90a08d6cad
Stolen from NetBSD.
3295 lines
79 KiB
C
3295 lines
79 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1982, 1986, 1989, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_ktrace.h"
|
|
#include "opt_kstack_pages.h"
|
|
#include "opt_stack.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bitstring.h>
|
|
#include <sys/elf.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/jail.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/loginclass.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/stack.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/tty.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/sdt.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/user.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/wait.h>
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/uma.h>
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
#include <compat/freebsd32/freebsd32.h>
|
|
#include <compat/freebsd32/freebsd32_util.h>
|
|
#endif
|
|
|
|
SDT_PROVIDER_DEFINE(proc);
|
|
|
|
MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
|
|
MALLOC_DEFINE(M_SESSION, "session", "session header");
|
|
static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
|
|
MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
|
|
|
|
static void doenterpgrp(struct proc *, struct pgrp *);
|
|
static void orphanpg(struct pgrp *pg);
|
|
static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
|
|
static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
|
|
static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
|
|
int preferthread);
|
|
static void pgadjustjobc(struct pgrp *pgrp, int entering);
|
|
static void pgdelete(struct pgrp *);
|
|
static int proc_ctor(void *mem, int size, void *arg, int flags);
|
|
static void proc_dtor(void *mem, int size, void *arg);
|
|
static int proc_init(void *mem, int size, int flags);
|
|
static void proc_fini(void *mem, int size);
|
|
static void pargs_free(struct pargs *pa);
|
|
|
|
/*
|
|
* Other process lists
|
|
*/
|
|
struct pidhashhead *pidhashtbl;
|
|
struct sx *pidhashtbl_lock;
|
|
u_long pidhash;
|
|
u_long pidhashlock;
|
|
struct pgrphashhead *pgrphashtbl;
|
|
u_long pgrphash;
|
|
struct proclist allproc;
|
|
struct sx __exclusive_cache_line allproc_lock;
|
|
struct sx __exclusive_cache_line proctree_lock;
|
|
struct mtx __exclusive_cache_line ppeers_lock;
|
|
struct mtx __exclusive_cache_line procid_lock;
|
|
uma_zone_t proc_zone;
|
|
|
|
/*
|
|
* The offset of various fields in struct proc and struct thread.
|
|
* These are used by kernel debuggers to enumerate kernel threads and
|
|
* processes.
|
|
*/
|
|
const int proc_off_p_pid = offsetof(struct proc, p_pid);
|
|
const int proc_off_p_comm = offsetof(struct proc, p_comm);
|
|
const int proc_off_p_list = offsetof(struct proc, p_list);
|
|
const int proc_off_p_threads = offsetof(struct proc, p_threads);
|
|
const int thread_off_td_tid = offsetof(struct thread, td_tid);
|
|
const int thread_off_td_name = offsetof(struct thread, td_name);
|
|
const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
|
|
const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
|
|
const int thread_off_td_plist = offsetof(struct thread, td_plist);
|
|
|
|
EVENTHANDLER_LIST_DEFINE(process_ctor);
|
|
EVENTHANDLER_LIST_DEFINE(process_dtor);
|
|
EVENTHANDLER_LIST_DEFINE(process_init);
|
|
EVENTHANDLER_LIST_DEFINE(process_fini);
|
|
EVENTHANDLER_LIST_DEFINE(process_exit);
|
|
EVENTHANDLER_LIST_DEFINE(process_fork);
|
|
EVENTHANDLER_LIST_DEFINE(process_exec);
|
|
|
|
int kstack_pages = KSTACK_PAGES;
|
|
SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
|
|
"Kernel stack size in pages");
|
|
static int vmmap_skip_res_cnt = 0;
|
|
SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
|
|
&vmmap_skip_res_cnt, 0,
|
|
"Skip calculation of the pages resident count in kern.proc.vmmap");
|
|
|
|
CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
|
|
#ifdef COMPAT_FREEBSD32
|
|
CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
|
|
#endif
|
|
|
|
/*
|
|
* Initialize global process hashing structures.
|
|
*/
|
|
void
|
|
procinit(void)
|
|
{
|
|
u_long i;
|
|
|
|
sx_init(&allproc_lock, "allproc");
|
|
sx_init(&proctree_lock, "proctree");
|
|
mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
|
|
mtx_init(&procid_lock, "procid", NULL, MTX_DEF);
|
|
LIST_INIT(&allproc);
|
|
pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
|
|
pidhashlock = (pidhash + 1) / 64;
|
|
if (pidhashlock > 0)
|
|
pidhashlock--;
|
|
pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1),
|
|
M_PROC, M_WAITOK | M_ZERO);
|
|
for (i = 0; i < pidhashlock + 1; i++)
|
|
sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK);
|
|
pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
|
|
proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
|
|
proc_ctor, proc_dtor, proc_init, proc_fini,
|
|
UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
|
|
uihashinit();
|
|
}
|
|
|
|
/*
|
|
* Prepare a proc for use.
|
|
*/
|
|
static int
|
|
proc_ctor(void *mem, int size, void *arg, int flags)
|
|
{
|
|
struct proc *p;
|
|
struct thread *td;
|
|
|
|
p = (struct proc *)mem;
|
|
EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
|
|
td = FIRST_THREAD_IN_PROC(p);
|
|
if (td != NULL) {
|
|
/* Make sure all thread constructors are executed */
|
|
EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Reclaim a proc after use.
|
|
*/
|
|
static void
|
|
proc_dtor(void *mem, int size, void *arg)
|
|
{
|
|
struct proc *p;
|
|
struct thread *td;
|
|
|
|
/* INVARIANTS checks go here */
|
|
p = (struct proc *)mem;
|
|
td = FIRST_THREAD_IN_PROC(p);
|
|
if (td != NULL) {
|
|
#ifdef INVARIANTS
|
|
KASSERT((p->p_numthreads == 1),
|
|
("bad number of threads in exiting process"));
|
|
KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
|
|
#endif
|
|
/* Free all OSD associated to this thread. */
|
|
osd_thread_exit(td);
|
|
td_softdep_cleanup(td);
|
|
MPASS(td->td_su == NULL);
|
|
|
|
/* Make sure all thread destructors are executed */
|
|
EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
|
|
}
|
|
EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
|
|
if (p->p_ksi != NULL)
|
|
KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
|
|
}
|
|
|
|
/*
|
|
* Initialize type-stable parts of a proc (when newly created).
|
|
*/
|
|
static int
|
|
proc_init(void *mem, int size, int flags)
|
|
{
|
|
struct proc *p;
|
|
|
|
p = (struct proc *)mem;
|
|
mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
|
|
mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
|
|
mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
|
|
mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
|
|
mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
|
|
cv_init(&p->p_pwait, "ppwait");
|
|
TAILQ_INIT(&p->p_threads); /* all threads in proc */
|
|
EVENTHANDLER_DIRECT_INVOKE(process_init, p);
|
|
p->p_stats = pstats_alloc();
|
|
p->p_pgrp = NULL;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* UMA should ensure that this function is never called.
|
|
* Freeing a proc structure would violate type stability.
|
|
*/
|
|
static void
|
|
proc_fini(void *mem, int size)
|
|
{
|
|
#ifdef notnow
|
|
struct proc *p;
|
|
|
|
p = (struct proc *)mem;
|
|
EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
|
|
pstats_free(p->p_stats);
|
|
thread_free(FIRST_THREAD_IN_PROC(p));
|
|
mtx_destroy(&p->p_mtx);
|
|
if (p->p_ksi != NULL)
|
|
ksiginfo_free(p->p_ksi);
|
|
#else
|
|
panic("proc reclaimed");
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* PID space management.
|
|
*
|
|
* These bitmaps are used by fork_findpid.
|
|
*/
|
|
bitstr_t bit_decl(proc_id_pidmap, PID_MAX);
|
|
bitstr_t bit_decl(proc_id_grpidmap, PID_MAX);
|
|
bitstr_t bit_decl(proc_id_sessidmap, PID_MAX);
|
|
bitstr_t bit_decl(proc_id_reapmap, PID_MAX);
|
|
|
|
static bitstr_t *proc_id_array[] = {
|
|
proc_id_pidmap,
|
|
proc_id_grpidmap,
|
|
proc_id_sessidmap,
|
|
proc_id_reapmap,
|
|
};
|
|
|
|
void
|
|
proc_id_set(int type, pid_t id)
|
|
{
|
|
|
|
KASSERT(type >= 0 && type < nitems(proc_id_array),
|
|
("invalid type %d\n", type));
|
|
mtx_lock(&procid_lock);
|
|
KASSERT(bit_test(proc_id_array[type], id) == 0,
|
|
("bit %d already set in %d\n", id, type));
|
|
bit_set(proc_id_array[type], id);
|
|
mtx_unlock(&procid_lock);
|
|
}
|
|
|
|
void
|
|
proc_id_set_cond(int type, pid_t id)
|
|
{
|
|
|
|
KASSERT(type >= 0 && type < nitems(proc_id_array),
|
|
("invalid type %d\n", type));
|
|
if (bit_test(proc_id_array[type], id))
|
|
return;
|
|
mtx_lock(&procid_lock);
|
|
bit_set(proc_id_array[type], id);
|
|
mtx_unlock(&procid_lock);
|
|
}
|
|
|
|
void
|
|
proc_id_clear(int type, pid_t id)
|
|
{
|
|
|
|
KASSERT(type >= 0 && type < nitems(proc_id_array),
|
|
("invalid type %d\n", type));
|
|
mtx_lock(&procid_lock);
|
|
KASSERT(bit_test(proc_id_array[type], id) != 0,
|
|
("bit %d not set in %d\n", id, type));
|
|
bit_clear(proc_id_array[type], id);
|
|
mtx_unlock(&procid_lock);
|
|
}
|
|
|
|
/*
|
|
* Is p an inferior of the current process?
|
|
*/
|
|
int
|
|
inferior(struct proc *p)
|
|
{
|
|
|
|
sx_assert(&proctree_lock, SX_LOCKED);
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
for (; p != curproc; p = proc_realparent(p)) {
|
|
if (p->p_pid == 0)
|
|
return (0);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Shared lock all the pid hash lists.
|
|
*/
|
|
void
|
|
pidhash_slockall(void)
|
|
{
|
|
u_long i;
|
|
|
|
for (i = 0; i < pidhashlock + 1; i++)
|
|
sx_slock(&pidhashtbl_lock[i]);
|
|
}
|
|
|
|
/*
|
|
* Shared unlock all the pid hash lists.
|
|
*/
|
|
void
|
|
pidhash_sunlockall(void)
|
|
{
|
|
u_long i;
|
|
|
|
for (i = 0; i < pidhashlock + 1; i++)
|
|
sx_sunlock(&pidhashtbl_lock[i]);
|
|
}
|
|
|
|
/*
|
|
* Similar to pfind_any(), this function finds zombies.
|
|
*/
|
|
struct proc *
|
|
pfind_any_locked(pid_t pid)
|
|
{
|
|
struct proc *p;
|
|
|
|
sx_assert(PIDHASHLOCK(pid), SX_LOCKED);
|
|
LIST_FOREACH(p, PIDHASH(pid), p_hash) {
|
|
if (p->p_pid == pid) {
|
|
PROC_LOCK(p);
|
|
if (p->p_state == PRS_NEW) {
|
|
PROC_UNLOCK(p);
|
|
p = NULL;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return (p);
|
|
}
|
|
|
|
/*
|
|
* Locate a process by number.
|
|
*
|
|
* By not returning processes in the PRS_NEW state, we allow callers to avoid
|
|
* testing for that condition to avoid dereferencing p_ucred, et al.
|
|
*/
|
|
static __always_inline struct proc *
|
|
_pfind(pid_t pid, bool zombie)
|
|
{
|
|
struct proc *p;
|
|
|
|
p = curproc;
|
|
if (p->p_pid == pid) {
|
|
PROC_LOCK(p);
|
|
return (p);
|
|
}
|
|
sx_slock(PIDHASHLOCK(pid));
|
|
LIST_FOREACH(p, PIDHASH(pid), p_hash) {
|
|
if (p->p_pid == pid) {
|
|
PROC_LOCK(p);
|
|
if (p->p_state == PRS_NEW ||
|
|
(!zombie && p->p_state == PRS_ZOMBIE)) {
|
|
PROC_UNLOCK(p);
|
|
p = NULL;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
sx_sunlock(PIDHASHLOCK(pid));
|
|
return (p);
|
|
}
|
|
|
|
struct proc *
|
|
pfind(pid_t pid)
|
|
{
|
|
|
|
return (_pfind(pid, false));
|
|
}
|
|
|
|
/*
|
|
* Same as pfind but allow zombies.
|
|
*/
|
|
struct proc *
|
|
pfind_any(pid_t pid)
|
|
{
|
|
|
|
return (_pfind(pid, true));
|
|
}
|
|
|
|
static struct proc *
|
|
pfind_tid(pid_t tid)
|
|
{
|
|
struct proc *p;
|
|
struct thread *td;
|
|
|
|
sx_slock(&allproc_lock);
|
|
FOREACH_PROC_IN_SYSTEM(p) {
|
|
PROC_LOCK(p);
|
|
if (p->p_state == PRS_NEW) {
|
|
PROC_UNLOCK(p);
|
|
continue;
|
|
}
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
if (td->td_tid == tid)
|
|
goto found;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
found:
|
|
sx_sunlock(&allproc_lock);
|
|
return (p);
|
|
}
|
|
|
|
/*
|
|
* Locate a process group by number.
