freebsd-skq/sys/dev/cxgbe/t4_netmap.c
np d63cc6f68a Whitespace nit.
MFC after:	1 week
2014-09-09 18:36:00 +00:00

1139 lines
31 KiB
C

/*-
* Copyright (c) 2014 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#ifdef DEV_NETMAP
#include <sys/param.h>
#include <sys/eventhandler.h>
#include <sys/lock.h>
#include <sys/types.h>
#include <sys/mbuf.h>
#include <sys/selinfo.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <machine/bus.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_media.h>
#include <net/if_var.h>
#include <net/if_clone.h>
#include <net/if_types.h>
#include <net/netmap.h>
#include <dev/netmap/netmap_kern.h>
#include "common/common.h"
#include "common/t4_regs.h"
#include "common/t4_regs_values.h"
extern int fl_pad; /* XXXNM */
extern int spg_len; /* XXXNM */
extern int fl_pktshift; /* XXXNM */
/* netmap ifnet routines */
static void cxgbe_nm_init(void *);
static int cxgbe_nm_ioctl(struct ifnet *, unsigned long, caddr_t);
static int cxgbe_nm_transmit(struct ifnet *, struct mbuf *);
static void cxgbe_nm_qflush(struct ifnet *);
static int cxgbe_nm_init_synchronized(struct port_info *);
static int cxgbe_nm_uninit_synchronized(struct port_info *);
static void
cxgbe_nm_init(void *arg)
{
struct port_info *pi = arg;
struct adapter *sc = pi->adapter;
if (begin_synchronized_op(sc, pi, SLEEP_OK | INTR_OK, "t4nminit") != 0)
return;
cxgbe_nm_init_synchronized(pi);
end_synchronized_op(sc, 0);
return;
}
static int
cxgbe_nm_init_synchronized(struct port_info *pi)
{
struct adapter *sc = pi->adapter;
struct ifnet *ifp = pi->nm_ifp;
int rc = 0;
ASSERT_SYNCHRONIZED_OP(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return (0); /* already running */
if (!(sc->flags & FULL_INIT_DONE) &&
((rc = adapter_full_init(sc)) != 0))
return (rc); /* error message displayed already */
if (!(pi->flags & PORT_INIT_DONE) &&
((rc = port_full_init(pi)) != 0))
return (rc); /* error message displayed already */
rc = update_mac_settings(ifp, XGMAC_ALL);
if (rc)
return (rc); /* error message displayed already */
ifp->if_drv_flags |= IFF_DRV_RUNNING;
return (rc);
}
static int
cxgbe_nm_uninit_synchronized(struct port_info *pi)
{
#ifdef INVARIANTS
struct adapter *sc = pi->adapter;
#endif
struct ifnet *ifp = pi->nm_ifp;
ASSERT_SYNCHRONIZED_OP(sc);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
return (0);
}
static int
cxgbe_nm_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
{
int rc = 0, mtu, flags;
struct port_info *pi = ifp->if_softc;
struct adapter *sc = pi->adapter;
struct ifreq *ifr = (struct ifreq *)data;
uint32_t mask;
MPASS(pi->nm_ifp == ifp);
switch (cmd) {
case SIOCSIFMTU:
mtu = ifr->ifr_mtu;
if ((mtu < ETHERMIN) || (mtu > ETHERMTU_JUMBO))
return (EINVAL);
rc = begin_synchronized_op(sc, pi, SLEEP_OK | INTR_OK, "t4nmtu");
if (rc)
return (rc);
ifp->if_mtu = mtu;
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rc = update_mac_settings(ifp, XGMAC_MTU);
end_synchronized_op(sc, 0);
break;
case SIOCSIFFLAGS:
rc = begin_synchronized_op(sc, pi, SLEEP_OK | INTR_OK, "t4nflg");
if (rc)
return (rc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
flags = pi->nmif_flags;
if ((ifp->if_flags ^ flags) &
(IFF_PROMISC | IFF_ALLMULTI)) {
rc = update_mac_settings(ifp,
XGMAC_PROMISC | XGMAC_ALLMULTI);
}
} else
rc = cxgbe_nm_init_synchronized(pi);
pi->nmif_flags = ifp->if_flags;
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rc = cxgbe_nm_uninit_synchronized(pi);
end_synchronized_op(sc, 0);
break;
case SIOCADDMULTI:
case SIOCDELMULTI: /* these two are called with a mutex held :-( */
