7fd9a6a23a
also don't use ANSI string concatenation.
2463 lines
59 KiB
C
2463 lines
59 KiB
C
/*
|
|
* Copyright (c) 1997, 1998, 1999
|
|
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Lucent WaveLAN/IEEE 802.11 PCMCIA driver for FreeBSD.
|
|
*
|
|
* Written by Bill Paul <wpaul@ctr.columbia.edu>
|
|
* Electrical Engineering Department
|
|
* Columbia University, New York City
|
|
*/
|
|
|
|
/*
|
|
* The WaveLAN/IEEE adapter is the second generation of the WaveLAN
|
|
* from Lucent. Unlike the older cards, the new ones are programmed
|
|
* entirely via a firmware-driven controller called the Hermes.
|
|
* Unfortunately, Lucent will not release the Hermes programming manual
|
|
* without an NDA (if at all). What they do release is an API library
|
|
* called the HCF (Hardware Control Functions) which is supposed to
|
|
* do the device-specific operations of a device driver for you. The
|
|
* publically available version of the HCF library (the 'HCF Light') is
|
|
* a) extremely gross, b) lacks certain features, particularly support
|
|
* for 802.11 frames, and c) is contaminated by the GNU Public License.
|
|
*
|
|
* This driver does not use the HCF or HCF Light at all. Instead, it
|
|
* programs the Hermes controller directly, using information gleaned
|
|
* from the HCF Light code and corresponding documentation.
|
|
*
|
|
* This driver supports both the PCMCIA and ISA versions of the
|
|
* WaveLAN/IEEE cards. Note however that the ISA card isn't really
|
|
* anything of the sort: it's actually a PCMCIA bridge adapter
|
|
* that fits into an ISA slot, into which a PCMCIA WaveLAN card is
|
|
* inserted. Consequently, you need to use the pccard support for
|
|
* both the ISA and PCMCIA adapters.
|
|
*/
|
|
|
|
#define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
|
|
#define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
|
|
#define WICACHE /* turn on signal strength cache code */
|
|
|
|
#include "pci.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/module.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/bus_pio.h>
|
|
#include <sys/rman.h>
|
|
|
|
#if NPCI > 0
|
|
#include <pci/pcireg.h>
|
|
#include <pci/pcivar.h>
|
|
#endif
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_ieee80211.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/if_ether.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <dev/pccard/pccardvar.h>
|
|
#include <dev/pccard/pccarddevs.h>
|
|
|
|
#include <dev/wi/if_wavelan_ieee.h>
|
|
#include <dev/wi/if_wireg.h>
|
|
|
|
#include "card_if.h"
|
|
|
|
#if !defined(lint)
|
|
static const char rcsid[] =
|
|
"$FreeBSD$";
|
|
#endif
|
|
|
|
#ifdef foo
|
|
static u_int8_t wi_mcast_addr[6] = { 0x01, 0x60, 0x1D, 0x00, 0x01, 0x00 };
|
|
#endif
|
|
|
|
/*
|
|
* The following is for compatibility with NetBSD, but should really be
|
|
* brought in from NetBSD en toto.
|
|
*/
|
|
#define le16toh(a) (a)
|
|
#define LE16TOH(a)
|
|
|
|
static void wi_intr __P((void *));
|
|
static void wi_reset __P((struct wi_softc *));
|
|
static int wi_ioctl __P((struct ifnet *, u_long, caddr_t));
|
|
static void wi_init __P((void *));
|
|
static void wi_start __P((struct ifnet *));
|
|
static void wi_stop __P((struct wi_softc *));
|
|
static void wi_watchdog __P((struct ifnet *));
|
|
static void wi_rxeof __P((struct wi_softc *));
|
|
static void wi_txeof __P((struct wi_softc *, int));
|
|
static void wi_update_stats __P((struct wi_softc *));
|
|
static void wi_setmulti __P((struct wi_softc *));
|
|
|
|
static int wi_cmd __P((struct wi_softc *, int, int));
|
|
static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *));
|
|
static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *));
|
|
static int wi_read_data __P((struct wi_softc *, int,
|
|
int, caddr_t, int));
|
|
static int wi_write_data __P((struct wi_softc *, int,
|
|
int, caddr_t, int));
|
|
static int wi_seek __P((struct wi_softc *, int, int, int));
|
|
static int wi_alloc_nicmem __P((struct wi_softc *, int, int *));
|
|
static void wi_inquire __P((void *));
|
|
static void wi_setdef __P((struct wi_softc *, struct wi_req *));
|
|
static int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int));
|
|
|
|
#ifdef WICACHE
|
|
static
|
|
void wi_cache_store __P((struct wi_softc *, struct ether_header *,
|
|
struct mbuf *, unsigned short));
|
|
#endif
|
|
|
|
static int wi_generic_attach __P((device_t));
|
|
static int wi_pccard_match __P((device_t));
|
|
static int wi_pccard_probe __P((device_t));
|
|
static int wi_pccard_attach __P((device_t));
|
|
#if NPCI > 0
|
|
static int wi_pci_probe __P((device_t));
|
|
static int wi_pci_attach __P((device_t));
|
|
#endif
|
|
static int wi_pccard_detach __P((device_t));
|
|
static void wi_shutdown __P((device_t));
|
|
|
|
static int wi_alloc __P((device_t, int));
|
|
static void wi_free __P((device_t));
|
|
|
|
static int wi_get_cur_ssid __P((struct wi_softc *, char *, int *));
|
|
static void wi_get_id __P((struct wi_softc *, device_t));
|
|
static int wi_media_change __P((struct ifnet *));
|
|
static void wi_media_status __P((struct ifnet *, struct ifmediareq *));
|
|
|
|
static device_method_t wi_pccard_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, pccard_compat_probe),
|
|
DEVMETHOD(device_attach, pccard_compat_attach),
|
|
DEVMETHOD(device_detach, wi_pccard_detach),
|
|
DEVMETHOD(device_shutdown, wi_shutdown),
|
|
|
|
/* Card interface */
|
|
DEVMETHOD(card_compat_match, wi_pccard_match),
|
|
DEVMETHOD(card_compat_probe, wi_pccard_probe),
|
|
DEVMETHOD(card_compat_attach, wi_pccard_attach),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
#if NPCI > 0
|
|
static device_method_t wi_pci_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, wi_pci_probe),
|
|
DEVMETHOD(device_attach, wi_pci_attach),
|
|
DEVMETHOD(device_detach, wi_pccard_detach),
|
|
DEVMETHOD(device_shutdown, wi_shutdown),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
#endif
|
|
|
|
static driver_t wi_pccard_driver = {
|
|
"wi",
|
|
wi_pccard_methods,
|
|
sizeof(struct wi_softc)
|
|
};
|
|
|
|
#if NPCI > 0
|
|
static driver_t wi_pci_driver = {
|
|
"wi",
|
|
wi_pci_methods,
|
|
sizeof(struct wi_softc)
|
|
};
|
|
|
|
static struct {
|
|
unsigned int vendor,device;
|
|
char *desc;
|
|
} pci_ids[] = {
|
|
{0x1638, 0x1100, "PRISM2STA PCI WaveLAN/IEEE 802.11"},
|
|
{0x1385, 0x4100, "Netgear MA301 PCI IEEE 802.11b"},
|
|
{0, 0, NULL}
|
|
};
|
|
#endif
|
|
|
|
static devclass_t wi_devclass;
|
|
|
|
DRIVER_MODULE(if_wi, pccard, wi_pccard_driver, wi_devclass, 0, 0);
|
|
#if NPCI > 0
|
|
DRIVER_MODULE(if_wi, pci, wi_pci_driver, wi_devclass, 0, 0);
|
|
#endif
|
|
|
|
static const struct pccard_product wi_pccard_products[] = {
|
|
PCMCIA_CARD(3COM, 3CRWE737A, 0),
|
|
PCMCIA_CARD(BUFFALO, WLI_PCM_S11, 0),
|
|
PCMCIA_CARD(BUFFALO, WLI_CF_S11G, 0),
|
|
PCMCIA_CARD(COMPAQ, NC5004, 0),
|
|
PCMCIA_CARD(CONTEC, FX_DS110_PCC, 0),
|
|
PCMCIA_CARD(COREGA, WIRELESS_LAN_PCC_11, 0),
|
|
PCMCIA_CARD(COREGA, WIRELESS_LAN_PCCA_11, 0),
|
|
PCMCIA_CARD(COREGA, WIRELESS_LAN_PCCB_11, 0),
|
|
PCMCIA_CARD(ELSA, XI300_IEEE, 0),
|
|
PCMCIA_CARD(ELSA, XI800_IEEE, 0),
|
|
PCMCIA_CARD(EMTAC, WLAN, 0),
|
|
PCMCIA_CARD(GEMTEK, WLAN, 0),
|
|
PCMCIA_CARD(INTEL, PRO_WLAN_2011, 0),
|
|
PCMCIA_CARD(INTERSIL, PRISM2, 0),
|
|
PCMCIA_CARD(IODATA2, WNB11PCM, 0),
|
|
PCMCIA_CARD2(LUCENT, WAVELAN_IEEE, NANOSPEED_PRISM2, 0),
|
|
PCMCIA_CARD2(LUCENT, WAVELAN_IEEE, NEC_CMZ_RT_WP, 0),
|
|
PCMCIA_CARD2(LUCENT, WAVELAN_IEEE, NTT_ME_WLAN, 0),
|
|
PCMCIA_CARD2(LUCENT, WAVELAN_IEEE, SMC_2632W, 0),
|
|
/* Must be after other LUCENT ones because it is less specific */
|
|
PCMCIA_CARD(LUCENT, WAVELAN_IEEE, 0),
|
|
PCMCIA_CARD(LINKSYS2, IWN, 0),
|
|
PCMCIA_CARD(SAMSUNG, SWL_2000N, 0),
|
|
PCMCIA_CARD(TDK, LAK_CD011WL, 0),
|
|
{ NULL }
|
|
};
|
|
|
|
static int wi_pccard_match(dev)
|
|
device_t dev;
|
|
{
|
|
const struct pccard_product *pp;
|
|
|
|
if ((pp = pccard_product_lookup(dev, wi_pccard_products,
|
|
sizeof(wi_pccard_products[0]), NULL)) != NULL) {
|
|
device_set_desc(dev, pp->pp_name);
|
|
return 0;
|
|
}
|
|
return ENXIO;
|
|
}
|
|
|
|
static int wi_pccard_probe(dev)
|
|
device_t dev;
|
|
{
|
|
struct wi_softc *sc;
|
|
int error;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->wi_gone = 0;
|
|
|
|
error = wi_alloc(dev, 0);
|
|
if (error)
|
|
return (error);
|
|
|
|
wi_free(dev);
|
|
|
|
/* Make sure interrupts are disabled. */