|
|
* The caller must hold proctree_lock.
|
|
*/
|
|
struct pgrp *
|
|
pgfind(pid_t pgid)
|
|
{
|
|
struct pgrp *pgrp;
|
|
|
|
sx_assert(&proctree_lock, SX_LOCKED);
|
|
|
|
LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
|
|
if (pgrp->pg_id == pgid) {
|
|
PGRP_LOCK(pgrp);
|
|
return (pgrp);
|
|
}
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Locate process and do additional manipulations, depending on flags.
|
|
*/
|
|
int
|
|
pget(pid_t pid, int flags, struct proc **pp)
|
|
{
|
|
struct proc *p;
|
|
int error;
|
|
|
|
p = curproc;
|
|
if (p->p_pid == pid) {
|
|
PROC_LOCK(p);
|
|
} else {
|
|
p = NULL;
|
|
if (pid <= PID_MAX) {
|
|
if ((flags & PGET_NOTWEXIT) == 0)
|
|
p = pfind_any(pid);
|
|
else
|
|
p = pfind(pid);
|
|
} else if ((flags & PGET_NOTID) == 0) {
|
|
p = pfind_tid(pid);
|
|
}
|
|
if (p == NULL)
|
|
return (ESRCH);
|
|
if ((flags & PGET_CANSEE) != 0) {
|
|
error = p_cansee(curthread, p);
|
|
if (error != 0)
|
|
goto errout;
|
|
}
|
|
}
|
|
if ((flags & PGET_CANDEBUG) != 0) {
|
|
error = p_candebug(curthread, p);
|
|
if (error != 0)
|
|
goto errout;
|
|
}
|
|
if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
|
|
error = EPERM;
|
|
goto errout;
|
|
}
|
|
if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
|
|
error = ESRCH;
|
|
goto errout;
|
|
}
|
|
if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
|
|
/*
|
|
* XXXRW: Not clear ESRCH is the right error during proc
|
|
* execve().
|
|
*/
|
|
error = ESRCH;
|
|
goto errout;
|
|
}
|
|
if ((flags & PGET_HOLD) != 0) {
|
|
_PHOLD(p);
|
|
PROC_UNLOCK(p);
|
|
}
|
|
*pp = p;
|
|
return (0);
|
|
errout:
|
|
PROC_UNLOCK(p);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Create a new process group.
|
|
* pgid must be equal to the pid of p.
|
|
* Begin a new session if required.
|
|
*/
|
|
int
|
|
enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
|
|
{
|
|
|
|
sx_assert(&proctree_lock, SX_XLOCKED);
|
|
|
|
KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
|
|
KASSERT(p->p_pid == pgid,
|
|
("enterpgrp: new pgrp and pid != pgid"));
|
|
KASSERT(pgfind(pgid) == NULL,
|
|
("enterpgrp: pgrp with pgid exists"));
|
|
KASSERT(!SESS_LEADER(p),
|
|
("enterpgrp: session leader attempted setpgrp"));
|
|
|
|
mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
|
|
|
|
if (sess != NULL) {
|
|
/*
|
|
* new session
|
|
*/
|
|
mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
|
|
PROC_LOCK(p);
|
|
p->p_flag &= ~P_CONTROLT;
|
|
PROC_UNLOCK(p);
|
|
PGRP_LOCK(pgrp);
|
|
sess->s_leader = p;
|
|
sess->s_sid = p->p_pid;
|
|
proc_id_set(PROC_ID_SESSION, p->p_pid);
|
|
refcount_init(&sess->s_count, 1);
|
|
sess->s_ttyvp = NULL;
|
|
sess->s_ttydp = NULL;
|
|
sess->s_ttyp = NULL;
|
|
bcopy(p->p_session->s_login, sess->s_login,
|
|
sizeof(sess->s_login));
|
|
pgrp->pg_session = sess;
|
|
KASSERT(p == curproc,
|
|
("enterpgrp: mksession and p != curproc"));
|
|
} else {
|
|
pgrp->pg_session = p->p_session;
|
|
sess_hold(pgrp->pg_session);
|
|
PGRP_LOCK(pgrp);
|
|
}
|
|
pgrp->pg_id = pgid;
|
|
proc_id_set(PROC_ID_GROUP, p->p_pid);
|
|
LIST_INIT(&pgrp->pg_members);
|
|
|
|
/*
|
|
* As we have an exclusive lock of proctree_lock,
|
|
* this should not deadlock.
|
|
*/
|
|
LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
|
|
pgrp->pg_jobc = 0;
|
|
SLIST_INIT(&pgrp->pg_sigiolst);
|
|
PGRP_UNLOCK(pgrp);
|
|
|
|
doenterpgrp(p, pgrp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Move p to an existing process group
|
|
*/
|
|
int
|
|
enterthispgrp(struct proc *p, struct pgrp *pgrp)
|
|
{
|
|
|
|
sx_assert(&proctree_lock, SX_XLOCKED);
|
|
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
|
|
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
|
|
PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
|
|
SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
|
|
KASSERT(pgrp->pg_session == p->p_session,
|
|
("%s: pgrp's session %p, p->p_session %p.\n",
|
|
__func__,
|
|
pgrp->pg_session,
|
|
p->p_session));
|
|
KASSERT(pgrp != p->p_pgrp,
|
|
("%s: p belongs to pgrp.", __func__));
|
|
|
|
doenterpgrp(p, pgrp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Move p to a process group
|
|
*/
|
|
static void
|
|
doenterpgrp(struct proc *p, struct pgrp *pgrp)
|
|
{
|
|
struct pgrp *savepgrp;
|
|
|
|
sx_assert(&proctree_lock, SX_XLOCKED);
|
|
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
|
|
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
|
|
PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
|
|
SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
|
|
|
|
savepgrp = p->p_pgrp;
|
|
|
|
/*
|
|
* Adjust eligibility of affected pgrps to participate in job control.
|
|
* Increment eligibility counts before decrementing, otherwise we
|
|
* could reach 0 spuriously during the first call.
|
|
*/
|
|
fixjobc(p, pgrp, 1);
|
|
fixjobc(p, p->p_pgrp, 0);
|
|
|
|
PGRP_LOCK(pgrp);
|
|
PGRP_LOCK(savepgrp);
|
|
PROC_LOCK(p);
|
|
LIST_REMOVE(p, p_pglist);
|
|
p->p_pgrp = pgrp;
|
|
PROC_UNLOCK(p);
|
|
LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
|
|
PGRP_UNLOCK(savepgrp);
|
|
PGRP_UNLOCK(pgrp);
|
|
if (LIST_EMPTY(&savepgrp->pg_members))
|
|
pgdelete(savepgrp);
|
|
}
|
|
|
|
/*
|
|
* remove process from process group
|
|
*/
|
|
int
|
|
leavepgrp(struct proc *p)
|
|
{
|
|
struct pgrp *savepgrp;
|
|
|
|
sx_assert(&proctree_lock, SX_XLOCKED);
|
|
savepgrp = p->p_pgrp;
|
|
PGRP_LOCK(savepgrp);
|
|
PROC_LOCK(p);
|
|
LIST_REMOVE(p, p_pglist);
|
|
p->p_pgrp = NULL;
|
|
PROC_UNLOCK(p);
|
|
PGRP_UNLOCK(savepgrp);
|
|
if (LIST_EMPTY(&savepgrp->pg_members))
|
|
pgdelete(savepgrp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* delete a process group
|
|
*/
|
|
static void
|
|
pgdelete(struct pgrp *pgrp)
|
|
{
|
|
struct session *savesess;
|
|
struct tty *tp;
|
|
|
|
sx_assert(&proctree_lock, SX_XLOCKED);
|
|
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
|
|
SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
|
|
|
|
/*
|
|
* Reset any sigio structures pointing to us as a result of
|
|
* F_SETOWN with our pgid.
|
|
*/
|
|
funsetownlst(&pgrp->pg_sigiolst);
|
|
|
|
PGRP_LOCK(pgrp);
|
|
tp = pgrp->pg_session->s_ttyp;
|
|
LIST_REMOVE(pgrp, pg_hash);
|
|
savesess = pgrp->pg_session;
|
|
PGRP_UNLOCK(pgrp);
|
|
|
|
/* Remove the reference to the pgrp before deallocating it. */
|
|
if (tp != NULL) {
|
|
tty_lock(tp);
|
|
tty_rel_pgrp(tp, pgrp);
|
|
}
|
|
|
|
proc_id_clear(PROC_ID_GROUP, pgrp->pg_id);
|
|
mtx_destroy(&pgrp->pg_mtx);
|
|
free(pgrp, M_PGRP);
|
|
sess_release(savesess);
|
|
}
|
|
|
|
static void
|
|
pgadjustjobc(struct pgrp *pgrp, int entering)
|
|
{
|
|
|
|
PGRP_LOCK(pgrp);
|
|
if (entering) {
|
|
MPASS(pgrp->pg_jobc >= 0);
|
|
pgrp->pg_jobc++;
|
|
} else {
|
|
MPASS(pgrp->pg_jobc > 0);
|
|
--pgrp->pg_jobc;
|
|
if (pgrp->pg_jobc == 0)
|
|
orphanpg(pgrp);
|
|
}
|
|
PGRP_UNLOCK(pgrp);
|
|
}
|
|
|
|
/*
|
|
* Adjust pgrp jobc counters when specified process changes process group.
|
|
* We count the number of processes in each process group that "qualify"
|
|
* the group for terminal job control (those with a parent in a different
|
|
* process group of the same session). If that count reaches zero, the
|
|
* process group becomes orphaned. Check both the specified process'
|
|
* process group and that of its children.
|
|
* entering == 0 => p is leaving specified group.
|
|
* entering == 1 => p is entering specified group.
|
|
*/
|
|
void
|
|
fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
|
|
{
|
|
struct pgrp *hispgrp;
|
|
struct session *mysession;
|
|
struct proc *q;
|
|
|
|
sx_assert(&proctree_lock, SX_LOCKED);
|
|
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
|
|
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
|
|
SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
|
|
|
|
/*
|
|
* Check p's parent to see whether p qualifies its own process
|
|
* group; if so, adjust count for p's process group.
|
|
*/
|
|
mysession = pgrp->pg_session;
|
|
if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
|
|
hispgrp->pg_session == mysession)
|
|
pgadjustjobc(pgrp, entering);
|
|
|
|
/*
|
|
* Check this process' children to see whether they qualify
|
|
* their process groups; if so, adjust counts for children's
|
|
* process groups.
|
|
*/
|
|
LIST_FOREACH(q, &p->p_children, p_sibling) {
|
|
hispgrp = q->p_pgrp;
|
|
if (hispgrp == pgrp ||
|
|
hispgrp->pg_session != mysession)
|
|
continue;
|
|
if (q->p_state == PRS_ZOMBIE)
|
|
continue;
|
|
pgadjustjobc(hispgrp, entering);
|
|
}
|
|
}
|
|
|
|
void
|
|
killjobc(void)
|
|
{
|
|
struct session *sp;
|
|
struct tty *tp;
|
|
struct proc *p;
|
|
struct vnode *ttyvp;
|
|
|
|
p = curproc;
|
|
MPASS(p->p_flag & P_WEXIT);
|
|
/*
|
|
* Do a quick check to see if there is anything to do with the
|
|
* proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc().
|
|
*/
|
|
PROC_LOCK(p);
|
|
if (!SESS_LEADER(p) &&
|
|
(p->p_pgrp == p->p_pptr->p_pgrp) &&
|
|
LIST_EMPTY(&p->p_children)) {
|
|
PROC_UNLOCK(p);
|
|
return;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
|
|
sx_xlock(&proctree_lock);
|
|
if (SESS_LEADER(p)) {
|
|
sp = p->p_session;
|
|
|
|
/*
|
|
* s_ttyp is not zero'd; we use this to indicate that
|
|
* the session once had a controlling terminal. (for
|
|
* logging and informational purposes)
|
|
*/
|
|
SESS_LOCK(sp);
|
|
ttyvp = sp->s_ttyvp;
|
|
tp = sp->s_ttyp;
|
|
sp->s_ttyvp = NULL;
|
|
sp->s_ttydp = NULL;
|
|
sp->s_leader = NULL;
|
|
SESS_UNLOCK(sp);
|
|
|
|
/*
|
|
* Signal foreground pgrp and revoke access to
|
|
* controlling terminal if it has not been revoked
|
|
* already.
|
|
*
|
|
* Because the TTY may have been revoked in the mean
|
|
* time and could already have a new session associated
|
|
* with it, make sure we don't send a SIGHUP to a
|
|
* foreground process group that does not belong to this
|
|
* session.