rc = begin_synchronized_op(sc, pi, HOLD_LOCK, "t4nmulti");
if (rc)
return (rc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rc = update_mac_settings(ifp, XGMAC_MCADDRS);
end_synchronized_op(sc, LOCK_HELD);
break;
case SIOCSIFCAP:
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if (mask & IFCAP_TXCSUM) {
ifp->if_capenable ^= IFCAP_TXCSUM;
ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
}
if (mask & IFCAP_TXCSUM_IPV6) {
ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
}
if (mask & IFCAP_RXCSUM)
ifp->if_capenable ^= IFCAP_RXCSUM;
if (mask & IFCAP_RXCSUM_IPV6)
ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
ifmedia_ioctl(ifp, ifr, &pi->nm_media, cmd);
break;
default:
rc = ether_ioctl(ifp, cmd, data);
}
return (rc);
}
static int
cxgbe_nm_transmit(struct ifnet *ifp, struct mbuf *m)
{
m_freem(m);
return (0);
}
static void
cxgbe_nm_qflush(struct ifnet *ifp)
{
return;
}
static int
alloc_nm_rxq_hwq(struct port_info *pi, struct sge_nm_rxq *nm_rxq)
{
int rc, cntxt_id;
__be32 v;
struct adapter *sc = pi->adapter;
struct netmap_adapter *na = NA(pi->nm_ifp);
struct fw_iq_cmd c;
MPASS(na != NULL);
MPASS(nm_rxq->iq_desc != NULL);
MPASS(nm_rxq->fl_desc != NULL);
bzero(nm_rxq->iq_desc, pi->qsize_rxq * IQ_ESIZE);
bzero(nm_rxq->fl_desc, na->num_rx_desc * EQ_ESIZE + spg_len);
bzero(&c, sizeof(c));
c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
V_FW_IQ_CMD_VFN(0));
c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
FW_LEN16(c));
if (pi->flags & INTR_NM_RXQ) {
KASSERT(nm_rxq->intr_idx < sc->intr_count,
("%s: invalid direct intr_idx %d", __func__,
nm_rxq->intr_idx));
v = V_FW_IQ_CMD_IQANDSTINDEX(nm_rxq->intr_idx);
} else {
CXGBE_UNIMPLEMENTED(__func__); /* XXXNM: needs review */
v = V_FW_IQ_CMD_IQANDSTINDEX(nm_rxq->intr_idx) |
F_FW_IQ_CMD_IQANDST;
}
c.type_to_iqandstindex = htobe32(v |
V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
V_FW_IQ_CMD_VIID(pi->nm_viid) |
V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
F_FW_IQ_CMD_IQGTSMODE |
V_FW_IQ_CMD_IQINTCNTTHRESH(0) |
V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
c.iqsize = htobe16(pi->qsize_rxq);
c.iqaddr = htobe64(nm_rxq->iq_ba);
c.iqns_to_fl0congen |=
htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0));
c.fl0dcaen_to_fl0cidxfthresh =
htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
c.fl0size = htobe16(na->num_rx_desc + spg_len / EQ_ESIZE);
c.fl0addr = htobe64(nm_rxq->fl_ba);
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
device_printf(sc->dev,
"failed to create netmap ingress queue: %d\n", rc);
return (rc);
}
nm_rxq->iq_cidx = 0;
MPASS(nm_rxq->iq_sidx == pi->qsize_rxq - spg_len / IQ_ESIZE);
nm_rxq->iq_gen = F_RSPD_GEN;
nm_rxq->iq_cntxt_id = be16toh(c.iqid);
nm_rxq->iq_abs_id = be16toh(c.physiqid);
cntxt_id = nm_rxq->iq_cntxt_id - sc->sge.iq_start;
if (cntxt_id >= sc->sge.niq) {
panic ("%s: nm_rxq->iq_cntxt_id (%d) more than the max (%d)",
__func__, cntxt_id, sc->sge.niq - 1);
}
sc->sge.iqmap[cntxt_id] = (void *)nm_rxq;
nm_rxq->fl_cntxt_id = be16toh(c.fl0id);
nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
MPASS(nm_rxq->fl_sidx == na->num_rx_desc);
cntxt_id = nm_rxq->fl_cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.neq) {
panic("%s: nm_rxq->fl_cntxt_id (%d) more than the max (%d)",
__func__, cntxt_id, sc->sge.neq - 1);
}
sc->sge.eqmap[cntxt_id] = (void *)nm_rxq;
nm_rxq->fl_db_val = F_DBPRIO | V_QID(nm_rxq->fl_cntxt_id) | V_PIDX(0);
if (is_t5(sc))
nm_rxq->fl_db_val |= F_DBTYPE;
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(F_QINTR_CNT_EN) |
