break;
}
/*
* Skip sentinels inserted by other invocations of the
* flushbufqueues(), taking care to not reorder them.
*
* Only flush the buffers that belong to the
* vnode locked by the curthread.
*/
if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
bp->b_vp != lvp)) {
BQ_UNLOCK(bq);
continue;
}
error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
BQ_UNLOCK(bq);
if (error != 0)
continue;
/*
* BKGRDINPROG can only be set with the buf and bufobj
* locks both held. We tolerate a race to clear it here.
*/
if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
(bp->b_flags & B_DELWRI) == 0) {
BUF_UNLOCK(bp);
continue;
}
if (bp->b_flags & B_INVAL) {
bremfreef(bp);
brelse(bp);
flushed++;
continue;
}
if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
if (flushdeps == 0) {
BUF_UNLOCK(bp);
continue;
}
hasdeps = 1;
} else
hasdeps = 0;
/*
* We must hold the lock on a vnode before writing
* one of its buffers. Otherwise we may confuse, or
* in the case of a snapshot vnode, deadlock the
* system.
*
* The lock order here is the reverse of the normal
* of vnode followed by buf lock. This is ok because
* the NOWAIT will prevent deadlock.
*/
vp = bp->b_vp;
if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
BUF_UNLOCK(bp);
continue;
}
if (lvp == NULL) {
unlock = true;
error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
} else {
ASSERT_VOP_LOCKED(vp, "getbuf");
unlock = false;
error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
vn_lock(vp, LK_TRYUPGRADE);
}
if (error == 0) {
CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
bp, bp->b_vp, bp->b_flags);
if (curproc == bufdaemonproc) {
vfs_bio_awrite(bp);
} else {
bremfree(bp);
bwrite(bp);
counter_u64_add(notbufdflushes, 1);
}
vn_finished_write(mp);
if (unlock)
VOP_UNLOCK(vp);
flushwithdeps += hasdeps;
flushed++;
/*
* Sleeping on runningbufspace while holding
* vnode lock leads to deadlock.
*/
if (curproc == bufdaemonproc &&
runningbufspace > hirunningspace)
waitrunningbufspace();
continue;
}
vn_finished_write(mp);
BUF_UNLOCK(bp);
}
BQ_LOCK(bq);
TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
BQ_UNLOCK(bq);
free(sentinel, M_TEMP);
return (flushed);
}
/*
* Check to see if a block is currently memory resident.
*/
struct buf *
incore(struct bufobj *bo, daddr_t blkno)
{
return (gbincore_unlocked(bo, blkno));
}
/*
* Returns true if no I/O is needed to access the
* associated VM object. This is like incore except
* it also hunts around in the VM system for the data.
*/
static int
inmem(struct vnode * vp, daddr_t blkno)
{
vm_object_t obj;
vm_offset_t toff, tinc, size;
vm_page_t m;
vm_ooffset_t off;
ASSERT_VOP_LOCKED(vp, "inmem");
if (incore(&vp->v_bufobj, blkno))
return 1;
if (vp->v_mount == NULL)
return 0;
obj = vp->v_object;
if (obj == NULL)
return (0);
size = PAGE_SIZE;
if (size > vp->v_mount->mnt_stat.f_iosize)
size = vp->v_mount->mnt_stat.f_iosize;
off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
VM_OBJECT_RLOCK(obj);
for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
if (!m)
goto notinmem;
tinc = size;
if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
if (vm_page_is_valid(m,
(vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
goto notinmem;
}
VM_OBJECT_RUNLOCK(obj);
return 1;
notinmem:
VM_OBJECT_RUNLOCK(obj);
return (0);
}
/*
* Set the dirty range for a buffer based on the status of the dirty
* bits in the pages comprising the buffer. The range is limited
* to the size of the buffer.
*
* Tell the VM system that the pages associated with this buffer
* are clean. This is used for delayed writes where the data is
* going to go to disk eventually without additional VM intevention.
*
* Note that while we only really need to clean through to b_bcount, we
* just go ahead and clean through to b_bufsize.
*/
static void
vfs_clean_pages_dirty_buf(struct buf *bp)
{
vm_ooffset_t foff, noff, eoff;
vm_page_t m;
int i;
if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
return;
foff = bp->b_offset;
KASSERT(bp->b_offset != NOOFFSET,
("vfs_clean_pages_dirty_buf: no buffer offset"));
vfs_busy_pages_acquire(bp);
vfs_setdirty_range(bp);
for (i = 0; i < bp->b_npages; i++) {
noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
eoff = noff;
if (eoff > bp->b_offset + bp->b_bufsize)
eoff = bp->b_offset + bp->b_bufsize;
m = bp->b_pages[i];
vfs_page_set_validclean(bp, foff, m);
/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
foff = noff;
}
vfs_busy_pages_release(bp);
}
static void
vfs_setdirty_range(struct buf *bp)
{
vm_offset_t boffset;
vm_offset_t eoffset;
int i;
/*
* test the pages to see if they have been modified directly
* by users through the VM system.
*/
for (i = 0; i < bp->b_npages; i++)
vm_page_test_dirty(bp->b_pages[i]);
/*
* Calculate the encompassing dirty range, boffset and eoffset,
* (eoffset - boffset) bytes.
*/
for (i = 0; i < bp->b_npages; i++) {
if (bp->b_pages[i]->dirty)
break;
}
boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
for (i = bp->b_npages - 1; i >= 0; --i) {
if (bp->b_pages[i]->dirty) {
break;
}
}
eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
/*
* Fit it to the buffer.
*/
if (eoffset > bp->b_bcount)
eoffset = bp->b_bcount;
/*
* If we have a good dirty range, merge with the existing
* dirty range.
*/
if (boffset < eoffset) {
if (bp->b_dirtyoff > boffset)
bp->b_dirtyoff = boffset;
if (bp->b_dirtyend < eoffset)
bp->b_dirtyend = eoffset;
}
}
/*
* Allocate the KVA mapping for an existing buffer.
* If an unmapped buffer is provided but a mapped buffer is requested, take
* also care to properly setup mappings between pages and KVA.
*/
static void
bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
{
int bsize, maxsize, need_mapping, need_kva;
off_t offset;
need_mapping = bp->b_data == unmapped_buf &&
(gbflags & GB_UNMAPPED) == 0;
need_kva = bp->b_kvabase == unmapped_buf &&
bp->b_data == unmapped_buf &&
(gbflags & GB_KVAALLOC) != 0;
if (!need_mapping && !need_kva)
return;
BUF_CHECK_UNMAPPED(bp);
if (need_mapping && bp->b_kvabase != unmapped_buf) {
/*
* Buffer is not mapped, but the KVA was already
* reserved at the time of the instantiation. Use the
* allocated space.
