np e125b8317c cxgbetool(8): Do not close uninitialized fd on malloc failure.
MFC after:	1 week
Sponsored by:	Chelsio Communications
2017-10-09 18:00:40 +00:00

3017 lines
71 KiB
C

/*-
* Copyright (c) 2011 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <arpa/inet.h>
#include <net/ethernet.h>
#include <net/sff8472.h>
#include <netinet/in.h>
#include <ctype.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "t4_ioctl.h"
#define in_range(val, lo, hi) ( val < 0 || (val <= hi && val >= lo))
#define max(x, y) ((x) > (y) ? (x) : (y))
static const char *progname, *nexus;
static int chip_id; /* 4 for T4, 5 for T5 */
struct reg_info {
const char *name;
uint32_t addr;
uint32_t len;
};
struct mod_regs {
const char *name;
const struct reg_info *ri;
};
struct field_desc {
const char *name; /* Field name */
unsigned short start; /* Start bit position */
unsigned short end; /* End bit position */
unsigned char shift; /* # of low order bits omitted and implicitly 0 */
unsigned char hex; /* Print field in hex instead of decimal */
unsigned char islog2; /* Field contains the base-2 log of the value */
};
#include "reg_defs_t4.c"
#include "reg_defs_t5.c"
#include "reg_defs_t6.c"
#include "reg_defs_t4vf.c"
static void
usage(FILE *fp)
{
fprintf(fp, "Usage: %s <nexus> [operation]\n", progname);
fprintf(fp,
"\tclearstats <port> clear port statistics\n"
"\tcontext <type> <id> show an SGE context\n"
"\tdumpstate <dump.bin> dump chip state\n"
"\tfilter <idx> [<param> <val>] ... set a filter\n"
"\tfilter <idx> delete|clear delete a filter\n"
"\tfilter list list all filters\n"
"\tfilter mode [<match>] ... get/set global filter mode\n"
"\ti2c <port> <devaddr> <addr> [<len>] read from i2c device\n"
"\tloadboot <bi.bin> [pf|offset <val>] install boot image\n"
"\tloadboot clear [pf|offset <val>] remove boot image\n"
"\tloadboot-cfg <bc.bin> install boot config\n"
"\tloadboot-cfg clear remove boot config\n"
"\tloadcfg <fw-config.txt> install configuration file\n"
"\tloadcfg clear remove configuration file\n"
"\tloadfw <fw-image.bin> install firmware\n"
"\tmemdump <addr> <len> dump a memory range\n"
"\tmodinfo <port> [raw] optics/cable information\n"
"\treg <address>[=<val>] read/write register\n"
"\treg64 <address>[=<val>] read/write 64 bit register\n"
"\tregdump [<module>] ... dump registers\n"
"\tsched-class params <param> <val> .. configure TX scheduler class\n"
"\tsched-queue <port> <queue> <class> bind NIC queues to TX Scheduling class\n"
"\tstdio interactive mode\n"
"\ttcb <tid> read TCB\n"
"\ttracer <idx> tx<n>|rx<n> set and enable a tracer\n"
"\ttracer <idx> disable|enable disable or enable a tracer\n"
"\ttracer list list all tracers\n"
);
}
static inline unsigned int
get_card_vers(unsigned int version)
{
return (version & 0x3ff);
}
static int
real_doit(unsigned long cmd, void *data, const char *cmdstr)
{
static int fd = -1;
int rc = 0;
if (fd == -1) {
char buf[64];
snprintf(buf, sizeof(buf), "/dev/%s", nexus);
if ((fd = open(buf, O_RDWR)) < 0) {
warn("open(%s)", nexus);
rc = errno;
return (rc);
}
chip_id = nexus[1] - '0';
}
rc = ioctl(fd, cmd, data);
if (rc < 0) {
warn("%s", cmdstr);
rc = errno;
}
return (rc);
}
#define doit(x, y) real_doit(x, y, #x)
static char *
str_to_number(const char *s, long *val, long long *vall)
{
char *p;
if (vall)
*vall = strtoll(s, &p, 0);
else if (val)
*val = strtol(s, &p, 0);
else
p = NULL;
return (p);
}
static int
read_reg(long addr, int size, long long *val)
{
struct t4_reg reg;
int rc;
reg.addr = (uint32_t) addr;
reg.size = (uint32_t) size;
reg.val = 0;
rc = doit(CHELSIO_T4_GETREG, &reg);
*val = reg.val;
return (rc);
}
static int
write_reg(long addr, int size, long long val)
{
struct t4_reg reg;
reg.addr = (uint32_t) addr;
reg.size = (uint32_t) size;
reg.val = (uint64_t) val;
return doit(CHELSIO_T4_SETREG, &reg);
}
static int
register_io(int argc, const char *argv[], int size)
{
char *p, *v;
long addr;
long long val;
int w = 0, rc;
if (argc == 1) {
/* <reg> OR <reg>=<value> */
p = str_to_number(argv[0], &addr, NULL);
if (*p) {
if (*p != '=') {
warnx("invalid register \"%s\"", argv[0]);
return (EINVAL);
}
w = 1;
v = p + 1;
p = str_to_number(v, NULL, &val);
if (*p) {
warnx("invalid value \"%s\"", v);
return (EINVAL);
}
}
} else if (argc == 2) {
/* <reg> <value> */
w = 1;
p = str_to_number(argv[0], &addr, NULL);
if (*p) {
warnx("invalid register \"%s\"", argv[0]);
return (EINVAL);
}
p = str_to_number(argv[1], NULL, &val);
if (*p) {
warnx("invalid value \"%s\"", argv[1]);
return (EINVAL);
}
} else {
warnx("reg: invalid number of arguments (%d)", argc);
return (EINVAL);
}
if (w)
rc = write_reg(addr, size, val);
else {
rc = read_reg(addr, size, &val);
if (rc == 0)
printf("0x%llx [%llu]\n", val, val);
}
return (rc);
}
static inline uint32_t
xtract(uint32_t val, int shift, int len)
{
return (val >> shift) & ((1 << len) - 1);
}
static int
dump_block_regs(const struct reg_info *reg_array, const uint32_t *regs)
{
uint32_t reg_val = 0;
for ( ; reg_array->name; ++reg_array)
if (!reg_array->len) {
reg_val = regs[reg_array->addr / 4];
printf("[%#7x] %-47s %#-10x %u\n", reg_array->addr,
reg_array->name, reg_val, reg_val);
} else {
uint32_t v = xtract(reg_val, reg_array->addr,
reg_array->len);
printf(" %*u:%u %-47s %#-10x %u\n",
reg_array->addr < 10 ? 3 : 2,
reg_array->addr + reg_array->len - 1,
reg_array->addr, reg_array->name, v, v);
}
return (1);
}
static int
dump_regs_table(int argc, const char *argv[], const uint32_t *regs,
const struct mod_regs *modtab, int nmodules)
{
int i, j, match;
for (i = 0; i < argc; i++) {
for (j = 0; j < nmodules; j++) {
if (!strcmp(argv[i], modtab[j].name))
break;
}
if (j == nmodules) {
warnx("invalid register block \"%s\"", argv[i]);
fprintf(stderr, "\nAvailable blocks:");
for ( ; nmodules; nmodules--, modtab++)
fprintf(stderr, " %s", modtab->name);
fprintf(stderr, "\n");
return (EINVAL);
}
}
for ( ; nmodules; nmodules--, modtab++) {
match = argc == 0 ? 1 : 0;
for (i = 0; !match && i < argc; i++) {
if (!strcmp(argv[i], modtab->name))
match = 1;
}
if (match)
dump_block_regs(modtab->ri, regs);
}
return (0);
}
#define T4_MODREGS(name) { #name, t4_##name##_regs }
static int
dump_regs_t4(int argc, const char *argv[], const uint32_t *regs)
{
static struct mod_regs t4_mod[] = {
T4_MODREGS(sge),
{ "pci", t4_pcie_regs },
T4_MODREGS(dbg),
T4_MODREGS(mc),
T4_MODREGS(ma),
{ "edc0", t4_edc_0_regs },
{ "edc1", t4_edc_1_regs },
T4_MODREGS(cim),
T4_MODREGS(tp),
T4_MODREGS(ulp_rx),
T4_MODREGS(ulp_tx),
{ "pmrx", t4_pm_rx_regs },
{ "pmtx", t4_pm_tx_regs },
T4_MODREGS(mps),
{ "cplsw", t4_cpl_switch_regs },
T4_MODREGS(smb),
{ "i2c", t4_i2cm_regs },
T4_MODREGS(mi),
T4_MODREGS(uart),
T4_MODREGS(pmu),
T4_MODREGS(sf),
T4_MODREGS(pl),
T4_MODREGS(le),
T4_MODREGS(ncsi),
T4_MODREGS(xgmac)
};
return dump_regs_table(argc, argv, regs, t4_mod, nitems(t4_mod));
}
#undef T4_MODREGS
#define T5_MODREGS(name) { #name, t5_##name##_regs }
static int
dump_regs_t5(int argc, const char *argv[], const uint32_t *regs)
{
static struct mod_regs t5_mod[] = {
T5_MODREGS(sge),
{ "pci", t5_pcie_regs },
T5_MODREGS(dbg),
{ "mc0", t5_mc_0_regs },
{ "mc1", t5_mc_1_regs },
T5_MODREGS(ma),
{ "edc0", t5_edc_t50_regs },
{ "edc1", t5_edc_t51_regs },
T5_MODREGS(cim),
T5_MODREGS(tp),
{ "ulprx", t5_ulp_rx_regs },
{ "ulptx", t5_ulp_tx_regs },
{ "pmrx", t5_pm_rx_regs },
{ "pmtx", t5_pm_tx_regs },
T5_MODREGS(mps),
{ "cplsw", t5_cpl_switch_regs },
T5_MODREGS(smb),
{ "i2c", t5_i2cm_regs },
T5_MODREGS(mi),
T5_MODREGS(uart),
T5_MODREGS(pmu),
T5_MODREGS(sf),
T5_MODREGS(pl),
T5_MODREGS(le),
T5_MODREGS(ncsi),
T5_MODREGS(mac),
{ "hma", t5_hma_t5_regs }
};
return dump_regs_table(argc, argv, regs, t5_mod, nitems(t5_mod));
}
#undef T5_MODREGS
#define T6_MODREGS(name) { #name, t6_##name##_regs }
static int
dump_regs_t6(int argc, const char *argv[], const uint32_t *regs)
{
static struct mod_regs t6_mod[] = {
T6_MODREGS(sge),
{ "pci", t6_pcie_regs },
T6_MODREGS(dbg),
{ "mc0", t6_mc_0_regs },
T6_MODREGS(ma),
{ "edc0", t6_edc_t60_regs },
{ "edc1", t6_edc_t61_regs },
T6_MODREGS(cim),
T6_MODREGS(tp),
{ "ulprx", t6_ulp_rx_regs },
{ "ulptx", t6_ulp_tx_regs },
{ "pmrx", t6_pm_rx_regs },
{ "pmtx", t6_pm_tx_regs },
T6_MODREGS(mps),
{ "cplsw", t6_cpl_switch_regs },
T6_MODREGS(smb),
{ "i2c", t6_i2cm_regs },
T6_MODREGS(mi),
T6_MODREGS(uart),
T6_MODREGS(pmu),
T6_MODREGS(sf),
T6_MODREGS(pl),
T6_MODREGS(le),
T6_MODREGS(ncsi),
T6_MODREGS(mac),
{ "hma", t6_hma_t6_regs }
};
return dump_regs_table(argc, argv, regs, t6_mod, nitems(t6_mod));
}
#undef T6_MODREGS
static int
dump_regs_t4vf(int argc, const char *argv[], const uint32_t *regs)
{
static struct mod_regs t4vf_mod[] = {
{ "sge", t4vf_sge_regs },
{ "mps", t4vf_mps_regs },
{ "pl", t4vf_pl_regs },
{ "mbdata", t4vf_mbdata_regs },
{ "cim", t4vf_cim_regs },
};
return dump_regs_table(argc, argv, regs, t4vf_mod, nitems(t4vf_mod));
}