V_INGRESSQID(nm_rxq->iq_cntxt_id));
return (rc);
}
static int
free_nm_rxq_hwq(struct port_info *pi, struct sge_nm_rxq *nm_rxq)
{
struct adapter *sc = pi->adapter;
int rc;
rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
nm_rxq->iq_cntxt_id, nm_rxq->fl_cntxt_id, 0xffff);
if (rc != 0)
device_printf(sc->dev, "%s: failed for iq %d, fl %d: %d\n",
__func__, nm_rxq->iq_cntxt_id, nm_rxq->fl_cntxt_id, rc);
return (rc);
}
static int
alloc_nm_txq_hwq(struct port_info *pi, struct sge_nm_txq *nm_txq)
{
int rc, cntxt_id;
size_t len;
struct adapter *sc = pi->adapter;
struct netmap_adapter *na = NA(pi->nm_ifp);
struct fw_eq_eth_cmd c;
MPASS(na != NULL);
MPASS(nm_txq->desc != NULL);
len = na->num_tx_desc * EQ_ESIZE + spg_len;
bzero(nm_txq->desc, len);
bzero(&c, sizeof(c));
c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
V_FW_EQ_ETH_CMD_VFN(0));
c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
c.autoequiqe_to_viid = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->nm_viid));
c.fetchszm_to_iqid =
htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
V_FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
V_FW_EQ_ETH_CMD_IQID(sc->sge.nm_rxq[nm_txq->iqidx].iq_cntxt_id));
c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_ETH_CMD_EQSIZE(len / EQ_ESIZE));
c.eqaddr = htobe64(nm_txq->ba);
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
device_printf(pi->dev,
"failed to create netmap egress queue: %d\n", rc);
return (rc);
}
nm_txq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
cntxt_id = nm_txq->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.neq)
panic("%s: nm_txq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.neq - 1);
sc->sge.eqmap[cntxt_id] = (void *)nm_txq;
nm_txq->pidx = nm_txq->cidx = 0;
MPASS(nm_txq->sidx == na->num_tx_desc);
nm_txq->equiqidx = nm_txq->equeqidx = nm_txq->dbidx = 0;
nm_txq->doorbells = sc->doorbells;
if (isset(&nm_txq->doorbells, DOORBELL_UDB) ||
isset(&nm_txq->doorbells, DOORBELL_UDBWC) ||
isset(&nm_txq->doorbells, DOORBELL_WCWR)) {
uint32_t s_qpp = sc->sge.eq_s_qpp;
uint32_t mask = (1 << s_qpp) - 1;
volatile uint8_t *udb;
udb = sc->udbs_base + UDBS_DB_OFFSET;
udb += (nm_txq->cntxt_id >> s_qpp) << PAGE_SHIFT;
nm_txq->udb_qid = nm_txq->cntxt_id & mask;
if (nm_txq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
clrbit(&nm_txq->doorbells, DOORBELL_WCWR);
else {
udb += nm_txq->udb_qid << UDBS_SEG_SHIFT;
nm_txq->udb_qid = 0;
}
nm_txq->udb = (volatile void *)udb;
}
return (rc);
}
static int
free_nm_txq_hwq(struct port_info *pi, struct sge_nm_txq *nm_txq)
{
struct adapter *sc = pi->adapter;
int rc;
rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, nm_txq->cntxt_id);
if (rc != 0)
device_printf(sc->dev, "%s: failed for eq %d: %d\n", __func__,
nm_txq->cntxt_id, rc);
return (rc);
}
static int
cxgbe_netmap_on(struct adapter *sc, struct port_info *pi, struct ifnet *ifp,
struct netmap_adapter *na)
{
struct netmap_slot *slot;
struct sge_nm_rxq *nm_rxq;
struct sge_nm_txq *nm_txq;
int rc, i, j, hwidx;
struct hw_buf_info *hwb;
uint16_t *rss;
ASSERT_SYNCHRONIZED_OP(sc);
if ((pi->flags & PORT_INIT_DONE) == 0 ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return (EAGAIN);
hwb = &sc->sge.hw_buf_info[0];
for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
if (hwb->size == NETMAP_BUF_SIZE(na))
break;
}
if (i >= SGE_FLBUF_SIZES) {
if_printf(ifp, "no hwidx for netmap buffer size %d.\n",
NETMAP_BUF_SIZE(na));
return (ENXIO);
}
hwidx = i;
/* Must set caps before calling netmap_reset */
nm_set_native_flags(na);