*/
goto has_addr;
}
/*
* Calculate the amount of the address space we would reserve
* if the buffer was mapped.
*/
bsize = vn_isdisk(bp->b_vp) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
offset = blkno * bsize;
maxsize = size + (offset & PAGE_MASK);
maxsize = imax(maxsize, bsize);
while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
if ((gbflags & GB_NOWAIT_BD) != 0) {
/*
* XXXKIB: defragmentation cannot
* succeed, not sure what else to do.
*/
panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
}
counter_u64_add(mappingrestarts, 1);
bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
}
has_addr:
if (need_mapping) {
/* b_offset is handled by bpmap_qenter. */
bp->b_data = bp->b_kvabase;
BUF_CHECK_MAPPED(bp);
bpmap_qenter(bp);
}
}
struct buf *
getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
int flags)
{
struct buf *bp;
int error;
error = getblkx(vp, blkno, blkno, size, slpflag, slptimeo, flags, &bp);
if (error != 0)
return (NULL);
return (bp);
}
/*
* getblkx:
*
* Get a block given a specified block and offset into a file/device.
* The buffers B_DONE bit will be cleared on return, making it almost
* ready for an I/O initiation. B_INVAL may or may not be set on
* return. The caller should clear B_INVAL prior to initiating a
* READ.
*
* For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
* an existing buffer.
*
* For a VMIO buffer, B_CACHE is modified according to the backing VM.
* If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
* and then cleared based on the backing VM. If the previous buffer is
* non-0-sized but invalid, B_CACHE will be cleared.
*
* If getblk() must create a new buffer, the new buffer is returned with
* both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
* case it is returned with B_INVAL clear and B_CACHE set based on the
* backing VM.
*
* getblk() also forces a bwrite() for any B_DELWRI buffer whose
* B_CACHE bit is clear.
*
* What this means, basically, is that the caller should use B_CACHE to
* determine whether the buffer is fully valid or not and should clear
* B_INVAL prior to issuing a read. If the caller intends to validate
* the buffer by loading its data area with something, the caller needs
* to clear B_INVAL. If the caller does this without issuing an I/O,
* the caller should set B_CACHE ( as an optimization ), else the caller
* should issue the I/O and biodone() will set B_CACHE if the I/O was
* a write attempt or if it was a successful read. If the caller
* intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
* prior to issuing the READ. biodone() will *not* clear B_INVAL.
*
* The blkno parameter is the logical block being requested. Normally
* the mapping of logical block number to disk block address is done
* by calling VOP_BMAP(). However, if the mapping is already known, the
* disk block address can be passed using the dblkno parameter. If the
* disk block address is not known, then the same value should be passed
* for blkno and dblkno.
*/
int
getblkx(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, int slpflag,
int slptimeo, int flags, struct buf **bpp)
{
struct buf *bp;
struct bufobj *bo;
daddr_t d_blkno;
int bsize, error, maxsize, vmio;
off_t offset;
CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
ASSERT_VOP_LOCKED(vp, "getblk");
if (size > maxbcachebuf)
panic("getblk: size(%d) > maxbcachebuf(%d)\n", size,
maxbcachebuf);
if (!unmapped_buf_allowed)
flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
bo = &vp->v_bufobj;
d_blkno = dblkno;
/* Attempt lockless lookup first. */
bp = gbincore_unlocked(bo, blkno);
if (bp == NULL)
goto newbuf_unlocked;
error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL, "getblku", 0,
0);
if (error != 0)
goto loop;
/* Verify buf identify has not changed since lookup. */
if (bp->b_bufobj == bo && bp->b_lblkno == blkno)
goto foundbuf_fastpath;
/* It changed, fallback to locked lookup. */
BUF_UNLOCK_RAW(bp);
loop:
BO_RLOCK(bo);
bp = gbincore(bo, blkno);
if (bp != NULL) {
int lockflags;
/*
* Buffer is in-core. If the buffer is not busy nor managed,
* it must be on a queue.
*/
lockflags = LK_EXCLUSIVE | LK_INTERLOCK |
((flags & GB_LOCK_NOWAIT) ? LK_NOWAIT : LK_SLEEPFAIL);
error = BUF_TIMELOCK(bp, lockflags,
BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
/*
* If we slept and got the lock we have to restart in case
* the buffer changed identities.
*/
if (error == ENOLCK)
goto loop;
/* We timed out or were interrupted. */
else if (error != 0)
return (error);
foundbuf_fastpath:
/* If recursed, assume caller knows the rules. */
if (BUF_LOCKRECURSED(bp))
goto end;
/*
* The buffer is locked. B_CACHE is cleared if the buffer is
* invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set
* and for a VMIO buffer B_CACHE is adjusted according to the
* backing VM cache.
*/
if (bp->b_flags & B_INVAL)
bp->b_flags &= ~B_CACHE;
else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
bp->b_flags |= B_CACHE;
if (bp->b_flags & B_MANAGED)
MPASS(bp->b_qindex == QUEUE_NONE);
else
bremfree(bp);
/*
* check for size inconsistencies for non-VMIO case.
*/
if (bp->b_bcount != size) {
if ((bp->b_flags & B_VMIO) == 0 ||
(size > bp->b_kvasize)) {
if (bp->b_flags & B_DELWRI) {
bp->b_flags |= B_NOCACHE;
bwrite(bp);
} else {
if (LIST_EMPTY(&bp->b_dep)) {
bp->b_flags |= B_RELBUF;
brelse(bp);
} else {
bp->b_flags |= B_NOCACHE;
bwrite(bp);
}
}
goto loop;
}
}
/*
* Handle the case of unmapped buffer which should
* become mapped, or the buffer for which KVA
* reservation is requested.
*/
bp_unmapped_get_kva(bp, blkno, size, flags);
/*
* If the size is inconsistent in the VMIO case, we can resize
* the buffer. This might lead to B_CACHE getting set or
* cleared. If the size has not changed, B_CACHE remains
* unchanged from its previous state.
*/
allocbuf(bp, size);
KASSERT(bp->b_offset != NOOFFSET,
("getblk: no buffer offset"));
/*
* A buffer with B_DELWRI set and B_CACHE clear must
* be committed before we can return the buffer in
* order to prevent the caller from issuing a read
* ( due to B_CACHE not being set ) and overwriting
* it.
*
* Most callers, including NFS and FFS, need this to
* operate properly either because they assume they
* can issue a read if B_CACHE is not set, or because
* ( for example ) an uncached B_DELWRI might loop due
* to softupdates re-dirtying the buffer. In the latter
* case, B_CACHE is set after the first write completes,
* preventing further loops.
* NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
* above while extending the buffer, we cannot allow the
* buffer to remain with B_CACHE set after the write
* completes or it will represent a corrupt state. To
* deal with this we set B_NOCACHE to scrap the buffer
* after the write.
*
* We might be able to do something fancy, like setting
* B_CACHE in bwrite() except if B_DELWRI is already set,
* so the below call doesn't set B_CACHE, but that gets real
* confusing. This is much easier.
*/
if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
bp->b_flags |= B_NOCACHE;
bwrite(bp);
goto loop;
}
bp->b_flags &= ~B_DONE;
} else {
/*
* Buffer is not in-core, create new buffer. The buffer
* returned by getnewbuf() is locked. Note that the returned
* buffer is also considered valid (not marked B_INVAL).
*/
BO_RUNLOCK(bo);
newbuf_unlocked:
/*
* If the user does not want us to create the buffer, bail out
* here.
*/
if (flags & GB_NOCREAT)
return (EEXIST);
bsize = vn_isdisk(vp) ? DEV_BSIZE : bo->bo_bsize;
KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
offset = blkno * bsize;
vmio = vp->v_object != NULL;
if (vmio) {
maxsize = size + (offset & PAGE_MASK);
} else {
maxsize = size;
/* Do not allow non-VMIO notmapped buffers. */
flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
}
maxsize = imax(maxsize, bsize);
if ((flags & GB_NOSPARSE) != 0 && vmio &&
!vn_isdisk(vp)) {
error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0);
KASSERT(error != EOPNOTSUPP,
("GB_NOSPARSE from fs not supporting bmap, vp %p",
vp));
if (error != 0)
return (error);
if (d_blkno == -1)
return (EJUSTRETURN);
}
bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
if (bp == NULL) {
if (slpflag || slptimeo)
return (ETIMEDOUT);
/*
* XXX This is here until the sleep path is diagnosed
* enough to work under very low memory conditions.
*
* There's an issue on low memory, 4BSD+non-preempt
* systems (eg MIPS routers with 32MB RAM) where buffer
* exhaustion occurs without sleeping for buffer
* reclaimation. This just sticks in a loop and
* constantly attempts to allocate a buffer, which
* hits exhaustion and tries to wakeup bufdaemon.
* This never happens because we never yield.
*
* The real solution is to identify and fix these cases
* so we aren't effectively busy-waiting in a loop
* until the reclaimation path has cycles to run.
*/
kern_yield(PRI_USER);
goto loop;
}
/*
* This code is used to make sure that a buffer is not
* created while the getnewbuf routine is blocked.
* This can be a problem whether the vnode is locked or not.
* If the buffer is created out from under us, we have to
* throw away the one we just created.
*
* Note: this must occur before we associate the buffer
* with the vp especially considering limitations in
* the splay tree implementation when dealing with duplicate
* lblkno's.
*/
BO_LOCK(bo);
if (gbincore(bo, blkno)) {
BO_UNLOCK(bo);
bp->b_flags |= B_INVAL;
bufspace_release(bufdomain(bp), maxsize);
brelse(bp);
goto loop;
}
/*
* Insert the buffer into the hash, so that it can
* be found by incore.
*/
bp->b_lblkno = blkno;
bp->b_blkno = d_blkno;
bp->b_offset = offset;
bgetvp(vp, bp);
BO_UNLOCK(bo);
/*
* set B_VMIO bit. allocbuf() the buffer bigger. Since the
* buffer size starts out as 0, B_CACHE will be set by
* allocbuf() for the VMIO case prior to it testing the
* backing store for validity.
*/
if (vmio) {
bp->b_flags |= B_VMIO;
KASSERT(vp->v_object == bp->b_bufobj->bo_object,
("ARGH! different b_bufobj->bo_object %p %p %p\n",
bp, vp->v_object, bp->b_bufobj->bo_object));
} else {
bp->b_flags &= ~B_VMIO;
KASSERT(bp->b_bufobj->bo_object == NULL,
("ARGH! has b_bufobj->bo_object %p %p\n",
bp, bp->b_bufobj->bo_object));
BUF_CHECK_MAPPED(bp);
}
allocbuf(bp, size);
bufspace_release(bufdomain(bp), maxsize);
bp->b_flags &= ~B_DONE;
}
CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
end:
buf_track(bp, __func__);
KASSERT(bp->b_bufobj == bo,
("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
*bpp = bp;
return (0);
}
/*
* Get an empty, disassociated buffer of given size. The buffer is initially
* set to B_INVAL.
*/
struct buf *
geteblk(int size, int flags)
{
struct buf *bp;
int maxsize;
maxsize = (size + BKVAMASK) & ~BKVAMASK;
while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
if ((flags & GB_NOWAIT_BD) &&
(curthread->td_pflags & TDP_BUFNEED) != 0)
return (NULL);
}
allocbuf(bp, size);
bufspace_release(bufdomain(bp), maxsize);
bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
return (bp);
}
/*
* Truncate the backing store for a non-vmio buffer.
*/
static void
vfs_nonvmio_truncate(struct buf *bp, int newbsize)
{
if (bp->b_flags & B_MALLOC) {
/*
* malloced buffers are not shrunk
*/
if (newbsize == 0) {
bufmallocadjust(bp, 0);
free(bp->b_data, M_BIOBUF);
bp->b_data = bp->b_kvabase;
bp->b_flags &= ~B_MALLOC;
}
return;
}
vm_hold_free_pages(bp, newbsize);
bufspace_adjust(bp, newbsize);
}
/*
* Extend the backing for a non-VMIO buffer.
*/
static void
vfs_nonvmio_extend(struct buf *bp, int newbsize)
{
caddr_t origbuf;
int origbufsize;
/*
* We only use malloced memory on the first allocation.
* and revert to page-allocated memory when the buffer
* grows.
*
* There is a potential smp race here that could lead
* to bufmallocspace slightly passing the max. It
* is probably extremely rare and not worth worrying
* over.
*/
if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
bufmallocspace < maxbufmallocspace) {
bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
bp->b_flags |= B_MALLOC;
bufmallocadjust(bp, newbsize);
return;
}
/*
* If the buffer is growing on its other-than-first
* allocation then we revert to the page-allocation
* scheme.
*/
origbuf = NULL;
origbufsize = 0;
if (bp->b_flags & B_MALLOC) {
origbuf = bp->b_data;
origbufsize = bp->b_bufsize;
bp->b_data = bp->b_kvabase;
bufmallocadjust(bp, 0);
bp->b_flags &= ~B_MALLOC;
newbsize = round_page(newbsize);
}
vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
(vm_offset_t) bp->b_data + newbsize);
if (origbuf != NULL) {
bcopy(origbuf, bp->b_data, origbufsize);
free(origbuf, M_BIOBUF);
}
bufspace_adjust(bp, newbsize);
}
/*
* This code constitutes the buffer memory from either anonymous system
* memory (in the case of non-VMIO operations) or from an associated
* VM object (in the case of VMIO operations). This code is able to
* resize a buffer up or down.