|
|
CSR_WRITE_2(sc, WI_INT_EN, 0);
|
|
CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
|
|
|
|
return (0);
|
|
}
|
|
|
|
#if NPCI > 0
|
|
static int
|
|
wi_pci_probe(dev)
|
|
device_t dev;
|
|
{
|
|
struct wi_softc *sc;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
for(i=0; pci_ids[i].vendor != 0; i++) {
|
|
if ((pci_get_vendor(dev) == pci_ids[i].vendor) &&
|
|
(pci_get_device(dev) == pci_ids[i].device)) {
|
|
sc->wi_prism2 = 1;
|
|
device_set_desc(dev, pci_ids[i].desc);
|
|
return (0);
|
|
}
|
|
}
|
|
return(ENXIO);
|
|
}
|
|
#endif
|
|
|
|
static int wi_pccard_detach(dev)
|
|
device_t dev;
|
|
{
|
|
struct wi_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
WI_LOCK(sc);
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
if (sc->wi_gone) {
|
|
device_printf(dev, "already unloaded\n");
|
|
WI_UNLOCK(sc);
|
|
return(ENODEV);
|
|
}
|
|
|
|
wi_stop(sc);
|
|
|
|
/* Delete all remaining media. */
|
|
ifmedia_removeall(&sc->ifmedia);
|
|
|
|
ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
|
|
bus_teardown_intr(dev, sc->irq, sc->wi_intrhand);
|
|
wi_free(dev);
|
|
sc->wi_gone = 1;
|
|
|
|
WI_UNLOCK(sc);
|
|
mtx_destroy(&sc->wi_mtx);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int wi_pccard_attach(device_t dev)
|
|
{
|
|
struct wi_softc *sc;
|
|
int error;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
error = wi_alloc(dev, 0);
|
|
if (error) {
|
|
device_printf(dev, "wi_alloc() failed! (%d)\n", error);
|
|
return (error);
|
|
}
|
|
return (wi_generic_attach(dev));
|
|
}
|
|
|
|
#if NPCI > 0
|
|
static int
|
|
wi_pci_attach(device_t dev)
|
|
{
|
|
struct wi_softc *sc;
|
|
u_int32_t command, wanted;
|
|
u_int16_t reg;
|
|
int error;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
command = pci_read_config(dev, PCIR_COMMAND, 4);
|
|
wanted = PCIM_CMD_PORTEN|PCIM_CMD_MEMEN;
|
|
command |= wanted;
|
|
pci_write_config(dev, PCIR_COMMAND, command, 4);
|
|
command = pci_read_config(dev, PCIR_COMMAND, 4);
|
|
if ((command & wanted) != wanted) {
|
|
device_printf(dev, "wi_pci_attach() failed to enable pci!\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
error = wi_alloc(dev, WI_PCI_IORES);
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Make sure interrupts are disabled. */
|
|
CSR_WRITE_2(sc, WI_INT_EN, 0);
|
|
CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
|
|
|
|
/* We have to do a magic PLX poke to enable interrupts */
|
|
sc->local_rid = WI_PCI_LOCALRES;
|
|
sc->local = bus_alloc_resource(dev, SYS_RES_IOPORT,
|
|
&sc->local_rid, 0, ~0, 1, RF_ACTIVE);
|
|
sc->wi_localtag = rman_get_bustag(sc->local);
|
|
sc->wi_localhandle = rman_get_bushandle(sc->local);
|
|
command = bus_space_read_4(sc->wi_localtag, sc->wi_localhandle,
|
|
WI_LOCAL_INTCSR);
|
|
command |= WI_LOCAL_INTEN;
|
|
bus_space_write_4(sc->wi_localtag, sc->wi_localhandle,
|
|
WI_LOCAL_INTCSR, command);
|
|
bus_release_resource(dev, SYS_RES_IOPORT, sc->local_rid, sc->local);
|
|
sc->local = NULL;
|
|
|
|
sc->mem_rid = WI_PCI_MEMRES;
|
|
sc->mem = bus_alloc_resource(dev, SYS_RES_MEMORY, &sc->mem_rid,
|
|
0, ~0, 1, RF_ACTIVE);
|
|
if (sc->mem == NULL) {
|
|
device_printf(dev, "couldn't allocate memory\n");
|
|
wi_free(dev);
|
|
return (ENXIO);
|
|
}
|
|
sc->wi_bmemtag = rman_get_bustag(sc->mem);
|
|
sc->wi_bmemhandle = rman_get_bushandle(sc->mem);
|
|
|
|
/*
|
|
* From Linux driver:
|
|
* Write COR to enable PC card
|
|
* This is a subset of the protocol that the pccard bus code
|
|
* would do.
|
|
*/
|
|
CSM_WRITE_1(sc, WI_COR_OFFSET, WI_COR_VALUE);
|
|
reg = CSM_READ_1(sc, WI_COR_OFFSET);
|
|
|
|
CSR_WRITE_2(sc, WI_HFA384X_SWSUPPORT0_OFF, WI_PRISM2STA_MAGIC);
|
|
reg = CSR_READ_2(sc, WI_HFA384X_SWSUPPORT0_OFF);
|
|
if (reg != WI_PRISM2STA_MAGIC) {
|
|
device_printf(dev,
|
|
"CSR_READ_2(WI_HFA384X_SWSUPPORT0_OFF) "
|
|
"wanted %d, got %d\n", WI_PRISM2STA_MAGIC, reg);
|
|
wi_free(dev);
|
|
return (ENXIO);
|
|
}
|
|
|
|
error = wi_generic_attach(dev);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
wi_generic_attach(device_t dev)
|
|
{
|
|
struct wi_softc *sc;
|
|
struct wi_ltv_macaddr mac;
|
|
struct wi_ltv_gen gen;
|
|
struct ifnet *ifp;
|
|
int error;
|
|
|
|
sc = device_get_softc(dev);
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
|
|
wi_intr, sc, &sc->wi_intrhand);
|
|
|
|
if (error) {
|
|
device_printf(dev, "bus_setup_intr() failed! (%d)\n", error);
|
|
wi_free(dev);
|
|
return (error);
|
|
}
|
|
|
|
mtx_init(&sc->wi_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
|
|
WI_LOCK(sc);
|
|
|
|
/* Reset the NIC. */
|
|
wi_reset(sc);
|
|
|
|
/*
|
|
* Read the station address.
|
|
* And do it twice. I've seen PRISM-based cards that return
|
|
* an error when trying to read it the first time, which causes
|
|
* the probe to fail.
|
|
*/
|
|
mac.wi_type = WI_RID_MAC_NODE;
|
|
mac.wi_len = 4;
|
|
wi_read_record(sc, (struct wi_ltv_gen *)&mac);
|
|
if ((error = wi_read_record(sc, (struct wi_ltv_gen *)&mac)) != 0) {
|
|
device_printf(dev, "mac read failed %d\n", error);
|
|
wi_free(dev);
|
|
return (error);
|
|
}
|
|
bcopy((char *)&mac.wi_mac_addr,
|
|
(char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
|
|
|
|
device_printf(dev, "802.11 address: %6D\n", sc->arpcom.ac_enaddr, ":");
|
|
|
|
wi_get_id(sc, dev);
|
|
|
|
ifp->if_softc = sc;
|
|
ifp->if_unit = sc->wi_unit;
|
|
ifp->if_name = "wi";
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = wi_ioctl;
|
|
ifp->if_output = ether_output;
|
|
ifp->if_start = wi_start;
|
|
ifp->if_watchdog = wi_watchdog;
|
|
ifp->if_init = wi_init;
|
|
ifp->if_baudrate = 10000000;
|
|
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
|
|
|
|
bzero(sc->wi_node_name, sizeof(sc->wi_node_name));
|
|
bcopy(WI_DEFAULT_NODENAME, sc->wi_node_name,
|
|
sizeof(WI_DEFAULT_NODENAME) - 1);
|
|
|
|
bzero(sc->wi_net_name, sizeof(sc->wi_net_name));
|
|
bcopy(WI_DEFAULT_NETNAME, sc->wi_net_name,
|
|
sizeof(WI_DEFAULT_NETNAME) - 1);
|
|
|
|
bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name));
|
|
bcopy(WI_DEFAULT_IBSS, sc->wi_ibss_name,
|
|
sizeof(WI_DEFAULT_IBSS) - 1);
|
|
|
|
sc->wi_portnum = WI_DEFAULT_PORT;
|
|
sc->wi_ptype = WI_PORTTYPE_BSS;
|
|
sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
|
|
sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
|
|
sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
|
|
sc->wi_max_data_len = WI_DEFAULT_DATALEN;
|
|
sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
|
|
sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
|
|
sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
|
|
|
|
/*
|
|
* Read the default channel from the NIC. This may vary
|
|
* depending on the country where the NIC was purchased, so
|
|
* we can't hard-code a default and expect it to work for
|
|
* everyone.
|
|
*/
|
|
gen.wi_type = WI_RID_OWN_CHNL;
|
|
gen.wi_len = 2;
|
|
wi_read_record(sc, &gen);
|
|
sc->wi_channel = gen.wi_val;
|
|
|
|
/*
|
|
* Find out if we support WEP on this card.
|
|
*/
|
|
gen.wi_type = WI_RID_WEP_AVAIL;
|
|
gen.wi_len = 2;
|
|
wi_read_record(sc, &gen);
|
|
sc->wi_has_wep = gen.wi_val;
|
|
|
|
if (bootverbose) {
|
|
device_printf(sc->dev,
|
|
"%s:wi_has_wep = %d\n",
|
|
__func__, sc->wi_has_wep);
|
|
}
|
|
|
|
bzero((char *)&sc->wi_stats, sizeof(sc->wi_stats));
|
|
|
|
wi_init(sc);
|
|
wi_stop(sc);
|
|
|
|
ifmedia_init(&sc->ifmedia, 0, wi_media_change, wi_media_status);
|
|
/* XXX: Should read from card capabilities */
|
|
#define ADD(m, c) ifmedia_add(&sc->ifmedia, (m), (c), NULL)
|
|
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
|
|
IFM_IEEE80211_ADHOC, 0), 0);
|
|
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
|
|
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
|
|
IFM_IEEE80211_ADHOC, 0), 0);
|
|
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
|
|
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
|
|
IFM_IEEE80211_ADHOC, 0), 0);
|
|
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
|
|
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
|
|
IFM_IEEE80211_ADHOC, 0), 0);
|
|
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
|
|
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
|
|
IFM_IEEE80211_ADHOC, 0), 0);
|
|
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
|
|
#undef ADD
|
|
ifmedia_set(&sc->ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
|
|
0, 0));
|
|
|
|
|
|
/*
|
|
* Call MI attach routine.