for_each_nm_rxq(pi, i, nm_rxq) {
alloc_nm_rxq_hwq(pi, nm_rxq);
nm_rxq->fl_hwidx = hwidx;
slot = netmap_reset(na, NR_RX, i, 0);
MPASS(slot != NULL); /* XXXNM: error check, not assert */
/* We deal with 8 bufs at a time */
MPASS((na->num_rx_desc & 7) == 0);
MPASS(na->num_rx_desc == nm_rxq->fl_sidx);
for (j = 0; j < nm_rxq->fl_sidx - 8; j++) {
uint64_t ba;
PNMB(na, &slot[j], &ba);
nm_rxq->fl_desc[j] = htobe64(ba | hwidx);
}
nm_rxq->fl_pidx = j;
MPASS((j & 7) == 0);
j /= 8; /* driver pidx to hardware pidx */
wmb();
t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
nm_rxq->fl_db_val | V_PIDX(j));
}
for_each_nm_txq(pi, i, nm_txq) {
alloc_nm_txq_hwq(pi, nm_txq);
slot = netmap_reset(na, NR_TX, i, 0);
MPASS(slot != NULL); /* XXXNM: error check, not assert */
}
rss = malloc(pi->nm_rss_size * sizeof (*rss), M_CXGBE, M_ZERO |
M_WAITOK);
for (i = 0; i < pi->nm_rss_size;) {
for_each_nm_rxq(pi, j, nm_rxq) {
rss[i++] = nm_rxq->iq_abs_id;
if (i == pi->nm_rss_size)
break;
}
}
rc = -t4_config_rss_range(sc, sc->mbox, pi->nm_viid, 0, pi->nm_rss_size,
rss, pi->nm_rss_size);
if (rc != 0)
if_printf(ifp, "netmap rss_config failed: %d\n", rc);
free(rss, M_CXGBE);
rc = -t4_enable_vi(sc, sc->mbox, pi->nm_viid, true, true);
if (rc != 0)
if_printf(ifp, "netmap enable_vi failed: %d\n", rc);
return (rc);
}
static int
cxgbe_netmap_off(struct adapter *sc, struct port_info *pi, struct ifnet *ifp,
struct netmap_adapter *na)
{
int rc, i;
struct sge_nm_txq *nm_txq;
struct sge_nm_rxq *nm_rxq;
ASSERT_SYNCHRONIZED_OP(sc);
rc = -t4_enable_vi(sc, sc->mbox, pi->nm_viid, false, false);
if (rc != 0)
if_printf(ifp, "netmap disable_vi failed: %d\n", rc);
nm_clear_native_flags(na);
/*
* XXXNM: We need to make sure that the tx queues are quiet and won't
* request any more SGE_EGR_UPDATEs.
*/
for_each_nm_txq(pi, i, nm_txq) {
free_nm_txq_hwq(pi, nm_txq);
}
for_each_nm_rxq(pi, i, nm_rxq) {
free_nm_rxq_hwq(pi, nm_rxq);
}
return (rc);
}
static int
cxgbe_netmap_reg(struct netmap_adapter *na, int on)
{
struct ifnet *ifp = na->ifp;
struct port_info *pi = ifp->if_softc;
struct adapter *sc = pi->adapter;
int rc;
rc = begin_synchronized_op(sc, pi, SLEEP_OK | INTR_OK, "t4nmreg");
if (rc != 0)
return (rc);
if (on)
rc = cxgbe_netmap_on(sc, pi, ifp, na);
else
rc = cxgbe_netmap_off(sc, pi, ifp, na);
end_synchronized_op(sc, 0);
return (rc);
}
/* How many packets can a single type1 WR carry in n descriptors */
static inline int
ndesc_to_npkt(const int n)
{
MPASS(n > 0 && n <= SGE_MAX_WR_NDESC);
return (n * 2 - 1);
}
#define MAX_NPKT_IN_TYPE1_WR (ndesc_to_npkt(SGE_MAX_WR_NDESC))
/* Space (in descriptors) needed for a type1 WR that carries n packets */
static inline int
npkt_to_ndesc(const int n)
{
MPASS(n > 0 && n <= MAX_NPKT_IN_TYPE1_WR);
return ((n + 2) / 2);
}
/* Space (in 16B units) needed for a type1 WR that carries n packets */
static inline int
npkt_to_len16(const int n)
{
MPASS(n > 0 && n <= MAX_NPKT_IN_TYPE1_WR);
return (n * 2 + 1);
}
#define NMIDXDIFF(q, idx) IDXDIFF((q)->pidx, (q)->idx, (q)->sidx)
static void
ring_nm_txq_db(struct adapter *sc, struct sge_nm_txq *nm_txq)
{
int n;
u_int db = nm_txq->doorbells;
MPASS(nm_txq->pidx != nm_txq->dbidx);
n = NMIDXDIFF(nm_txq, dbidx);
if (n > 1)
clrbit(&db, DOORBELL_WCWR);
wmb();
switch (ffs(db) - 1) {
case DOORBELL_UDB:
*nm_txq->udb = htole32(V_QID(nm_txq->udb_qid) | V_PIDX(n));
break;
case DOORBELL_WCWR: {
volatile uint64_t *dst, *src;
/*
* Queues whose 128B doorbell segment fits in the page do not
* use relative qid (udb_qid is always 0). Only queues with
* doorbell segments can do WCWR.