*
* Note that this code is tricky, and has many complications to resolve
* deadlock or inconsistent data situations. Tread lightly!!!
* There are B_CACHE and B_DELWRI interactions that must be dealt with by
* the caller. Calling this code willy nilly can result in the loss of data.
*
* allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
* B_CACHE for the non-VMIO case.
*/
int
allocbuf(struct buf *bp, int size)
{
int newbsize;
if (bp->b_bcount == size)
return (1);
if (bp->b_kvasize != 0 && bp->b_kvasize < size)
panic("allocbuf: buffer too small");
newbsize = roundup2(size, DEV_BSIZE);
if ((bp->b_flags & B_VMIO) == 0) {
if ((bp->b_flags & B_MALLOC) == 0)
newbsize = round_page(newbsize);
/*
* Just get anonymous memory from the kernel. Don't
* mess with B_CACHE.
*/
if (newbsize < bp->b_bufsize)
vfs_nonvmio_truncate(bp, newbsize);
else if (newbsize > bp->b_bufsize)
vfs_nonvmio_extend(bp, newbsize);
} else {
int desiredpages;
desiredpages = (size == 0) ? 0 :
num_pages((bp->b_offset & PAGE_MASK) + newbsize);
if (bp->b_flags & B_MALLOC)
panic("allocbuf: VMIO buffer can't be malloced");
/*
* Set B_CACHE initially if buffer is 0 length or will become
* 0-length.
*/
if (size == 0 || bp->b_bufsize == 0)
bp->b_flags |= B_CACHE;
if (newbsize < bp->b_bufsize)
vfs_vmio_truncate(bp, desiredpages);
/* XXX This looks as if it should be newbsize > b_bufsize */
else if (size > bp->b_bcount)
vfs_vmio_extend(bp, desiredpages, size);
bufspace_adjust(bp, newbsize);
}
bp->b_bcount = size; /* requested buffer size. */
return (1);
}
extern int inflight_transient_maps;
static struct bio_queue nondump_bios;
void
biodone(struct bio *bp)
{
struct mtx *mtxp;
void (*done)(struct bio *);
vm_offset_t start, end;
biotrack(bp, __func__);
/*
* Avoid completing I/O when dumping after a panic since that may
* result in a deadlock in the filesystem or pager code. Note that
* this doesn't affect dumps that were started manually since we aim
* to keep the system usable after it has been resumed.
*/
if (__predict_false(dumping && SCHEDULER_STOPPED())) {
TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue);
return;
}
if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
bp->bio_flags |= BIO_UNMAPPED;
start = trunc_page((vm_offset_t)bp->bio_data);
end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
bp->bio_data = unmapped_buf;
pmap_qremove(start, atop(end - start));
vmem_free(transient_arena, start, end - start);
atomic_add_int(&inflight_transient_maps, -1);
}
done = bp->bio_done;
if (done == NULL) {
mtxp = mtx_pool_find(mtxpool_sleep, bp);
mtx_lock(mtxp);
bp->bio_flags |= BIO_DONE;
wakeup(bp);
mtx_unlock(mtxp);
} else
done(bp);
}
/*
* Wait for a BIO to finish.
*/
int
biowait(struct bio *bp, const char *wchan)
{
struct mtx *mtxp;
mtxp = mtx_pool_find(mtxpool_sleep, bp);
mtx_lock(mtxp);
while ((bp->bio_flags & BIO_DONE) == 0)
msleep(bp, mtxp, PRIBIO, wchan, 0);
mtx_unlock(mtxp);
if (bp->bio_error != 0)
return (bp->bio_error);
if (!(bp->bio_flags & BIO_ERROR))
return (0);
return (EIO);
}
void
biofinish(struct bio *bp, struct devstat *stat, int error)
{
if (error) {
bp->bio_error = error;
bp->bio_flags |= BIO_ERROR;
}
if (stat != NULL)
devstat_end_transaction_bio(stat, bp);
biodone(bp);
}
#if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
void
biotrack_buf(struct bio *bp, const char *location)
{
buf_track(bp->bio_track_bp, location);
}
#endif
/*
* bufwait:
*
* Wait for buffer I/O completion, returning error status. The buffer
* is left locked and B_DONE on return. B_EINTR is converted into an EINTR
* error and cleared.
*/
int
bufwait(struct buf *bp)
{
if (bp->b_iocmd == BIO_READ)
bwait(bp, PRIBIO, "biord");
else
bwait(bp, PRIBIO, "biowr");
if (bp->b_flags & B_EINTR) {
bp->b_flags &= ~B_EINTR;
return (EINTR);
}
if (bp->b_ioflags & BIO_ERROR) {
return (bp->b_error ? bp->b_error : EIO);
} else {
return (0);
}
}
/*
* bufdone:
*
* Finish I/O on a buffer, optionally calling a completion function.
* This is usually called from an interrupt so process blocking is
* not allowed.
*
* biodone is also responsible for setting B_CACHE in a B_VMIO bp.
* In a non-VMIO bp, B_CACHE will be set on the next getblk()
* assuming B_INVAL is clear.
*
* For the VMIO case, we set B_CACHE if the op was a read and no
* read error occurred, or if the op was a write. B_CACHE is never
* set if the buffer is invalid or otherwise uncacheable.
*
* bufdone does not mess with B_INVAL, allowing the I/O routine or the
* initiator to leave B_INVAL set to brelse the buffer out of existence
* in the biodone routine.
*/
void
bufdone(struct buf *bp)
{
struct bufobj *dropobj;
void (*biodone)(struct buf *);
buf_track(bp, __func__);
CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
dropobj = NULL;
KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
runningbufwakeup(bp);
if (bp->b_iocmd == BIO_WRITE)
dropobj = bp->b_bufobj;
/* call optional completion function if requested */
if (bp->b_iodone != NULL) {
biodone = bp->b_iodone;
bp->b_iodone = NULL;
(*biodone) (bp);
if (dropobj)
bufobj_wdrop(dropobj);
return;
}
if (bp->b_flags & B_VMIO) {
/*
* Set B_CACHE if the op was a normal read and no error
* occurred. B_CACHE is set for writes in the b*write()
* routines.
*/
if (bp->b_iocmd == BIO_READ &&
!(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
!(bp->b_ioflags & BIO_ERROR))
bp->b_flags |= B_CACHE;
vfs_vmio_iodone(bp);
}
if (!LIST_EMPTY(&bp->b_dep))
buf_complete(bp);
if ((bp->b_flags & B_CKHASH) != 0) {
KASSERT(bp->b_iocmd == BIO_READ,
("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
(*bp->b_ckhashcalc)(bp);
}
/*
* For asynchronous completions, release the buffer now. The brelse
* will do a wakeup there if necessary - so no need to do a wakeup
* here in the async case. The sync case always needs to do a wakeup.