|
|
*/
|
|
|
|
if (tp != NULL) {
|
|
tty_lock(tp);
|
|
if (tp->t_session == sp)
|
|
tty_signal_pgrp(tp, SIGHUP);
|
|
tty_unlock(tp);
|
|
}
|
|
|
|
if (ttyvp != NULL) {
|
|
sx_xunlock(&proctree_lock);
|
|
if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
|
|
VOP_REVOKE(ttyvp, REVOKEALL);
|
|
VOP_UNLOCK(ttyvp);
|
|
}
|
|
vrele(ttyvp);
|
|
sx_xlock(&proctree_lock);
|
|
}
|
|
}
|
|
fixjobc(p, p->p_pgrp, 0);
|
|
sx_xunlock(&proctree_lock);
|
|
}
|
|
|
|
/*
|
|
* A process group has become orphaned;
|
|
* if there are any stopped processes in the group,
|
|
* hang-up all process in that group.
|
|
*/
|
|
static void
|
|
orphanpg(struct pgrp *pg)
|
|
{
|
|
struct proc *p;
|
|
|
|
PGRP_LOCK_ASSERT(pg, MA_OWNED);
|
|
|
|
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
|
|
PROC_LOCK(p);
|
|
if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
|
|
PROC_UNLOCK(p);
|
|
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
|
|
PROC_LOCK(p);
|
|
kern_psignal(p, SIGHUP);
|
|
kern_psignal(p, SIGCONT);
|
|
PROC_UNLOCK(p);
|
|
}
|
|
return;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
}
|
|
|
|
void
|
|
sess_hold(struct session *s)
|
|
{
|
|
|
|
refcount_acquire(&s->s_count);
|
|
}
|
|
|
|
void
|
|
sess_release(struct session *s)
|
|
{
|
|
|
|
if (refcount_release(&s->s_count)) {
|
|
if (s->s_ttyp != NULL) {
|
|
tty_lock(s->s_ttyp);
|
|
tty_rel_sess(s->s_ttyp, s);
|
|
}
|
|
proc_id_clear(PROC_ID_SESSION, s->s_sid);
|
|
mtx_destroy(&s->s_mtx);
|
|
free(s, M_SESSION);
|
|
}
|
|
}
|
|
|
|
#ifdef DDB
|
|
|
|
DB_SHOW_COMMAND(pgrpdump, pgrpdump)
|
|
{
|
|
struct pgrp *pgrp;
|
|
struct proc *p;
|
|
int i;
|
|
|
|
for (i = 0; i <= pgrphash; i++) {
|
|
if (!LIST_EMPTY(&pgrphashtbl[i])) {
|
|
printf("\tindx %d\n", i);
|
|
LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
|
|
printf(
|
|
"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
|
|
(void *)pgrp, (long)pgrp->pg_id,
|
|
(void *)pgrp->pg_session,
|
|
pgrp->pg_session->s_count,
|
|
(void *)LIST_FIRST(&pgrp->pg_members));
|
|
LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
|
|
printf("\t\tpid %ld addr %p pgrp %p\n",
|
|
(long)p->p_pid, (void *)p,
|
|
(void *)p->p_pgrp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* DDB */
|
|
|
|
/*
|
|
* Calculate the kinfo_proc members which contain process-wide
|
|
* informations.
|
|
* Must be called with the target process locked.
|
|
*/
|
|
static void
|
|
fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
|
|
{
|
|
struct thread *td;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
|
|
kp->ki_estcpu = 0;
|
|
kp->ki_pctcpu = 0;
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
thread_lock(td);
|
|
kp->ki_pctcpu += sched_pctcpu(td);
|
|
kp->ki_estcpu += sched_estcpu(td);
|
|
thread_unlock(td);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear kinfo_proc and fill in any information that is common
|
|
* to all threads in the process.
|
|
* Must be called with the target process locked.
|
|
*/
|
|
static void
|
|
fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
|
|
{
|
|
struct thread *td0;
|
|
struct tty *tp;
|
|
struct session *sp;
|
|
struct ucred *cred;
|
|
struct sigacts *ps;
|
|
struct timeval boottime;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
bzero(kp, sizeof(*kp));
|
|
|
|
kp->ki_structsize = sizeof(*kp);
|
|
kp->ki_paddr = p;
|
|
kp->ki_addr =/* p->p_addr; */0; /* XXX */
|
|
kp->ki_args = p->p_args;
|
|
kp->ki_textvp = p->p_textvp;
|
|
#ifdef KTRACE
|
|
kp->ki_tracep = p->p_tracevp;
|
|
kp->ki_traceflag = p->p_traceflag;
|
|
#endif
|
|
kp->ki_fd = p->p_fd;
|
|
kp->ki_vmspace = p->p_vmspace;
|
|
kp->ki_flag = p->p_flag;
|
|
kp->ki_flag2 = p->p_flag2;
|
|
cred = p->p_ucred;
|
|
if (cred) {
|
|
kp->ki_uid = cred->cr_uid;
|
|
kp->ki_ruid = cred->cr_ruid;
|
|
kp->ki_svuid = cred->cr_svuid;
|
|
kp->ki_cr_flags = 0;
|
|
if (cred->cr_flags & CRED_FLAG_CAPMODE)
|
|
kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
|
|
/* XXX bde doesn't like KI_NGROUPS */
|
|
if (cred->cr_ngroups > KI_NGROUPS) {
|
|
kp->ki_ngroups = KI_NGROUPS;
|
|
kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
|
|
} else
|
|
kp->ki_ngroups = cred->cr_ngroups;
|
|
bcopy(cred->cr_groups, kp->ki_groups,
|
|
kp->ki_ngroups * sizeof(gid_t));
|
|
kp->ki_rgid = cred->cr_rgid;
|
|
kp->ki_svgid = cred->cr_svgid;
|
|
/* If jailed(cred), emulate the old P_JAILED flag. */
|
|
if (jailed(cred)) {
|
|
kp->ki_flag |= P_JAILED;
|
|
/* If inside the jail, use 0 as a jail ID. */
|
|
if (cred->cr_prison != curthread->td_ucred->cr_prison)
|
|
kp->ki_jid = cred->cr_prison->pr_id;
|
|
}
|
|
strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
|
|
sizeof(kp->ki_loginclass));
|
|
}
|
|
ps = p->p_sigacts;
|
|
if (ps) {
|
|
mtx_lock(&ps->ps_mtx);
|
|
kp->ki_sigignore = ps->ps_sigignore;
|
|
kp->ki_sigcatch = ps->ps_sigcatch;
|
|
mtx_unlock(&ps->ps_mtx);
|
|
}
|
|
if (p->p_state != PRS_NEW &&
|
|
p->p_state != PRS_ZOMBIE &&
|
|
p->p_vmspace != NULL) {
|
|
struct vmspace *vm = p->p_vmspace;
|
|
|
|
kp->ki_size = vm->vm_map.size;
|
|
kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
|
|
FOREACH_THREAD_IN_PROC(p, td0) {
|
|
if (!TD_IS_SWAPPED(td0))
|
|
kp->ki_rssize += td0->td_kstack_pages;
|
|
}
|
|
kp->ki_swrss = vm->vm_swrss;
|
|
kp->ki_tsize = vm->vm_tsize;
|
|
kp->ki_dsize = vm->vm_dsize;
|
|
kp->ki_ssize = vm->vm_ssize;
|
|
} else if (p->p_state == PRS_ZOMBIE)
|
|
kp->ki_stat = SZOMB;
|
|
if (kp->ki_flag & P_INMEM)
|
|
kp->ki_sflag = PS_INMEM;
|
|
else
|
|
kp->ki_sflag = 0;
|
|
/* Calculate legacy swtime as seconds since 'swtick'. */
|
|
kp->ki_swtime = (ticks - p->p_swtick) / hz;
|
|
kp->ki_pid = p->p_pid;
|
|
kp->ki_nice = p->p_nice;
|
|
kp->ki_fibnum = p->p_fibnum;
|
|
kp->ki_start = p->p_stats->p_start;
|
|
getboottime(&boottime);
|
|
timevaladd(&kp->ki_start, &boottime);
|
|
PROC_STATLOCK(p);
|
|
rufetch(p, &kp->ki_rusage);
|
|
kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
|
|
calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
|
|
PROC_STATUNLOCK(p);
|
|
calccru(p, &kp->ki_childutime, &kp->ki_childstime);
|
|
/* Some callers want child times in a single value. */
|
|
kp->ki_childtime = kp->ki_childstime;
|
|
timevaladd(&kp->ki_childtime, &kp->ki_childutime);
|
|
|
|
FOREACH_THREAD_IN_PROC(p, td0)
|
|
kp->ki_cow += td0->td_cow;
|
|
|
|
tp = NULL;
|
|
if (p->p_pgrp) {
|
|
kp->ki_pgid = p->p_pgrp->pg_id;
|
|
kp->ki_jobc = p->p_pgrp->pg_jobc;
|
|
sp = p->p_pgrp->pg_session;
|
|
|
|
if (sp != NULL) {
|
|
kp->ki_sid = sp->s_sid;
|
|
SESS_LOCK(sp);
|
|
strlcpy(kp->ki_login, sp->s_login,
|
|
sizeof(kp->ki_login));
|
|
if (sp->s_ttyvp)
|
|
kp->ki_kiflag |= KI_CTTY;
|
|
if (SESS_LEADER(p))
|
|
kp->ki_kiflag |= KI_SLEADER;
|
|
/* XXX proctree_lock */
|
|
tp = sp->s_ttyp;
|
|
SESS_UNLOCK(sp);
|
|
}
|
|
}
|
|
if ((p->p_flag & P_CONTROLT) && tp != NULL) {
|
|
kp->ki_tdev = tty_udev(tp);
|
|
kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
|
|
kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
|
|
if (tp->t_session)
|
|
kp->ki_tsid = tp->t_session->s_sid;
|
|
} else {
|
|
kp->ki_tdev = NODEV;
|
|
kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
|
|
}
|
|
if (p->p_comm[0] != '\0')
|
|
strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
|
|
if (p->p_sysent && p->p_sysent->sv_name != NULL &&
|
|
p->p_sysent->sv_name[0] != '\0')
|
|
strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
|
|
kp->ki_siglist = p->p_siglist;
|
|
kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
|
|
kp->ki_acflag = p->p_acflag;
|
|
kp->ki_lock = p->p_lock;
|
|
if (p->p_pptr) {
|
|
kp->ki_ppid = p->p_oppid;
|
|
if (p->p_flag & P_TRACED)
|
|
kp->ki_tracer = p->p_pptr->p_pid;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fill in information that is thread specific. Must be called with
|
|
* target process locked. If 'preferthread' is set, overwrite certain
|
|
* process-related fields that are maintained for both threads and
|
|
* processes.
|
|
*/
|
|
static void
|
|
fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
|
|
{
|
|
struct proc *p;
|
|
|
|
p = td->td_proc;
|
|
kp->ki_tdaddr = td;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
|
|
if (preferthread)
|
|
PROC_STATLOCK(p);
|
|
thread_lock(td);
|
|
if (td->td_wmesg != NULL)
|
|
strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
|
|
else
|
|
bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
|
|
if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
|
|
sizeof(kp->ki_tdname)) {
|
|
strlcpy(kp->ki_moretdname,
|
|
td->td_name + sizeof(kp->ki_tdname) - 1,
|
|
sizeof(kp->ki_moretdname));
|
|
} else {
|
|
bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
|
|
}
|
|
if (TD_ON_LOCK(td)) {
|
|
kp->ki_kiflag |= KI_LOCKBLOCK;
|
|
strlcpy(kp->ki_lockname, td->td_lockname,
|
|
sizeof(kp->ki_lockname));
|
|
} else {
|
|
kp->ki_kiflag &= ~KI_LOCKBLOCK;
|
|
bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
|
|
}
|
|
|
|
if (p->p_state == PRS_NORMAL) { /* approximate. */
|
|
if (TD_ON_RUNQ(td) ||
|
|
TD_CAN_RUN(td) ||
|
|
TD_IS_RUNNING(td)) {
|
|
kp->ki_stat = SRUN;
|
|
} else if (P_SHOULDSTOP(p)) {
|
|
kp->ki_stat = SSTOP;
|
|
} else if (TD_IS_SLEEPING(td)) {
|
|
kp->ki_stat = SSLEEP;
|
|
} else if (TD_ON_LOCK(td)) {
|
|
kp->ki_stat = SLOCK;
|
|
} else {
|
|
kp->ki_stat = SWAIT;
|
|
}
|
|
} else if (p->p_state == PRS_ZOMBIE) {
|
|
kp->ki_stat = SZOMB;
|
|
} else {
|
|
kp->ki_stat = SIDL;
|
|
}
|
|
|
|
/* Things in the thread */
|
|
kp->ki_wchan = td->td_wchan;
|
|
kp->ki_pri.pri_level = td->td_priority;
|
|
kp->ki_pri.pri_native = td->td_base_pri;
|
|
|
|
/*
|
|
* Note: legacy fields; clamp at the old NOCPU value and/or
|
|
* the maximum u_char CPU value.