*/
KASSERT(nm_txq->udb_qid == 0 && n == 1,
("%s: inappropriate doorbell (0x%x, %d, %d) for nm_txq %p",
__func__, nm_txq->doorbells, n, nm_txq->pidx, nm_txq));
dst = (volatile void *)((uintptr_t)nm_txq->udb +
UDBS_WR_OFFSET - UDBS_DB_OFFSET);
src = (void *)&nm_txq->desc[nm_txq->dbidx];
while (src != (void *)&nm_txq->desc[nm_txq->dbidx + 1])
*dst++ = *src++;
wmb();
break;
}
case DOORBELL_UDBWC:
*nm_txq->udb = htole32(V_QID(nm_txq->udb_qid) | V_PIDX(n));
wmb();
break;
case DOORBELL_KDB:
t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
V_QID(nm_txq->cntxt_id) | V_PIDX(n));
break;
}
nm_txq->dbidx = nm_txq->pidx;
}
int lazy_tx_credit_flush = 1;
/*
* Write work requests to send 'npkt' frames and ring the doorbell to send them
* on their way. No need to check for wraparound.
*/
static void
cxgbe_nm_tx(struct adapter *sc, struct sge_nm_txq *nm_txq,
struct netmap_kring *kring, int npkt, int npkt_remaining)
{
struct netmap_ring *ring = kring->ring;
struct netmap_slot *slot;
const u_int lim = kring->nkr_num_slots - 1;
struct fw_eth_tx_pkts_wr *wr = (void *)&nm_txq->desc[nm_txq->pidx];
uint16_t len;
uint64_t ba;
struct cpl_tx_pkt_core *cpl;
struct ulptx_sgl *usgl;
int i, n;
while (npkt) {
n = min(npkt, MAX_NPKT_IN_TYPE1_WR);
len = 0;
wr = (void *)&nm_txq->desc[nm_txq->pidx];
wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(npkt_to_len16(n)));
wr->npkt = n;
wr->r3 = 0;
wr->type = 1;
cpl = (void *)(wr + 1);
for (i = 0; i < n; i++) {
slot = &ring->slot[kring->nr_hwcur];
PNMB(kring->na, slot, &ba);
cpl->ctrl0 = nm_txq->cpl_ctrl0;
cpl->pack = 0;
cpl->len = htobe16(slot->len);
/*
* netmap(4) says "netmap does not use features such as
* checksum offloading, TCP segmentation offloading,
* encryption, VLAN encapsulation/decapsulation, etc."
*
* XXXNM: it makes sense to enable checksum offload.
*/
cpl->ctrl1 = htobe64(F_TXPKT_IPCSUM_DIS |
F_TXPKT_L4CSUM_DIS);
usgl = (void *)(cpl + 1);
usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
V_ULPTX_NSGE(1));
usgl->len0 = htobe32(slot->len);
usgl->addr0 = htobe64(ba);
slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED);
cpl = (void *)(usgl + 1);
MPASS(slot->len + len <= UINT16_MAX);
len += slot->len;
kring->nr_hwcur = nm_next(kring->nr_hwcur, lim);
}
wr->plen = htobe16(len);
npkt -= n;
nm_txq->pidx += npkt_to_ndesc(n);
MPASS(nm_txq->pidx <= nm_txq->sidx);
if (__predict_false(nm_txq->pidx == nm_txq->sidx)) {
/*
* This routine doesn't know how to write WRs that wrap
* around. Make sure it wasn't asked to.
*/
MPASS(npkt == 0);
nm_txq->pidx = 0;
}
if (npkt == 0 && npkt_remaining == 0) {
/* All done. */
if (lazy_tx_credit_flush == 0) {
wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ |
F_FW_WR_EQUIQ);
nm_txq->equeqidx = nm_txq->pidx;
nm_txq->equiqidx = nm_txq->pidx;
}
ring_nm_txq_db(sc, nm_txq);
return;
}
if (NMIDXDIFF(nm_txq, equiqidx) >= nm_txq->sidx / 2) {
wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ |
F_FW_WR_EQUIQ);
nm_txq->equeqidx = nm_txq->pidx;
nm_txq->equiqidx = nm_txq->pidx;
} else if (NMIDXDIFF(nm_txq, equeqidx) >= 64) {
wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
nm_txq->equeqidx = nm_txq->pidx;
}
if (NMIDXDIFF(nm_txq, dbidx) >= 2 * SGE_MAX_WR_NDESC)
ring_nm_txq_db(sc, nm_txq);
}
/* Will get called again. */
MPASS(npkt_remaining);
}
/* How many contiguous free descriptors starting at pidx */
static inline int
contiguous_ndesc_available(struct sge_nm_txq *nm_txq)
{
if (nm_txq->cidx > nm_txq->pidx)
return (nm_txq->cidx - nm_txq->pidx - 1);
else if (nm_txq->cidx > 0)
return (nm_txq->sidx - nm_txq->pidx);
else
return (nm_txq->sidx - nm_txq->pidx - 1);
}
static int
reclaim_nm_tx_desc(struct sge_nm_txq *nm_txq)
{
struct sge_qstat *spg = (void *)&nm_txq->desc[nm_txq->sidx];
uint16_t hw_cidx = spg->cidx; /* snapshot */
struct fw_eth_tx_pkts_wr *wr;
int n = 0;
hw_cidx = be16toh(hw_cidx);
while (nm_txq->cidx != hw_cidx) {
wr = (void *)&nm_txq->desc[nm_txq->cidx];
MPASS(wr->op_pkd == htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR)));
MPASS(wr->type == 1);
MPASS(wr->npkt > 0 && wr->npkt <= MAX_NPKT_IN_TYPE1_WR);
n += wr->npkt;
nm_txq->cidx += npkt_to_ndesc(wr->npkt);
/*
* We never sent a WR that wrapped around so the credits coming
* back, WR by WR, should never cause the cidx to wrap around
* either.