*/
if (bp->b_flags & B_ASYNC) {
if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
(bp->b_ioflags & BIO_ERROR))
brelse(bp);
else
bqrelse(bp);
} else
bdone(bp);
if (dropobj)
bufobj_wdrop(dropobj);
}
/*
* This routine is called in lieu of iodone in the case of
* incomplete I/O. This keeps the busy status for pages
* consistent.
*/
void
vfs_unbusy_pages(struct buf *bp)
{
int i;
vm_object_t obj;
vm_page_t m;
runningbufwakeup(bp);
if (!(bp->b_flags & B_VMIO))
return;
obj = bp->b_bufobj->bo_object;
for (i = 0; i < bp->b_npages; i++) {
m = bp->b_pages[i];
if (m == bogus_page) {
m = vm_page_relookup(obj, OFF_TO_IDX(bp->b_offset) + i);
if (!m)
panic("vfs_unbusy_pages: page missing\n");
bp->b_pages[i] = m;
if (buf_mapped(bp)) {
BUF_CHECK_MAPPED(bp);
pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
bp->b_pages, bp->b_npages);
} else
BUF_CHECK_UNMAPPED(bp);
}
vm_page_sunbusy(m);
}
vm_object_pip_wakeupn(obj, bp->b_npages);
}
/*
* vfs_page_set_valid:
*
* Set the valid bits in a page based on the supplied offset. The
* range is restricted to the buffer's size.
*
* This routine is typically called after a read completes.
*/
static void
vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
{
vm_ooffset_t eoff;
/*
* Compute the end offset, eoff, such that [off, eoff) does not span a
* page boundary and eoff is not greater than the end of the buffer.
* The end of the buffer, in this case, is our file EOF, not the
* allocation size of the buffer.
*/
eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
if (eoff > bp->b_offset + bp->b_bcount)
eoff = bp->b_offset + bp->b_bcount;
/*
* Set valid range. This is typically the entire buffer and thus the
* entire page.
*/
if (eoff > off)
vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
}
/*
* vfs_page_set_validclean:
*
* Set the valid bits and clear the dirty bits in a page based on the
* supplied offset. The range is restricted to the buffer's size.
*/
static void
vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
{
vm_ooffset_t soff, eoff;
/*
* Start and end offsets in buffer. eoff - soff may not cross a
* page boundary or cross the end of the buffer. The end of the
* buffer, in this case, is our file EOF, not the allocation size
* of the buffer.
*/
soff = off;
eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
if (eoff > bp->b_offset + bp->b_bcount)
eoff = bp->b_offset + bp->b_bcount;
/*
* Set valid range. This is typically the entire buffer and thus the
* entire page.
*/
if (eoff > soff) {
vm_page_set_validclean(
m,
(vm_offset_t) (soff & PAGE_MASK),
(vm_offset_t) (eoff - soff)
);
}
}
/*
* Acquire a shared busy on all pages in the buf.
*/
void
vfs_busy_pages_acquire(struct buf *bp)
{
int i;
for (i = 0; i < bp->b_npages; i++)
vm_page_busy_acquire(bp->b_pages[i], VM_ALLOC_SBUSY);
}
void
vfs_busy_pages_release(struct buf *bp)
{
int i;
for (i = 0; i < bp->b_npages; i++)
vm_page_sunbusy(bp->b_pages[i]);
}
/*
* This routine is called before a device strategy routine.
* It is used to tell the VM system that paging I/O is in
* progress, and treat the pages associated with the buffer
* almost as being exclusive busy. Also the object paging_in_progress
* flag is handled to make sure that the object doesn't become
* inconsistent.
*
* Since I/O has not been initiated yet, certain buffer flags
* such as BIO_ERROR or B_INVAL may be in an inconsistent state
* and should be ignored.
*/
void
vfs_busy_pages(struct buf *bp, int clear_modify)
{
vm_object_t obj;
vm_ooffset_t foff;
vm_page_t m;
int i;
bool bogus;
if (!(bp->b_flags & B_VMIO))
return;
obj = bp->b_bufobj->bo_object;
foff = bp->b_offset;
KASSERT(bp->b_offset != NOOFFSET,
("vfs_busy_pages: no buffer offset"));
if ((bp->b_flags & B_CLUSTER) == 0) {
vm_object_pip_add(obj, bp->b_npages);
vfs_busy_pages_acquire(bp);
}
if (bp->b_bufsize != 0)
vfs_setdirty_range(bp);
bogus = false;
for (i = 0; i < bp->b_npages; i++) {
m = bp->b_pages[i];
vm_page_assert_sbusied(m);
/*
* When readying a buffer for a read ( i.e
* clear_modify == 0 ), it is important to do
* bogus_page replacement for valid pages in
* partially instantiated buffers. Partially
* instantiated buffers can, in turn, occur when
* reconstituting a buffer from its VM backing store
* base. We only have to do this if B_CACHE is
* clear ( which causes the I/O to occur in the
* first place ). The replacement prevents the read
* I/O from overwriting potentially dirty VM-backed
* pages. XXX bogus page replacement is, uh, bogus.
* It may not work properly with small-block devices.
* We need to find a better way.
*/
if (clear_modify) {
pmap_remove_write(m);
vfs_page_set_validclean(bp, foff, m);
} else if (vm_page_all_valid(m) &&
(bp->b_flags & B_CACHE) == 0) {
bp->b_pages[i] = bogus_page;
bogus = true;
}
foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
}
if (bogus && buf_mapped(bp)) {
BUF_CHECK_MAPPED(bp);
pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
bp->b_pages, bp->b_npages);
}
}
/*
* vfs_bio_set_valid:
*
* Set the range within the buffer to valid. The range is
* relative to the beginning of the buffer, b_offset. Note that
* b_offset itself may be offset from the beginning of the first
* page.
*/
void
vfs_bio_set_valid(struct buf *bp, int base, int size)
{
int i, n;
vm_page_t m;
if (!(bp->b_flags & B_VMIO))
return;
/*
* Fixup base to be relative to beginning of first page.
* Set initial n to be the maximum number of bytes in the
* first page that can be validated.
*/
base += (bp->b_offset & PAGE_MASK);
n = PAGE_SIZE - (base & PAGE_MASK);
/*
* Busy may not be strictly necessary here because the pages are
* unlikely to be fully valid and the vnode lock will synchronize
* their access via getpages. It is grabbed for consistency with
* other page validation.