|
|
*/
|
|
ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
|
|
callout_handle_init(&sc->wi_stat_ch);
|
|
WI_UNLOCK(sc);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
wi_get_id(sc, dev)
|
|
struct wi_softc *sc;
|
|
device_t dev;
|
|
{
|
|
struct wi_ltv_ver ver;
|
|
|
|
/* getting chip identity */
|
|
memset(&ver, 0, sizeof(ver));
|
|
ver.wi_type = WI_RID_CARDID;
|
|
ver.wi_len = 5;
|
|
wi_read_record(sc, (struct wi_ltv_gen *)&ver);
|
|
device_printf(dev, "using ");
|
|
switch (le16toh(ver.wi_ver[0])) {
|
|
case WI_NIC_EVB2:
|
|
printf("RF:PRISM2 MAC:HFA3841");
|
|
sc->wi_prism2 = 1;
|
|
break;
|
|
case WI_NIC_HWB3763:
|
|
printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3763 rev.B");
|
|
sc->wi_prism2 = 1;
|
|
break;
|
|
case WI_NIC_HWB3163:
|
|
printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.A");
|
|
sc->wi_prism2 = 1;
|
|
break;
|
|
case WI_NIC_HWB3163B:
|
|
printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.B");
|
|
sc->wi_prism2 = 1;
|
|
break;
|
|
case WI_NIC_EVB3:
|
|
printf("RF:PRISM2 MAC:HFA3842");
|
|
sc->wi_prism2 = 1;
|
|
break;
|
|
case WI_NIC_HWB1153:
|
|
printf("RF:PRISM1 MAC:HFA3841 CARD:HWB1153");
|
|
sc->wi_prism2 = 1;
|
|
break;
|
|
case WI_NIC_P2_SST:
|
|
printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163-SST-flash");
|
|
sc->wi_prism2 = 1;
|
|
break;
|
|
case WI_NIC_PRISM2_5:
|
|
printf("RF:PRISM2.5 MAC:ISL3873");
|
|
sc->wi_prism2 = 1;
|
|
break;
|
|
case WI_NIC_3874A:
|
|
printf("RF:PRISM2.5 MAC:ISL3874A(PCI)");
|
|
sc->wi_prism2 = 1;
|
|
break;
|
|
default:
|
|
printf("Lucent chip or unknown chip\n");
|
|
sc->wi_prism2 = 0;
|
|
break;
|
|
}
|
|
|
|
if (sc->wi_prism2) {
|
|
/* try to get prism2 firm version */
|
|
memset(&ver, 0, sizeof(ver));
|
|
ver.wi_type = WI_RID_IDENT;
|
|
ver.wi_len = 5;
|
|
wi_read_record(sc, (struct wi_ltv_gen *)&ver);
|
|
LE16TOH(ver.wi_ver[1]);
|
|
LE16TOH(ver.wi_ver[2]);
|
|
LE16TOH(ver.wi_ver[3]);
|
|
printf(", Firmware: %d.%d variant %d\n", ver.wi_ver[2],
|
|
ver.wi_ver[3], ver.wi_ver[1]);
|
|
sc->wi_prism2_ver = ver.wi_ver[2] * 100 +
|
|
ver.wi_ver[3] * 10 + ver.wi_ver[1];
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void wi_rxeof(sc)
|
|
struct wi_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ether_header *eh;
|
|
struct wi_frame rx_frame;
|
|
struct mbuf *m;
|
|
int id;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
id = CSR_READ_2(sc, WI_RX_FID);
|
|
|
|
/* First read in the frame header */
|
|
if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) {
|
|
ifp->if_ierrors++;
|
|
return;
|
|
}
|
|
|
|
if (rx_frame.wi_status & WI_STAT_ERRSTAT) {
|
|
ifp->if_ierrors++;
|
|
return;
|
|
}
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
ifp->if_ierrors++;
|
|
return;
|
|
}
|
|
MCLGET(m, M_DONTWAIT);
|
|
if (!(m->m_flags & M_EXT)) {
|
|
m_freem(m);
|
|
ifp->if_ierrors++;
|
|
return;
|
|
}
|
|
|
|
eh = mtod(m, struct ether_header *);
|
|
m->m_pkthdr.rcvif = ifp;
|
|
|
|
if (rx_frame.wi_status == WI_STAT_1042 ||
|
|
rx_frame.wi_status == WI_STAT_TUNNEL ||
|
|
rx_frame.wi_status == WI_STAT_WMP_MSG) {
|
|
if((rx_frame.wi_dat_len + WI_SNAPHDR_LEN) > MCLBYTES) {
|
|
device_printf(sc->dev, "oversized packet received "
|
|
"(wi_dat_len=%d, wi_status=0x%x)\n",
|
|
rx_frame.wi_dat_len, rx_frame.wi_status);
|
|
m_freem(m);
|
|
ifp->if_ierrors++;
|
|
return;
|
|
}
|
|
m->m_pkthdr.len = m->m_len =
|
|
rx_frame.wi_dat_len + WI_SNAPHDR_LEN;
|
|
|
|
#if 0
|
|
bcopy((char *)&rx_frame.wi_addr1,
|
|
(char *)&eh->ether_dhost, ETHER_ADDR_LEN);
|
|
if (sc->wi_ptype == WI_PORTTYPE_ADHOC) {
|
|
bcopy((char *)&rx_frame.wi_addr2,
|
|
(char *)&eh->ether_shost, ETHER_ADDR_LEN);
|
|
} else {
|
|
bcopy((char *)&rx_frame.wi_addr3,
|
|
(char *)&eh->ether_shost, ETHER_ADDR_LEN);
|
|
}
|
|
#else
|
|
bcopy((char *)&rx_frame.wi_dst_addr,
|
|
(char *)&eh->ether_dhost, ETHER_ADDR_LEN);
|
|
bcopy((char *)&rx_frame.wi_src_addr,
|
|
(char *)&eh->ether_shost, ETHER_ADDR_LEN);
|
|
#endif
|
|
|
|
bcopy((char *)&rx_frame.wi_type,
|
|
(char *)&eh->ether_type, ETHER_TYPE_LEN);
|
|
|
|
if (wi_read_data(sc, id, WI_802_11_OFFSET,
|
|
mtod(m, caddr_t) + sizeof(struct ether_header),
|
|
m->m_len + 2)) {
|
|
m_freem(m);
|
|
ifp->if_ierrors++;
|
|
return;
|
|
}
|
|
} else {
|
|
if((rx_frame.wi_dat_len +
|
|
sizeof(struct ether_header)) > MCLBYTES) {
|
|
device_printf(sc->dev, "oversized packet received "
|
|
"(wi_dat_len=%d, wi_status=0x%x)\n",
|
|
rx_frame.wi_dat_len, rx_frame.wi_status);
|
|
m_freem(m);
|
|
ifp->if_ierrors++;
|
|
return;
|
|
}
|
|
m->m_pkthdr.len = m->m_len =
|
|
rx_frame.wi_dat_len + sizeof(struct ether_header);
|
|
|
|
if (wi_read_data(sc, id, WI_802_3_OFFSET,
|
|
mtod(m, caddr_t), m->m_len + 2)) {
|
|
m_freem(m);
|
|
ifp->if_ierrors++;
|
|
return;
|
|
}
|
|
}
|
|
|
|
ifp->if_ipackets++;
|
|
|
|
/* Receive packet. */
|
|
m_adj(m, sizeof(struct ether_header));
|
|
#ifdef WICACHE
|
|
wi_cache_store(sc, eh, m, rx_frame.wi_q_info);
|
|
#endif
|
|
ether_input(ifp, eh, m);
|
|
}
|
|
|
|
static void wi_txeof(sc, status)
|
|
struct wi_softc *sc;
|
|
int status;
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
ifp->if_timer = 0;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
if (status & WI_EV_TX_EXC)
|
|
ifp->if_oerrors++;
|
|
else
|
|
ifp->if_opackets++;
|
|
|
|
return;
|
|
}
|
|
|
|
void wi_inquire(xsc)
|
|
void *xsc;
|
|
{
|
|
struct wi_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = xsc;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60);
|
|
|
|
/* Don't do this while we're transmitting */
|
|
if (ifp->if_flags & IFF_OACTIVE)
|
|
return;
|
|
|
|
wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS);
|
|
|
|
return;
|
|
}
|
|
|
|
void wi_update_stats(sc)
|
|
struct wi_softc *sc;
|
|
{
|
|
struct wi_ltv_gen gen;
|
|
u_int16_t id;
|
|
struct ifnet *ifp;
|
|
u_int32_t *ptr;
|
|
int len, i;
|
|
u_int16_t t;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
id = CSR_READ_2(sc, WI_INFO_FID);
|
|
|
|
wi_read_data(sc, id, 0, (char *)&gen, 4);
|
|
|
|
if (gen.wi_type != WI_INFO_COUNTERS)
|
|
return;
|
|
|
|
len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
|
|
gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
|
|
ptr = (u_int32_t *)&sc->wi_stats;
|
|
|
|
for (i = 0; i < len - 1; i++) {
|
|
t = CSR_READ_2(sc, WI_DATA1);
|
|
#ifdef WI_HERMES_STATS_WAR
|
|
if (t > 0xF000)
|
|
t = ~t & 0xFFFF;
|
|
#endif
|
|
ptr[i] += t;
|
|
}
|
|
|
|
ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
|
|
sc->wi_stats.wi_tx_multi_retries +
|
|
sc->wi_stats.wi_tx_retry_limit;
|
|
|
|
return;
|
|
}
|
|
|
|
static void wi_intr(xsc)
|
|
void *xsc;
|
|
{
|
|
struct wi_softc *sc = xsc;
|
|
struct ifnet *ifp;
|
|
u_int16_t status;
|
|
|
|
WI_LOCK(sc);
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
if (sc->wi_gone || !(ifp->if_flags & IFF_UP)) {
|
|
CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
|
|
CSR_WRITE_2(sc, WI_INT_EN, 0);
|
|
WI_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
/* Disable interrupts. */
|
|
CSR_WRITE_2(sc, WI_INT_EN, 0);
|
|
|
|
status = CSR_READ_2(sc, WI_EVENT_STAT);
|
|
CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
|
|
|
|
if (status & WI_EV_RX) {
|
|
wi_rxeof(sc);
|
|
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
|
|
}
|
|
|
|
if (status & WI_EV_TX) {
|
|
wi_txeof(sc, status);
|
|
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
|
|
}
|
|
|
|
if (status & WI_EV_ALLOC) {
|
|
int id;
|
|
|
|
id = CSR_READ_2(sc, WI_ALLOC_FID);
|
|
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
|
|
if (id == sc->wi_tx_data_id)
|
|
wi_txeof(sc, status);
|
|
}
|
|
|
|
if (status & WI_EV_INFO) {
|
|
wi_update_stats(sc);
|
|
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
|
|
}
|
|
|
|
if (status & WI_EV_TX_EXC) {
|
|
wi_txeof(sc, status);
|
|
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
|
|
}
|
|
|
|
if (status & WI_EV_INFO_DROP) {
|
|
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
|
|
}
|
|
|
|
/* Re-enable interrupts. */
|
|
CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
|
|
|
|
if (ifp->if_snd.ifq_head != NULL) {
|
|
wi_start(ifp);
|
|
}
|
|
|
|
WI_UNLOCK(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
static int wi_cmd(sc, cmd, val)
|
|
struct wi_softc *sc;
|
|
int cmd;
|
|
int val;
|
|
{
|
|
int i, s = 0;
|
|
|
|
/* wait for the busy bit to clear */
|
|
for (i = 500; i > 0; i--) { /* 5s */
|
|
if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY)) {
|
|
break;
|
|
}
|
|
DELAY(10*1000); /* 10 m sec */
|
|
}
|
|
if (i == 0) {
|
|
return(ETIMEDOUT);
|
|
}
|
|
|
|
CSR_WRITE_2(sc, WI_PARAM0, val);
|
|
CSR_WRITE_2(sc, WI_PARAM1, 0);
|
|
CSR_WRITE_2(sc, WI_PARAM2, 0);
|
|
CSR_WRITE_2(sc, WI_COMMAND, cmd);
|
|
|
|
for (i = 0; i < WI_TIMEOUT; i++) {
|
|
/*
|
|
* Wait for 'command complete' bit to be
|
|
* set in the event status register.