|
|
*/
|
|
if (td->td_lastcpu == NOCPU)
|
|
kp->ki_lastcpu_old = NOCPU_OLD;
|
|
else if (td->td_lastcpu > MAXCPU_OLD)
|
|
kp->ki_lastcpu_old = MAXCPU_OLD;
|
|
else
|
|
kp->ki_lastcpu_old = td->td_lastcpu;
|
|
|
|
if (td->td_oncpu == NOCPU)
|
|
kp->ki_oncpu_old = NOCPU_OLD;
|
|
else if (td->td_oncpu > MAXCPU_OLD)
|
|
kp->ki_oncpu_old = MAXCPU_OLD;
|
|
else
|
|
kp->ki_oncpu_old = td->td_oncpu;
|
|
|
|
kp->ki_lastcpu = td->td_lastcpu;
|
|
kp->ki_oncpu = td->td_oncpu;
|
|
kp->ki_tdflags = td->td_flags;
|
|
kp->ki_tid = td->td_tid;
|
|
kp->ki_numthreads = p->p_numthreads;
|
|
kp->ki_pcb = td->td_pcb;
|
|
kp->ki_kstack = (void *)td->td_kstack;
|
|
kp->ki_slptime = (ticks - td->td_slptick) / hz;
|
|
kp->ki_pri.pri_class = td->td_pri_class;
|
|
kp->ki_pri.pri_user = td->td_user_pri;
|
|
|
|
if (preferthread) {
|
|
rufetchtd(td, &kp->ki_rusage);
|
|
kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
|
|
kp->ki_pctcpu = sched_pctcpu(td);
|
|
kp->ki_estcpu = sched_estcpu(td);
|
|
kp->ki_cow = td->td_cow;
|
|
}
|
|
|
|
/* We can't get this anymore but ps etc never used it anyway. */
|
|
kp->ki_rqindex = 0;
|
|
|
|
if (preferthread)
|
|
kp->ki_siglist = td->td_siglist;
|
|
kp->ki_sigmask = td->td_sigmask;
|
|
thread_unlock(td);
|
|
if (preferthread)
|
|
PROC_STATUNLOCK(p);
|
|
}
|
|
|
|
/*
|
|
* Fill in a kinfo_proc structure for the specified process.
|
|
* Must be called with the target process locked.
|
|
*/
|
|
void
|
|
fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
|
|
{
|
|
|
|
MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
|
|
|
|
fill_kinfo_proc_only(p, kp);
|
|
fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
|
|
fill_kinfo_aggregate(p, kp);
|
|
}
|
|
|
|
struct pstats *
|
|
pstats_alloc(void)
|
|
{
|
|
|
|
return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
|
|
}
|
|
|
|
/*
|
|
* Copy parts of p_stats; zero the rest of p_stats (statistics).
|
|
*/
|
|
void
|
|
pstats_fork(struct pstats *src, struct pstats *dst)
|
|
{
|
|
|
|
bzero(&dst->pstat_startzero,
|
|
__rangeof(struct pstats, pstat_startzero, pstat_endzero));
|
|
bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
|
|
__rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
|
|
}
|
|
|
|
void
|
|
pstats_free(struct pstats *ps)
|
|
{
|
|
|
|
free(ps, M_SUBPROC);
|
|
}
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
|
|
/*
|
|
* This function is typically used to copy out the kernel address, so
|
|
* it can be replaced by assignment of zero.
|
|
*/
|
|
static inline uint32_t
|
|
ptr32_trim(const void *ptr)
|
|
{
|
|
uintptr_t uptr;
|
|
|
|
uptr = (uintptr_t)ptr;
|
|
return ((uptr > UINT_MAX) ? 0 : uptr);
|
|
}
|
|
|
|
#define PTRTRIM_CP(src,dst,fld) \
|
|
do { (dst).fld = ptr32_trim((src).fld); } while (0)
|
|
|
|
static void
|
|
freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
|
|
{
|
|
int i;
|
|
|
|
bzero(ki32, sizeof(struct kinfo_proc32));
|
|
ki32->ki_structsize = sizeof(struct kinfo_proc32);
|
|
CP(*ki, *ki32, ki_layout);
|
|
PTRTRIM_CP(*ki, *ki32, ki_args);
|
|
PTRTRIM_CP(*ki, *ki32, ki_paddr);
|
|
PTRTRIM_CP(*ki, *ki32, ki_addr);
|
|
PTRTRIM_CP(*ki, *ki32, ki_tracep);
|
|
PTRTRIM_CP(*ki, *ki32, ki_textvp);
|
|
PTRTRIM_CP(*ki, *ki32, ki_fd);
|
|
PTRTRIM_CP(*ki, *ki32, ki_vmspace);
|
|
PTRTRIM_CP(*ki, *ki32, ki_wchan);
|
|
CP(*ki, *ki32, ki_pid);
|
|
CP(*ki, *ki32, ki_ppid);
|
|
CP(*ki, *ki32, ki_pgid);
|
|
CP(*ki, *ki32, ki_tpgid);
|
|
CP(*ki, *ki32, ki_sid);
|
|
CP(*ki, *ki32, ki_tsid);
|
|
CP(*ki, *ki32, ki_jobc);
|
|
CP(*ki, *ki32, ki_tdev);
|
|
CP(*ki, *ki32, ki_tdev_freebsd11);
|
|
CP(*ki, *ki32, ki_siglist);
|
|
CP(*ki, *ki32, ki_sigmask);
|
|
CP(*ki, *ki32, ki_sigignore);
|
|
CP(*ki, *ki32, ki_sigcatch);
|
|
CP(*ki, *ki32, ki_uid);
|
|
CP(*ki, *ki32, ki_ruid);
|
|
CP(*ki, *ki32, ki_svuid);
|
|
CP(*ki, *ki32, ki_rgid);
|
|
CP(*ki, *ki32, ki_svgid);
|
|
CP(*ki, *ki32, ki_ngroups);
|
|
for (i = 0; i < KI_NGROUPS; i++)
|
|
CP(*ki, *ki32, ki_groups[i]);
|
|
CP(*ki, *ki32, ki_size);
|
|
CP(*ki, *ki32, ki_rssize);
|
|
CP(*ki, *ki32, ki_swrss);
|
|
CP(*ki, *ki32, ki_tsize);
|
|
CP(*ki, *ki32, ki_dsize);
|
|
CP(*ki, *ki32, ki_ssize);
|
|
CP(*ki, *ki32, ki_xstat);
|
|
CP(*ki, *ki32, ki_acflag);
|
|
CP(*ki, *ki32, ki_pctcpu);
|
|
CP(*ki, *ki32, ki_estcpu);
|
|
CP(*ki, *ki32, ki_slptime);
|
|
CP(*ki, *ki32, ki_swtime);
|
|
CP(*ki, *ki32, ki_cow);
|
|
CP(*ki, *ki32, ki_runtime);
|
|
TV_CP(*ki, *ki32, ki_start);
|
|
TV_CP(*ki, *ki32, ki_childtime);
|
|
CP(*ki, *ki32, ki_flag);
|
|
CP(*ki, *ki32, ki_kiflag);
|
|
CP(*ki, *ki32, ki_traceflag);
|
|
CP(*ki, *ki32, ki_stat);
|
|
CP(*ki, *ki32, ki_nice);
|
|
CP(*ki, *ki32, ki_lock);
|
|
CP(*ki, *ki32, ki_rqindex);
|
|
CP(*ki, *ki32, ki_oncpu);
|
|
CP(*ki, *ki32, ki_lastcpu);
|
|
|
|
/* XXX TODO: wrap cpu value as appropriate */
|
|
CP(*ki, *ki32, ki_oncpu_old);
|
|
CP(*ki, *ki32, ki_lastcpu_old);
|
|
|
|
bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
|
|
bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
|
|
bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
|
|
bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
|
|
bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
|
|
bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
|
|
bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
|
|
bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
|
|
CP(*ki, *ki32, ki_tracer);
|
|
CP(*ki, *ki32, ki_flag2);
|
|
CP(*ki, *ki32, ki_fibnum);
|
|
CP(*ki, *ki32, ki_cr_flags);
|
|
CP(*ki, *ki32, ki_jid);
|
|
CP(*ki, *ki32, ki_numthreads);
|
|
CP(*ki, *ki32, ki_tid);
|
|
CP(*ki, *ki32, ki_pri);
|
|
freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
|
|
freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
|
|
PTRTRIM_CP(*ki, *ki32, ki_pcb);
|
|
PTRTRIM_CP(*ki, *ki32, ki_kstack);
|
|
PTRTRIM_CP(*ki, *ki32, ki_udata);
|
|
PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
|
|
CP(*ki, *ki32, ki_sflag);
|
|
CP(*ki, *ki32, ki_tdflags);
|
|
}
|
|
#endif
|
|
|
|
static ssize_t
|
|
kern_proc_out_size(struct proc *p, int flags)
|
|
{
|
|
ssize_t size = 0;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
|
|
if ((flags & KERN_PROC_NOTHREADS) != 0) {
|
|
#ifdef COMPAT_FREEBSD32
|
|
if ((flags & KERN_PROC_MASK32) != 0) {
|
|
size += sizeof(struct kinfo_proc32);
|
|
} else
|
|
#endif
|
|
size += sizeof(struct kinfo_proc);
|
|
} else {
|
|
#ifdef COMPAT_FREEBSD32
|
|
if ((flags & KERN_PROC_MASK32) != 0)
|
|
size += sizeof(struct kinfo_proc32) * p->p_numthreads;
|
|
else
|
|
#endif
|
|
size += sizeof(struct kinfo_proc) * p->p_numthreads;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
return (size);
|
|
}
|
|
|
|
int
|
|
kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
|
|
{
|
|
struct thread *td;
|
|
struct kinfo_proc ki;
|
|
#ifdef COMPAT_FREEBSD32
|
|
struct kinfo_proc32 ki32;
|
|
#endif
|
|
int error;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
|
|
|
|
error = 0;
|
|
fill_kinfo_proc(p, &ki);
|
|
if ((flags & KERN_PROC_NOTHREADS) != 0) {
|
|
#ifdef COMPAT_FREEBSD32
|
|
if ((flags & KERN_PROC_MASK32) != 0) {
|
|
freebsd32_kinfo_proc_out(&ki, &ki32);
|
|
if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
|
|
error = ENOMEM;
|
|
} else
|
|
#endif
|
|
if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
|
|
error = ENOMEM;
|
|
} else {
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
fill_kinfo_thread(td, &ki, 1);
|
|
#ifdef COMPAT_FREEBSD32
|
|
if ((flags & KERN_PROC_MASK32) != 0) {
|
|
freebsd32_kinfo_proc_out(&ki, &ki32);
|
|
if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
|
|
error = ENOMEM;
|
|
} else
|
|
#endif
|
|
if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
|
|
error = ENOMEM;
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
}
|
|
PROC_UNLOCK(p);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
|
|
{
|
|
struct sbuf sb;
|
|
struct kinfo_proc ki;
|
|
int error, error2;
|
|
|
|
if (req->oldptr == NULL)
|
|
return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags)));
|
|
|
|
sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
|
|
sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
|
|
error = kern_proc_out(p, &sb, flags);
|
|
error2 = sbuf_finish(&sb);
|
|
sbuf_delete(&sb);
|
|
if (error != 0)
|
|
return (error);
|
|
else if (error2 != 0)
|
|
return (error2);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
proc_iterate(int (*cb)(struct proc *, void *), void *cbarg)
|
|
{
|
|
struct proc *p;
|
|
int error, i, j;
|
|
|
|
for (i = 0; i < pidhashlock + 1; i++) {
|
|
sx_slock(&pidhashtbl_lock[i]);
|
|
for (j = i; j <= pidhash; j += pidhashlock + 1) {
|
|
LIST_FOREACH(p, &pidhashtbl[j], p_hash) {
|
|
if (p->p_state == PRS_NEW)
|
|
continue;
|
|
error = cb(p, cbarg);
|
|
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
|
|
if (error != 0) {
|
|
sx_sunlock(&pidhashtbl_lock[i]);
|
|
return (error);
|
|
}
|
|
}
|
|
}
|
|
sx_sunlock(&pidhashtbl_lock[i]);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
struct kern_proc_out_args {
|
|
struct sysctl_req *req;
|
|
int flags;
|
|
int oid_number;
|
|
int *name;
|
|
};
|
|
|
|
static int
|
|
sysctl_kern_proc_iterate(struct proc *p, void *origarg)
|
|
{
|
|
struct kern_proc_out_args *arg = origarg;
|
|
int *name = arg->name;
|
|
int oid_number = arg->oid_number;
|
|
int flags = arg->flags;
|
|
struct sysctl_req *req = arg->req;
|
|
int error = 0;
|
|
|
|
PROC_LOCK(p);
|
|
|
|
KASSERT(p->p_ucred != NULL,
|
|
("process credential is NULL for non-NEW proc"));
|
|
/*
|
|
* Show a user only appropriate processes.
|
|
*/
|
|
if (p_cansee(curthread, p))
|
|
goto skip;
|
|
/*
|
|
* TODO - make more efficient (see notes below).
|
|
* do by session.