*/
MPASS(nm_txq->cidx <= nm_txq->sidx);
if (__predict_false(nm_txq->cidx == nm_txq->sidx))
nm_txq->cidx = 0;
}
return (n);
}
static int
cxgbe_netmap_txsync(struct netmap_kring *kring, int flags)
{
struct netmap_adapter *na = kring->na;
struct ifnet *ifp = na->ifp;
struct port_info *pi = ifp->if_softc;
struct adapter *sc = pi->adapter;
struct sge_nm_txq *nm_txq = &sc->sge.nm_txq[pi->first_nm_txq + kring->ring_id];
const u_int head = kring->rhead;
u_int reclaimed = 0;
int n, d, npkt_remaining, ndesc_remaining;
/*
* Tx was at kring->nr_hwcur last time around and now we need to advance
* to kring->rhead. Note that the driver's pidx moves independent of
* netmap's kring->nr_hwcur (pidx counts descriptors and the relation
* between descriptors and frames isn't 1:1).
*/
npkt_remaining = head >= kring->nr_hwcur ? head - kring->nr_hwcur :
kring->nkr_num_slots - kring->nr_hwcur + head;
while (npkt_remaining) {
reclaimed += reclaim_nm_tx_desc(nm_txq);
ndesc_remaining = contiguous_ndesc_available(nm_txq);
/* Can't run out of descriptors with packets still remaining */
MPASS(ndesc_remaining > 0);
/* # of desc needed to tx all remaining packets */
d = (npkt_remaining / MAX_NPKT_IN_TYPE1_WR) * SGE_MAX_WR_NDESC;
if (npkt_remaining % MAX_NPKT_IN_TYPE1_WR)
d += npkt_to_ndesc(npkt_remaining % MAX_NPKT_IN_TYPE1_WR);
if (d <= ndesc_remaining)
n = npkt_remaining;
else {
/* Can't send all, calculate how many can be sent */
n = (ndesc_remaining / SGE_MAX_WR_NDESC) *
MAX_NPKT_IN_TYPE1_WR;
if (ndesc_remaining % SGE_MAX_WR_NDESC)
n += ndesc_to_npkt(ndesc_remaining % SGE_MAX_WR_NDESC);
}
/* Send n packets and update nm_txq->pidx and kring->nr_hwcur */
npkt_remaining -= n;
cxgbe_nm_tx(sc, nm_txq, kring, n, npkt_remaining);
}
MPASS(npkt_remaining == 0);
MPASS(kring->nr_hwcur == head);
MPASS(nm_txq->dbidx == nm_txq->pidx);
/*
* Second part: reclaim buffers for completed transmissions.
*/
if (reclaimed || flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring)) {
reclaimed += reclaim_nm_tx_desc(nm_txq);
kring->nr_hwtail += reclaimed;
if (kring->nr_hwtail >= kring->nkr_num_slots)
kring->nr_hwtail -= kring->nkr_num_slots;
}
nm_txsync_finalize(kring);
return (0);
}
static int
cxgbe_netmap_rxsync(struct netmap_kring *kring, int flags)
{
struct netmap_adapter *na = kring->na;
struct netmap_ring *ring = kring->ring;
struct ifnet *ifp = na->ifp;
struct port_info *pi = ifp->if_softc;
struct adapter *sc = pi->adapter;
struct sge_nm_rxq *nm_rxq = &sc->sge.nm_rxq[pi->first_nm_rxq + kring->ring_id];
u_int const head = nm_rxsync_prologue(kring);
u_int n;
int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
if (netmap_no_pendintr || force_update) {
kring->nr_hwtail = atomic_load_acq_32(&nm_rxq->fl_cidx);
kring->nr_kflags &= ~NKR_PENDINTR;
}
/* Userspace done with buffers from kring->nr_hwcur to head */
n = head >= kring->nr_hwcur ? head - kring->nr_hwcur :
kring->nkr_num_slots - kring->nr_hwcur + head;
n &= ~7U;
if (n > 0) {
u_int fl_pidx = nm_rxq->fl_pidx;
struct netmap_slot *slot = &ring->slot[fl_pidx];
uint64_t ba;
int i, dbinc = 0, hwidx = nm_rxq->fl_hwidx;
/*
* We always deal with 8 buffers at a time. We must have
* stopped at an 8B boundary (fl_pidx) last time around and we
* must have a multiple of 8B buffers to give to the freelist.