|
|
*/
|
|
s = CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD;
|
|
if (s) {
|
|
/* Ack the event and read result code. */
|
|
s = CSR_READ_2(sc, WI_STATUS);
|
|
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
|
|
#ifdef foo
|
|
if ((s & WI_CMD_CODE_MASK) != (cmd & WI_CMD_CODE_MASK))
|
|
return(EIO);
|
|
#endif
|
|
if (s & WI_STAT_CMD_RESULT)
|
|
return(EIO);
|
|
break;
|
|
}
|
|
if (cmd == WI_CMD_INI)
|
|
DELAY(100);
|
|
}
|
|
|
|
if (i == WI_TIMEOUT)
|
|
return(ETIMEDOUT);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void wi_reset(sc)
|
|
struct wi_softc *sc;
|
|
{
|
|
#define WI_INIT_TRIES 5
|
|
int i;
|
|
|
|
for (i = 0; i < WI_INIT_TRIES; i++) {
|
|
if (wi_cmd(sc, WI_CMD_INI, 0) == 0)
|
|
break;
|
|
DELAY(50 * 1000); /* 50ms */
|
|
}
|
|
if (i == WI_INIT_TRIES)
|
|
device_printf(sc->dev, "init failed\n");
|
|
|
|
CSR_WRITE_2(sc, WI_INT_EN, 0);
|
|
CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
|
|
|
|
/* Calibrate timer. */
|
|
WI_SETVAL(WI_RID_TICK_TIME, 8);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Read an LTV record from the NIC.
|
|
*/
|
|
static int wi_read_record(sc, ltv)
|
|
struct wi_softc *sc;
|
|
struct wi_ltv_gen *ltv;
|
|
{
|
|
u_int16_t *ptr;
|
|
int i, len, code;
|
|
struct wi_ltv_gen *oltv, p2ltv;
|
|
|
|
oltv = ltv;
|
|
if (sc->wi_prism2) {
|
|
switch (ltv->wi_type) {
|
|
case WI_RID_ENCRYPTION:
|
|
p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
|
|
p2ltv.wi_len = 2;
|
|
ltv = &p2ltv;
|
|
break;
|
|
case WI_RID_TX_CRYPT_KEY:
|
|
p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
|
|
p2ltv.wi_len = 2;
|
|
ltv = &p2ltv;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Tell the NIC to enter record read mode. */
|
|
if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type))
|
|
return(EIO);
|
|
|
|
/* Seek to the record. */
|
|
if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
|
|
return(EIO);
|
|
|
|
/*
|
|
* Read the length and record type and make sure they
|
|
* match what we expect (this verifies that we have enough
|
|
* room to hold all of the returned data).
|
|
*/
|
|
len = CSR_READ_2(sc, WI_DATA1);
|
|
if (len > ltv->wi_len)
|
|
return(ENOSPC);
|
|
code = CSR_READ_2(sc, WI_DATA1);
|
|
if (code != ltv->wi_type)
|
|
return(EIO);
|
|
|
|
ltv->wi_len = len;
|
|
ltv->wi_type = code;
|
|
|
|
/* Now read the data. */
|
|
ptr = <v->wi_val;
|
|
for (i = 0; i < ltv->wi_len - 1; i++)
|
|
ptr[i] = CSR_READ_2(sc, WI_DATA1);
|
|
|
|
if (sc->wi_prism2) {
|
|
switch (oltv->wi_type) {
|
|
case WI_RID_TX_RATE:
|
|
case WI_RID_CUR_TX_RATE:
|
|
switch (ltv->wi_val) {
|
|
case 1: oltv->wi_val = 1; break;
|
|
case 2: oltv->wi_val = 2; break;
|
|
case 3: oltv->wi_val = 6; break;
|
|
case 4: oltv->wi_val = 5; break;
|
|
case 7: oltv->wi_val = 7; break;
|
|
case 8: oltv->wi_val = 11; break;
|
|
case 15: oltv->wi_val = 3; break;
|
|
default: oltv->wi_val = 0x100 + ltv->wi_val; break;
|
|
}
|
|
break;
|
|
case WI_RID_ENCRYPTION:
|
|
oltv->wi_len = 2;
|
|
if (ltv->wi_val & 0x01)
|
|
oltv->wi_val = 1;
|
|
else
|
|
oltv->wi_val = 0;
|
|
break;
|
|
case WI_RID_TX_CRYPT_KEY:
|
|
oltv->wi_len = 2;
|
|
oltv->wi_val = ltv->wi_val;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Same as read, except we inject data instead of reading it.
|
|
*/
|
|
static int wi_write_record(sc, ltv)
|
|
struct wi_softc *sc;
|
|
struct wi_ltv_gen *ltv;
|
|
{
|
|
u_int16_t *ptr;
|
|
int i;
|
|
struct wi_ltv_gen p2ltv;
|
|
|
|
if (sc->wi_prism2) {
|
|
switch (ltv->wi_type) {
|
|
case WI_RID_TX_RATE:
|
|
p2ltv.wi_type = WI_RID_TX_RATE;
|
|
p2ltv.wi_len = 2;
|
|
switch (ltv->wi_val) {
|
|
case 1: p2ltv.wi_val = 1; break;
|
|
case 2: p2ltv.wi_val = 2; break;
|
|
case 3: p2ltv.wi_val = 15; break;
|
|
case 5: p2ltv.wi_val = 4; break;
|
|
case 6: p2ltv.wi_val = 3; break;
|
|
case 7: p2ltv.wi_val = 7; break;
|
|
case 11: p2ltv.wi_val = 8; break;
|
|
default: return EINVAL;
|
|
}
|
|
ltv = &p2ltv;
|
|
break;
|
|
case WI_RID_ENCRYPTION:
|
|
p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
|
|
p2ltv.wi_len = 2;
|
|
if (ltv->wi_val)
|
|
p2ltv.wi_val = 0x03;
|
|
else
|
|
p2ltv.wi_val = 0x90;
|
|
ltv = &p2ltv;
|
|
break;
|
|
case WI_RID_TX_CRYPT_KEY:
|
|
p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
|
|
p2ltv.wi_len = 2;
|
|
p2ltv.wi_val = ltv->wi_val;
|
|
ltv = &p2ltv;
|
|
break;
|
|
case WI_RID_DEFLT_CRYPT_KEYS:
|
|
{
|
|
int error;
|
|
struct wi_ltv_str ws;
|
|
struct wi_ltv_keys *wk =
|
|
(struct wi_ltv_keys *)ltv;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
ws.wi_len = 4;
|
|
ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
|
|
memcpy(ws.wi_str,
|
|
&wk->wi_keys[i].wi_keydat, 5);
|
|
ws.wi_str[5] = '\0';
|
|
error = wi_write_record(sc,
|
|
(struct wi_ltv_gen *)&ws);
|
|
if (error)
|
|
return error;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
|
|
return(EIO);
|
|
|
|
CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
|
|
CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
|
|
|
|
ptr = <v->wi_val;
|
|
for (i = 0; i < ltv->wi_len - 1; i++)
|
|
CSR_WRITE_2(sc, WI_DATA1, ptr[i]);
|
|
|
|
if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type))
|
|
return(EIO);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int wi_seek(sc, id, off, chan)
|
|
struct wi_softc *sc;
|
|
int id, off, chan;
|
|
{
|
|
int i;
|
|
int selreg, offreg;
|
|
int status;
|
|
|
|
switch (chan) {
|
|
case WI_BAP0:
|
|
selreg = WI_SEL0;
|
|
offreg = WI_OFF0;
|
|
break;
|
|
case WI_BAP1:
|
|
selreg = WI_SEL1;
|
|
offreg = WI_OFF1;
|
|
break;
|
|
default:
|
|
device_printf(sc->dev, "invalid data path: %x\n", chan);
|
|
return(EIO);
|
|
}
|
|
|
|
CSR_WRITE_2(sc, selreg, id);
|
|
CSR_WRITE_2(sc, offreg, off);
|
|
|
|
for (i = 0; i < WI_TIMEOUT; i++) {
|
|
status = CSR_READ_2(sc, offreg);
|
|
if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
|
|
break;
|
|
}
|
|
|
|
if (i == WI_TIMEOUT) {
|
|
device_printf(sc->dev, "timeout in wi_seek to %x/%x; last status %x\n",
|
|
id, off, status);
|
|
return(ETIMEDOUT);
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int wi_read_data(sc, id, off, buf, len)
|
|
struct wi_softc *sc;
|
|
int id, off;
|
|
caddr_t buf;
|
|
int len;
|
|
{
|
|
int i;
|
|
u_int16_t *ptr;
|
|
|
|
if (wi_seek(sc, id, off, WI_BAP1))
|
|
return(EIO);
|
|
|
|
ptr = (u_int16_t *)buf;
|
|
for (i = 0; i < len / 2; i++)
|
|
ptr[i] = CSR_READ_2(sc, WI_DATA1);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* According to the comments in the HCF Light code, there is a bug in
|
|
* the Hermes (or possibly in certain Hermes firmware revisions) where
|
|
* the chip's internal autoincrement counter gets thrown off during
|
|
* data writes: the autoincrement is missed, causing one data word to
|
|
* be overwritten and subsequent words to be written to the wrong memory
|
|
* locations. The end result is that we could end up transmitting bogus
|
|
* frames without realizing it. The workaround for this is to write a
|
|
* couple of extra guard words after the end of the transfer, then
|
|
* attempt to read then back. If we fail to locate the guard words where
|
|
* we expect them, we preform the transfer over again.