static int
dump_regs_t5vf(int argc, const char *argv[], const uint32_t *regs)
{
static struct mod_regs t5vf_mod[] = {
{ "sge", t5vf_sge_regs },
{ "mps", t4vf_mps_regs },
{ "pl", t5vf_pl_regs },
{ "mbdata", t4vf_mbdata_regs },
{ "cim", t4vf_cim_regs },
};
return dump_regs_table(argc, argv, regs, t5vf_mod, nitems(t5vf_mod));
}
static int
dump_regs_t6vf(int argc, const char *argv[], const uint32_t *regs)
{
static struct mod_regs t6vf_mod[] = {
{ "sge", t5vf_sge_regs },
{ "mps", t4vf_mps_regs },
{ "pl", t6vf_pl_regs },
{ "mbdata", t4vf_mbdata_regs },
{ "cim", t4vf_cim_regs },
};
return dump_regs_table(argc, argv, regs, t6vf_mod, nitems(t6vf_mod));
}
static int
dump_regs(int argc, const char *argv[])
{
int vers, revision, rc;
struct t4_regdump regs;
uint32_t len;
len = max(T4_REGDUMP_SIZE, T5_REGDUMP_SIZE);
regs.data = calloc(1, len);
if (regs.data == NULL) {
warnc(ENOMEM, "regdump");
return (ENOMEM);
}
regs.len = len;
rc = doit(CHELSIO_T4_REGDUMP, &regs);
if (rc != 0)
return (rc);
vers = get_card_vers(regs.version);
revision = (regs.version >> 10) & 0x3f;
if (vers == 4) {
if (revision == 0x3f)
rc = dump_regs_t4vf(argc, argv, regs.data);
else
rc = dump_regs_t4(argc, argv, regs.data);
} else if (vers == 5) {
if (revision == 0x3f)
rc = dump_regs_t5vf(argc, argv, regs.data);
else
rc = dump_regs_t5(argc, argv, regs.data);
} else if (vers == 6) {
if (revision == 0x3f)
rc = dump_regs_t6vf(argc, argv, regs.data);
else
rc = dump_regs_t6(argc, argv, regs.data);
} else {
warnx("%s (type %d, rev %d) is not a known card.",
nexus, vers, revision);
return (ENOTSUP);
}
free(regs.data);
return (rc);
}
static void
do_show_info_header(uint32_t mode)
{
uint32_t i;
printf("%4s %8s", "Idx", "Hits");
for (i = T4_FILTER_FCoE; i <= T4_FILTER_IP_FRAGMENT; i <<= 1) {
switch (mode & i) {
case T4_FILTER_FCoE:
printf(" FCoE");
break;
case T4_FILTER_PORT:
printf(" Port");
break;
case T4_FILTER_VNIC:
if (mode & T4_FILTER_IC_VNIC)
printf(" VFvld:PF:VF");
else
printf(" vld:oVLAN");
break;
case T4_FILTER_VLAN:
printf(" vld:VLAN");
break;
case T4_FILTER_IP_TOS:
printf(" TOS");
break;
case T4_FILTER_IP_PROTO:
printf(" Prot");
break;
case T4_FILTER_ETH_TYPE:
printf(" EthType");
break;
case T4_FILTER_MAC_IDX:
printf(" MACIdx");
break;
case T4_FILTER_MPS_HIT_TYPE:
printf(" MPS");
break;
case T4_FILTER_IP_FRAGMENT:
printf(" Frag");
break;
default:
/* compressed filter field not enabled */
break;
}
}
printf(" %20s %20s %9s %9s %s\n",
"DIP", "SIP", "DPORT", "SPORT", "Action");
}
/*
* Parse an argument sub-vector as a { <parameter name> <value>[:<mask>] }
* ordered tuple. If the parameter name in the argument sub-vector does not
* match the passed in parameter name, then a zero is returned for the
* function and no parsing is performed. If there is a match, then the value
* and optional mask are parsed and returned in the provided return value
* pointers. If no optional mask is specified, then a default mask of all 1s
* will be returned.
*
* An error in parsing the value[:mask] will result in an error message and
* program termination.
*/
static int
parse_val_mask(const char *param, const char *args[], uint32_t *val,
uint32_t *mask)
{
char *p;
if (strcmp(param, args[0]) != 0)
return (EINVAL);
*val = strtoul(args[1], &p, 0);
if (p > args[1]) {
if (p[0] == 0) {
*mask = ~0;
return (0);
}
if (p[0] == ':' && p[1] != 0) {
*mask = strtoul(p+1, &p, 0);
if (p[0] == 0)
return (0);
}
}
warnx("parameter \"%s\" has bad \"value[:mask]\" %s",
args[0], args[1]);
return (EINVAL);
}
/*
* Parse an argument sub-vector as a { <parameter name> <addr>[/<mask>] }
* ordered tuple. If the parameter name in the argument sub-vector does not
* match the passed in parameter name, then a zero is returned for the
* function and no parsing is performed. If there is a match, then the value
* and optional mask are parsed and returned in the provided return value
* pointers. If no optional mask is specified, then a default mask of all 1s
* will be returned.
*
* The value return parameter "afp" is used to specify the expected address
* family -- IPv4 or IPv6 -- of the address[/mask] and return its actual
* format. A passed in value of AF_UNSPEC indicates that either IPv4 or IPv6
* is acceptable; AF_INET means that only IPv4 addresses are acceptable; and
* AF_INET6 means that only IPv6 are acceptable. AF_INET is returned for IPv4
* and AF_INET6 for IPv6 addresses, respectively. IPv4 address/mask pairs are
* returned in the first four bytes of the address and mask return values with
* the address A.B.C.D returned with { A, B, C, D } returned in addresses { 0,
* 1, 2, 3}, respectively.
*
* An error in parsing the value[:mask] will result in an error message and
* program termination.
*/
static int
parse_ipaddr(const char *param, const char *args[], int *afp, uint8_t addr[],
uint8_t mask[])
{
const char *colon, *afn;
char *slash;
uint8_t *m;
int af, ret;
unsigned int masksize;
/*
* Is this our parameter?
*/
if (strcmp(param, args[0]) != 0)
return (EINVAL);
/*
* Fundamental IPv4 versus IPv6 selection.
*/
colon = strchr(args[1], ':');
if (!colon) {
afn = "IPv4";
af = AF_INET;
masksize = 32;
} else {
afn = "IPv6";
af = AF_INET6;
masksize = 128;
}
if (*afp == AF_UNSPEC)
*afp = af;
else if (*afp != af) {
warnx("address %s is not of expected family %s",
args[1], *afp == AF_INET ? "IP" : "IPv6");
return (EINVAL);
}
/*
* Parse address (temporarily stripping off any "/mask"
* specification).
*/
slash = strchr(args[1], '/');
if (slash)
*slash = 0;
ret = inet_pton(af, args[1], addr);
if (slash)
*slash = '/';
if (ret <= 0) {
warnx("Cannot parse %s %s address %s", param, afn, args[1]);
return (EINVAL);
}
/*
* Parse optional mask specification.
*/
if (slash) {
char *p;
unsigned int prefix = strtoul(slash + 1, &p, 10);
if (p == slash + 1) {
warnx("missing address prefix for %s", param);
return (EINVAL);
}
if (*p) {
warnx("%s is not a valid address prefix", slash + 1);
return (EINVAL);
}
if (prefix > masksize) {
warnx("prefix %u is too long for an %s address",
prefix, afn);
return (EINVAL);
}
memset(mask, 0, masksize / 8);
masksize = prefix;
}
/*
* Fill in mask.
*/
for (m = mask; masksize >= 8; m++, masksize -= 8)
*m = ~0;
if (masksize)
*m = ~0 << (8 - masksize);
return (0);
}
/*
* Parse an argument sub-vector as a { <parameter name> <value> } ordered
* tuple. If the parameter name in the argument sub-vector does not match the
* passed in parameter name, then a zero is returned for the function and no
* parsing is performed. If there is a match, then the value is parsed and
* returned in the provided return value pointer.
*/
static int
parse_val(const char *param, const char *args[], uint32_t *val)
{
char *p;
if (strcmp(param, args[0]) != 0)
return (EINVAL);
*val = strtoul(args[1], &p, 0);
if (p > args[1] && p[0] == 0)
return (0);
warnx("parameter \"%s\" has bad \"value\" %s", args[0], args[1]);
return (EINVAL);
}
static void
filters_show_ipaddr(int type, uint8_t *addr, uint8_t *addrm)
{
int noctets, octet;
printf(" ");
if (type == 0) {
noctets = 4;
printf("%3s", " ");
} else
noctets = 16;
for (octet = 0; octet < noctets; octet++)
printf("%02x", addr[octet]);
printf("/");
for (octet = 0; octet < noctets; octet++)
printf("%02x", addrm[octet]);
}
static void
do_show_one_filter_info(struct t4_filter *t, uint32_t mode)
{
uint32_t i;
printf("%4d", t->idx);
if (t->hits == UINT64_MAX)
printf(" %8s", "-");
else
printf(" %8ju", t->hits);
/*
* Compressed header portion of filter.
*/
for (i = T4_FILTER_FCoE; i <= T4_FILTER_IP_FRAGMENT; i <<= 1) {
switch (mode & i) {
case T4_FILTER_FCoE:
printf(" %1d/%1d", t->fs.val.fcoe, t->fs.mask.fcoe);
break;
case T4_FILTER_PORT:
printf(" %1d/%1d", t->fs.val.iport, t->fs.mask.iport);
break;
case T4_FILTER_VNIC:
if (mode & T4_FILTER_IC_VNIC) {
printf(" %1d:%1x:%02x/%1d:%1x:%02x",
t->fs.val.pfvf_vld,
(t->fs.val.vnic >> 13) & 0x7,
t->fs.val.vnic & 0x1fff,
t->fs.mask.pfvf_vld,
(t->fs.mask.vnic >> 13) & 0x7,
t->fs.mask.vnic & 0x1fff);
} else {
printf(" %1d:%04x/%1d:%04x",
t->fs.val.ovlan_vld, t->fs.val.vnic,
t->fs.mask.ovlan_vld, t->fs.mask.vnic);
}
break;
case T4_FILTER_VLAN:
printf(" %1d:%04x/%1d:%04x",
t->fs.val.vlan_vld, t->fs.val.vlan,
t->fs.mask.vlan_vld, t->fs.mask.vlan);
break;
case T4_FILTER_IP_TOS:
printf(" %02x/%02x", t->fs.val.tos, t->fs.mask.tos);
break;
case T4_FILTER_IP_PROTO:
printf(" %02x/%02x", t->fs.val.proto, t->fs.mask.proto);
break;
case T4_FILTER_ETH_TYPE:
printf(" %04x/%04x", t->fs.val.ethtype,
t->fs.mask.ethtype);
break;
case T4_FILTER_MAC_IDX:
printf(" %03x/%03x", t->fs.val.macidx,
t->fs.mask.macidx);
break;
case T4_FILTER_MPS_HIT_TYPE:
printf(" %1x/%1x", t->fs.val.matchtype,
t->fs.mask.matchtype);
break;
case T4_FILTER_IP_FRAGMENT:
printf(" %1d/%1d", t->fs.val.frag, t->fs.mask.frag);
break;
default:
/* compressed filter field not enabled */
break;
}
}
/*
* Fixed portion of filter.