|
|
*/
|
|
switch (oid_number) {
|
|
|
|
case KERN_PROC_GID:
|
|
if (p->p_ucred->cr_gid != (gid_t)name[0])
|
|
goto skip;
|
|
break;
|
|
|
|
case KERN_PROC_PGRP:
|
|
/* could do this by traversing pgrp */
|
|
if (p->p_pgrp == NULL ||
|
|
p->p_pgrp->pg_id != (pid_t)name[0])
|
|
goto skip;
|
|
break;
|
|
|
|
case KERN_PROC_RGID:
|
|
if (p->p_ucred->cr_rgid != (gid_t)name[0])
|
|
goto skip;
|
|
break;
|
|
|
|
case KERN_PROC_SESSION:
|
|
if (p->p_session == NULL ||
|
|
p->p_session->s_sid != (pid_t)name[0])
|
|
goto skip;
|
|
break;
|
|
|
|
case KERN_PROC_TTY:
|
|
if ((p->p_flag & P_CONTROLT) == 0 ||
|
|
p->p_session == NULL)
|
|
goto skip;
|
|
/* XXX proctree_lock */
|
|
SESS_LOCK(p->p_session);
|
|
if (p->p_session->s_ttyp == NULL ||
|
|
tty_udev(p->p_session->s_ttyp) !=
|
|
(dev_t)name[0]) {
|
|
SESS_UNLOCK(p->p_session);
|
|
goto skip;
|
|
}
|
|
SESS_UNLOCK(p->p_session);
|
|
break;
|
|
|
|
case KERN_PROC_UID:
|
|
if (p->p_ucred->cr_uid != (uid_t)name[0])
|
|
goto skip;
|
|
break;
|
|
|
|
case KERN_PROC_RUID:
|
|
if (p->p_ucred->cr_ruid != (uid_t)name[0])
|
|
goto skip;
|
|
break;
|
|
|
|
case KERN_PROC_PROC:
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
|
|
}
|
|
error = sysctl_out_proc(p, req, flags);
|
|
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
|
|
return (error);
|
|
skip:
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct kern_proc_out_args iterarg;
|
|
int *name = (int *)arg1;
|
|
u_int namelen = arg2;
|
|
struct proc *p;
|
|
int flags, oid_number;
|
|
int error = 0;
|
|
|
|
oid_number = oidp->oid_number;
|
|
if (oid_number != KERN_PROC_ALL &&
|
|
(oid_number & KERN_PROC_INC_THREAD) == 0)
|
|
flags = KERN_PROC_NOTHREADS;
|
|
else {
|
|
flags = 0;
|
|
oid_number &= ~KERN_PROC_INC_THREAD;
|
|
}
|
|
#ifdef COMPAT_FREEBSD32
|
|
if (req->flags & SCTL_MASK32)
|
|
flags |= KERN_PROC_MASK32;
|
|
#endif
|
|
if (oid_number == KERN_PROC_PID) {
|
|
if (namelen != 1)
|
|
return (EINVAL);
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error)
|
|
return (error);
|
|
error = pget((pid_t)name[0], PGET_CANSEE, &p);
|
|
if (error == 0)
|
|
error = sysctl_out_proc(p, req, flags);
|
|
return (error);
|
|
}
|
|
|
|
switch (oid_number) {
|
|
case KERN_PROC_ALL:
|
|
if (namelen != 0)
|
|
return (EINVAL);
|
|
break;
|
|
case KERN_PROC_PROC:
|
|
if (namelen != 0 && namelen != 1)
|
|
return (EINVAL);
|
|
break;
|
|
default:
|
|
if (namelen != 1)
|
|
return (EINVAL);
|
|
break;
|
|
}
|
|
|
|
if (req->oldptr == NULL) {
|
|
/* overestimate by 5 procs */
|
|
error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
|
|
if (error)
|
|
return (error);
|
|
} else {
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
iterarg.flags = flags;
|
|
iterarg.oid_number = oid_number;
|
|
iterarg.req = req;
|
|
iterarg.name = name;
|
|
error = proc_iterate(sysctl_kern_proc_iterate, &iterarg);
|
|
return (error);
|
|
}
|
|
|
|
struct pargs *
|
|
pargs_alloc(int len)
|
|
{
|
|
struct pargs *pa;
|
|
|
|
pa = malloc(sizeof(struct pargs) + len, M_PARGS,
|
|
M_WAITOK);
|
|
refcount_init(&pa->ar_ref, 1);
|
|
pa->ar_length = len;
|
|
return (pa);
|
|
}
|
|
|
|
static void
|
|
pargs_free(struct pargs *pa)
|
|
{
|
|
|
|
free(pa, M_PARGS);
|
|
}
|
|
|
|
void
|
|
pargs_hold(struct pargs *pa)
|
|
{
|
|
|
|
if (pa == NULL)
|
|
return;
|
|
refcount_acquire(&pa->ar_ref);
|
|
}
|
|
|
|
void
|
|
pargs_drop(struct pargs *pa)
|
|
{
|
|
|
|
if (pa == NULL)
|
|
return;
|
|
if (refcount_release(&pa->ar_ref))
|
|
pargs_free(pa);
|
|
}
|
|
|
|
static int
|
|
proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
|
|
size_t len)
|
|
{
|
|
ssize_t n;
|
|
|
|
/*
|
|
* This may return a short read if the string is shorter than the chunk
|
|
* and is aligned at the end of the page, and the following page is not
|
|
* mapped.
|
|
*/
|
|
n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
|
|
if (n <= 0)
|
|
return (ENOMEM);
|
|
return (0);
|
|
}
|
|
|
|
#define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */
|
|
|
|
enum proc_vector_type {
|
|
PROC_ARG,
|
|
PROC_ENV,
|
|
PROC_AUX,
|
|
};
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
static int
|
|
get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
|
|
size_t *vsizep, enum proc_vector_type type)
|
|
{
|
|
struct freebsd32_ps_strings pss;
|
|
Elf32_Auxinfo aux;
|
|
vm_offset_t vptr, ptr;
|
|
uint32_t *proc_vector32;
|
|
char **proc_vector;
|
|
size_t vsize, size;
|
|
int i, error;
|
|
|
|
error = 0;
|
|
if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
|
|
sizeof(pss)) != sizeof(pss))
|
|
return (ENOMEM);
|
|
switch (type) {
|
|
case PROC_ARG:
|
|
vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
|
|
vsize = pss.ps_nargvstr;
|
|
if (vsize > ARG_MAX)
|
|
return (ENOEXEC);
|
|
size = vsize * sizeof(int32_t);
|
|
break;
|
|
case PROC_ENV:
|
|
vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
|
|
vsize = pss.ps_nenvstr;
|
|
if (vsize > ARG_MAX)
|
|
return (ENOEXEC);
|
|
size = vsize * sizeof(int32_t);
|
|
break;
|
|
case PROC_AUX:
|
|
vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
|
|
(pss.ps_nenvstr + 1) * sizeof(int32_t);
|
|
if (vptr % 4 != 0)
|
|
return (ENOEXEC);
|
|
for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
|
|
if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
|
|
sizeof(aux))
|
|
return (ENOMEM);
|
|
if (aux.a_type == AT_NULL)
|
|
break;
|
|
ptr += sizeof(aux);
|
|
}
|
|
if (aux.a_type != AT_NULL)
|
|
return (ENOEXEC);
|
|
vsize = i + 1;
|
|
size = vsize * sizeof(aux);
|
|
break;
|
|
default:
|
|
KASSERT(0, ("Wrong proc vector type: %d", type));
|
|
return (EINVAL);
|
|
}
|
|
proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
|
|
if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
|
|
error = ENOMEM;
|
|
goto done;
|
|
}
|
|
if (type == PROC_AUX) {
|
|
*proc_vectorp = (char **)proc_vector32;
|
|
*vsizep = vsize;
|
|
return (0);
|
|
}
|
|
proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
|
|
for (i = 0; i < (int)vsize; i++)
|
|
proc_vector[i] = PTRIN(proc_vector32[i]);
|
|
*proc_vectorp = proc_vector;
|
|
*vsizep = vsize;
|
|
done:
|
|
free(proc_vector32, M_TEMP);
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
|
|
size_t *vsizep, enum proc_vector_type type)
|
|
{
|
|
struct ps_strings pss;
|
|
Elf_Auxinfo aux;
|
|
vm_offset_t vptr, ptr;
|
|
char **proc_vector;
|
|
size_t vsize, size;
|
|
int i;
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
if (SV_PROC_FLAG(p, SV_ILP32) != 0)
|
|
return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
|
|
#endif
|
|
if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
|
|
sizeof(pss)) != sizeof(pss))
|
|
return (ENOMEM);
|
|
switch (type) {
|
|
case PROC_ARG:
|
|
vptr = (vm_offset_t)pss.ps_argvstr;
|
|
vsize = pss.ps_nargvstr;
|
|
if (vsize > ARG_MAX)
|
|
return (ENOEXEC);
|
|
size = vsize * sizeof(char *);
|
|
break;
|
|
case PROC_ENV:
|
|
vptr = (vm_offset_t)pss.ps_envstr;
|
|
vsize = pss.ps_nenvstr;
|
|
if (vsize > ARG_MAX)
|
|
return (ENOEXEC);
|
|
size = vsize * sizeof(char *);
|
|
break;
|
|
case PROC_AUX:
|
|
/*
|
|
* The aux array is just above env array on the stack. Check
|
|
* that the address is naturally aligned.
|
|
*/
|
|
vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
|
|
* sizeof(char *);
|
|
#if __ELF_WORD_SIZE == 64
|
|
if (vptr % sizeof(uint64_t) != 0)
|
|
#else
|
|
if (vptr % sizeof(uint32_t) != 0)
|
|
#endif
|
|
return (ENOEXEC);
|
|
/*
|
|
* We count the array size reading the aux vectors from the
|
|
* stack until AT_NULL vector is returned. So (to keep the code
|
|
* simple) we read the process stack twice: the first time here
|
|
* to find the size and the second time when copying the vectors
|
|
* to the allocated proc_vector.
|
|
*/
|
|
for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
|
|
if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
|
|
sizeof(aux))
|
|
return (ENOMEM);
|
|
if (aux.a_type == AT_NULL)
|
|
break;
|
|
ptr += sizeof(aux);
|
|
}
|
|
/*
|
|
* If the PROC_AUXV_MAX entries are iterated over, and we have
|
|
* not reached AT_NULL, it is most likely we are reading wrong
|
|
* data: either the process doesn't have auxv array or data has
|
|
* been modified. Return the error in this case.
|
|
*/
|
|
if (aux.a_type != AT_NULL)
|
|
return (ENOEXEC);
|
|
vsize = i + 1;
|
|
size = vsize * sizeof(aux);
|
|
break;
|
|
default:
|
|
KASSERT(0, ("Wrong proc vector type: %d", type));
|
|
return (EINVAL); /* In case we are built without INVARIANTS. */
|
|
}
|
|
proc_vector = malloc(size, M_TEMP, M_WAITOK);
|
|
if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
|
|
free(proc_vector, M_TEMP);
|
|
return (ENOMEM);
|
|
}
|
|
*proc_vectorp = proc_vector;
|
|
*vsizep = vsize;
|
|
|
|
return (0);
|
|
}
|
|
|
|
#define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */
|
|
|
|
static int
|
|
get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
|
|
enum proc_vector_type type)
|
|
{
|
|
size_t done, len, nchr, vsize;
|
|
int error, i;
|
|
char **proc_vector, *sptr;
|
|
char pss_string[GET_PS_STRINGS_CHUNK_SZ];
|
|
|
|
PROC_ASSERT_HELD(p);
|
|
|
|
/*
|
|
* We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
|
|
*/
|
|
nchr = 2 * (PATH_MAX + ARG_MAX);
|
|
|
|
error = get_proc_vector(td, p, &proc_vector, &vsize, type);
|
|
if (error != 0)
|
|
return (error);
|
|
for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
|
|
/*
|
|
* The program may have scribbled into its argv array, e.g. to
|
|
* remove some arguments. If that has happened, break out
|
|
* before trying to read from NULL.
|
|
*/
|
|
if (proc_vector[i] == NULL)
|
|
break;
|
|
for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
|
|
error = proc_read_string(td, p, sptr, pss_string,
|
|
sizeof(pss_string));
|
|
if (error != 0)
|
|
goto done;
|
|
len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
|
|
if (done + len >= nchr)
|
|
len = nchr - done - 1;
|
|
sbuf_bcat(sb, pss_string, len);
|
|
if (len != GET_PS_STRINGS_CHUNK_SZ)
|
|
break;
|
|
done += GET_PS_STRINGS_CHUNK_SZ;
|
|
}
|
|
sbuf_bcat(sb, "", 1);
|
|
done += len + 1;
|
|
}
|
|
done:
|
|
free(proc_vector, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
|
|
{
|
|
|
|
return (get_ps_strings(curthread, p, sb, PROC_ARG));
|
|
}
|
|
|
|
int
|
|
proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
|
|
{
|
|
|
|
return (get_ps_strings(curthread, p, sb, PROC_ENV));
|
|
}
|
|
|
|
int
|
|
proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
|
|
{
|
|
size_t vsize, size;
|
|
char **auxv;
|
|
int error;
|
|
|
|
error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
|
|
if (error == 0) {
|
|
#ifdef COMPAT_FREEBSD32
|
|
if (SV_PROC_FLAG(p, SV_ILP32) != 0)
|
|
size = vsize * sizeof(Elf32_Auxinfo);
|
|
else
|
|
#endif
|
|
size = vsize * sizeof(Elf_Auxinfo);
|
|
if (sbuf_bcat(sb, auxv, size) != 0)
|
|
error = ENOMEM;
|
|
free(auxv, M_TEMP);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* This sysctl allows a process to retrieve the argument list or process
|
|
* title for another process without groping around in the address space
|
|
* of the other process. It also allow a process to set its own "process
|
|
* title to a string of its own choice.