*/
MPASS((fl_pidx & 7) == 0);
MPASS((n & 7) == 0);
IDXINCR(kring->nr_hwcur, n, kring->nkr_num_slots);
IDXINCR(nm_rxq->fl_pidx, n, nm_rxq->fl_sidx);
while (n > 0) {
for (i = 0; i < 8; i++, fl_pidx++, slot++) {
PNMB(na, slot, &ba);
nm_rxq->fl_desc[fl_pidx] = htobe64(ba | hwidx);
slot->flags &= ~NS_BUF_CHANGED;
MPASS(fl_pidx <= nm_rxq->fl_sidx);
}
n -= 8;
if (fl_pidx == nm_rxq->fl_sidx) {
fl_pidx = 0;
slot = &ring->slot[0];
}
if (++dbinc == 8 && n >= 32) {
wmb();
t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
nm_rxq->fl_db_val | V_PIDX(dbinc));
dbinc = 0;
}
}
MPASS(nm_rxq->fl_pidx == fl_pidx);
if (dbinc > 0) {
wmb();
t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
nm_rxq->fl_db_val | V_PIDX(dbinc));
}
}
nm_rxsync_finalize(kring);
return (0);
}
/*
* Create an ifnet solely for netmap use and register it with the kernel.
*/
int
create_netmap_ifnet(struct port_info *pi)
{
struct adapter *sc = pi->adapter;
struct netmap_adapter na;
struct ifnet *ifp;
device_t dev = pi->dev;
uint8_t mac[ETHER_ADDR_LEN];
int rc;
if (pi->nnmtxq <= 0 || pi->nnmrxq <= 0)
return (0);
MPASS(pi->nm_ifp == NULL);
/*
* Allocate a virtual interface exclusively for netmap use. Give it the
* MAC address normally reserved for use by a TOE interface. (The TOE
* driver on FreeBSD doesn't use it).
*/
rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, &mac[0],
&pi->nm_rss_size, FW_VI_FUNC_OFLD, 0);
if (rc < 0) {
device_printf(dev, "unable to allocate netmap virtual "
"interface for port %d: %d\n", pi->port_id, -rc);
return (-rc);
}
pi->nm_viid = rc;
pi->nm_xact_addr_filt = -1;
ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "Cannot allocate netmap ifnet\n");
return (ENOMEM);
}
pi->nm_ifp = ifp;
ifp->if_softc = pi;
if_initname(ifp, is_t4(pi->adapter) ? "ncxgbe" : "ncxl",
device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = cxgbe_nm_init;
ifp->if_ioctl = cxgbe_nm_ioctl;
ifp->if_transmit = cxgbe_nm_transmit;
ifp->if_qflush = cxgbe_nm_qflush;
/*
* netmap(4) says "netmap does not use features such as checksum
* offloading, TCP segmentation offloading, encryption, VLAN
* encapsulation/decapsulation, etc."
*
* By default we comply with the statement above. But we do declare the
* ifnet capable of L3/L4 checksumming so that a user can override
* netmap and have the hardware do the L3/L4 checksums.
*/
ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_JUMBO_MTU |
IFCAP_HWCSUM_IPV6;
ifp->if_capenable = 0;
ifp->if_hwassist = 0;
/* nm_media has already been setup by the caller */
ether_ifattach(ifp, mac);
/*
* Register with netmap in the kernel.
*/
bzero(&na, sizeof(na));
na.ifp = pi->nm_ifp;
na.na_flags = NAF_BDG_MAYSLEEP;
/* Netmap doesn't know about the space reserved for the status page. */
na.num_tx_desc = pi->qsize_txq - spg_len / EQ_ESIZE;
/*
* The freelist's cidx/pidx drives netmap's rx cidx/pidx. So
* num_rx_desc is based on the number of buffers that can be held in the
* freelist, and not the number of entries in the iq. (These two are
* not exactly the same due to the space taken up by the status page).