*/
filters_show_ipaddr(t->fs.type, t->fs.val.dip, t->fs.mask.dip);
filters_show_ipaddr(t->fs.type, t->fs.val.sip, t->fs.mask.sip);
printf(" %04x/%04x %04x/%04x",
t->fs.val.dport, t->fs.mask.dport,
t->fs.val.sport, t->fs.mask.sport);
/*
* Variable length filter action.
*/
if (t->fs.action == FILTER_DROP)
printf(" Drop");
else if (t->fs.action == FILTER_SWITCH) {
printf(" Switch: port=%d", t->fs.eport);
if (t->fs.newdmac)
printf(
", dmac=%02x:%02x:%02x:%02x:%02x:%02x "
", l2tidx=%d",
t->fs.dmac[0], t->fs.dmac[1],
t->fs.dmac[2], t->fs.dmac[3],
t->fs.dmac[4], t->fs.dmac[5],
t->l2tidx);
if (t->fs.newsmac)
printf(
", smac=%02x:%02x:%02x:%02x:%02x:%02x "
", smtidx=%d",
t->fs.smac[0], t->fs.smac[1],
t->fs.smac[2], t->fs.smac[3],
t->fs.smac[4], t->fs.smac[5],
t->smtidx);
if (t->fs.newvlan == VLAN_REMOVE)
printf(", vlan=none");
else if (t->fs.newvlan == VLAN_INSERT)
printf(", vlan=insert(%x)", t->fs.vlan);
else if (t->fs.newvlan == VLAN_REWRITE)
printf(", vlan=rewrite(%x)", t->fs.vlan);
} else {
printf(" Pass: Q=");
if (t->fs.dirsteer == 0) {
printf("RSS");
if (t->fs.maskhash)
printf("(TCB=hash)");
} else {
printf("%d", t->fs.iq);
if (t->fs.dirsteerhash == 0)
printf("(QID)");
else
printf("(hash)");
}
}
if (t->fs.prio)
printf(" Prio");
if (t->fs.rpttid)
printf(" RptTID");
printf("\n");
}
static int
show_filters(void)
{
uint32_t mode = 0, header = 0;
struct t4_filter t;
int rc;
/* Get the global filter mode first */
rc = doit(CHELSIO_T4_GET_FILTER_MODE, &mode);
if (rc != 0)
return (rc);
t.idx = 0;
for (t.idx = 0; ; t.idx++) {
rc = doit(CHELSIO_T4_GET_FILTER, &t);
if (rc != 0 || t.idx == 0xffffffff)
break;
if (!header) {
do_show_info_header(mode);
header = 1;
}
do_show_one_filter_info(&t, mode);
};
return (rc);
}
static int
get_filter_mode(void)
{
uint32_t mode = 0;
int rc;
rc = doit(CHELSIO_T4_GET_FILTER_MODE, &mode);
if (rc != 0)
return (rc);
if (mode & T4_FILTER_IPv4)
printf("ipv4 ");
if (mode & T4_FILTER_IPv6)
printf("ipv6 ");
if (mode & T4_FILTER_IP_SADDR)
printf("sip ");
if (mode & T4_FILTER_IP_DADDR)
printf("dip ");
if (mode & T4_FILTER_IP_SPORT)
printf("sport ");
if (mode & T4_FILTER_IP_DPORT)
printf("dport ");
if (mode & T4_FILTER_IP_FRAGMENT)
printf("frag ");
if (mode & T4_FILTER_MPS_HIT_TYPE)
printf("matchtype ");
if (mode & T4_FILTER_MAC_IDX)
printf("macidx ");
if (mode & T4_FILTER_ETH_TYPE)
printf("ethtype ");
if (mode & T4_FILTER_IP_PROTO)
printf("proto ");
if (mode & T4_FILTER_IP_TOS)
printf("tos ");
if (mode & T4_FILTER_VLAN)
printf("vlan ");
if (mode & T4_FILTER_VNIC) {
if (mode & T4_FILTER_IC_VNIC)
printf("vnic_id ");
else
printf("ovlan ");
}
if (mode & T4_FILTER_PORT)
printf("iport ");
if (mode & T4_FILTER_FCoE)
printf("fcoe ");
printf("\n");
return (0);
}
static int
set_filter_mode(int argc, const char *argv[])
{
uint32_t mode = 0;
int vnic = 0, ovlan = 0;
for (; argc; argc--, argv++) {
if (!strcmp(argv[0], "frag"))
mode |= T4_FILTER_IP_FRAGMENT;
if (!strcmp(argv[0], "matchtype"))
mode |= T4_FILTER_MPS_HIT_TYPE;
if (!strcmp(argv[0], "macidx"))
mode |= T4_FILTER_MAC_IDX;
if (!strcmp(argv[0], "ethtype"))
mode |= T4_FILTER_ETH_TYPE;
if (!strcmp(argv[0], "proto"))
mode |= T4_FILTER_IP_PROTO;
if (!strcmp(argv[0], "tos"))
mode |= T4_FILTER_IP_TOS;
if (!strcmp(argv[0], "vlan"))
mode |= T4_FILTER_VLAN;
if (!strcmp(argv[0], "ovlan")) {
mode |= T4_FILTER_VNIC;
ovlan++;
}
if (!strcmp(argv[0], "vnic_id")) {
mode |= T4_FILTER_VNIC;
mode |= T4_FILTER_IC_VNIC;
vnic++;
}
if (!strcmp(argv[0], "iport"))
mode |= T4_FILTER_PORT;
if (!strcmp(argv[0], "fcoe"))
mode |= T4_FILTER_FCoE;
}
if (vnic > 0 && ovlan > 0) {
warnx("\"vnic_id\" and \"ovlan\" are mutually exclusive.");
return (EINVAL);
}
return doit(CHELSIO_T4_SET_FILTER_MODE, &mode);
}
static int
del_filter(uint32_t idx)
{
struct t4_filter t;
t.idx = idx;
return doit(CHELSIO_T4_DEL_FILTER, &t);
}
static int
set_filter(uint32_t idx, int argc, const char *argv[])
{
int af = AF_UNSPEC, start_arg = 0;
struct t4_filter t;
if (argc < 2) {
warnc(EINVAL, "%s", __func__);
return (EINVAL);
};
bzero(&t, sizeof (t));
t.idx = idx;
t.fs.hitcnts = 1;
for (start_arg = 0; start_arg + 2 <= argc; start_arg += 2) {
const char **args = &argv[start_arg];
uint32_t val, mask;
if (!strcmp(argv[start_arg], "type")) {
int newaf;
if (!strcasecmp(argv[start_arg + 1], "ipv4"))
newaf = AF_INET;
else if (!strcasecmp(argv[start_arg + 1], "ipv6"))
newaf = AF_INET6;
else {
warnx("invalid type \"%s\"; "
"must be one of \"ipv4\" or \"ipv6\"",
argv[start_arg + 1]);
return (EINVAL);
}
if (af != AF_UNSPEC && af != newaf) {
warnx("conflicting IPv4/IPv6 specifications.");
return (EINVAL);
}
af = newaf;
} else if (!parse_val_mask("fcoe", args, &val, &mask)) {
t.fs.val.fcoe = val;
t.fs.mask.fcoe = mask;
} else if (!parse_val_mask("iport", args, &val, &mask)) {
t.fs.val.iport = val;
t.fs.mask.iport = mask;
} else if (!parse_val_mask("ovlan", args, &val, &mask)) {
t.fs.val.vnic = val;
t.fs.mask.vnic = mask;
t.fs.val.ovlan_vld = 1;
t.fs.mask.ovlan_vld = 1;
} else if (!parse_val_mask("ivlan", args, &val, &mask)) {
t.fs.val.vlan = val;
t.fs.mask.vlan = mask;
t.fs.val.vlan_vld = 1;
t.fs.mask.vlan_vld = 1;
} else if (!parse_val_mask("pf", args, &val, &mask)) {
t.fs.val.vnic &= 0x1fff;
t.fs.val.vnic |= (val & 0x7) << 13;
t.fs.mask.vnic &= 0x1fff;
t.fs.mask.vnic |= (mask & 0x7) << 13;
t.fs.val.pfvf_vld = 1;
t.fs.mask.pfvf_vld = 1;
} else if (!parse_val_mask("vf", args, &val, &mask)) {
t.fs.val.vnic &= 0xe000;
t.fs.val.vnic |= val & 0x1fff;
t.fs.mask.vnic &= 0xe000;
t.fs.mask.vnic |= mask & 0x1fff;
t.fs.val.pfvf_vld = 1;
t.fs.mask.pfvf_vld = 1;
} else if (!parse_val_mask("tos", args, &val, &mask)) {
t.fs.val.tos = val;
t.fs.mask.tos = mask;
} else if (!parse_val_mask("proto", args, &val, &mask)) {
t.fs.val.proto = val;
t.fs.mask.proto = mask;
} else if (!parse_val_mask("ethtype", args, &val, &mask)) {
t.fs.val.ethtype = val;
t.fs.mask.ethtype = mask;
} else if (!parse_val_mask("macidx", args, &val, &mask)) {
t.fs.val.macidx = val;
t.fs.mask.macidx = mask;
} else if (!parse_val_mask("matchtype", args, &val, &mask)) {
t.fs.val.matchtype = val;
t.fs.mask.matchtype = mask;
} else if (!parse_val_mask("frag", args, &val, &mask)) {
t.fs.val.frag = val;
t.fs.mask.frag = mask;
} else if (!parse_val_mask("dport", args, &val, &mask)) {
t.fs.val.dport = val;
t.fs.mask.dport = mask;
} else if (!parse_val_mask("sport", args, &val, &mask)) {
t.fs.val.sport = val;
t.fs.mask.sport = mask;
} else if (!parse_ipaddr("dip", args, &af, t.fs.val.dip,
t.fs.mask.dip)) {
/* nada */;
} else if (!parse_ipaddr("sip", args, &af, t.fs.val.sip,
t.fs.mask.sip)) {
/* nada */;
} else if (!strcmp(argv[start_arg], "action")) {
if (!strcmp(argv[start_arg + 1], "pass"))
t.fs.action = FILTER_PASS;
else if (!strcmp(argv[start_arg + 1], "drop"))
t.fs.action = FILTER_DROP;
else if (!strcmp(argv[start_arg + 1], "switch"))
t.fs.action = FILTER_SWITCH;
else {
warnx("invalid action \"%s\"; must be one of"
" \"pass\", \"drop\" or \"switch\"",
argv[start_arg + 1]);
return (EINVAL);
}
} else if (!parse_val("hitcnts", args, &val)) {
t.fs.hitcnts = val;
} else if (!parse_val("prio", args, &val)) {
t.fs.prio = val;
} else if (!parse_val("rpttid", args, &val)) {
t.fs.rpttid = 1;
} else if (!parse_val("queue", args, &val)) {
t.fs.dirsteer = 1;
t.fs.iq = val;
} else if (!parse_val("tcbhash", args, &val)) {
t.fs.maskhash = 1;
t.fs.dirsteerhash = 1;
} else if (!parse_val("eport", args, &val)) {
t.fs.eport = val;
} else if (!strcmp(argv[start_arg], "dmac")) {
struct ether_addr *daddr;
daddr = ether_aton(argv[start_arg + 1]);
if (daddr == NULL) {
warnx("invalid dmac address \"%s\"",
argv[start_arg + 1]);
return (EINVAL);
}
memcpy(t.fs.dmac, daddr, ETHER_ADDR_LEN);
t.fs.newdmac = 1;
} else if (!strcmp(argv[start_arg], "smac")) {
struct ether_addr *saddr;
saddr = ether_aton(argv[start_arg + 1]);
if (saddr == NULL) {
warnx("invalid smac address \"%s\"",
argv[start_arg + 1]);
return (EINVAL);
}
memcpy(t.fs.smac, saddr, ETHER_ADDR_LEN);
t.fs.newsmac = 1;
} else if (!strcmp(argv[start_arg], "vlan")) {
char *p;
if (!strcmp(argv[start_arg + 1], "none")) {
t.fs.newvlan = VLAN_REMOVE;
} else if (argv[start_arg + 1][0] == '=') {
t.fs.newvlan = VLAN_REWRITE;
} else if (argv[start_arg + 1][0] == '+') {
t.fs.newvlan = VLAN_INSERT;
} else if (isdigit(argv[start_arg + 1][0]) &&
!parse_val_mask("vlan", args, &val, &mask)) {
t.fs.val.vlan = val;
t.fs.mask.vlan = mask;
t.fs.val.vlan_vld = 1;
t.fs.mask.vlan_vld = 1;
} else {
warnx("unknown vlan parameter \"%s\"; must"
" be one of \"none\", \"=<vlan>\", "
" \"+<vlan>\", or \"<vlan>\"",
argv[start_arg + 1]);
return (EINVAL);
}
if (t.fs.newvlan == VLAN_REWRITE ||
t.fs.newvlan == VLAN_INSERT) {
t.fs.vlan = strtoul(argv[start_arg + 1] + 1,
&p, 0);
if (p == argv[start_arg + 1] + 1 || p[0] != 0) {
warnx("invalid vlan \"%s\"",
argv[start_arg + 1]);
return (EINVAL);
}
}
} else {
warnx("invalid parameter \"%s\"", argv[start_arg]);
return (EINVAL);
}
}
if (start_arg != argc) {
warnx("no value for \"%s\"", argv[start_arg]);
return (EINVAL);
}
/*
* Check basic sanity of option combinations.