|
|
*/
|
|
static int
|
|
sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int *name = (int *)arg1;
|
|
u_int namelen = arg2;
|
|
struct pargs *newpa, *pa;
|
|
struct proc *p;
|
|
struct sbuf sb;
|
|
int flags, error = 0, error2;
|
|
pid_t pid;
|
|
|
|
if (namelen != 1)
|
|
return (EINVAL);
|
|
|
|
pid = (pid_t)name[0];
|
|
/*
|
|
* If the query is for this process and it is single-threaded, there
|
|
* is nobody to modify pargs, thus we can just read.
|
|
*/
|
|
p = curproc;
|
|
if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
|
|
(pa = p->p_args) != NULL)
|
|
return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
|
|
|
|
flags = PGET_CANSEE;
|
|
if (req->newptr != NULL)
|
|
flags |= PGET_ISCURRENT;
|
|
error = pget(pid, flags, &p);
|
|
if (error)
|
|
return (error);
|
|
|
|
pa = p->p_args;
|
|
if (pa != NULL) {
|
|
pargs_hold(pa);
|
|
PROC_UNLOCK(p);
|
|
error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
|
|
pargs_drop(pa);
|
|
} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
|
|
_PHOLD(p);
|
|
PROC_UNLOCK(p);
|
|
sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
|
|
sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
|
|
error = proc_getargv(curthread, p, &sb);
|
|
error2 = sbuf_finish(&sb);
|
|
PRELE(p);
|
|
sbuf_delete(&sb);
|
|
if (error == 0 && error2 != 0)
|
|
error = error2;
|
|
} else {
|
|
PROC_UNLOCK(p);
|
|
}
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
|
|
if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
|
|
return (ENOMEM);
|
|
|
|
if (req->newlen == 0) {
|
|
/*
|
|
* Clear the argument pointer, so that we'll fetch arguments
|
|
* with proc_getargv() until further notice.
|
|
*/
|
|
newpa = NULL;
|
|
} else {
|
|
newpa = pargs_alloc(req->newlen);
|
|
error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
|
|
if (error != 0) {
|
|
pargs_free(newpa);
|
|
return (error);
|
|
}
|
|
}
|
|
PROC_LOCK(p);
|
|
pa = p->p_args;
|
|
p->p_args = newpa;
|
|
PROC_UNLOCK(p);
|
|
pargs_drop(pa);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This sysctl allows a process to retrieve environment of another process.
|
|
*/
|
|
static int
|
|
sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int *name = (int *)arg1;
|
|
u_int namelen = arg2;
|
|
struct proc *p;
|
|
struct sbuf sb;
|
|
int error, error2;
|
|
|
|
if (namelen != 1)
|
|
return (EINVAL);
|
|
|
|
error = pget((pid_t)name[0], PGET_WANTREAD, &p);
|
|
if (error != 0)
|
|
return (error);
|
|
if ((p->p_flag & P_SYSTEM) != 0) {
|
|
PRELE(p);
|
|
return (0);
|
|
}
|
|
|
|
sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
|
|
sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
|
|
error = proc_getenvv(curthread, p, &sb);
|
|
error2 = sbuf_finish(&sb);
|
|
PRELE(p);
|
|
sbuf_delete(&sb);
|
|
return (error != 0 ? error : error2);
|
|
}
|
|
|
|
/*
|
|
* This sysctl allows a process to retrieve ELF auxiliary vector of
|
|
* another process.
|
|
*/
|
|
static int
|
|
sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int *name = (int *)arg1;
|
|
u_int namelen = arg2;
|
|
struct proc *p;
|
|
struct sbuf sb;
|
|
int error, error2;
|
|
|
|
if (namelen != 1)
|
|
return (EINVAL);
|
|
|
|
error = pget((pid_t)name[0], PGET_WANTREAD, &p);
|
|
if (error != 0)
|
|
return (error);
|
|
if ((p->p_flag & P_SYSTEM) != 0) {
|
|
PRELE(p);
|
|
return (0);
|
|
}
|
|
sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
|
|
sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
|
|
error = proc_getauxv(curthread, p, &sb);
|
|
error2 = sbuf_finish(&sb);
|
|
PRELE(p);
|
|
sbuf_delete(&sb);
|
|
return (error != 0 ? error : error2);
|
|
}
|
|
|
|
/*
|
|
* This sysctl allows a process to retrieve the path of the executable for
|
|
* itself or another process.
|
|
*/
|
|
static int
|
|
sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
pid_t *pidp = (pid_t *)arg1;
|
|
unsigned int arglen = arg2;
|
|
struct proc *p;
|
|
struct vnode *vp;
|
|
char *retbuf, *freebuf;
|
|
int error;
|
|
|
|
if (arglen != 1)
|
|
return (EINVAL);
|
|
if (*pidp == -1) { /* -1 means this process */
|
|
p = req->td->td_proc;
|
|
} else {
|
|
error = pget(*pidp, PGET_CANSEE, &p);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
|
|
vp = p->p_textvp;
|
|
if (vp == NULL) {
|
|
if (*pidp != -1)
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
vref(vp);
|
|
if (*pidp != -1)
|
|
PROC_UNLOCK(p);
|
|
error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
|
|
vrele(vp);
|
|
if (error)
|
|
return (error);
|
|
error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
|
|
free(freebuf, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct proc *p;
|
|
char *sv_name;
|
|
int *name;
|
|
int namelen;
|
|
int error;
|
|
|
|
namelen = arg2;
|
|
if (namelen != 1)
|
|
return (EINVAL);
|
|
|
|
name = (int *)arg1;
|
|
error = pget((pid_t)name[0], PGET_CANSEE, &p);
|
|
if (error != 0)
|
|
return (error);
|
|
sv_name = p->p_sysent->sv_name;
|
|
PROC_UNLOCK(p);
|
|
return (sysctl_handle_string(oidp, sv_name, 0, req));
|
|
}
|
|
|
|
#ifdef KINFO_OVMENTRY_SIZE
|
|
CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
|
|
#endif
|
|
|
|
#ifdef COMPAT_FREEBSD7
|
|
static int
|
|
sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
vm_map_entry_t entry, tmp_entry;
|
|
unsigned int last_timestamp;
|
|
char *fullpath, *freepath;
|
|
struct kinfo_ovmentry *kve;
|
|
struct vattr va;
|
|
struct ucred *cred;
|
|
int error, *name;
|
|
struct vnode *vp;
|
|
struct proc *p;
|
|
vm_map_t map;
|
|
struct vmspace *vm;
|
|
|
|
name = (int *)arg1;
|
|
error = pget((pid_t)name[0], PGET_WANTREAD, &p);
|
|
if (error != 0)
|
|
return (error);
|
|
vm = vmspace_acquire_ref(p);
|
|
if (vm == NULL) {
|
|
PRELE(p);
|
|
return (ESRCH);
|
|
}
|
|
kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
|
|
|
|
map = &vm->vm_map;
|
|
vm_map_lock_read(map);
|
|
VM_MAP_ENTRY_FOREACH(entry, map) {
|
|
vm_object_t obj, tobj, lobj;
|
|
vm_offset_t addr;
|
|
|
|
if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
|
|
continue;
|
|
|
|
bzero(kve, sizeof(*kve));
|
|
kve->kve_structsize = sizeof(*kve);
|
|
|
|
kve->kve_private_resident = 0;
|
|
obj = entry->object.vm_object;
|
|
if (obj != NULL) {
|
|
VM_OBJECT_RLOCK(obj);
|
|
if (obj->shadow_count == 1)
|
|
kve->kve_private_resident =
|
|
obj->resident_page_count;
|
|
}
|
|
kve->kve_resident = 0;
|
|
addr = entry->start;
|
|
while (addr < entry->end) {
|
|
if (pmap_extract(map->pmap, addr))
|
|
kve->kve_resident++;
|
|
addr += PAGE_SIZE;
|
|
}
|
|
|
|
for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
|
|
if (tobj != obj) {
|
|
VM_OBJECT_RLOCK(tobj);
|
|
kve->kve_offset += tobj->backing_object_offset;
|
|
}
|
|
if (lobj != obj)
|
|
VM_OBJECT_RUNLOCK(lobj);
|
|
lobj = tobj;
|
|
}
|
|
|
|
kve->kve_start = (void*)entry->start;
|
|
kve->kve_end = (void*)entry->end;
|
|
kve->kve_offset += (off_t)entry->offset;
|
|
|
|
if (entry->protection & VM_PROT_READ)
|
|
kve->kve_protection |= KVME_PROT_READ;
|
|
if (entry->protection & VM_PROT_WRITE)
|
|
kve->kve_protection |= KVME_PROT_WRITE;
|
|
if (entry->protection & VM_PROT_EXECUTE)
|
|
kve->kve_protection |= KVME_PROT_EXEC;
|
|
|
|
if (entry->eflags & MAP_ENTRY_COW)
|
|
kve->kve_flags |= KVME_FLAG_COW;
|
|
if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
|
|
kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
|
|
if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
|
|
kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
|
|
|
|
last_timestamp = map->timestamp;
|
|
vm_map_unlock_read(map);
|
|
|
|
kve->kve_fileid = 0;
|
|
kve->kve_fsid = 0;
|
|
freepath = NULL;
|
|
fullpath = "";
|
|
if (lobj) {
|
|
kve->kve_type = vm_object_kvme_type(lobj, &vp);
|
|
if (kve->kve_type == KVME_TYPE_MGTDEVICE)
|
|
kve->kve_type = KVME_TYPE_UNKNOWN;
|
|
if (vp != NULL)
|
|
vref(vp);
|
|
if (lobj != obj)
|
|
VM_OBJECT_RUNLOCK(lobj);
|
|
|
|
kve->kve_ref_count = obj->ref_count;
|
|
kve->kve_shadow_count = obj->shadow_count;
|
|
VM_OBJECT_RUNLOCK(obj);
|
|
if (vp != NULL) {
|
|
vn_fullpath(curthread, vp, &fullpath,
|
|
&freepath);
|
|
cred = curthread->td_ucred;
|
|
vn_lock(vp, LK_SHARED | LK_RETRY);
|
|
if (VOP_GETATTR(vp, &va, cred) == 0) {
|
|
kve->kve_fileid = va.va_fileid;
|
|
/* truncate */
|
|
kve->kve_fsid = va.va_fsid;
|
|
}
|
|
vput(vp);
|
|
}
|
|
} else {
|
|
kve->kve_type = KVME_TYPE_NONE;
|
|
kve->kve_ref_count = 0;
|
|
kve->kve_shadow_count = 0;
|
|
}
|
|
|
|
strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
|
|
if (freepath != NULL)
|
|
free(freepath, M_TEMP);
|
|
|
|
error = SYSCTL_OUT(req, kve, sizeof(*kve));
|
|
vm_map_lock_read(map);
|
|
if (error)
|
|
break;
|
|
if (last_timestamp != map->timestamp) {
|
|
vm_map_lookup_entry(map, addr - 1, &tmp_entry);
|
|
entry = tmp_entry;
|
|
}
|
|
}
|
|
vm_map_unlock_read(map);
|
|
vmspace_free(vm);
|
|
PRELE(p);
|
|
free(kve, M_TEMP);
|
|
return (error);
|
|
}
|
|
#endif /* COMPAT_FREEBSD7 */
|
|
|
|
#ifdef KINFO_VMENTRY_SIZE
|
|
CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
|
|
#endif
|
|
|
|
void
|
|
kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
|
|
int *resident_count, bool *super)
|
|
{
|
|
vm_object_t obj, tobj;
|
|
vm_page_t m, m_adv;
|
|
vm_offset_t addr;
|
|
vm_paddr_t pa;
|
|
vm_pindex_t pi, pi_adv, pindex;
|
|
|
|
*super = false;
|
|
*resident_count = 0;
|
|
if (vmmap_skip_res_cnt)
|
|
return;
|
|
|
|
pa = 0;
|
|
obj = entry->object.vm_object;
|
|
addr = entry->start;
|
|
m_adv = NULL;
|
|
pi = OFF_TO_IDX(entry->offset);
|
|
for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
|
|
if (m_adv != NULL) {
|
|
m = m_adv;
|
|
} else {
|
|
pi_adv = atop(entry->end - addr);
|
|
pindex = pi;
|
|
for (tobj = obj;; tobj = tobj->backing_object) {
|
|
m = vm_page_find_least(tobj, pindex);
|
|
if (m != NULL) {
|
|
if (m->pindex == pindex)
|
|
break;
|
|
if (pi_adv > m->pindex - pindex) {
|
|
pi_adv = m->pindex - pindex;
|
|
m_adv = m;
|
|
}
|
|
}
|
|
if (tobj->backing_object == NULL)
|
|
goto next;
|
|
pindex += OFF_TO_IDX(tobj->
|
|
backing_object_offset);
|
|
}
|
|
}
|
|
m_adv = NULL;
|
|
if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
|
|
(addr & (pagesizes[1] - 1)) == 0 &&
|
|
(pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) {
|
|
*super = true;
|
|
pi_adv = atop(pagesizes[1]);
|
|
} else {
|
|
/*
|
|
* We do not test the found page on validity.