*/
na.num_rx_desc = (pi->qsize_rxq / 8) * 8;
na.nm_txsync = cxgbe_netmap_txsync;
na.nm_rxsync = cxgbe_netmap_rxsync;
na.nm_register = cxgbe_netmap_reg;
na.num_tx_rings = pi->nnmtxq;
na.num_rx_rings = pi->nnmrxq;
netmap_attach(&na); /* This adds IFCAP_NETMAP to if_capabilities */
return (0);
}
int
destroy_netmap_ifnet(struct port_info *pi)
{
struct adapter *sc = pi->adapter;
if (pi->nm_ifp == NULL)
return (0);
netmap_detach(pi->nm_ifp);
ifmedia_removeall(&pi->nm_media);
ether_ifdetach(pi->nm_ifp);
if_free(pi->nm_ifp);
t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->nm_viid);
return (0);
}
static void
handle_nm_fw6_msg(struct adapter *sc, struct ifnet *ifp,
const struct cpl_fw6_msg *cpl)
{
const struct cpl_sge_egr_update *egr;
uint32_t oq;
struct sge_nm_txq *nm_txq;
if (cpl->type != FW_TYPE_RSSCPL && cpl->type != FW6_TYPE_RSSCPL)
panic("%s: FW_TYPE 0x%x on nm_rxq.", __func__, cpl->type);
/* data[0] is RSS header */
egr = (const void *)&cpl->data[1];
oq = be32toh(egr->opcode_qid);
MPASS(G_CPL_OPCODE(oq) == CPL_SGE_EGR_UPDATE);
nm_txq = (void *)sc->sge.eqmap[G_EGR_QID(oq) - sc->sge.eq_start];
netmap_tx_irq(ifp, nm_txq->nid);
}
void
t4_nm_intr(void *arg)
{
struct sge_nm_rxq *nm_rxq = arg;
struct port_info *pi = nm_rxq->pi;
struct adapter *sc = pi->adapter;
struct ifnet *ifp = pi->nm_ifp;
struct netmap_adapter *na = NA(ifp);
struct netmap_kring *kring = &na->rx_rings[nm_rxq->nid];
struct netmap_ring *ring = kring->ring;
struct iq_desc *d = &nm_rxq->iq_desc[nm_rxq->iq_cidx];
uint32_t lq;
u_int n = 0;
int processed = 0;
uint8_t opcode;
uint32_t fl_cidx = atomic_load_acq_32(&nm_rxq->fl_cidx);
while ((d->rsp.u.type_gen & F_RSPD_GEN) == nm_rxq->iq_gen) {
rmb();
lq = be32toh(d->rsp.pldbuflen_qid);
opcode = d->rss.opcode;
switch (G_RSPD_TYPE(d->rsp.u.type_gen)) {
case X_RSPD_TYPE_FLBUF:
/* No buffer packing so new buf every time */
MPASS(lq & F_RSPD_NEWBUF);
/* fall through */
case X_RSPD_TYPE_CPL:
MPASS(opcode < NUM_CPL_CMDS);
switch (opcode) {
case CPL_FW4_MSG:
case CPL_FW6_MSG:
handle_nm_fw6_msg(sc, ifp,
(const void *)&d->cpl[0]);
break;
case CPL_RX_PKT:
ring->slot[fl_cidx].len = G_RSPD_LEN(lq) - fl_pktshift;
ring->slot[fl_cidx].flags = kring->nkr_slot_flags;
if (__predict_false(++fl_cidx == nm_rxq->fl_sidx))
fl_cidx = 0;
break;
default:
panic("%s: unexpected opcode 0x%x on nm_rxq %p",
__func__, opcode, nm_rxq);
}
break;
case X_RSPD_TYPE_INTR:
/* Not equipped to handle forwarded interrupts. */
panic("%s: netmap queue received interrupt for iq %u\n",
__func__, lq);
default:
panic("%s: illegal response type %d on nm_rxq %p",
__func__, G_RSPD_TYPE(d->rsp.u.type_gen), nm_rxq);
}
d++;
if (__predict_false(++nm_rxq->iq_cidx == nm_rxq->iq_sidx)) {
nm_rxq->iq_cidx = 0;
d = &nm_rxq->iq_desc[0];
nm_rxq->iq_gen ^= F_RSPD_GEN;
}
if (__predict_false(++n == 64)) { /* XXXNM: tune */
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
V_CIDXINC(n) | V_INGRESSQID(nm_rxq->iq_cntxt_id) |
V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
n = 0;
}
}
if (fl_cidx != nm_rxq->fl_cidx) {
atomic_store_rel_32(&nm_rxq->fl_cidx, fl_cidx);
netmap_rx_irq(ifp, nm_rxq->nid, &processed);
}
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(n) |
V_INGRESSQID((u32)nm_rxq->iq_cntxt_id) | V_SEINTARM(F_QINTR_CNT_EN));
}
#endif