*/
if (t.fs.action != FILTER_SWITCH &&
(t.fs.eport || t.fs.newdmac || t.fs.newsmac || t.fs.newvlan)) {
warnx("prio, port dmac, smac and vlan only make sense with"
" \"action switch\"");
return (EINVAL);
}
if (t.fs.action != FILTER_PASS &&
(t.fs.rpttid || t.fs.dirsteer || t.fs.maskhash)) {
warnx("rpttid, queue and tcbhash don't make sense with"
" action \"drop\" or \"switch\"");
return (EINVAL);
}
if (t.fs.val.ovlan_vld && t.fs.val.pfvf_vld) {
warnx("ovlan and vnic_id (pf/vf) are mutually exclusive");
return (EINVAL);
}
t.fs.type = (af == AF_INET6 ? 1 : 0); /* default IPv4 */
return doit(CHELSIO_T4_SET_FILTER, &t);
}
static int
filter_cmd(int argc, const char *argv[])
{
long long val;
uint32_t idx;
char *s;
if (argc == 0) {
warnx("filter: no arguments.");
return (EINVAL);
};
/* list */
if (strcmp(argv[0], "list") == 0) {
if (argc != 1)
warnx("trailing arguments after \"list\" ignored.");
return show_filters();
}
/* mode */
if (argc == 1 && strcmp(argv[0], "mode") == 0)
return get_filter_mode();
/* mode <mode> */
if (strcmp(argv[0], "mode") == 0)
return set_filter_mode(argc - 1, argv + 1);
/* <idx> ... */
s = str_to_number(argv[0], NULL, &val);
if (*s || val > 0xffffffffU) {
warnx("\"%s\" is neither an index nor a filter subcommand.",
argv[0]);
return (EINVAL);
}
idx = (uint32_t) val;
/* <idx> delete|clear */
if (argc == 2 &&
(strcmp(argv[1], "delete") == 0 || strcmp(argv[1], "clear") == 0)) {
return del_filter(idx);
}
/* <idx> [<param> <val>] ... */
return set_filter(idx, argc - 1, argv + 1);
}
/*
* Shows the fields of a multi-word structure. The structure is considered to
* consist of @nwords 32-bit words (i.e, it's an (@nwords * 32)-bit structure)
* whose fields are described by @fd. The 32-bit words are given in @words
* starting with the least significant 32-bit word.
*/
static void
show_struct(const uint32_t *words, int nwords, const struct field_desc *fd)
{
unsigned int w = 0;
const struct field_desc *p;
for (p = fd; p->name; p++)
w = max(w, strlen(p->name));
while (fd->name) {
unsigned long long data;
int first_word = fd->start / 32;
int shift = fd->start % 32;
int width = fd->end - fd->start + 1;
unsigned long long mask = (1ULL << width) - 1;
data = (words[first_word] >> shift) |
((uint64_t)words[first_word + 1] << (32 - shift));
if (shift)
data |= ((uint64_t)words[first_word + 2] << (64 - shift));
data &= mask;
if (fd->islog2)
data = 1 << data;
printf("%-*s ", w, fd->name);
printf(fd->hex ? "%#llx\n" : "%llu\n", data << fd->shift);
fd++;
}
}
#define FIELD(name, start, end) { name, start, end, 0, 0, 0 }
#define FIELD1(name, start) FIELD(name, start, start)
static void
show_t5t6_ctxt(const struct t4_sge_context *p, int vers)
{
static struct field_desc egress_t5[] = {
FIELD("DCA_ST:", 181, 191),
FIELD1("StatusPgNS:", 180),
FIELD1("StatusPgRO:", 179),
FIELD1("FetchNS:", 178),
FIELD1("FetchRO:", 177),
FIELD1("Valid:", 176),
FIELD("PCIeDataChannel:", 174, 175),
FIELD1("StatusPgTPHintEn:", 173),
FIELD("StatusPgTPHint:", 171, 172),
FIELD1("FetchTPHintEn:", 170),
FIELD("FetchTPHint:", 168, 169),
FIELD1("FCThreshOverride:", 167),
{ "WRLength:", 162, 166, 9, 0, 1 },
FIELD1("WRLengthKnown:", 161),
FIELD1("ReschedulePending:", 160),
FIELD1("OnChipQueue:", 159),
FIELD1("FetchSizeMode:", 158),
{ "FetchBurstMin:", 156, 157, 4, 0, 1 },
FIELD1("FLMPacking:", 155),
FIELD("FetchBurstMax:", 153, 154),
FIELD("uPToken:", 133, 152),
FIELD1("uPTokenEn:", 132),
FIELD1("UserModeIO:", 131),
FIELD("uPFLCredits:", 123, 130),
FIELD1("uPFLCreditEn:", 122),
FIELD("FID:", 111, 121),
FIELD("HostFCMode:", 109, 110),
FIELD1("HostFCOwner:", 108),
{ "CIDXFlushThresh:", 105, 107, 0, 0, 1 },
FIELD("CIDX:", 89, 104),
FIELD("PIDX:", 73, 88),
{ "BaseAddress:", 18, 72, 9, 1 },
FIELD("QueueSize:", 2, 17),
FIELD1("QueueType:", 1),
FIELD1("CachePriority:", 0),
{ NULL }
};
static struct field_desc egress_t6[] = {
FIELD("DCA_ST:", 181, 191),
FIELD1("StatusPgNS:", 180),
FIELD1("StatusPgRO:", 179),
FIELD1("FetchNS:", 178),
FIELD1("FetchRO:", 177),
FIELD1("Valid:", 176),
FIELD1("ReschedulePending_1:", 175),
FIELD1("PCIeDataChannel:", 174),
FIELD1("StatusPgTPHintEn:", 173),
FIELD("StatusPgTPHint:", 171, 172),
FIELD1("FetchTPHintEn:", 170),
FIELD("FetchTPHint:", 168, 169),
FIELD1("FCThreshOverride:", 167),
{ "WRLength:", 162, 166, 9, 0, 1 },
FIELD1("WRLengthKnown:", 161),
FIELD1("ReschedulePending:", 160),
FIELD("TimerIx:", 157, 159),
FIELD1("FetchBurstMin:", 156),
FIELD1("FLMPacking:", 155),
FIELD("FetchBurstMax:", 153, 154),
FIELD("uPToken:", 133, 152),
FIELD1("uPTokenEn:", 132),
FIELD1("UserModeIO:", 131),
FIELD("uPFLCredits:", 123, 130),
FIELD1("uPFLCreditEn:", 122),
FIELD("FID:", 111, 121),
FIELD("HostFCMode:", 109, 110),
FIELD1("HostFCOwner:", 108),
{ "CIDXFlushThresh:", 105, 107, 0, 0, 1 },
FIELD("CIDX:", 89, 104),
FIELD("PIDX:", 73, 88),
{ "BaseAddress:", 18, 72, 9, 1 },
FIELD("QueueSize:", 2, 17),
FIELD1("QueueType:", 1),
FIELD1("FetchSizeMode:", 0),
{ NULL }
};
static struct field_desc fl_t5[] = {
FIELD("DCA_ST:", 181, 191),
FIELD1("StatusPgNS:", 180),
FIELD1("StatusPgRO:", 179),
FIELD1("FetchNS:", 178),
FIELD1("FetchRO:", 177),
FIELD1("Valid:", 176),
FIELD("PCIeDataChannel:", 174, 175),
FIELD1("StatusPgTPHintEn:", 173),
FIELD("StatusPgTPHint:", 171, 172),
FIELD1("FetchTPHintEn:", 170),
FIELD("FetchTPHint:", 168, 169),
FIELD1("FCThreshOverride:", 167),
FIELD1("ReschedulePending:", 160),
FIELD1("OnChipQueue:", 159),
FIELD1("FetchSizeMode:", 158),
{ "FetchBurstMin:", 156, 157, 4, 0, 1 },
FIELD1("FLMPacking:", 155),
FIELD("FetchBurstMax:", 153, 154),
FIELD1("FLMcongMode:", 152),
FIELD("MaxuPFLCredits:", 144, 151),
FIELD("FLMcontextID:", 133, 143),
FIELD1("uPTokenEn:", 132),
FIELD1("UserModeIO:", 131),
FIELD("uPFLCredits:", 123, 130),
FIELD1("uPFLCreditEn:", 122),
FIELD("FID:", 111, 121),
FIELD("HostFCMode:", 109, 110),
FIELD1("HostFCOwner:", 108),
{ "CIDXFlushThresh:", 105, 107, 0, 0, 1 },
FIELD("CIDX:", 89, 104),
FIELD("PIDX:", 73, 88),
{ "BaseAddress:", 18, 72, 9, 1 },
FIELD("QueueSize:", 2, 17),
FIELD1("QueueType:", 1),
FIELD1("CachePriority:", 0),
{ NULL }
};
static struct field_desc ingress_t5[] = {
FIELD("DCA_ST:", 143, 153),
FIELD1("ISCSICoalescing:", 142),
FIELD1("Queue_Valid:", 141),
FIELD1("TimerPending:", 140),
FIELD1("DropRSS:", 139),
FIELD("PCIeChannel:", 137, 138),
FIELD1("SEInterruptArmed:", 136),
FIELD1("CongestionMgtEnable:", 135),
FIELD1("NoSnoop:", 134),
FIELD1("RelaxedOrdering:", 133),
FIELD1("GTSmode:", 132),
FIELD1("TPHintEn:", 131),
FIELD("TPHint:", 129, 130),
FIELD1("UpdateScheduling:", 128),
FIELD("UpdateDelivery:", 126, 127),
FIELD1("InterruptSent:", 125),
FIELD("InterruptIDX:", 114, 124),
FIELD1("InterruptDestination:", 113),
FIELD1("InterruptArmed:", 112),
FIELD("RxIntCounter:", 106, 111),
FIELD("RxIntCounterThreshold:", 104, 105),
FIELD1("Generation:", 103),
{ "BaseAddress:", 48, 102, 9, 1 },
FIELD("PIDX:", 32, 47),
FIELD("CIDX:", 16, 31),
{ "QueueSize:", 4, 15, 4, 0 },
{ "QueueEntrySize:", 2, 3, 4, 0, 1 },
FIELD1("QueueEntryOverride:", 1),
FIELD1("CachePriority:", 0),
{ NULL }
};
static struct field_desc ingress_t6[] = {
FIELD1("SP_NS:", 158),
FIELD1("SP_RO:", 157),
FIELD1("SP_TPHintEn:", 156),
FIELD("SP_TPHint:", 154, 155),
FIELD("DCA_ST:", 143, 153),
FIELD1("ISCSICoalescing:", 142),
FIELD1("Queue_Valid:", 141),
FIELD1("TimerPending:", 140),
FIELD1("DropRSS:", 139),
FIELD("PCIeChannel:", 137, 138),
FIELD1("SEInterruptArmed:", 136),
FIELD1("CongestionMgtEnable:", 135),
FIELD1("NoSnoop:", 134),
FIELD1("RelaxedOrdering:", 133),
FIELD1("GTSmode:", 132),
FIELD1("TPHintEn:", 131),
FIELD("TPHint:", 129, 130),
FIELD1("UpdateScheduling:", 128),
FIELD("UpdateDelivery:", 126, 127),
FIELD1("InterruptSent:", 125),
FIELD("InterruptIDX:", 114, 124),
FIELD1("InterruptDestination:", 113),
FIELD1("InterruptArmed:", 112),
FIELD("RxIntCounter:", 106, 111),
FIELD("RxIntCounterThreshold:", 104, 105),
FIELD1("Generation:", 103),