|
|
* Either the page is busy and being paged in,
|
|
* or it was invalidated. The first case
|
|
* should be counted as resident, the second
|
|
* is not so clear; we do account both.
|
|
*/
|
|
pi_adv = 1;
|
|
}
|
|
*resident_count += pi_adv;
|
|
next:;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Must be called with the process locked and will return unlocked.
|
|
*/
|
|
int
|
|
kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
|
|
{
|
|
vm_map_entry_t entry, tmp_entry;
|
|
struct vattr va;
|
|
vm_map_t map;
|
|
vm_object_t obj, tobj, lobj;
|
|
char *fullpath, *freepath;
|
|
struct kinfo_vmentry *kve;
|
|
struct ucred *cred;
|
|
struct vnode *vp;
|
|
struct vmspace *vm;
|
|
vm_offset_t addr;
|
|
unsigned int last_timestamp;
|
|
int error;
|
|
bool super;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
|
|
_PHOLD(p);
|
|
PROC_UNLOCK(p);
|
|
vm = vmspace_acquire_ref(p);
|
|
if (vm == NULL) {
|
|
PRELE(p);
|
|
return (ESRCH);
|
|
}
|
|
kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
|
|
|
|
error = 0;
|
|
map = &vm->vm_map;
|
|
vm_map_lock_read(map);
|
|
VM_MAP_ENTRY_FOREACH(entry, map) {
|
|
if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
|
|
continue;
|
|
|
|
addr = entry->end;
|
|
bzero(kve, sizeof(*kve));
|
|
obj = entry->object.vm_object;
|
|
if (obj != NULL) {
|
|
for (tobj = obj; tobj != NULL;
|
|
tobj = tobj->backing_object) {
|
|
VM_OBJECT_RLOCK(tobj);
|
|
kve->kve_offset += tobj->backing_object_offset;
|
|
lobj = tobj;
|
|
}
|
|
if (obj->backing_object == NULL)
|
|
kve->kve_private_resident =
|
|
obj->resident_page_count;
|
|
kern_proc_vmmap_resident(map, entry,
|
|
&kve->kve_resident, &super);
|
|
if (super)
|
|
kve->kve_flags |= KVME_FLAG_SUPER;
|
|
for (tobj = obj; tobj != NULL;
|
|
tobj = tobj->backing_object) {
|
|
if (tobj != obj && tobj != lobj)
|
|
VM_OBJECT_RUNLOCK(tobj);
|
|
}
|
|
} else {
|
|
lobj = NULL;
|
|
}
|
|
|
|
kve->kve_start = entry->start;
|
|
kve->kve_end = entry->end;
|
|
kve->kve_offset += entry->offset;
|
|
|
|
if (entry->protection & VM_PROT_READ)
|
|
kve->kve_protection |= KVME_PROT_READ;
|
|
if (entry->protection & VM_PROT_WRITE)
|
|
kve->kve_protection |= KVME_PROT_WRITE;
|
|
if (entry->protection & VM_PROT_EXECUTE)
|
|
kve->kve_protection |= KVME_PROT_EXEC;
|
|
|
|
if (entry->eflags & MAP_ENTRY_COW)
|
|
kve->kve_flags |= KVME_FLAG_COW;
|
|
if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
|
|
kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
|
|
if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
|
|
kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
|
|
if (entry->eflags & MAP_ENTRY_GROWS_UP)
|
|
kve->kve_flags |= KVME_FLAG_GROWS_UP;
|
|
if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
|
|
kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
|
|
if (entry->eflags & MAP_ENTRY_USER_WIRED)
|
|
kve->kve_flags |= KVME_FLAG_USER_WIRED;
|
|
|
|
last_timestamp = map->timestamp;
|
|
vm_map_unlock_read(map);
|
|
|
|
freepath = NULL;
|
|
fullpath = "";
|
|
if (lobj != NULL) {
|
|
kve->kve_type = vm_object_kvme_type(lobj, &vp);
|
|
if (vp != NULL)
|
|
vref(vp);
|
|
if (lobj != obj)
|
|
VM_OBJECT_RUNLOCK(lobj);
|
|
|
|
kve->kve_ref_count = obj->ref_count;
|
|
kve->kve_shadow_count = obj->shadow_count;
|
|
VM_OBJECT_RUNLOCK(obj);
|
|
if (vp != NULL) {
|
|
vn_fullpath(curthread, vp, &fullpath,
|
|
&freepath);
|
|
kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
|
|
cred = curthread->td_ucred;
|
|
vn_lock(vp, LK_SHARED | LK_RETRY);
|
|
if (VOP_GETATTR(vp, &va, cred) == 0) {
|
|
kve->kve_vn_fileid = va.va_fileid;
|
|
kve->kve_vn_fsid = va.va_fsid;
|
|
kve->kve_vn_fsid_freebsd11 =
|
|
kve->kve_vn_fsid; /* truncate */
|
|
kve->kve_vn_mode =
|
|
MAKEIMODE(va.va_type, va.va_mode);
|
|
kve->kve_vn_size = va.va_size;
|
|
kve->kve_vn_rdev = va.va_rdev;
|
|
kve->kve_vn_rdev_freebsd11 =
|
|
kve->kve_vn_rdev; /* truncate */
|
|
kve->kve_status = KF_ATTR_VALID;
|
|
}
|
|
vput(vp);
|
|
}
|
|
} else {
|
|
kve->kve_type = KVME_TYPE_NONE;
|
|
kve->kve_ref_count = 0;
|
|
kve->kve_shadow_count = 0;
|
|
}
|
|
|
|
strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
|
|
if (freepath != NULL)
|
|
free(freepath, M_TEMP);
|
|
|
|
/* Pack record size down */
|
|
if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
|
|
kve->kve_structsize =
|
|
offsetof(struct kinfo_vmentry, kve_path) +
|
|
strlen(kve->kve_path) + 1;
|
|
else
|
|
kve->kve_structsize = sizeof(*kve);
|
|
kve->kve_structsize = roundup(kve->kve_structsize,
|
|
sizeof(uint64_t));
|
|
|
|
/* Halt filling and truncate rather than exceeding maxlen */
|
|
if (maxlen != -1 && maxlen < kve->kve_structsize) {
|
|
error = 0;
|
|
vm_map_lock_read(map);
|
|
break;
|
|
} else if (maxlen != -1)
|
|
maxlen -= kve->kve_structsize;
|
|
|
|
if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
|
|
error = ENOMEM;
|
|
vm_map_lock_read(map);
|
|
if (error != 0)
|
|
break;
|
|
if (last_timestamp != map->timestamp) {
|
|
vm_map_lookup_entry(map, addr - 1, &tmp_entry);
|
|
entry = tmp_entry;
|
|
}
|
|
}
|
|
vm_map_unlock_read(map);
|
|
vmspace_free(vm);
|
|
PRELE(p);
|
|
free(kve, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct proc *p;
|
|
struct sbuf sb;
|
|
int error, error2, *name;
|
|
|
|
name = (int *)arg1;
|
|
sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
|
|
sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
|
|
error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
|
|
if (error != 0) {
|
|
sbuf_delete(&sb);
|
|
return (error);
|
|
}
|
|
error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
|
|
error2 = sbuf_finish(&sb);
|
|
sbuf_delete(&sb);
|
|
return (error != 0 ? error : error2);
|
|
}
|
|
|
|
#if defined(STACK) || defined(DDB)
|
|
static int
|
|
sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct kinfo_kstack *kkstp;
|
|
int error, i, *name, numthreads;
|
|
lwpid_t *lwpidarray;
|
|
struct thread *td;
|
|
struct stack *st;
|
|
struct sbuf sb;
|
|
struct proc *p;
|
|
|
|
name = (int *)arg1;
|
|
error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
|
|
st = stack_create(M_WAITOK);
|
|
|
|
lwpidarray = NULL;
|
|
PROC_LOCK(p);
|
|
do {
|
|
if (lwpidarray != NULL) {
|
|
free(lwpidarray, M_TEMP);
|
|
lwpidarray = NULL;
|
|
}
|
|
numthreads = p->p_numthreads;
|
|
PROC_UNLOCK(p);
|
|
lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
|
|
M_WAITOK | M_ZERO);
|
|
PROC_LOCK(p);
|
|
} while (numthreads < p->p_numthreads);
|
|
|
|
/*
|
|
* XXXRW: During the below loop, execve(2) and countless other sorts
|
|
* of changes could have taken place. Should we check to see if the
|
|
* vmspace has been replaced, or the like, in order to prevent
|
|
* giving a snapshot that spans, say, execve(2), with some threads
|
|
* before and some after? Among other things, the credentials could
|
|
* have changed, in which case the right to extract debug info might
|
|
* no longer be assured.
|
|
*/
|
|
i = 0;
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
KASSERT(i < numthreads,
|
|
("sysctl_kern_proc_kstack: numthreads"));
|
|
lwpidarray[i] = td->td_tid;
|
|
i++;
|
|
}
|
|
numthreads = i;
|
|
for (i = 0; i < numthreads; i++) {
|
|
td = thread_find(p, lwpidarray[i]);
|
|
if (td == NULL) {
|
|
continue;
|
|
}
|
|
bzero(kkstp, sizeof(*kkstp));
|
|
(void)sbuf_new(&sb, kkstp->kkst_trace,
|
|
sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
|
|
thread_lock(td);
|
|
kkstp->kkst_tid = td->td_tid;
|
|
if (TD_IS_SWAPPED(td))
|
|
kkstp->kkst_state = KKST_STATE_SWAPPED;
|
|
else if (stack_save_td(st, td) == 0)
|
|
kkstp->kkst_state = KKST_STATE_STACKOK;
|
|
else
|
|
kkstp->kkst_state = KKST_STATE_RUNNING;
|
|
thread_unlock(td);
|
|
PROC_UNLOCK(p);
|
|
stack_sbuf_print(&sb, st);
|
|
sbuf_finish(&sb);
|
|
sbuf_delete(&sb);
|
|
error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
|
|
PROC_LOCK(p);
|
|
if (error)
|
|
break;
|
|
}
|
|
_PRELE(p);
|
|
PROC_UNLOCK(p);
|
|
if (lwpidarray != NULL)
|
|
free(lwpidarray, M_TEMP);
|
|
stack_destroy(st);
|
|
free(kkstp, M_TEMP);
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This sysctl allows a process to retrieve the full list of groups from
|
|
* itself or another process.
|
|
*/
|
|
static int
|
|
sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
pid_t *pidp = (pid_t *)arg1;
|
|
unsigned int arglen = arg2;
|
|
struct proc *p;
|
|
struct ucred *cred;
|
|
int error;
|
|
|
|
if (arglen != 1)
|
|
return (EINVAL);
|
|
if (*pidp == -1) { /* -1 means this process */
|
|
p = req->td->td_proc;
|
|
PROC_LOCK(p);
|
|
} else {
|
|
error = pget(*pidp, PGET_CANSEE, &p);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
|
|
cred = crhold(p->p_ucred);
|
|
PROC_UNLOCK(p);
|
|
|
|
error = SYSCTL_OUT(req, cred->cr_groups,
|
|
cred->cr_ngroups * sizeof(gid_t));
|
|
crfree(cred);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* This sysctl allows a process to retrieve or/and set the resource limit for
|
|
* another process.
|
|
*/
|
|
static int
|
|
sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int *name = (int *)arg1;
|
|
u_int namelen = arg2;
|
|
struct rlimit rlim;
|
|
struct proc *p;
|
|
u_int which;
|
|
int flags, error;
|
|
|
|
if (namelen != 2)
|
|
return (EINVAL);
|
|
|
|
which = (u_int)name[1];
|
|
if (which >= RLIM_NLIMITS)
|
|
return (EINVAL);
|
|
|
|
if (req->newptr != NULL && req->newlen != sizeof(rlim))
|
|
return (EINVAL);
|
|
|
|
flags = PGET_HOLD | PGET_NOTWEXIT;
|
|
if (req->newptr != NULL)
|
|
flags |= PGET_CANDEBUG;
|
|
else
|
|
flags |= PGET_CANSEE;
|
|
error = pget((pid_t)name[0], flags, &p);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Retrieve limit.
|
|
*/
|
|
if (req->oldptr != NULL) {
|
|
PROC_LOCK(p);
|
|
lim_rlimit_proc(p, which, &rlim);
|
|
PROC_UNLOCK(p);
|
|
}
|
|
error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
|
|
if (error != 0)
|
|
goto errout;
|
|
|
|
/*
|
|
* Set limit.