|
|
*/
|
|
static int wi_write_data(sc, id, off, buf, len)
|
|
struct wi_softc *sc;
|
|
int id, off;
|
|
caddr_t buf;
|
|
int len;
|
|
{
|
|
int i;
|
|
u_int16_t *ptr;
|
|
#ifdef WI_HERMES_AUTOINC_WAR
|
|
int retries;
|
|
|
|
retries = 512;
|
|
again:
|
|
#endif
|
|
|
|
if (wi_seek(sc, id, off, WI_BAP0))
|
|
return(EIO);
|
|
|
|
ptr = (u_int16_t *)buf;
|
|
for (i = 0; i < (len / 2); i++)
|
|
CSR_WRITE_2(sc, WI_DATA0, ptr[i]);
|
|
|
|
#ifdef WI_HERMES_AUTOINC_WAR
|
|
CSR_WRITE_2(sc, WI_DATA0, 0x1234);
|
|
CSR_WRITE_2(sc, WI_DATA0, 0x5678);
|
|
|
|
if (wi_seek(sc, id, off + len, WI_BAP0))
|
|
return(EIO);
|
|
|
|
if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
|
|
CSR_READ_2(sc, WI_DATA0) != 0x5678) {
|
|
if (--retries >= 0)
|
|
goto again;
|
|
device_printf(sc->dev, "wi_write_data device timeout\n");
|
|
return (EIO);
|
|
}
|
|
#endif
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Allocate a region of memory inside the NIC and zero
|
|
* it out.
|
|
*/
|
|
static int wi_alloc_nicmem(sc, len, id)
|
|
struct wi_softc *sc;
|
|
int len;
|
|
int *id;
|
|
{
|
|
int i;
|
|
|
|
if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) {
|
|
device_printf(sc->dev,
|
|
"failed to allocate %d bytes on NIC\n", len);
|
|
return(ENOMEM);
|
|
}
|
|
|
|
for (i = 0; i < WI_TIMEOUT; i++) {
|
|
if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
|
|
break;
|
|
}
|
|
|
|
if (i == WI_TIMEOUT) {
|
|
device_printf(sc->dev, "time out allocating memory on card\n");
|
|
return(ETIMEDOUT);
|
|
}
|
|
|
|
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
|
|
*id = CSR_READ_2(sc, WI_ALLOC_FID);
|
|
|
|
if (wi_seek(sc, *id, 0, WI_BAP0)) {
|
|
device_printf(sc->dev, "seek failed while allocating memory on card\n");
|
|
return(EIO);
|
|
}
|
|
|
|
for (i = 0; i < len / 2; i++)
|
|
CSR_WRITE_2(sc, WI_DATA0, 0);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void wi_setmulti(sc)
|
|
struct wi_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
int i = 0;
|
|
struct ifmultiaddr *ifma;
|
|
struct wi_ltv_mcast mcast;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
bzero((char *)&mcast, sizeof(mcast));
|
|
|
|
mcast.wi_type = WI_RID_MCAST;
|
|
mcast.wi_len = (3 * 16) + 1;
|
|
|
|
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
|
|
wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
|
|
return;
|
|
}
|
|
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
if (i < 16) {
|
|
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
|
|
(char *)&mcast.wi_mcast[i], ETHER_ADDR_LEN);
|
|
i++;
|
|
} else {
|
|
bzero((char *)&mcast, sizeof(mcast));
|
|
break;
|
|
}
|
|
}
|
|
|
|
mcast.wi_len = (i * 3) + 1;
|
|
wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
|
|
|
|
return;
|
|
}
|
|
|
|
static void wi_setdef(sc, wreq)
|
|
struct wi_softc *sc;
|
|
struct wi_req *wreq;
|
|
{
|
|
struct sockaddr_dl *sdl;
|
|
struct ifaddr *ifa;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
switch(wreq->wi_type) {
|
|
case WI_RID_MAC_NODE:
|
|
ifa = ifaddr_byindex(ifp->if_index);
|
|
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
|
|
bcopy((char *)&wreq->wi_val, (char *)&sc->arpcom.ac_enaddr,
|
|
ETHER_ADDR_LEN);
|
|
bcopy((char *)&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
|
|
break;
|
|
case WI_RID_PORTTYPE:
|
|
sc->wi_ptype = wreq->wi_val[0];
|
|
break;
|
|
case WI_RID_TX_RATE:
|
|
sc->wi_tx_rate = wreq->wi_val[0];
|
|
break;
|
|
case WI_RID_MAX_DATALEN:
|
|
sc->wi_max_data_len = wreq->wi_val[0];
|
|
break;
|
|
case WI_RID_RTS_THRESH:
|
|
sc->wi_rts_thresh = wreq->wi_val[0];
|
|
break;
|
|
case WI_RID_SYSTEM_SCALE:
|
|
sc->wi_ap_density = wreq->wi_val[0];
|
|
break;
|
|
case WI_RID_CREATE_IBSS:
|
|
sc->wi_create_ibss = wreq->wi_val[0];
|
|
break;
|
|
case WI_RID_OWN_CHNL:
|
|
sc->wi_channel = wreq->wi_val[0];
|
|
break;
|
|
case WI_RID_NODENAME:
|
|
bzero(sc->wi_node_name, sizeof(sc->wi_node_name));
|
|
bcopy((char *)&wreq->wi_val[1], sc->wi_node_name, 30);
|
|
break;
|
|
case WI_RID_DESIRED_SSID:
|
|
bzero(sc->wi_net_name, sizeof(sc->wi_net_name));
|
|
bcopy((char *)&wreq->wi_val[1], sc->wi_net_name, 30);
|
|
break;
|
|
case WI_RID_OWN_SSID:
|
|
bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name));
|
|
bcopy((char *)&wreq->wi_val[1], sc->wi_ibss_name, 30);
|
|
break;
|
|
case WI_RID_PM_ENABLED:
|
|
sc->wi_pm_enabled = wreq->wi_val[0];
|
|
break;
|
|
case WI_RID_MAX_SLEEP:
|
|
sc->wi_max_sleep = wreq->wi_val[0];
|
|
break;
|
|
case WI_RID_ENCRYPTION:
|
|
sc->wi_use_wep = wreq->wi_val[0];
|
|
break;
|
|
case WI_RID_TX_CRYPT_KEY:
|
|
sc->wi_tx_key = wreq->wi_val[0];
|
|
break;
|
|
case WI_RID_DEFLT_CRYPT_KEYS:
|
|
bcopy((char *)wreq, (char *)&sc->wi_keys,
|
|
sizeof(struct wi_ltv_keys));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Reinitialize WaveLAN. */
|
|
wi_init(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
static int wi_ioctl(ifp, command, data)
|
|
struct ifnet *ifp;
|
|
u_long command;
|
|
caddr_t data;
|
|
{
|
|
int error = 0;
|
|
int len;
|
|
u_int8_t tmpkey[14];
|
|
char tmpssid[IEEE80211_NWID_LEN];
|
|
struct wi_softc *sc;
|
|
struct wi_req wreq;
|
|
struct ifreq *ifr;
|
|
struct ieee80211req *ireq;
|
|
struct proc *p = curproc;
|
|
|
|
sc = ifp->if_softc;
|
|
WI_LOCK(sc);
|
|
ifr = (struct ifreq *)data;
|
|
ireq = (struct ieee80211req *)data;
|
|
|
|
if (sc->wi_gone) {
|
|
error = ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
switch(command) {
|
|
case SIOCSIFADDR:
|
|
case SIOCGIFADDR:
|
|
case SIOCSIFMTU:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_flags & IFF_RUNNING &&
|
|
ifp->if_flags & IFF_PROMISC &&
|
|
!(sc->wi_if_flags & IFF_PROMISC)) {
|
|
WI_SETVAL(WI_RID_PROMISC, 1);
|
|
} else if (ifp->if_flags & IFF_RUNNING &&
|
|
!(ifp->if_flags & IFF_PROMISC) &&
|
|
sc->wi_if_flags & IFF_PROMISC) {
|
|
WI_SETVAL(WI_RID_PROMISC, 0);
|
|
} else
|
|
wi_init(sc);
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
wi_stop(sc);
|
|
}
|
|
}
|
|
sc->wi_if_flags = ifp->if_flags;
|
|
error = 0;
|
|
break;
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
wi_setmulti(sc);
|
|
error = 0;
|
|
break;
|
|
case SIOCGWAVELAN:
|
|
error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
|
|
if (error)
|
|
break;
|
|
/* Don't show WEP keys to non-root users. */
|
|
if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS && suser(p))
|
|
break;
|
|
if (wreq.wi_type == WI_RID_IFACE_STATS) {
|
|
bcopy((char *)&sc->wi_stats, (char *)&wreq.wi_val,
|
|
sizeof(sc->wi_stats));
|
|
wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
|
|
} else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
|
|
bcopy((char *)&sc->wi_keys, (char *)&wreq,
|
|
sizeof(struct wi_ltv_keys));
|
|
}
|
|
#ifdef WICACHE
|
|
else if (wreq.wi_type == WI_RID_ZERO_CACHE) {
|
|
sc->wi_sigitems = sc->wi_nextitem = 0;
|
|
} else if (wreq.wi_type == WI_RID_READ_CACHE) {
|
|
char *pt = (char *)&wreq.wi_val;
|
|
bcopy((char *)&sc->wi_sigitems,
|
|
(char *)pt, sizeof(int));
|
|
pt += (sizeof (int));
|
|
wreq.wi_len = sizeof(int) / 2;
|
|
bcopy((char *)&sc->wi_sigcache, (char *)pt,
|
|
sizeof(struct wi_sigcache) * sc->wi_sigitems);
|
|
wreq.wi_len += ((sizeof(struct wi_sigcache) *
|
|
sc->wi_sigitems) / 2) + 1;
|
|
}
|
|
#endif
|
|
else {
|
|
if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
}
|
|
error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
|
|
break;
|
|
case SIOCSWAVELAN:
|
|
if ((error = suser(p)))
|
|
goto out;
|
|
error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
|
|
if (error)
|
|
break;
|
|
if (wreq.wi_type == WI_RID_IFACE_STATS) {
|
|
error = EINVAL;
|
|
break;
|
|
} else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
|
|
error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
|
|
wreq.wi_len);
|
|
} else {
|
|
error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
|
|
if (!error)
|
|
wi_setdef(sc, &wreq);
|
|
}
|
|
break;
|
|
case SIOCG80211:
|
|
switch(ireq->i_type) {
|
|
case IEEE80211_IOC_SSID:
|
|
if(ireq->i_val == -1) {
|
|
bzero(tmpssid, IEEE80211_NWID_LEN);
|
|
error = wi_get_cur_ssid(sc, tmpssid, &len);
|
|
if (error != 0)
|
|
break;
|
|
error = copyout(tmpssid, ireq->i_data,