{ "BaseAddress:", 48, 102, 9, 1 },
FIELD("PIDX:", 32, 47),
FIELD("CIDX:", 16, 31),
{ "QueueSize:", 4, 15, 4, 0 },
{ "QueueEntrySize:", 2, 3, 4, 0, 1 },
FIELD1("QueueEntryOverride:", 1),
FIELD1("CachePriority:", 0),
{ NULL }
};
static struct field_desc flm_t5[] = {
FIELD1("Valid:", 89),
FIELD("SplitLenMode:", 87, 88),
FIELD1("TPHintEn:", 86),
FIELD("TPHint:", 84, 85),
FIELD1("NoSnoop:", 83),
FIELD1("RelaxedOrdering:", 82),
FIELD("DCA_ST:", 71, 81),
FIELD("EQid:", 54, 70),
FIELD("SplitEn:", 52, 53),
FIELD1("PadEn:", 51),
FIELD1("PackEn:", 50),
FIELD1("Cache_Lock :", 49),
FIELD1("CongDrop:", 48),
FIELD("PackOffset:", 16, 47),
FIELD("CIDX:", 8, 15),
FIELD("PIDX:", 0, 7),
{ NULL }
};
static struct field_desc flm_t6[] = {
FIELD1("Valid:", 89),
FIELD("SplitLenMode:", 87, 88),
FIELD1("TPHintEn:", 86),
FIELD("TPHint:", 84, 85),
FIELD1("NoSnoop:", 83),
FIELD1("RelaxedOrdering:", 82),
FIELD("DCA_ST:", 71, 81),
FIELD("EQid:", 54, 70),
FIELD("SplitEn:", 52, 53),
FIELD1("PadEn:", 51),
FIELD1("PackEn:", 50),
FIELD1("Cache_Lock :", 49),
FIELD1("CongDrop:", 48),
FIELD1("Inflight:", 47),
FIELD1("CongEn:", 46),
FIELD1("CongMode:", 45),
FIELD("PackOffset:", 20, 39),
FIELD("CIDX:", 8, 15),
FIELD("PIDX:", 0, 7),
{ NULL }
};
static struct field_desc conm_t5[] = {
FIELD1("CngMPSEnable:", 21),
FIELD("CngTPMode:", 19, 20),
FIELD1("CngDBPHdr:", 18),
FIELD1("CngDBPData:", 17),
FIELD1("CngIMSG:", 16),
{ "CngChMap:", 0, 15, 0, 1, 0 },
{ NULL }
};
if (p->mem_id == SGE_CONTEXT_EGRESS) {
if (p->data[0] & 2)
show_struct(p->data, 6, fl_t5);
else if (vers == 5)
show_struct(p->data, 6, egress_t5);
else
show_struct(p->data, 6, egress_t6);
} else if (p->mem_id == SGE_CONTEXT_FLM)
show_struct(p->data, 3, vers == 5 ? flm_t5 : flm_t6);
else if (p->mem_id == SGE_CONTEXT_INGRESS)
show_struct(p->data, 5, vers == 5 ? ingress_t5 : ingress_t6);
else if (p->mem_id == SGE_CONTEXT_CNM)
show_struct(p->data, 1, conm_t5);
}
static void
show_t4_ctxt(const struct t4_sge_context *p)
{
static struct field_desc egress_t4[] = {
FIELD1("StatusPgNS:", 180),
FIELD1("StatusPgRO:", 179),
FIELD1("FetchNS:", 178),
FIELD1("FetchRO:", 177),
FIELD1("Valid:", 176),
FIELD("PCIeDataChannel:", 174, 175),
FIELD1("DCAEgrQEn:", 173),
FIELD("DCACPUID:", 168, 172),
FIELD1("FCThreshOverride:", 167),
FIELD("WRLength:", 162, 166),
FIELD1("WRLengthKnown:", 161),
FIELD1("ReschedulePending:", 160),
FIELD1("OnChipQueue:", 159),
FIELD1("FetchSizeMode", 158),
{ "FetchBurstMin:", 156, 157, 4, 0, 1 },
{ "FetchBurstMax:", 153, 154, 6, 0, 1 },
FIELD("uPToken:", 133, 152),
FIELD1("uPTokenEn:", 132),
FIELD1("UserModeIO:", 131),
FIELD("uPFLCredits:", 123, 130),
FIELD1("uPFLCreditEn:", 122),
FIELD("FID:", 111, 121),
FIELD("HostFCMode:", 109, 110),
FIELD1("HostFCOwner:", 108),
{ "CIDXFlushThresh:", 105, 107, 0, 0, 1 },
FIELD("CIDX:", 89, 104),
FIELD("PIDX:", 73, 88),
{ "BaseAddress:", 18, 72, 9, 1 },
FIELD("QueueSize:", 2, 17),
FIELD1("QueueType:", 1),
FIELD1("CachePriority:", 0),
{ NULL }
};
static struct field_desc fl_t4[] = {
FIELD1("StatusPgNS:", 180),
FIELD1("StatusPgRO:", 179),
FIELD1("FetchNS:", 178),
FIELD1("FetchRO:", 177),
FIELD1("Valid:", 176),
FIELD("PCIeDataChannel:", 174, 175),
FIELD1("DCAEgrQEn:", 173),
FIELD("DCACPUID:", 168, 172),
FIELD1("FCThreshOverride:", 167),
FIELD1("ReschedulePending:", 160),
FIELD1("OnChipQueue:", 159),
FIELD1("FetchSizeMode", 158),
{ "FetchBurstMin:", 156, 157, 4, 0, 1 },
{ "FetchBurstMax:", 153, 154, 6, 0, 1 },
FIELD1("FLMcongMode:", 152),
FIELD("MaxuPFLCredits:", 144, 151),
FIELD("FLMcontextID:", 133, 143),
FIELD1("uPTokenEn:", 132),
FIELD1("UserModeIO:", 131),
FIELD("uPFLCredits:", 123, 130),
FIELD1("uPFLCreditEn:", 122),
FIELD("FID:", 111, 121),
FIELD("HostFCMode:", 109, 110),
FIELD1("HostFCOwner:", 108),
{ "CIDXFlushThresh:", 105, 107, 0, 0, 1 },
FIELD("CIDX:", 89, 104),
FIELD("PIDX:", 73, 88),
{ "BaseAddress:", 18, 72, 9, 1 },
FIELD("QueueSize:", 2, 17),
FIELD1("QueueType:", 1),
FIELD1("CachePriority:", 0),
{ NULL }
};
static struct field_desc ingress_t4[] = {
FIELD1("NoSnoop:", 145),
FIELD1("RelaxedOrdering:", 144),
FIELD1("GTSmode:", 143),
FIELD1("ISCSICoalescing:", 142),
FIELD1("Valid:", 141),
FIELD1("TimerPending:", 140),
FIELD1("DropRSS:", 139),
FIELD("PCIeChannel:", 137, 138),
FIELD1("SEInterruptArmed:", 136),
FIELD1("CongestionMgtEnable:", 135),
FIELD1("DCAIngQEnable:", 134),
FIELD("DCACPUID:", 129, 133),
FIELD1("UpdateScheduling:", 128),
FIELD("UpdateDelivery:", 126, 127),
FIELD1("InterruptSent:", 125),
FIELD("InterruptIDX:", 114, 124),
FIELD1("InterruptDestination:", 113),
FIELD1("InterruptArmed:", 112),
FIELD("RxIntCounter:", 106, 111),
FIELD("RxIntCounterThreshold:", 104, 105),
FIELD1("Generation:", 103),
{ "BaseAddress:", 48, 102, 9, 1 },
FIELD("PIDX:", 32, 47),
FIELD("CIDX:", 16, 31),
{ "QueueSize:", 4, 15, 4, 0 },
{ "QueueEntrySize:", 2, 3, 4, 0, 1 },
FIELD1("QueueEntryOverride:", 1),
FIELD1("CachePriority:", 0),
{ NULL }
};
static struct field_desc flm_t4[] = {
FIELD1("NoSnoop:", 79),
FIELD1("RelaxedOrdering:", 78),
FIELD1("Valid:", 77),
FIELD("DCACPUID:", 72, 76),
FIELD1("DCAFLEn:", 71),
FIELD("EQid:", 54, 70),
FIELD("SplitEn:", 52, 53),
FIELD1("PadEn:", 51),
FIELD1("PackEn:", 50),
FIELD1("DBpriority:", 48),
FIELD("PackOffset:", 16, 47),
FIELD("CIDX:", 8, 15),
FIELD("PIDX:", 0, 7),
{ NULL }
};
static struct field_desc conm_t4[] = {
FIELD1("CngDBPHdr:", 6),
FIELD1("CngDBPData:", 5),
FIELD1("CngIMSG:", 4),
{ "CngChMap:", 0, 3, 0, 1, 0},
{ NULL }
};
if (p->mem_id == SGE_CONTEXT_EGRESS)
show_struct(p->data, 6, (p->data[0] & 2) ? fl_t4 : egress_t4);
else if (p->mem_id == SGE_CONTEXT_FLM)
show_struct(p->data, 3, flm_t4);
else if (p->mem_id == SGE_CONTEXT_INGRESS)
show_struct(p->data, 5, ingress_t4);
else if (p->mem_id == SGE_CONTEXT_CNM)
show_struct(p->data, 1, conm_t4);
}
#undef FIELD
#undef FIELD1
static int
get_sge_context(int argc, const char *argv[])
{
int rc;
char *p;
long cid;
struct t4_sge_context cntxt = {0};
if (argc != 2) {
warnx("sge_context: incorrect number of arguments.");
return (EINVAL);
}
if (!strcmp(argv[0], "egress"))
cntxt.mem_id = SGE_CONTEXT_EGRESS;
else if (!strcmp(argv[0], "ingress"))
cntxt.mem_id = SGE_CONTEXT_INGRESS;
else if (!strcmp(argv[0], "fl"))
cntxt.mem_id = SGE_CONTEXT_FLM;
else if (!strcmp(argv[0], "cong"))
cntxt.mem_id = SGE_CONTEXT_CNM;
else {
warnx("unknown context type \"%s\"; known types are egress, "
"ingress, fl, and cong.", argv[0]);
return (EINVAL);
}
p = str_to_number(argv[1], &cid, NULL);
if (*p) {
warnx("invalid context id \"%s\"", argv[1]);
return (EINVAL);
}
cntxt.cid = cid;
rc = doit(CHELSIO_T4_GET_SGE_CONTEXT, &cntxt);
if (rc != 0)
return (rc);
if (chip_id == 4)
show_t4_ctxt(&cntxt);
else
show_t5t6_ctxt(&cntxt, chip_id);
return (0);
}
static int
loadfw(int argc, const char *argv[])
{
int rc, fd;
struct t4_data data = {0};
const char *fname = argv[0];
struct stat st = {0};
if (argc != 1) {
warnx("loadfw: incorrect number of arguments.");
return (EINVAL);
}
fd = open(fname, O_RDONLY);
if (fd < 0) {
warn("open(%s)", fname);
return (errno);
}
if (fstat(fd, &st) < 0) {
warn("fstat");
close(fd);
return (errno);
}
data.len = st.st_size;
data.data = mmap(0, data.len, PROT_READ, MAP_PRIVATE, fd, 0);
if (data.data == MAP_FAILED) {
warn("mmap");
close(fd);
return (errno);
}
rc = doit(CHELSIO_T4_LOAD_FW, &data);
munmap(data.data, data.len);
close(fd);
return (rc);
}
static int
loadcfg(int argc, const char *argv[])
{
int rc, fd;
struct t4_data data = {0};
const char *fname = argv[0];
struct stat st = {0};
if (argc != 1) {
warnx("loadcfg: incorrect number of arguments.");
return (EINVAL);
}
if (strcmp(fname, "clear") == 0)
return (doit(CHELSIO_T4_LOAD_CFG, &data));
fd = open(fname, O_RDONLY);
if (fd < 0) {
warn("open(%s)", fname);
return (errno);
}
if (fstat(fd, &st) < 0) {
warn("fstat");
close(fd);
return (errno);
}
data.len = st.st_size;
data.len &= ~3; /* Clip off to make it a multiple of 4 */