*/
vfs_busy_pages_acquire(bp);
for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
m = bp->b_pages[i];
if (n > size)
n = size;
vm_page_set_valid_range(m, base & PAGE_MASK, n);
base += n;
size -= n;
n = PAGE_SIZE;
}
vfs_busy_pages_release(bp);
}
/*
* vfs_bio_clrbuf:
*
* If the specified buffer is a non-VMIO buffer, clear the entire
* buffer. If the specified buffer is a VMIO buffer, clear and
* validate only the previously invalid portions of the buffer.
* This routine essentially fakes an I/O, so we need to clear
* BIO_ERROR and B_INVAL.
*
* Note that while we only theoretically need to clear through b_bcount,
* we go ahead and clear through b_bufsize.
*/
void
vfs_bio_clrbuf(struct buf *bp)
{
int i, j, mask, sa, ea, slide;
if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
clrbuf(bp);
return;
}
bp->b_flags &= ~B_INVAL;
bp->b_ioflags &= ~BIO_ERROR;
vfs_busy_pages_acquire(bp);
sa = bp->b_offset & PAGE_MASK;
slide = 0;
for (i = 0; i < bp->b_npages; i++, sa = 0) {
slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
ea = slide & PAGE_MASK;
if (ea == 0)
ea = PAGE_SIZE;
if (bp->b_pages[i] == bogus_page)
continue;
j = sa / DEV_BSIZE;
mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
if ((bp->b_pages[i]->valid & mask) == mask)
continue;
if ((bp->b_pages[i]->valid & mask) == 0)
pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
else {
for (; sa < ea; sa += DEV_BSIZE, j++) {
if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
pmap_zero_page_area(bp->b_pages[i],
sa, DEV_BSIZE);
}
}
}
vm_page_set_valid_range(bp->b_pages[i], j * DEV_BSIZE,
roundup2(ea - sa, DEV_BSIZE));
}
vfs_busy_pages_release(bp);
bp->b_resid = 0;
}
void
vfs_bio_bzero_buf(struct buf *bp, int base, int size)
{
vm_page_t m;
int i, n;
if (buf_mapped(bp)) {
BUF_CHECK_MAPPED(bp);
bzero(bp->b_data + base, size);
} else {
BUF_CHECK_UNMAPPED(bp);
n = PAGE_SIZE - (base & PAGE_MASK);
for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
m = bp->b_pages[i];
if (n > size)
n = size;
pmap_zero_page_area(m, base & PAGE_MASK, n);
base += n;
size -= n;
n = PAGE_SIZE;
}
}
}
/*
* Update buffer flags based on I/O request parameters, optionally releasing the
* buffer. If it's VMIO or direct I/O, the buffer pages are released to the VM,
* where they may be placed on a page queue (VMIO) or freed immediately (direct
* I/O). Otherwise the buffer is released to the cache.
*/
static void
b_io_dismiss(struct buf *bp, int ioflag, bool release)
{
KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
("buf %p non-VMIO noreuse", bp));
if ((ioflag & IO_DIRECT) != 0)
bp->b_flags |= B_DIRECT;
if ((ioflag & IO_EXT) != 0)
bp->b_xflags |= BX_ALTDATA;
if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
bp->b_flags |= B_RELBUF;
if ((ioflag & IO_NOREUSE) != 0)
bp->b_flags |= B_NOREUSE;
if (release)
brelse(bp);
} else if (release)
bqrelse(bp);
}
void
vfs_bio_brelse(struct buf *bp, int ioflag)
{
b_io_dismiss(bp, ioflag, true);
}
void
vfs_bio_set_flags(struct buf *bp, int ioflag)
{
b_io_dismiss(bp, ioflag, false);
}
/*
* vm_hold_load_pages and vm_hold_free_pages get pages into
* a buffers address space. The pages are anonymous and are
* not associated with a file object.
*/
static void
vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
{
vm_offset_t pg;
vm_page_t p;
int index;
BUF_CHECK_MAPPED(bp);
to = round_page(to);
from = round_page(from);
index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
/*
* note: must allocate system pages since blocking here
* could interfere with paging I/O, no matter which
* process we are.
*/
p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) |
VM_ALLOC_WAITOK);
pmap_qenter(pg, &p, 1);
bp->b_pages[index] = p;
}
bp->b_npages = index;
}
/* Return pages associated with this buf to the vm system */
static void
vm_hold_free_pages(struct buf *bp, int newbsize)
{
vm_offset_t from;
vm_page_t p;
int index, newnpages;
BUF_CHECK_MAPPED(bp);
from = round_page((vm_offset_t)bp->b_data + newbsize);
newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
if (bp->b_npages > newnpages)
pmap_qremove(from, bp->b_npages - newnpages);
for (index = newnpages; index < bp->b_npages; index++) {
p = bp->b_pages[index];
bp->b_pages[index] = NULL;
vm_page_unwire_noq(p);
vm_page_free(p);
}
bp->b_npages = newnpages;
}
/*
* Map an IO request into kernel virtual address space.
*
* All requests are (re)mapped into kernel VA space.
* Notice that we use b_bufsize for the size of the buffer
* to be mapped. b_bcount might be modified by the driver.
*
* Note that even if the caller determines that the address space should
* be valid, a race or a smaller-file mapped into a larger space may
* actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
* check the return value.
*
* This function only works with pager buffers.
*/
int
vmapbuf(struct buf *bp, int mapbuf)
{
vm_prot_t prot;
int pidx;
if (bp->b_bufsize < 0)
return (-1);
prot = VM_PROT_READ;
if (bp->b_iocmd == BIO_READ)
prot |= VM_PROT_WRITE; /* Less backwards than it looks */
if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
(vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
btoc(MAXPHYS))) < 0)
return (-1);
bp->b_npages = pidx;
bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK;
if (mapbuf || !unmapped_buf_allowed) {
pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
bp->b_data = bp->b_kvabase + bp->b_offset;
} else
bp->b_data = unmapped_buf;
return(0);
}
/*
* Free the io map PTEs associated with this IO operation.
* We also invalidate the TLB entries and restore the original b_addr.
*
* This function only works with pager buffers.