|
|
IEEE80211_NWID_LEN);
|
|
ireq->i_len = len;
|
|
} else if (ireq->i_val == 0) {
|
|
error = copyout(sc->wi_net_name,
|
|
ireq->i_data,
|
|
IEEE80211_NWID_LEN);
|
|
ireq->i_len = IEEE80211_NWID_LEN;
|
|
} else
|
|
error = EINVAL;
|
|
break;
|
|
case IEEE80211_IOC_NUMSSIDS:
|
|
ireq->i_val = 1;
|
|
break;
|
|
case IEEE80211_IOC_WEP:
|
|
if(!sc->wi_has_wep) {
|
|
ireq->i_val = IEEE80211_WEP_NOSUP;
|
|
} else {
|
|
if(sc->wi_use_wep) {
|
|
ireq->i_val =
|
|
IEEE80211_WEP_MIXED;
|
|
} else {
|
|
ireq->i_val =
|
|
IEEE80211_WEP_OFF;
|
|
}
|
|
}
|
|
break;
|
|
case IEEE80211_IOC_WEPKEY:
|
|
if(!sc->wi_has_wep ||
|
|
ireq->i_val < 0 || ireq->i_val > 3) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
len = sc->wi_keys.wi_keys[ireq->i_val].wi_keylen;
|
|
if (suser(p))
|
|
bcopy(sc->wi_keys.wi_keys[ireq->i_val].wi_keydat,
|
|
tmpkey, len);
|
|
else
|
|
bzero(tmpkey, len);
|
|
|
|
ireq->i_len = len;
|
|
error = copyout(tmpkey, ireq->i_data, len);
|
|
|
|
break;
|
|
case IEEE80211_IOC_NUMWEPKEYS:
|
|
if(!sc->wi_has_wep)
|
|
error = EINVAL;
|
|
else
|
|
ireq->i_val = 4;
|
|
break;
|
|
case IEEE80211_IOC_WEPTXKEY:
|
|
if(!sc->wi_has_wep)
|
|
error = EINVAL;
|
|
else
|
|
ireq->i_val = sc->wi_tx_key;
|
|
break;
|
|
case IEEE80211_IOC_AUTHMODE:
|
|
ireq->i_val = IEEE80211_AUTH_NONE;
|
|
break;
|
|
case IEEE80211_IOC_STATIONNAME:
|
|
error = copyout(sc->wi_node_name,
|
|
ireq->i_data, IEEE80211_NWID_LEN);
|
|
ireq->i_len = IEEE80211_NWID_LEN;
|
|
break;
|
|
case IEEE80211_IOC_CHANNEL:
|
|
wreq.wi_type = WI_RID_CURRENT_CHAN;
|
|
wreq.wi_len = WI_MAX_DATALEN;
|
|
if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
|
|
error = EINVAL;
|
|
else {
|
|
ireq->i_val = wreq.wi_val[0];
|
|
}
|
|
break;
|
|
case IEEE80211_IOC_POWERSAVE:
|
|
if(sc->wi_pm_enabled)
|
|
ireq->i_val = IEEE80211_POWERSAVE_ON;
|
|
else
|
|
ireq->i_val = IEEE80211_POWERSAVE_OFF;
|
|
break;
|
|
case IEEE80211_IOC_POWERSAVESLEEP:
|
|
ireq->i_val = sc->wi_max_sleep;
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
}
|
|
break;
|
|
case SIOCS80211:
|
|
if ((error = suser(p)))
|
|
goto out;
|
|
switch(ireq->i_type) {
|
|
case IEEE80211_IOC_SSID:
|
|
if (ireq->i_val != 0 ||
|
|
ireq->i_len > IEEE80211_NWID_LEN) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
/* We set both of them */
|
|
bzero(sc->wi_net_name, IEEE80211_NWID_LEN);
|
|
error = copyin(ireq->i_data,
|
|
sc->wi_net_name, ireq->i_len);
|
|
bcopy(sc->wi_net_name, sc->wi_ibss_name, IEEE80211_NWID_LEN);
|
|
break;
|
|
case IEEE80211_IOC_WEP:
|
|
/*
|
|
* These cards only support one mode so
|
|
* we just turn wep on what ever is
|
|
* passed in if it's not OFF.
|
|
*/
|
|
if (ireq->i_val == IEEE80211_WEP_OFF) {
|
|
sc->wi_use_wep = 0;
|
|
} else {
|
|
sc->wi_use_wep = 1;
|
|
}
|
|
break;
|
|
case IEEE80211_IOC_WEPKEY:
|
|
if (ireq->i_val < 0 || ireq->i_val > 3 ||
|
|
ireq->i_len > 13) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
bzero(sc->wi_keys.wi_keys[ireq->i_val].wi_keydat, 13);
|
|
error = copyin(ireq->i_data,
|
|
sc->wi_keys.wi_keys[ireq->i_val].wi_keydat,
|
|
ireq->i_len);
|
|
if(error)
|
|
break;
|
|
sc->wi_keys.wi_keys[ireq->i_val].wi_keylen =
|
|
ireq->i_len;
|
|
break;
|
|
case IEEE80211_IOC_WEPTXKEY:
|
|
if (ireq->i_val < 0 || ireq->i_val > 3) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
sc->wi_tx_key = ireq->i_val;
|
|
break;
|
|
case IEEE80211_IOC_AUTHMODE:
|
|
error = EINVAL;
|
|
break;
|
|
case IEEE80211_IOC_STATIONNAME:
|
|
if (ireq->i_len > 32) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
bzero(sc->wi_node_name, 32);
|
|
error = copyin(ireq->i_data,
|
|
sc->wi_node_name, ireq->i_len);
|
|
break;
|
|
case IEEE80211_IOC_CHANNEL:
|
|
/*
|
|
* The actual range is 1-14, but if you
|
|
* set it to 0 you get the default. So
|
|
* we let that work too.
|
|
*/
|
|
if (ireq->i_val < 0 || ireq->i_val > 14) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
sc->wi_channel = ireq->i_val;
|
|
break;
|
|
case IEEE80211_IOC_POWERSAVE:
|
|
switch (ireq->i_val) {
|
|
case IEEE80211_POWERSAVE_OFF:
|
|
sc->wi_pm_enabled = 0;
|
|
break;
|
|
case IEEE80211_POWERSAVE_ON:
|
|
sc->wi_pm_enabled = 1;
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
break;
|
|
case IEEE80211_IOC_POWERSAVESLEEP:
|
|
if (ireq->i_val < 0) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
sc->wi_max_sleep = ireq->i_val;
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* Reinitialize WaveLAN. */
|
|
wi_init(sc);
|
|
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
out:
|
|
WI_UNLOCK(sc);
|
|
|
|
return(error);
|
|
}
|
|
|
|
static void wi_init(xsc)
|
|
void *xsc;
|
|
{
|
|
struct wi_softc *sc = xsc;
|
|
struct ifnet *ifp = &sc->arpcom.ac_if;
|
|
struct wi_ltv_macaddr mac;
|
|
int id = 0;
|
|
|
|
WI_LOCK(sc);
|
|
|
|
if (sc->wi_gone) {
|
|
WI_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
wi_stop(sc);
|
|
|
|
wi_reset(sc);
|
|
|
|
/* Program max data length. */
|
|
WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
|
|
|
|
/* Enable/disable IBSS creation. */
|
|
WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
|
|
|
|
/* Set the port type. */
|
|
WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
|
|
|
|
/* Program the RTS/CTS threshold. */
|
|
WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
|
|
|
|
/* Program the TX rate */
|
|
WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
|
|
|
|
/* Access point density */
|
|
WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
|
|
|
|
/* Power Management Enabled */
|
|
WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
|
|
|
|
/* Power Managment Max Sleep */
|
|
WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
|
|
|
|
/* Specify the IBSS name */
|
|
WI_SETSTR(WI_RID_OWN_SSID, sc->wi_ibss_name);
|
|
|
|
/* Specify the network name */
|
|
WI_SETSTR(WI_RID_DESIRED_SSID, sc->wi_net_name);
|
|
|
|
/* Specify the frequency to use */
|
|
WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
|
|
|
|
/* Program the nodename. */
|
|
WI_SETSTR(WI_RID_NODENAME, sc->wi_node_name);
|
|
|
|
/* Set our MAC address. */
|
|
mac.wi_len = 4;
|
|
mac.wi_type = WI_RID_MAC_NODE;
|
|
bcopy((char *)&sc->arpcom.ac_enaddr,
|
|
(char *)&mac.wi_mac_addr, ETHER_ADDR_LEN);
|
|
wi_write_record(sc, (struct wi_ltv_gen *)&mac);
|
|
|
|
/* Configure WEP. */
|
|
if (sc->wi_has_wep) {
|
|
WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
|
|
WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
|
|
sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
|
|
sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
|
|
wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
|
|
}
|
|
|
|
/* Initialize promisc mode. */
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
WI_SETVAL(WI_RID_PROMISC, 1);
|
|
} else {
|
|
WI_SETVAL(WI_RID_PROMISC, 0);
|
|
}
|
|
|
|
/* Set multicast filter. */
|
|
wi_setmulti(sc);
|
|
|
|
/* Enable desired port */
|
|
wi_cmd(sc, WI_CMD_ENABLE|sc->wi_portnum, 0);
|
|
|
|
if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id))
|
|
device_printf(sc->dev, "tx buffer allocation failed\n");
|
|
sc->wi_tx_data_id = id;
|
|
|
|
if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id))
|
|
device_printf(sc->dev, "mgmt. buffer allocation failed\n");
|
|
sc->wi_tx_mgmt_id = id;
|
|
|
|
/* enable interrupts */
|
|
CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60);
|
|
WI_UNLOCK(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
static void wi_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct wi_softc *sc;
|
|
struct mbuf *m0;
|
|
struct wi_frame tx_frame;
|
|
struct ether_header *eh;
|
|
int id;
|
|
|
|
sc = ifp->if_softc;
|
|
WI_LOCK(sc);
|
|
|
|
if (sc->wi_gone) {
|
|
WI_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_OACTIVE) {
|
|
WI_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
IF_DEQUEUE(&ifp->if_snd, m0);
|
|
if (m0 == NULL) {
|
|
WI_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
bzero((char *)&tx_frame, sizeof(tx_frame));
|
|
id = sc->wi_tx_data_id;
|
|
eh = mtod(m0, struct ether_header *);
|
|
|
|
/*
|
|
* Use RFC1042 encoding for IP and ARP datagrams,
|
|
* 802.3 for anything else.