data.data = mmap(0, data.len, PROT_READ, MAP_PRIVATE, fd, 0);
if (data.data == MAP_FAILED) {
warn("mmap");
close(fd);
return (errno);
}
rc = doit(CHELSIO_T4_LOAD_CFG, &data);
munmap(data.data, data.len);
close(fd);
return (rc);
}
static int
dumpstate(int argc, const char *argv[])
{
int rc, fd;
struct t4_cudbg_dump dump = {0};
const char *fname = argv[0];
if (argc != 1) {
warnx("dumpstate: incorrect number of arguments.");
return (EINVAL);
}
dump.wr_flash = 0;
memset(&dump.bitmap, 0xff, sizeof(dump.bitmap));
dump.len = 8 * 1024 * 1024;
dump.data = malloc(dump.len);
if (dump.data == NULL) {
return (ENOMEM);
}
rc = doit(CHELSIO_T4_CUDBG_DUMP, &dump);
if (rc != 0)
goto done;
fd = open(fname, O_CREAT | O_TRUNC | O_EXCL | O_WRONLY,
S_IRUSR | S_IRGRP | S_IROTH);
if (fd < 0) {
warn("open(%s)", fname);
rc = errno;
goto done;
}
write(fd, dump.data, dump.len);
close(fd);
done:
free(dump.data);
return (rc);
}
static int
read_mem(uint32_t addr, uint32_t len, void (*output)(uint32_t *, uint32_t))
{
int rc;
struct t4_mem_range mr;
mr.addr = addr;
mr.len = len;
mr.data = malloc(mr.len);
if (mr.data == 0) {
warn("read_mem: malloc");
return (errno);
}
rc = doit(CHELSIO_T4_GET_MEM, &mr);
if (rc != 0)
goto done;
if (output)
(*output)(mr.data, mr.len);
done:
free(mr.data);
return (rc);
}
static int
loadboot(int argc, const char *argv[])
{
int rc, fd;
long l;
char *p;
struct t4_bootrom br = {0};
const char *fname = argv[0];
struct stat st = {0};
if (argc == 1) {
br.pf_offset = 0;
br.pfidx_addr = 0;
} else if (argc == 3) {
if (!strcmp(argv[1], "pf"))
br.pf_offset = 0;
else if (!strcmp(argv[1], "offset"))
br.pf_offset = 1;
else
return (EINVAL);
p = str_to_number(argv[2], &l, NULL);
if (*p)
return (EINVAL);
br.pfidx_addr = l;
} else {
warnx("loadboot: incorrect number of arguments.");
return (EINVAL);
}
if (strcmp(fname, "clear") == 0)
return (doit(CHELSIO_T4_LOAD_BOOT, &br));
fd = open(fname, O_RDONLY);
if (fd < 0) {
warn("open(%s)", fname);
return (errno);
}
if (fstat(fd, &st) < 0) {
warn("fstat");
close(fd);
return (errno);
}
br.len = st.st_size;
br.data = mmap(0, br.len, PROT_READ, MAP_PRIVATE, fd, 0);
if (br.data == MAP_FAILED) {
warn("mmap");
close(fd);
return (errno);
}
rc = doit(CHELSIO_T4_LOAD_BOOT, &br);
munmap(br.data, br.len);
close(fd);
return (rc);
}
static int
loadbootcfg(int argc, const char *argv[])
{
int rc, fd;
struct t4_data bc = {0};
const char *fname = argv[0];
struct stat st = {0};
if (argc != 1) {
warnx("loadbootcfg: incorrect number of arguments.");
return (EINVAL);
}
if (strcmp(fname, "clear") == 0)
return (doit(CHELSIO_T4_LOAD_BOOTCFG, &bc));
fd = open(fname, O_RDONLY);
if (fd < 0) {
warn("open(%s)", fname);
return (errno);
}
if (fstat(fd, &st) < 0) {
warn("fstat");
close(fd);
return (errno);
}
bc.len = st.st_size;
bc.data = mmap(0, bc.len, PROT_READ, MAP_PRIVATE, fd, 0);
if (bc.data == MAP_FAILED) {
warn("mmap");
close(fd);
return (errno);
}
rc = doit(CHELSIO_T4_LOAD_BOOTCFG, &bc);
munmap(bc.data, bc.len);
close(fd);
return (rc);
}
/*
* Display memory as list of 'n' 4-byte values per line.
*/
static void
show_mem(uint32_t *buf, uint32_t len)
{
const char *s;
int i, n = 8;
while (len) {
for (i = 0; len && i < n; i++, buf++, len -= 4) {
s = i ? " " : "";
printf("%s%08x", s, htonl(*buf));
}
printf("\n");
}
}
static int
memdump(int argc, const char *argv[])
{
char *p;
long l;
uint32_t addr, len;
if (argc != 2) {
warnx("incorrect number of arguments.");
return (EINVAL);
}
p = str_to_number(argv[0], &l, NULL);
if (*p) {
warnx("invalid address \"%s\"", argv[0]);
return (EINVAL);
}
addr = l;
p = str_to_number(argv[1], &l, NULL);
if (*p) {
warnx("memdump: invalid length \"%s\"", argv[1]);
return (EINVAL);
}
len = l;
return (read_mem(addr, len, show_mem));
}
/*
* Display TCB as list of 'n' 4-byte values per line.
*/
static void
show_tcb(uint32_t *buf, uint32_t len)
{
const char *s;
int i, n = 8;
while (len) {
for (i = 0; len && i < n; i++, buf++, len -= 4) {
s = i ? " " : "";
printf("%s%08x", s, htonl(*buf));
}
printf("\n");
}
}
#define A_TP_CMM_TCB_BASE 0x7d10
#define TCB_SIZE 128
static int
read_tcb(int argc, const char *argv[])
{
char *p;
long l;
long long val;
unsigned int tid;
uint32_t addr;
int rc;
if (argc != 1) {
warnx("incorrect number of arguments.");
return (EINVAL);
}
p = str_to_number(argv[0], &l, NULL);
if (*p) {
warnx("invalid tid \"%s\"", argv[0]);
return (EINVAL);
}
tid = l;
rc = read_reg(A_TP_CMM_TCB_BASE, 4, &val);
if (rc != 0)
return (rc);
addr = val + tid * TCB_SIZE;
return (read_mem(addr, TCB_SIZE, show_tcb));
}
static int
read_i2c(int argc, const char *argv[])
{
char *p;
long l;
struct t4_i2c_data i2cd;
int rc, i;
if (argc < 3 || argc > 4) {
warnx("incorrect number of arguments.");
return (EINVAL);
}
p = str_to_number(argv[0], &l, NULL);
if (*p || l > UCHAR_MAX) {
warnx("invalid port id \"%s\"", argv[0]);
return (EINVAL);
}
i2cd.port_id = l;
p = str_to_number(argv[1], &l, NULL);
if (*p || l > UCHAR_MAX) {
warnx("invalid i2c device address \"%s\"", argv[1]);
return (EINVAL);
}
i2cd.dev_addr = l;
p = str_to_number(argv[2], &l, NULL);
if (*p || l > UCHAR_MAX) {
warnx("invalid byte offset \"%s\"", argv[2]);
return (EINVAL);
}
i2cd.offset = l;
if (argc == 4) {
p = str_to_number(argv[3], &l, NULL);
if (*p || l > sizeof(i2cd.data)) {
warnx("invalid number of bytes \"%s\"", argv[3]);
return (EINVAL);
}
i2cd.len = l;
} else
i2cd.len = 1;
rc = doit(CHELSIO_T4_GET_I2C, &i2cd);
if (rc != 0)
return (rc);
for (i = 0; i < i2cd.len; i++)
printf("0x%x [%u]\n", i2cd.data[i], i2cd.data[i]);
return (0);
}
static int
clearstats(int argc, const char *argv[])
{
char *p;
long l;
uint32_t port;
if (argc != 1) {
warnx("incorrect number of arguments.");
return (EINVAL);
}
p = str_to_number(argv[0], &l, NULL);
if (*p) {
warnx("invalid port id \"%s\"", argv[0]);
return (EINVAL);
}
port = l;
return doit(CHELSIO_T4_CLEAR_STATS, &port);
}
static int
show_tracers(void)
{
struct t4_tracer t;
char *s;
int rc, port_idx, i;
long long val;
/* Magic values: MPS_TRC_CFG = 0x9800. MPS_TRC_CFG[1:1] = TrcEn */
rc = read_reg(0x9800, 4, &val);
if (rc != 0)
return (rc);
printf("tracing is %s\n", val & 2 ? "ENABLED" : "DISABLED");
t.idx = 0;
for (t.idx = 0; ; t.idx++) {
rc = doit(CHELSIO_T4_GET_TRACER, &t);
if (rc != 0 || t.idx == 0xff)
break;
if (t.tp.port < 4) {
s = "Rx";
port_idx = t.tp.port;
} else if (t.tp.port < 8) {
s = "Tx";
port_idx = t.tp.port - 4;
} else if (t.tp.port < 12) {
s = "loopback";
port_idx = t.tp.port - 8;
} else if (t.tp.port < 16) {
s = "MPS Rx";
port_idx = t.tp.port - 12;
} else if (t.tp.port < 20) {
s = "MPS Tx";
port_idx = t.tp.port - 16;
} else {
s = "unknown";
port_idx = t.tp.port;
}
printf("\ntracer %u (currently %s) captures ", t.idx,
t.enabled ? "ENABLED" : "DISABLED");
if (t.tp.port < 8)
printf("port %u %s, ", port_idx, s);
else
printf("%s %u, ", s, port_idx);
printf("snap length: %u, min length: %u\n", t.tp.snap_len,
t.tp.min_len);
printf("packets captured %smatch filter\n",
t.tp.invert ? "do not " : "");
if (t.tp.skip_ofst) {
printf("filter pattern: ");
for (i = 0; i < t.tp.skip_ofst * 2; i += 2)
printf("%08x%08x", t.tp.data[i],
t.tp.data[i + 1]);
printf("/");
for (i = 0; i < t.tp.skip_ofst * 2; i += 2)
printf("%08x%08x", t.tp.mask[i],
t.tp.mask[i + 1]);
printf("@0\n");
}
printf("filter pattern: ");
for (i = t.tp.skip_ofst * 2; i < T4_TRACE_LEN / 4; i += 2)
printf("%08x%08x", t.tp.data[i], t.tp.data[i + 1]);
printf("/");
for (i = t.tp.skip_ofst * 2; i < T4_TRACE_LEN / 4; i += 2)
printf("%08x%08x", t.tp.mask[i], t.tp.mask[i + 1]);
printf("@%u\n", (t.tp.skip_ofst + t.tp.skip_len) * 8);
}
return (rc);
}
static int
tracer_onoff(uint8_t idx, int enabled)
{
struct t4_tracer t;
t.idx = idx;
t.enabled = enabled;
t.valid = 0;
return doit(CHELSIO_T4_SET_TRACER, &t);
}
static void
create_tracing_ifnet()
{
char *cmd[] = {
"/sbin/ifconfig", __DECONST(char *, nexus), "create", NULL
};
char *env[] = {NULL};
if (vfork() == 0) {
close(STDERR_FILENO);