*/
void
vunmapbuf(struct buf *bp)
{
int npages;
npages = bp->b_npages;
if (buf_mapped(bp))
pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
vm_page_unhold_pages(bp->b_pages, npages);
bp->b_data = unmapped_buf;
}
void
bdone(struct buf *bp)
{
struct mtx *mtxp;
mtxp = mtx_pool_find(mtxpool_sleep, bp);
mtx_lock(mtxp);
bp->b_flags |= B_DONE;
wakeup(bp);
mtx_unlock(mtxp);
}
void
bwait(struct buf *bp, u_char pri, const char *wchan)
{
struct mtx *mtxp;
mtxp = mtx_pool_find(mtxpool_sleep, bp);
mtx_lock(mtxp);
while ((bp->b_flags & B_DONE) == 0)
msleep(bp, mtxp, pri, wchan, 0);
mtx_unlock(mtxp);
}
int
bufsync(struct bufobj *bo, int waitfor)
{
return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
}
void
bufstrategy(struct bufobj *bo, struct buf *bp)
{
int i __unused;
struct vnode *vp;
vp = bp->b_vp;
KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
i = VOP_STRATEGY(vp, bp);
KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
}
/*
* Initialize a struct bufobj before use. Memory is assumed zero filled.
*/
void
bufobj_init(struct bufobj *bo, void *private)
{
static volatile int bufobj_cleanq;
bo->bo_domain =
atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
rw_init(BO_LOCKPTR(bo), "bufobj interlock");
bo->bo_private = private;
TAILQ_INIT(&bo->bo_clean.bv_hd);
TAILQ_INIT(&bo->bo_dirty.bv_hd);
}
void
bufobj_wrefl(struct bufobj *bo)
{
KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
ASSERT_BO_WLOCKED(bo);
bo->bo_numoutput++;
}
void
bufobj_wref(struct bufobj *bo)
{
KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
BO_LOCK(bo);
bo->bo_numoutput++;
BO_UNLOCK(bo);
}
void
bufobj_wdrop(struct bufobj *bo)
{
KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
BO_LOCK(bo);
KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
bo->bo_flag &= ~BO_WWAIT;
wakeup(&bo->bo_numoutput);
}
BO_UNLOCK(bo);
}
int
bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
{
int error;
KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
ASSERT_BO_WLOCKED(bo);
error = 0;
while (bo->bo_numoutput) {
bo->bo_flag |= BO_WWAIT;
error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
slpflag | (PRIBIO + 1), "bo_wwait", timeo);
if (error)
break;
}
return (error);
}
/*
* Set bio_data or bio_ma for struct bio from the struct buf.
*/
void
bdata2bio(struct buf *bp, struct bio *bip)
{
if (!buf_mapped(bp)) {
KASSERT(unmapped_buf_allowed, ("unmapped"));
bip->bio_ma = bp->b_pages;
bip->bio_ma_n = bp->b_npages;
bip->bio_data = unmapped_buf;
bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
bip->bio_flags |= BIO_UNMAPPED;
KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
PAGE_SIZE == bp->b_npages,
("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
(long long)bip->bio_length, bip->bio_ma_n));
} else {
bip->bio_data = bp->b_data;
bip->bio_ma = NULL;
}
}
/*
* The MIPS pmap code currently doesn't handle aliased pages.
* The VIPT caches may not handle page aliasing themselves, leading
* to data corruption.
*
* As such, this code makes a system extremely unhappy if said
* system doesn't support unaliasing the above situation in hardware.
* Some "recent" systems (eg some mips24k/mips74k cores) don't enable
* this feature at build time, so it has to be handled in software.
*
* Once the MIPS pmap/cache code grows to support this function on
* earlier chips, it should be flipped back off.
*/
#ifdef __mips__
static int buf_pager_relbuf = 1;
#else
static int buf_pager_relbuf = 0;
#endif
SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
&buf_pager_relbuf, 0,
"Make buffer pager release buffers after reading");
/*
* The buffer pager. It uses buffer reads to validate pages.
*
* In contrast to the generic local pager from vm/vnode_pager.c, this
* pager correctly and easily handles volumes where the underlying
* device block size is greater than the machine page size. The
* buffer cache transparently extends the requested page run to be
* aligned at the block boundary, and does the necessary bogus page
* replacements in the addends to avoid obliterating already valid
* pages.
*
* The only non-trivial issue is that the exclusive busy state for
* pages, which is assumed by the vm_pager_getpages() interface, is
* incompatible with the VMIO buffer cache's desire to share-busy the
* pages. This function performs a trivial downgrade of the pages'
* state before reading buffers, and a less trivial upgrade from the
* shared-busy to excl-busy state after the read.
*/
int
vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
vbg_get_blksize_t get_blksize)
{
vm_page_t m;
vm_object_t object;
struct buf *bp;
struct mount *mp;
daddr_t lbn, lbnp;
vm_ooffset_t la, lb, poff, poffe;
long bsize;
int bo_bs, br_flags, error, i, pgsin, pgsin_a, pgsin_b;
bool redo, lpart;
object = vp->v_object;
mp = vp->v_mount;
error = 0;
la = IDX_TO_OFF(ma[count - 1]->pindex);
if (la >= object->un_pager.vnp.vnp_size)
return (VM_PAGER_BAD);
/*
* Change the meaning of la from where the last requested page starts
* to where it ends, because that's the end of the requested region
* and the start of the potential read-ahead region.
*/
la += PAGE_SIZE;
lpart = la > object->un_pager.vnp.vnp_size;
bo_bs = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)));
/*
* Calculate read-ahead, behind and total pages.
*/
pgsin = count;
lb = IDX_TO_OFF(ma[0]->pindex);
pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
pgsin += pgsin_b;
if (rbehind != NULL)
*rbehind = pgsin_b;
pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
PAGE_SIZE) - la);
pgsin += pgsin_a;
if (rahead != NULL)
*rahead = pgsin_a;
VM_CNT_INC(v_vnodein);
VM_CNT_ADD(v_vnodepgsin, pgsin);
br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
!= 0) ? GB_UNMAPPED : 0;
again:
for (i = 0; i < count; i++) {
if (ma[i] != bogus_page)
vm_page_busy_downgrade(ma[i]);
}
lbnp = -1;
for (i = 0; i < count; i++) {
m = ma[i];
if (m == bogus_page)
continue;
/*
* Pages are shared busy and the object lock is not
* owned, which together allow for the pages'
* invalidation. The racy test for validity avoids
* useless creation of the buffer for the most typical
* case when invalidation is not used in redo or for
* parallel read. The shared->excl upgrade loop at
* the end of the function catches the race in a
* reliable way (protected by the object lock).
*/
if (vm_page_all_valid(m))
continue;
poff = IDX_TO_OFF(m->pindex);
poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
for (; poff < poffe; poff += bsize) {
lbn = get_lblkno(vp, poff);
if (lbn == lbnp)
goto next_page;
lbnp = lbn;
bsize = get_blksize(vp, lbn);
error = bread_gb(vp, lbn, bsize, curthread->td_ucred,
br_flags, &bp);
if (error != 0)
goto end_pages;
if (bp->b_rcred == curthread->td_ucred) {
crfree(bp->b_rcred);
bp->b_rcred = NOCRED;
}
if (LIST_EMPTY(&bp->b_dep)) {
/*
* Invalidation clears m->valid, but
* may leave B_CACHE flag if the
* buffer existed at the invalidation
* time. In this case, recycle the
* buffer to do real read on next
* bread() after redo.