|
|
*/
|
|
if (ntohs(eh->ether_type) > ETHER_MAX_LEN) {
|
|
bcopy((char *)&eh->ether_dhost,
|
|
(char *)&tx_frame.wi_addr1, ETHER_ADDR_LEN);
|
|
bcopy((char *)&eh->ether_shost,
|
|
(char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN);
|
|
bcopy((char *)&eh->ether_dhost,
|
|
(char *)&tx_frame.wi_dst_addr, ETHER_ADDR_LEN);
|
|
bcopy((char *)&eh->ether_shost,
|
|
(char *)&tx_frame.wi_src_addr, ETHER_ADDR_LEN);
|
|
|
|
tx_frame.wi_dat_len = m0->m_pkthdr.len - WI_SNAPHDR_LEN;
|
|
tx_frame.wi_frame_ctl = WI_FTYPE_DATA;
|
|
tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
|
|
tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
|
|
tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
|
|
tx_frame.wi_type = eh->ether_type;
|
|
|
|
m_copydata(m0, sizeof(struct ether_header),
|
|
m0->m_pkthdr.len - sizeof(struct ether_header),
|
|
(caddr_t)&sc->wi_txbuf);
|
|
|
|
wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
|
|
sizeof(struct wi_frame));
|
|
wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf,
|
|
(m0->m_pkthdr.len - sizeof(struct ether_header)) + 2);
|
|
} else {
|
|
tx_frame.wi_dat_len = m0->m_pkthdr.len;
|
|
|
|
eh->ether_type = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
|
|
m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf);
|
|
|
|
wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
|
|
sizeof(struct wi_frame));
|
|
wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf,
|
|
m0->m_pkthdr.len + 2);
|
|
}
|
|
|
|
/*
|
|
* If there's a BPF listner, bounce a copy of
|
|
* this frame to him.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp, m0);
|
|
|
|
m_freem(m0);
|
|
|
|
if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id))
|
|
device_printf(sc->dev, "xmit failed\n");
|
|
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
|
|
/*
|
|
* Set a timeout in case the chip goes out to lunch.
|
|
*/
|
|
ifp->if_timer = 5;
|
|
|
|
WI_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
static int wi_mgmt_xmit(sc, data, len)
|
|
struct wi_softc *sc;
|
|
caddr_t data;
|
|
int len;
|
|
{
|
|
struct wi_frame tx_frame;
|
|
int id;
|
|
struct wi_80211_hdr *hdr;
|
|
caddr_t dptr;
|
|
|
|
if (sc->wi_gone)
|
|
return(ENODEV);
|
|
|
|
hdr = (struct wi_80211_hdr *)data;
|
|
dptr = data + sizeof(struct wi_80211_hdr);
|
|
|
|
bzero((char *)&tx_frame, sizeof(tx_frame));
|
|
id = sc->wi_tx_mgmt_id;
|
|
|
|
bcopy((char *)hdr, (char *)&tx_frame.wi_frame_ctl,
|
|
sizeof(struct wi_80211_hdr));
|
|
|
|
tx_frame.wi_dat_len = len - WI_SNAPHDR_LEN;
|
|
tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN);
|
|
|
|
wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
|
|
wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
|
|
(len - sizeof(struct wi_80211_hdr)) + 2);
|
|
|
|
if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) {
|
|
device_printf(sc->dev, "xmit failed\n");
|
|
return(EIO);
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void wi_stop(sc)
|
|
struct wi_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
WI_LOCK(sc);
|
|
|
|
if (sc->wi_gone) {
|
|
WI_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/*
|
|
* If the card is gone and the memory port isn't mapped, we will
|
|
* (hopefully) get 0xffff back from the status read, which is not
|
|
* a valid status value.
|
|
*/
|
|
if (CSR_READ_2(sc, WI_STATUS) != 0xffff) {
|
|
CSR_WRITE_2(sc, WI_INT_EN, 0);
|
|
wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0);
|
|
}
|
|
|
|
untimeout(wi_inquire, sc, sc->wi_stat_ch);
|
|
|
|
ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
|
|
|
|
WI_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
static void wi_watchdog(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct wi_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
device_printf(sc->dev, "watchdog timeout\n");
|
|
|
|
wi_init(sc);
|
|
|
|
ifp->if_oerrors++;
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
wi_alloc(dev, io_rid)
|
|
device_t dev;
|
|
int io_rid;
|
|
{
|
|
struct wi_softc *sc = device_get_softc(dev);
|
|
|
|
sc->iobase_rid = io_rid;
|
|
sc->iobase = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->iobase_rid,
|
|
0, ~0, (1 << 6),
|
|
rman_make_alignment_flags(1 << 6) | RF_ACTIVE);
|
|
if (!sc->iobase) {
|
|
device_printf(dev, "No I/O space?!\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
sc->irq_rid = 0;
|
|
sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irq_rid,
|
|
0, ~0, 1, RF_ACTIVE);
|
|
if (!sc->irq) {
|
|
wi_free(dev);
|
|
device_printf(dev, "No irq?!\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
sc->dev = dev;
|
|
sc->wi_unit = device_get_unit(dev);
|
|
sc->wi_io_addr = rman_get_start(sc->iobase);
|
|
sc->wi_btag = rman_get_bustag(sc->iobase);
|
|
sc->wi_bhandle = rman_get_bushandle(sc->iobase);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void wi_free(dev)
|
|
device_t dev;
|
|
{
|
|
struct wi_softc *sc = device_get_softc(dev);
|
|
|
|
if (sc->iobase != NULL) {
|
|
bus_release_resource(dev, SYS_RES_IOPORT, sc->iobase_rid, sc->iobase);
|
|
sc->iobase = NULL;
|
|
}
|
|
if (sc->irq != NULL) {
|
|
bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
|
|
sc->irq = NULL;
|
|
}
|
|
if (sc->mem != NULL) {
|
|
bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
|
|
sc->mem = NULL;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void wi_shutdown(dev)
|
|
device_t dev;
|
|
{
|
|
struct wi_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
wi_stop(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
#ifdef WICACHE
|
|
/* wavelan signal strength cache code.
|
|
* store signal/noise/quality on per MAC src basis in
|
|
* a small fixed cache. The cache wraps if > MAX slots
|
|
* used. The cache may be zeroed out to start over.
|
|
* Two simple filters exist to reduce computation:
|
|
* 1. ip only (literally 0x800) which may be used
|
|
* to ignore some packets. It defaults to ip only.
|
|
* it could be used to focus on broadcast, non-IP 802.11 beacons.
|
|
* 2. multicast/broadcast only. This may be used to
|
|
* ignore unicast packets and only cache signal strength
|
|
* for multicast/broadcast packets (beacons); e.g., Mobile-IP
|
|
* beacons and not unicast traffic.
|
|
*
|
|
* The cache stores (MAC src(index), IP src (major clue), signal,
|
|
* quality, noise)
|
|
*
|
|
* No apologies for storing IP src here. It's easy and saves much
|
|
* trouble elsewhere. The cache is assumed to be INET dependent,
|
|
* although it need not be.
|
|
*/
|
|
|
|
#ifdef documentation
|
|
|
|
int wi_sigitems; /* number of cached entries */
|
|
struct wi_sigcache wi_sigcache[MAXWICACHE]; /* array of cache entries */
|
|
int wi_nextitem; /* index/# of entries */
|
|
|
|
|
|
#endif
|
|
|
|
/* control variables for cache filtering. Basic idea is
|
|
* to reduce cost (e.g., to only Mobile-IP agent beacons
|
|
* which are broadcast or multicast). Still you might
|
|
* want to measure signal strength with unicast ping packets
|
|
* on a pt. to pt. ant. setup.
|
|
*/
|
|
/* set true if you want to limit cache items to broadcast/mcast
|
|
* only packets (not unicast). Useful for mobile-ip beacons which
|
|
* are broadcast/multicast at network layer. Default is all packets
|
|
* so ping/unicast will work say with pt. to pt. antennae setup.
|
|
*/
|
|
static int wi_cache_mcastonly = 0;
|
|
SYSCTL_INT(_machdep, OID_AUTO, wi_cache_mcastonly, CTLFLAG_RW,
|
|
&wi_cache_mcastonly, 0, "");
|
|
|
|
/* set true if you want to limit cache items to IP packets only
|
|
*/
|
|
static int wi_cache_iponly = 1;
|
|
SYSCTL_INT(_machdep, OID_AUTO, wi_cache_iponly, CTLFLAG_RW,
|
|
&wi_cache_iponly, 0, "");
|
|
|
|
/*
|
|
* Original comments:
|
|
* -----------------
|
|
* wi_cache_store, per rx packet store signal
|
|
* strength in MAC (src) indexed cache.