execve(cmd[0], cmd, env);
_exit(0);
}
}
/*
* XXX: Allow user to specify snaplen, minlen, and pattern (including inverted
* matching). Right now this is a quick-n-dirty implementation that traces the
* first 128B of all tx or rx on a port
*/
static int
set_tracer(uint8_t idx, int argc, const char *argv[])
{
struct t4_tracer t;
int len, port;
bzero(&t, sizeof (t));
t.idx = idx;
t.enabled = 1;
t.valid = 1;
if (argc != 1) {
warnx("must specify tx<n> or rx<n>.");
return (EINVAL);
}
len = strlen(argv[0]);
if (len != 3) {
warnx("argument must be 3 characters (tx<n> or rx<n>)");
return (EINVAL);
}
if (strncmp(argv[0], "tx", 2) == 0) {
port = argv[0][2] - '0';
if (port < 0 || port > 3) {
warnx("'%c' in %s is invalid", argv[0][2], argv[0]);
return (EINVAL);
}
port += 4;
} else if (strncmp(argv[0], "rx", 2) == 0) {
port = argv[0][2] - '0';
if (port < 0 || port > 3) {
warnx("'%c' in %s is invalid", argv[0][2], argv[0]);
return (EINVAL);
}
} else {
warnx("argument '%s' isn't tx<n> or rx<n>", argv[0]);
return (EINVAL);
}
t.tp.snap_len = 128;
t.tp.min_len = 0;
t.tp.skip_ofst = 0;
t.tp.skip_len = 0;
t.tp.invert = 0;
t.tp.port = port;
create_tracing_ifnet();
return doit(CHELSIO_T4_SET_TRACER, &t);
}
static int
tracer_cmd(int argc, const char *argv[])
{
long long val;
uint8_t idx;
char *s;
if (argc == 0) {
warnx("tracer: no arguments.");
return (EINVAL);
};
/* list */
if (strcmp(argv[0], "list") == 0) {
if (argc != 1)
warnx("trailing arguments after \"list\" ignored.");
return show_tracers();
}
/* <idx> ... */
s = str_to_number(argv[0], NULL, &val);
if (*s || val > 0xff) {
warnx("\"%s\" is neither an index nor a tracer subcommand.",
argv[0]);
return (EINVAL);
}
idx = (int8_t)val;
/* <idx> disable */
if (argc == 2 && strcmp(argv[1], "disable") == 0)
return tracer_onoff(idx, 0);
/* <idx> enable */
if (argc == 2 && strcmp(argv[1], "enable") == 0)
return tracer_onoff(idx, 1);
/* <idx> ... */
return set_tracer(idx, argc - 1, argv + 1);
}
static int
modinfo_raw(int port_id)
{
uint8_t offset;
struct t4_i2c_data i2cd;
int rc;
for (offset = 0; offset < 96; offset += sizeof(i2cd.data)) {
bzero(&i2cd, sizeof(i2cd));
i2cd.port_id = port_id;
i2cd.dev_addr = 0xa0;
i2cd.offset = offset;
i2cd.len = sizeof(i2cd.data);
rc = doit(CHELSIO_T4_GET_I2C, &i2cd);
if (rc != 0)
return (rc);
printf("%02x: %02x %02x %02x %02x %02x %02x %02x %02x",
offset, i2cd.data[0], i2cd.data[1], i2cd.data[2],
i2cd.data[3], i2cd.data[4], i2cd.data[5], i2cd.data[6],
i2cd.data[7]);
printf(" %c%c%c%c %c%c%c%c\n",
isprint(i2cd.data[0]) ? i2cd.data[0] : '.',
isprint(i2cd.data[1]) ? i2cd.data[1] : '.',
isprint(i2cd.data[2]) ? i2cd.data[2] : '.',
isprint(i2cd.data[3]) ? i2cd.data[3] : '.',
isprint(i2cd.data[4]) ? i2cd.data[4] : '.',
isprint(i2cd.data[5]) ? i2cd.data[5] : '.',
isprint(i2cd.data[6]) ? i2cd.data[6] : '.',
isprint(i2cd.data[7]) ? i2cd.data[7] : '.');
}
return (0);
}
static int
modinfo(int argc, const char *argv[])
{
long port;
char string[16], *p;
struct t4_i2c_data i2cd;
int rc, i;
uint16_t temp, vcc, tx_bias, tx_power, rx_power;
if (argc < 1) {
warnx("must supply a port");
return (EINVAL);
}
if (argc > 2) {
warnx("too many arguments");
return (EINVAL);
}
p = str_to_number(argv[0], &port, NULL);
if (*p || port > UCHAR_MAX) {
warnx("invalid port id \"%s\"", argv[0]);
return (EINVAL);
}
if (argc == 2) {
if (!strcmp(argv[1], "raw"))
return (modinfo_raw(port));
else {
warnx("second argument can only be \"raw\"");
return (EINVAL);
}
}
bzero(&i2cd, sizeof(i2cd));
i2cd.len = 1;
i2cd.port_id = port;
i2cd.dev_addr = SFF_8472_BASE;
i2cd.offset = SFF_8472_ID;
if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
goto fail;
if (i2cd.data[0] > SFF_8472_ID_LAST)
printf("Unknown ID\n");
else
printf("ID: %s\n", sff_8472_id[i2cd.data[0]]);
bzero(&string, sizeof(string));
for (i = SFF_8472_VENDOR_START; i < SFF_8472_VENDOR_END; i++) {
i2cd.offset = i;
if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
goto fail;
string[i - SFF_8472_VENDOR_START] = i2cd.data[0];
}
printf("Vendor %s\n", string);
bzero(&string, sizeof(string));
for (i = SFF_8472_SN_START; i < SFF_8472_SN_END; i++) {
i2cd.offset = i;
if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
goto fail;
string[i - SFF_8472_SN_START] = i2cd.data[0];
}
printf("SN %s\n", string);
bzero(&string, sizeof(string));
for (i = SFF_8472_PN_START; i < SFF_8472_PN_END; i++) {
i2cd.offset = i;
if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
goto fail;
string[i - SFF_8472_PN_START] = i2cd.data[0];
}
printf("PN %s\n", string);
bzero(&string, sizeof(string));
for (i = SFF_8472_REV_START; i < SFF_8472_REV_END; i++) {
i2cd.offset = i;
if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
goto fail;
string[i - SFF_8472_REV_START] = i2cd.data[0];
}
printf("Rev %s\n", string);
i2cd.offset = SFF_8472_DIAG_TYPE;
if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
goto fail;
if ((char )i2cd.data[0] & (SFF_8472_DIAG_IMPL |
SFF_8472_DIAG_INTERNAL)) {
/* Switch to reading from the Diagnostic address. */
i2cd.dev_addr = SFF_8472_DIAG;
i2cd.len = 1;
i2cd.offset = SFF_8472_TEMP;
if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
goto fail;
temp = i2cd.data[0] << 8;
printf("Temp: ");
if ((temp & SFF_8472_TEMP_SIGN) == SFF_8472_TEMP_SIGN)
printf("-");
else
printf("+");
printf("%dC\n", (temp & SFF_8472_TEMP_MSK) >>
SFF_8472_TEMP_SHIFT);
i2cd.offset = SFF_8472_VCC;
if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
goto fail;
vcc = i2cd.data[0] << 8;
printf("Vcc %fV\n", vcc / SFF_8472_VCC_FACTOR);
i2cd.offset = SFF_8472_TX_BIAS;
if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
goto fail;
tx_bias = i2cd.data[0] << 8;
printf("TX Bias %fuA\n", tx_bias / SFF_8472_BIAS_FACTOR);
i2cd.offset = SFF_8472_TX_POWER;
if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
goto fail;
tx_power = i2cd.data[0] << 8;
printf("TX Power %fmW\n", tx_power / SFF_8472_POWER_FACTOR);
i2cd.offset = SFF_8472_RX_POWER;
if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
goto fail;
rx_power = i2cd.data[0] << 8;
printf("RX Power %fmW\n", rx_power / SFF_8472_POWER_FACTOR);
} else
printf("Diagnostics not supported.\n");
return(0);
fail:
if (rc == EPERM)
warnx("No module/cable in port %ld", port);
return (rc);
}
/* XXX: pass in a low/high and do range checks as well */
static int
get_sched_param(const char *param, const char *args[], long *val)
{
char *p;
if (strcmp(param, args[0]) != 0)
return (EINVAL);
p = str_to_number(args[1], val, NULL);
if (*p) {
warnx("parameter \"%s\" has bad value \"%s\"", args[0],
args[1]);
return (EINVAL);
}
return (0);
}
static int
sched_class(int argc, const char *argv[])
{
struct t4_sched_params op;
int errs, i;
memset(&op, 0xff, sizeof(op));
op.subcmd = -1;
op.type = -1;
if (argc == 0) {
warnx("missing scheduling sub-command");
return (EINVAL);
}
if (!strcmp(argv[0], "config")) {
op.subcmd = SCHED_CLASS_SUBCMD_CONFIG;
op.u.config.minmax = -1;
} else if (!strcmp(argv[0], "params")) {
op.subcmd = SCHED_CLASS_SUBCMD_PARAMS;
op.u.params.level = op.u.params.mode = op.u.params.rateunit =
op.u.params.ratemode = op.u.params.channel =
op.u.params.cl = op.u.params.minrate = op.u.params.maxrate =
op.u.params.weight = op.u.params.pktsize = -1;
} else {
warnx("invalid scheduling sub-command \"%s\"", argv[0]);
return (EINVAL);
}
/* Decode remaining arguments ... */
errs = 0;
for (i = 1; i < argc; i += 2) {
const char **args = &argv[i];
long l;
if (i + 1 == argc) {
warnx("missing argument for \"%s\"", args[0]);
errs++;
break;
}
if (!strcmp(args[0], "type")) {
if (!strcmp(args[1], "packet"))
op.type = SCHED_CLASS_TYPE_PACKET;
else {
warnx("invalid type parameter \"%s\"", args[1]);
errs++;
}
continue;
}
if (op.subcmd == SCHED_CLASS_SUBCMD_CONFIG) {
if(!get_sched_param("minmax", args, &l))
op.u.config.minmax = (int8_t)l;
else {
warnx("unknown scheduler config parameter "
"\"%s\"", args[0]);
errs++;
}
continue;
}