*
* Otherwise B_RELBUF is not strictly
* necessary, enable to reduce buf
* cache pressure.
*/
if (buf_pager_relbuf ||
!vm_page_all_valid(m))
bp->b_flags |= B_RELBUF;
bp->b_flags &= ~B_NOCACHE;
brelse(bp);
} else {
bqrelse(bp);
}
}
KASSERT(1 /* racy, enable for debugging */ ||
vm_page_all_valid(m) || i == count - 1,
("buf %d %p invalid", i, m));
if (i == count - 1 && lpart) {
if (!vm_page_none_valid(m) &&
!vm_page_all_valid(m))
vm_page_zero_invalid(m, TRUE);
}
next_page:;
}
end_pages:
redo = false;
for (i = 0; i < count; i++) {
if (ma[i] == bogus_page)
continue;
if (vm_page_busy_tryupgrade(ma[i]) == 0) {
vm_page_sunbusy(ma[i]);
ma[i] = vm_page_grab_unlocked(object, ma[i]->pindex,
VM_ALLOC_NORMAL);
}
/*
* Since the pages were only sbusy while neither the
* buffer nor the object lock was held by us, or
* reallocated while vm_page_grab() slept for busy
* relinguish, they could have been invalidated.
* Recheck the valid bits and re-read as needed.
*
* Note that the last page is made fully valid in the
* read loop, and partial validity for the page at
* index count - 1 could mean that the page was
* invalidated or removed, so we must restart for
* safety as well.
*/
if (!vm_page_all_valid(ma[i]))
redo = true;
}
if (redo && error == 0)
goto again;
return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
}
#include "opt_ddb.h"
#ifdef DDB
#include <ddb/ddb.h>
/* DDB command to show buffer data */
DB_SHOW_COMMAND(buffer, db_show_buffer)
{
/* get args */
struct buf *bp = (struct buf *)addr;
#ifdef FULL_BUF_TRACKING
uint32_t i, j;
#endif
if (!have_addr) {
db_printf("usage: show buffer <addr>\n");
return;
}
db_printf("buf at %p\n", bp);
db_printf("b_flags = 0x%b, b_xflags=0x%b\n",
(u_int)bp->b_flags, PRINT_BUF_FLAGS,
(u_int)bp->b_xflags, PRINT_BUF_XFLAGS);
db_printf("b_vflags=0x%b b_ioflags0x%b\n",
(u_int)bp->b_vflags, PRINT_BUF_VFLAGS,
(u_int)bp->b_ioflags, PRINT_BIO_FLAGS);
db_printf(
"b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
"b_bufobj = (%p), b_data = %p\n, b_blkno = %jd, b_lblkno = %jd, "
"b_vp = %p, b_dep = %p\n",
bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
(intmax_t)bp->b_lblkno, bp->b_vp, bp->b_dep.lh_first);
db_printf("b_kvabase = %p, b_kvasize = %d\n",
bp->b_kvabase, bp->b_kvasize);
if (bp->b_npages) {
int i;
db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
for (i = 0; i < bp->b_npages; i++) {
vm_page_t m;
m = bp->b_pages[i];
if (m != NULL)
db_printf("(%p, 0x%lx, 0x%lx)", m->object,
(u_long)m->pindex,
(u_long)VM_PAGE_TO_PHYS(m));
else
db_printf("( ??? )");
if ((i + 1) < bp->b_npages)
db_printf(",");
}
db_printf("\n");
}
BUF_LOCKPRINTINFO(bp);
#if defined(FULL_BUF_TRACKING)
db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
continue;
db_printf(" %2u: %s\n", j,
bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
}
#elif defined(BUF_TRACKING)
db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
#endif
db_printf(" ");
}
DB_SHOW_COMMAND(bufqueues, bufqueues)
{
struct bufdomain *bd;
struct buf *bp;
long total;
int i, j, cnt;
db_printf("bqempty: %d\n", bqempty.bq_len);
for (i = 0; i < buf_domains; i++) {
bd = &bdomain[i];
db_printf("Buf domain %d\n", i);
db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
db_printf("\n");
db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
db_printf("\n");
db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
db_printf("\n");
total = 0;
TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
total += bp->b_bufsize;
db_printf("\tcleanq count\t%d (%ld)\n",
bd->bd_cleanq->bq_len, total);
total = 0;
TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
total += bp->b_bufsize;
db_printf("\tdirtyq count\t%d (%ld)\n",
bd->bd_dirtyq.bq_len, total);
db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
db_printf("\tlim\t\t%d\n", bd->bd_lim);
db_printf("\tCPU ");
for (j = 0; j <= mp_maxid; j++)
db_printf("%d, ", bd->bd_subq[j].bq_len);
db_printf("\n");
cnt = 0;
total = 0;
for (j = 0; j < nbuf; j++)
if (buf[j].b_domain == i && BUF_ISLOCKED(&buf[j])) {
cnt++;
total += buf[j].b_bufsize;
}
db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
cnt = 0;
total = 0;
for (j = 0; j < nbuf; j++)
if (buf[j].b_domain == i) {
cnt++;
total += buf[j].b_bufsize;
}
db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
}
}
DB_SHOW_COMMAND(lockedbufs, lockedbufs)
{
struct buf *bp;
int i;
for (i = 0; i < nbuf; i++) {
bp = &buf[i];
if (BUF_ISLOCKED(bp)) {
db_show_buffer((uintptr_t)bp, 1, 0, NULL);
db_printf("\n");
if (db_pager_quit)
break;
}
}
}
DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
{
struct vnode *vp;
struct buf *bp;
if (!have_addr) {
db_printf("usage: show vnodebufs <addr>\n");
return;
}
vp = (struct vnode *)addr;
db_printf("Clean buffers:\n");
TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
db_show_buffer((uintptr_t)bp, 1, 0, NULL);
db_printf("\n");
}
db_printf("Dirty buffers:\n");
TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
db_show_buffer((uintptr_t)bp, 1, 0, NULL);
db_printf("\n");
}
}
DB_COMMAND(countfreebufs, db_coundfreebufs)
{
struct buf *bp;
int i, used = 0, nfree = 0;
if (have_addr) {
db_printf("usage: countfreebufs\n");
return;
}
for (i = 0; i < nbuf; i++) {
bp = &buf[i];
if (bp->b_qindex == QUEUE_EMPTY)
nfree++;
else
used++;
}
db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
nfree + used);
db_printf("numfreebuffers is %d\n", numfreebuffers);
}
#endif /* DDB */