|
|
*
|
|
* follows linux driver in how signal strength is computed.
|
|
* In ad hoc mode, we use the rx_quality field.
|
|
* signal and noise are trimmed to fit in the range from 47..138.
|
|
* rx_quality field MSB is signal strength.
|
|
* rx_quality field LSB is noise.
|
|
* "quality" is (signal - noise) as is log value.
|
|
* note: quality CAN be negative.
|
|
*
|
|
* In BSS mode, we use the RID for communication quality.
|
|
* TBD: BSS mode is currently untested.
|
|
*
|
|
* Bill's comments:
|
|
* ---------------
|
|
* Actually, we use the rx_quality field all the time for both "ad-hoc"
|
|
* and BSS modes. Why? Because reading an RID is really, really expensive:
|
|
* there's a bunch of PIO operations that have to be done to read a record
|
|
* from the NIC, and reading the comms quality RID each time a packet is
|
|
* received can really hurt performance. We don't have to do this anyway:
|
|
* the comms quality field only reflects the values in the rx_quality field
|
|
* anyway. The comms quality RID is only meaningful in infrastructure mode,
|
|
* but the values it contains are updated based on the rx_quality from
|
|
* frames received from the access point.
|
|
*
|
|
* Also, according to Lucent, the signal strength and noise level values
|
|
* can be converted to dBms by subtracting 149, so I've modified the code
|
|
* to do that instead of the scaling it did originally.
|
|
*/
|
|
static
|
|
void wi_cache_store (struct wi_softc *sc, struct ether_header *eh,
|
|
struct mbuf *m, unsigned short rx_quality)
|
|
{
|
|
struct ip *ip = 0;
|
|
int i;
|
|
static int cache_slot = 0; /* use this cache entry */
|
|
static int wrapindex = 0; /* next "free" cache entry */
|
|
int sig, noise;
|
|
int sawip=0;
|
|
|
|
/* filters:
|
|
* 1. ip only
|
|
* 2. configurable filter to throw out unicast packets,
|
|
* keep multicast only.
|
|
*/
|
|
|
|
if ((ntohs(eh->ether_type) == ETHERTYPE_IP)) {
|
|
sawip = 1;
|
|
}
|
|
|
|
/* filter for ip packets only
|
|
*/
|
|
if (wi_cache_iponly && !sawip) {
|
|
return;
|
|
}
|
|
|
|
/* filter for broadcast/multicast only
|
|
*/
|
|
if (wi_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
|
|
return;
|
|
}
|
|
|
|
#ifdef SIGDEBUG
|
|
printf("wi%d: q value %x (MSB=0x%x, LSB=0x%x) \n", sc->wi_unit,
|
|
rx_quality & 0xffff, rx_quality >> 8, rx_quality & 0xff);
|
|
#endif
|
|
|
|
/* find the ip header. we want to store the ip_src
|
|
* address.
|
|
*/
|
|
if (sawip) {
|
|
ip = mtod(m, struct ip *);
|
|
}
|
|
|
|
/* do a linear search for a matching MAC address
|
|
* in the cache table
|
|
* . MAC address is 6 bytes,
|
|
* . var w_nextitem holds total number of entries already cached
|
|
*/
|
|
for(i = 0; i < sc->wi_nextitem; i++) {
|
|
if (! bcmp(eh->ether_shost , sc->wi_sigcache[i].macsrc, 6 )) {
|
|
/* Match!,
|
|
* so we already have this entry,
|
|
* update the data
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* did we find a matching mac address?
|
|
* if yes, then overwrite a previously existing cache entry
|
|
*/
|
|
if (i < sc->wi_nextitem ) {
|
|
cache_slot = i;
|
|
}
|
|
/* else, have a new address entry,so
|
|
* add this new entry,
|
|
* if table full, then we need to replace LRU entry
|
|
*/
|
|
else {
|
|
|
|
/* check for space in cache table
|
|
* note: wi_nextitem also holds number of entries
|
|
* added in the cache table
|
|
*/
|
|
if ( sc->wi_nextitem < MAXWICACHE ) {
|
|
cache_slot = sc->wi_nextitem;
|
|
sc->wi_nextitem++;
|
|
sc->wi_sigitems = sc->wi_nextitem;
|
|
}
|
|
/* no space found, so simply wrap with wrap index
|
|
* and "zap" the next entry
|
|
*/
|
|
else {
|
|
if (wrapindex == MAXWICACHE) {
|
|
wrapindex = 0;
|
|
}
|
|
cache_slot = wrapindex++;
|
|
}
|
|
}
|
|
|
|
/* invariant: cache_slot now points at some slot
|
|
* in cache.
|
|
*/
|
|
if (cache_slot < 0 || cache_slot >= MAXWICACHE) {
|
|
log(LOG_ERR, "wi_cache_store, bad index: %d of "
|
|
"[0..%d], gross cache error\n",
|
|
cache_slot, MAXWICACHE);
|
|
return;
|
|
}
|
|
|
|
/* store items in cache
|
|
* .ip source address
|
|
* .mac src
|
|
* .signal, etc.
|
|
*/
|
|
if (sawip) {
|
|
sc->wi_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
|
|
}
|
|
bcopy( eh->ether_shost, sc->wi_sigcache[cache_slot].macsrc, 6);
|
|
|
|
sig = (rx_quality >> 8) & 0xFF;
|
|
noise = rx_quality & 0xFF;
|
|
sc->wi_sigcache[cache_slot].signal = sig - 149;
|
|
sc->wi_sigcache[cache_slot].noise = noise - 149;
|
|
sc->wi_sigcache[cache_slot].quality = sig - noise;
|
|
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
static int wi_get_cur_ssid(sc, ssid, len)
|
|
struct wi_softc *sc;
|
|
char *ssid;
|
|
int *len;
|
|
{
|
|
int error = 0;
|
|
struct wi_req wreq;
|
|
|
|
wreq.wi_len = WI_MAX_DATALEN;
|
|
switch (sc->wi_ptype) {
|
|
case WI_PORTTYPE_ADHOC:
|
|
wreq.wi_type = WI_RID_CURRENT_SSID;
|
|
error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
|
|
if (error != 0)
|
|
break;
|
|
if (wreq.wi_val[0] > IEEE80211_NWID_LEN) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
*len = wreq.wi_val[0];
|
|
bcopy(&wreq.wi_val[1], ssid, IEEE80211_NWID_LEN);
|
|
break;
|
|
case WI_PORTTYPE_BSS:
|
|
wreq.wi_type = WI_RID_COMMQUAL;
|
|
error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
|
|
if (error != 0)
|
|
break;
|
|
if (wreq.wi_val[0] != 0) /* associated */ {
|
|
wreq.wi_type = WI_RID_CURRENT_SSID;
|
|
wreq.wi_len = WI_MAX_DATALEN;
|
|
error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
|
|
if (error != 0)
|
|
break;
|
|
if (wreq.wi_val[0] > IEEE80211_NWID_LEN) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
*len = wreq.wi_val[0];
|
|
bcopy(&wreq.wi_val[1], ssid, IEEE80211_NWID_LEN);
|
|
} else {
|
|
*len = IEEE80211_NWID_LEN;
|
|
bcopy(sc->wi_net_name, ssid, IEEE80211_NWID_LEN);
|
|
}
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static int wi_media_change(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct wi_softc *sc = ifp->if_softc;
|
|
int otype = sc->wi_ptype;
|
|
int orate = sc->wi_tx_rate;
|
|
|
|
if ((sc->ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
|
|
sc->wi_ptype = WI_PORTTYPE_ADHOC;
|
|
else
|
|
sc->wi_ptype = WI_PORTTYPE_BSS;
|
|
|
|
switch (IFM_SUBTYPE(sc->ifmedia.ifm_cur->ifm_media)) {
|
|
case IFM_IEEE80211_DS1:
|
|
sc->wi_tx_rate = 1;
|
|
break;
|
|
case IFM_IEEE80211_DS2:
|
|
sc->wi_tx_rate = 2;
|
|
break;
|
|
case IFM_IEEE80211_DS5:
|
|
sc->wi_tx_rate = 5;
|
|
break;
|
|
case IFM_IEEE80211_DS11:
|
|
sc->wi_tx_rate = 11;
|
|
break;
|
|
case IFM_AUTO:
|
|
sc->wi_tx_rate = 3;
|
|
break;
|
|
}
|
|
|
|
if (otype != sc->wi_ptype ||
|
|
orate != sc->wi_tx_rate)
|
|
wi_init(sc);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void wi_media_status(ifp, imr)
|
|
struct ifnet *ifp;
|
|
struct ifmediareq *imr;
|
|
{
|
|
struct wi_req wreq;
|
|
struct wi_softc *sc = ifp->if_softc;
|
|
|
|
if (sc->wi_tx_rate == 3) {
|
|
imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
|
|
if (sc->wi_ptype == WI_PORTTYPE_ADHOC)
|
|
imr->ifm_active |= IFM_IEEE80211_ADHOC;
|
|
wreq.wi_type = WI_RID_CUR_TX_RATE;
|
|
wreq.wi_len = WI_MAX_DATALEN;
|
|
if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0) {
|
|
switch(wreq.wi_val[0]) {
|
|
case 1:
|
|
imr->ifm_active |= IFM_IEEE80211_DS1;
|
|
break;
|
|
case 2:
|
|
imr->ifm_active |= IFM_IEEE80211_DS2;
|
|
break;
|
|
case 6:
|
|
imr->ifm_active |= IFM_IEEE80211_DS5;
|
|
break;
|
|
case 11:
|
|
imr->ifm_active |= IFM_IEEE80211_DS11;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
imr->ifm_active = sc->ifmedia.ifm_cur->ifm_media;
|
|
}
|
|
|
|
imr->ifm_status = IFM_AVALID;
|
|
if (sc->wi_ptype == WI_PORTTYPE_ADHOC)
|
|
/*
|
|
* XXX: It would be nice if we could give some actually
|
|
* useful status like whether we joined another IBSS or
|
|
* created one ourselves.
|
|
*/
|
|
imr->ifm_status |= IFM_ACTIVE;
|
|
else {
|
|
wreq.wi_type = WI_RID_COMMQUAL;
|
|
wreq.wi_len = WI_MAX_DATALEN;
|
|
if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0 &&
|
|
wreq.wi_val[0] != 0)
|
|
imr->ifm_status |= IFM_ACTIVE;
|
|
}
|
|
}
|