/* Rest applies only to SUBCMD_PARAMS */
if (op.subcmd != SCHED_CLASS_SUBCMD_PARAMS)
continue;
if (!strcmp(args[0], "level")) {
if (!strcmp(args[1], "cl-rl"))
op.u.params.level = SCHED_CLASS_LEVEL_CL_RL;
else if (!strcmp(args[1], "cl-wrr"))
op.u.params.level = SCHED_CLASS_LEVEL_CL_WRR;
else if (!strcmp(args[1], "ch-rl"))
op.u.params.level = SCHED_CLASS_LEVEL_CH_RL;
else {
warnx("invalid level parameter \"%s\"",
args[1]);
errs++;
}
} else if (!strcmp(args[0], "mode")) {
if (!strcmp(args[1], "class"))
op.u.params.mode = SCHED_CLASS_MODE_CLASS;
else if (!strcmp(args[1], "flow"))
op.u.params.mode = SCHED_CLASS_MODE_FLOW;
else {
warnx("invalid mode parameter \"%s\"", args[1]);
errs++;
}
} else if (!strcmp(args[0], "rate-unit")) {
if (!strcmp(args[1], "bits"))
op.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
else if (!strcmp(args[1], "pkts"))
op.u.params.rateunit = SCHED_CLASS_RATEUNIT_PKTS;
else {
warnx("invalid rate-unit parameter \"%s\"",
args[1]);
errs++;
}
} else if (!strcmp(args[0], "rate-mode")) {
if (!strcmp(args[1], "relative"))
op.u.params.ratemode = SCHED_CLASS_RATEMODE_REL;
else if (!strcmp(args[1], "absolute"))
op.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
else {
warnx("invalid rate-mode parameter \"%s\"",
args[1]);
errs++;
}
} else if (!get_sched_param("channel", args, &l))
op.u.params.channel = (int8_t)l;
else if (!get_sched_param("class", args, &l))
op.u.params.cl = (int8_t)l;
else if (!get_sched_param("min-rate", args, &l))
op.u.params.minrate = (int32_t)l;
else if (!get_sched_param("max-rate", args, &l))
op.u.params.maxrate = (int32_t)l;
else if (!get_sched_param("weight", args, &l))
op.u.params.weight = (int16_t)l;
else if (!get_sched_param("pkt-size", args, &l))
op.u.params.pktsize = (int16_t)l;
else {
warnx("unknown scheduler parameter \"%s\"", args[0]);
errs++;
}
}
/*
* Catch some logical fallacies in terms of argument combinations here
* so we can offer more than just the EINVAL return from the driver.
* The driver will be able to catch a lot more issues since it knows
* the specifics of the device hardware capabilities like how many
* channels, classes, etc. the device supports.
*/
if (op.type < 0) {
warnx("sched \"type\" parameter missing");
errs++;
}
if (op.subcmd == SCHED_CLASS_SUBCMD_CONFIG) {
if (op.u.config.minmax < 0) {
warnx("sched config \"minmax\" parameter missing");
errs++;
}
}
if (op.subcmd == SCHED_CLASS_SUBCMD_PARAMS) {
if (op.u.params.level < 0) {
warnx("sched params \"level\" parameter missing");
errs++;
}
if (op.u.params.mode < 0) {
warnx("sched params \"mode\" parameter missing");
errs++;
}
if (op.u.params.rateunit < 0) {
warnx("sched params \"rate-unit\" parameter missing");
errs++;
}
if (op.u.params.ratemode < 0) {
warnx("sched params \"rate-mode\" parameter missing");
errs++;
}
if (op.u.params.channel < 0) {
warnx("sched params \"channel\" missing");
errs++;
}
if (op.u.params.cl < 0) {
warnx("sched params \"class\" missing");
errs++;
}
if (op.u.params.maxrate < 0 &&
(op.u.params.level == SCHED_CLASS_LEVEL_CL_RL ||
op.u.params.level == SCHED_CLASS_LEVEL_CH_RL)) {
warnx("sched params \"max-rate\" missing for "
"rate-limit level");
errs++;
}
if (op.u.params.weight < 0 &&
op.u.params.level == SCHED_CLASS_LEVEL_CL_WRR) {
warnx("sched params \"weight\" missing for "
"weighted-round-robin level");
errs++;
}
if (op.u.params.pktsize < 0 &&
(op.u.params.level == SCHED_CLASS_LEVEL_CL_RL ||
op.u.params.level == SCHED_CLASS_LEVEL_CH_RL)) {
warnx("sched params \"pkt-size\" missing for "
"rate-limit level");
errs++;
}
if (op.u.params.mode == SCHED_CLASS_MODE_FLOW &&
op.u.params.ratemode != SCHED_CLASS_RATEMODE_ABS) {
warnx("sched params mode flow needs rate-mode absolute");
errs++;
}
if (op.u.params.ratemode == SCHED_CLASS_RATEMODE_REL &&
!in_range(op.u.params.maxrate, 1, 100)) {
warnx("sched params \"max-rate\" takes "
"percentage value(1-100) for rate-mode relative");
errs++;
}
if (op.u.params.ratemode == SCHED_CLASS_RATEMODE_ABS &&
!in_range(op.u.params.maxrate, 1, 100000000)) {
warnx("sched params \"max-rate\" takes "
"value(1-100000000) for rate-mode absolute");
errs++;
}
if (op.u.params.maxrate > 0 &&
op.u.params.maxrate < op.u.params.minrate) {
warnx("sched params \"max-rate\" is less than "
"\"min-rate\"");
errs++;
}
}
if (errs > 0) {
warnx("%d error%s in sched-class command", errs,
errs == 1 ? "" : "s");
return (EINVAL);
}
return doit(CHELSIO_T4_SCHED_CLASS, &op);
}
static int
sched_queue(int argc, const char *argv[])
{
struct t4_sched_queue op = {0};
char *p;
long val;
if (argc != 3) {
/* need "<port> <queue> <class> */
warnx("incorrect number of arguments.");
return (EINVAL);
}
p = str_to_number(argv[0], &val, NULL);
if (*p || val > UCHAR_MAX) {
warnx("invalid port id \"%s\"", argv[0]);
return (EINVAL);
}
op.port = (uint8_t)val;
if (!strcmp(argv[1], "all") || !strcmp(argv[1], "*"))
op.queue = -1;
else {
p = str_to_number(argv[1], &val, NULL);
if (*p || val < -1) {
warnx("invalid queue \"%s\"", argv[1]);
return (EINVAL);
}
op.queue = (int8_t)val;
}
if (!strcmp(argv[2], "unbind") || !strcmp(argv[2], "clear"))
op.cl = -1;
else {
p = str_to_number(argv[2], &val, NULL);
if (*p || val < -1) {
warnx("invalid class \"%s\"", argv[2]);
return (EINVAL);
}
op.cl = (int8_t)val;
}
return doit(CHELSIO_T4_SCHED_QUEUE, &op);
}
static int
run_cmd(int argc, const char *argv[])
{
int rc = -1;
const char *cmd = argv[0];
/* command */
argc--;
argv++;
if (!strcmp(cmd, "reg") || !strcmp(cmd, "reg32"))
rc = register_io(argc, argv, 4);
else if (!strcmp(cmd, "reg64"))
rc = register_io(argc, argv, 8);
else if (!strcmp(cmd, "regdump"))
rc = dump_regs(argc, argv);
else if (!strcmp(cmd, "filter"))
rc = filter_cmd(argc, argv);
else if (!strcmp(cmd, "context"))
rc = get_sge_context(argc, argv);
else if (!strcmp(cmd, "loadfw"))
rc = loadfw(argc, argv);
else if (!strcmp(cmd, "memdump"))
rc = memdump(argc, argv);
else if (!strcmp(cmd, "tcb"))
rc = read_tcb(argc, argv);
else if (!strcmp(cmd, "i2c"))
rc = read_i2c(argc, argv);
else if (!strcmp(cmd, "clearstats"))
rc = clearstats(argc, argv);
else if (!strcmp(cmd, "tracer"))
rc = tracer_cmd(argc, argv);
else if (!strcmp(cmd, "modinfo"))
rc = modinfo(argc, argv);
else if (!strcmp(cmd, "sched-class"))
rc = sched_class(argc, argv);
else if (!strcmp(cmd, "sched-queue"))
rc = sched_queue(argc, argv);
else if (!strcmp(cmd, "loadcfg"))
rc = loadcfg(argc, argv);
else if (!strcmp(cmd, "loadboot"))
rc = loadboot(argc, argv);
else if (!strcmp(cmd, "loadboot-cfg"))
rc = loadbootcfg(argc, argv);
else if (!strcmp(cmd, "dumpstate"))
rc = dumpstate(argc, argv);
else {
rc = EINVAL;
warnx("invalid command \"%s\"", cmd);
}
return (rc);
}
#define MAX_ARGS 15
static int
run_cmd_loop(void)
{
int i, rc = 0;
char buffer[128], *buf;
const char *args[MAX_ARGS + 1];
/*
* Simple loop: displays a "> " prompt and processes any input as a
* cxgbetool command. You're supposed to enter only the part after
* "cxgbetool t4nexX". Use "quit" or "exit" to exit.
*/
for (;;) {
fprintf(stdout, "> ");
fflush(stdout);
buf = fgets(buffer, sizeof(buffer), stdin);
if (buf == NULL) {
if (ferror(stdin)) {
warn("stdin error");
rc = errno; /* errno from fgets */
}
break;
}
i = 0;
while ((args[i] = strsep(&buf, " \t\n")) != NULL) {
if (args[i][0] != 0 && ++i == MAX_ARGS)
break;
}
args[i] = 0;
if (i == 0)
continue; /* skip empty line */
if (!strcmp(args[0], "quit") || !strcmp(args[0], "exit"))
break;
rc = run_cmd(i, args);
}
/* rc normally comes from the last command (not including quit/exit) */
return (rc);
}
int
main(int argc, const char *argv[])
{
int rc = -1;
progname = argv[0];
if (argc == 2) {
if (!strcmp(argv[1], "-h") || !strcmp(argv[1], "--help")) {
usage(stdout);
exit(0);
}
}
if (argc < 3) {
usage(stderr);
exit(EINVAL);
}
nexus = argv[1];
/* progname and nexus */
argc -= 2;
argv += 2;
if (argc == 1 && !strcmp(argv[0], "stdio"))
rc = run_cmd_loop();
else
rc = run_cmd(argc, argv);
return (rc);
}