|
|
*/
|
|
if (req->newptr != NULL) {
|
|
error = SYSCTL_IN(req, &rlim, sizeof(rlim));
|
|
if (error == 0)
|
|
error = kern_proc_setrlimit(curthread, p, which, &rlim);
|
|
}
|
|
|
|
errout:
|
|
PRELE(p);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* This sysctl allows a process to retrieve ps_strings structure location of
|
|
* another process.
|
|
*/
|
|
static int
|
|
sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int *name = (int *)arg1;
|
|
u_int namelen = arg2;
|
|
struct proc *p;
|
|
vm_offset_t ps_strings;
|
|
int error;
|
|
#ifdef COMPAT_FREEBSD32
|
|
uint32_t ps_strings32;
|
|
#endif
|
|
|
|
if (namelen != 1)
|
|
return (EINVAL);
|
|
|
|
error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
|
|
if (error != 0)
|
|
return (error);
|
|
#ifdef COMPAT_FREEBSD32
|
|
if ((req->flags & SCTL_MASK32) != 0) {
|
|
/*
|
|
* We return 0 if the 32 bit emulation request is for a 64 bit
|
|
* process.
|
|
*/
|
|
ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
|
|
PTROUT(p->p_sysent->sv_psstrings) : 0;
|
|
PROC_UNLOCK(p);
|
|
error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
|
|
return (error);
|
|
}
|
|
#endif
|
|
ps_strings = p->p_sysent->sv_psstrings;
|
|
PROC_UNLOCK(p);
|
|
error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* This sysctl allows a process to retrieve umask of another process.
|
|
*/
|
|
static int
|
|
sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int *name = (int *)arg1;
|
|
u_int namelen = arg2;
|
|
struct proc *p;
|
|
int error;
|
|
u_short fd_cmask;
|
|
pid_t pid;
|
|
|
|
if (namelen != 1)
|
|
return (EINVAL);
|
|
|
|
pid = (pid_t)name[0];
|
|
p = curproc;
|
|
if (pid == p->p_pid || pid == 0) {
|
|
fd_cmask = p->p_fd->fd_cmask;
|
|
goto out;
|
|
}
|
|
|
|
error = pget(pid, PGET_WANTREAD, &p);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
fd_cmask = p->p_fd->fd_cmask;
|
|
PRELE(p);
|
|
out:
|
|
error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* This sysctl allows a process to set and retrieve binary osreldate of
|
|
* another process.
|
|
*/
|
|
static int
|
|
sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int *name = (int *)arg1;
|
|
u_int namelen = arg2;
|
|
struct proc *p;
|
|
int flags, error, osrel;
|
|
|
|
if (namelen != 1)
|
|
return (EINVAL);
|
|
|
|
if (req->newptr != NULL && req->newlen != sizeof(osrel))
|
|
return (EINVAL);
|
|
|
|
flags = PGET_HOLD | PGET_NOTWEXIT;
|
|
if (req->newptr != NULL)
|
|
flags |= PGET_CANDEBUG;
|
|
else
|
|
flags |= PGET_CANSEE;
|
|
error = pget((pid_t)name[0], flags, &p);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
|
|
if (error != 0)
|
|
goto errout;
|
|
|
|
if (req->newptr != NULL) {
|
|
error = SYSCTL_IN(req, &osrel, sizeof(osrel));
|
|
if (error != 0)
|
|
goto errout;
|
|
if (osrel < 0) {
|
|
error = EINVAL;
|
|
goto errout;
|
|
}
|
|
p->p_osrel = osrel;
|
|
}
|
|
errout:
|
|
PRELE(p);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int *name = (int *)arg1;
|
|
u_int namelen = arg2;
|
|
struct proc *p;
|
|
struct kinfo_sigtramp kst;
|
|
const struct sysentvec *sv;
|
|
int error;
|
|
#ifdef COMPAT_FREEBSD32
|
|
struct kinfo_sigtramp32 kst32;
|
|
#endif
|
|
|
|
if (namelen != 1)
|
|
return (EINVAL);
|
|
|
|
error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
|
|
if (error != 0)
|
|
return (error);
|
|
sv = p->p_sysent;
|
|
#ifdef COMPAT_FREEBSD32
|
|
if ((req->flags & SCTL_MASK32) != 0) {
|
|
bzero(&kst32, sizeof(kst32));
|
|
if (SV_PROC_FLAG(p, SV_ILP32)) {
|
|
if (sv->sv_sigcode_base != 0) {
|
|
kst32.ksigtramp_start = sv->sv_sigcode_base;
|
|
kst32.ksigtramp_end = sv->sv_sigcode_base +
|
|
*sv->sv_szsigcode;
|
|
} else {
|
|
kst32.ksigtramp_start = sv->sv_psstrings -
|
|
*sv->sv_szsigcode;
|
|
kst32.ksigtramp_end = sv->sv_psstrings;
|
|
}
|
|
}
|
|
PROC_UNLOCK(p);
|
|
error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
|
|
return (error);
|
|
}
|
|
#endif
|
|
bzero(&kst, sizeof(kst));
|
|
if (sv->sv_sigcode_base != 0) {
|
|
kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
|
|
kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
|
|
*sv->sv_szsigcode;
|
|
} else {
|
|
kst.ksigtramp_start = (char *)sv->sv_psstrings -
|
|
*sv->sv_szsigcode;
|
|
kst.ksigtramp_end = (char *)sv->sv_psstrings;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
error = SYSCTL_OUT(req, &kst, sizeof(kst));
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int *name = (int *)arg1;
|
|
u_int namelen = arg2;
|
|
pid_t pid;
|
|
struct proc *p;
|
|
struct thread *td1;
|
|
uintptr_t addr;
|
|
#ifdef COMPAT_FREEBSD32
|
|
uint32_t addr32;
|
|
#endif
|
|
int error;
|
|
|
|
if (namelen != 1 || req->newptr != NULL)
|
|
return (EINVAL);
|
|
|
|
pid = (pid_t)name[0];
|
|
error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
PROC_LOCK(p);
|
|
#ifdef COMPAT_FREEBSD32
|
|
if (SV_CURPROC_FLAG(SV_ILP32)) {
|
|
if (!SV_PROC_FLAG(p, SV_ILP32)) {
|
|
error = EINVAL;
|
|
goto errlocked;
|
|
}
|
|
}
|
|
#endif
|
|
if (pid <= PID_MAX) {
|
|
td1 = FIRST_THREAD_IN_PROC(p);
|
|
} else {
|
|
FOREACH_THREAD_IN_PROC(p, td1) {
|
|
if (td1->td_tid == pid)
|
|
break;
|
|
}
|
|
}
|
|
if (td1 == NULL) {
|
|
error = ESRCH;
|
|
goto errlocked;
|
|
}
|
|
/*
|
|
* The access to the private thread flags. It is fine as far
|
|
* as no out-of-thin-air values are read from td_pflags, and
|
|
* usermode read of the td_sigblock_ptr is racy inherently,
|
|
* since target process might have already changed it
|
|
* meantime.
|
|
*/
|
|
if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0)
|
|
addr = (uintptr_t)td1->td_sigblock_ptr;
|
|
else
|
|
error = ENOTTY;
|
|
|
|
errlocked:
|
|
_PRELE(p);
|
|
PROC_UNLOCK(p);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
if (SV_CURPROC_FLAG(SV_ILP32)) {
|
|
addr32 = addr;
|
|
error = SYSCTL_OUT(req, &addr32, sizeof(addr32));
|
|
} else
|
|
#endif
|
|
error = SYSCTL_OUT(req, &addr, sizeof(addr));
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
|
|
"Process table");
|
|
|
|
SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
|
|
CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
|
|
"Return entire process table");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
|
|
sysctl_kern_proc, "Process table");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
|
|
sysctl_kern_proc, "Process table");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
|
|
sysctl_kern_proc, "Process table");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
|
|
CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
|
|
sysctl_kern_proc, "Process table");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
|
|
sysctl_kern_proc, "Process table");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
|
|
sysctl_kern_proc, "Process table");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
|
|
sysctl_kern_proc, "Process table");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
|
|
sysctl_kern_proc, "Return process table, no threads");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
|
|
CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
|
|
sysctl_kern_proc_args, "Process argument list");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
|
|
sysctl_kern_proc_env, "Process environment");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
|
|
CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
|
|
CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
|
|
CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
|
|
"Process syscall vector name (ABI type)");
|
|
|
|
static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
|
|
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
|
|
|
|
static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
|
|
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
|
|
|
|
static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
|
|
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
|
|
|
|
static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
|
|
sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
|
|
|
|
static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
|
|
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
|
|
|
|
static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
|
|
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
|
|
|
|
static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
|
|
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
|
|
|
|
static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
|
|
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
|
|
|
|
static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
|
|
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
|
|
"Return process table, no threads");
|
|
|
|
#ifdef COMPAT_FREEBSD7
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
|
|
CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
|
|
#endif
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
|
|
CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
|
|
|
|
#if defined(STACK) || defined(DDB)
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
|
|
CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
|
|
#endif
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
|
|
CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
|
|
CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
|
|
"Process resource limits");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
|
|
CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
|
|
"Process ps_strings location");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
|
|
CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
|
|
CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
|
|
"Process binary osreldate");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
|
|
CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
|
|
"Process signal trampoline location");
|
|
|
|
static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD |
|
|
CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk,
|
|
"Thread sigfastblock address");
|
|
|
|
int allproc_gen;
|
|
|
|
/*
|
|
* stop_all_proc() purpose is to stop all process which have usermode,
|
|
* except current process for obvious reasons. This makes it somewhat
|
|
* unreliable when invoked from multithreaded process. The service
|
|
* must not be user-callable anyway.
|
|
*/
|
|
void
|
|
stop_all_proc(void)
|
|
{
|
|
struct proc *cp, *p;
|
|
int r, gen;
|
|
bool restart, seen_stopped, seen_exiting, stopped_some;
|
|
|
|
cp = curproc;
|
|
allproc_loop:
|
|
sx_xlock(&allproc_lock);
|
|
gen = allproc_gen;
|
|
seen_exiting = seen_stopped = stopped_some = restart = false;
|
|
LIST_REMOVE(cp, p_list);
|
|
LIST_INSERT_HEAD(&allproc, cp, p_list);
|
|
for (;;) {
|
|
p = LIST_NEXT(cp, p_list);
|
|
if (p == NULL)
|
|
break;
|
|
LIST_REMOVE(cp, p_list);
|
|
LIST_INSERT_AFTER(p, cp, p_list);
|
|
PROC_LOCK(p);
|
|
if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
|
|
PROC_UNLOCK(p);
|
|
continue;
|
|
}
|
|
if ((p->p_flag & P_WEXIT) != 0) {
|
|
seen_exiting = true;
|
|
PROC_UNLOCK(p);
|
|
continue;
|
|
}
|
|
if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
|
|
/*
|
|
* Stopped processes are tolerated when there
|
|
* are no other processes which might continue
|
|
* them. P_STOPPED_SINGLE but not
|
|
* P_TOTAL_STOP process still has at least one
|
|
* thread running.
|
|
*/
|
|
seen_stopped = true;
|
|
PROC_UNLOCK(p);
|
|
continue;
|
|
}
|
|
sx_xunlock(&allproc_lock);
|
|
_PHOLD(p);
|
|
r = thread_single(p, SINGLE_ALLPROC);
|
|
if (r != 0)
|
|
restart = true;
|
|
else
|
|
stopped_some = true;
|
|
_PRELE(p);
|
|
PROC_UNLOCK(p);
|
|
sx_xlock(&allproc_lock);
|
|
}
|
|
/* Catch forked children we did not see in iteration. */
|
|
if (gen != allproc_gen)
|
|
restart = true;
|
|
sx_xunlock(&allproc_lock);
|
|
if (restart || stopped_some || seen_exiting || seen_stopped) {
|
|
kern_yield(PRI_USER);
|
|
goto allproc_loop;
|
|
}
|
|
}
|
|
|
|
void
|
|
resume_all_proc(void)
|
|
{
|
|
struct proc *cp, *p;
|
|
|
|
cp = curproc;
|
|
sx_xlock(&allproc_lock);
|
|
again:
|
|
LIST_REMOVE(cp, p_list);
|
|
LIST_INSERT_HEAD(&allproc, cp, p_list);
|
|
for (;;) {
|
|
p = LIST_NEXT(cp, p_list);
|
|
if (p == NULL)
|
|
break;
|
|
LIST_REMOVE(cp, p_list);
|
|
LIST_INSERT_AFTER(p, cp, p_list);
|
|
PROC_LOCK(p);
|
|
if ((p->p_flag & P_TOTAL_STOP) != 0) {
|
|
sx_xunlock(&allproc_lock);
|
|
_PHOLD(p);
|
|
thread_single_end(p, SINGLE_ALLPROC);
|
|
_PRELE(p);
|
|
PROC_UNLOCK(p);
|
|
sx_xlock(&allproc_lock);
|
|
} else {
|
|
PROC_UNLOCK(p);
|
|
}
|
|
}
|
|
/* Did the loop above missed any stopped process ? */
|
|
FOREACH_PROC_IN_SYSTEM(p) {
|
|
/* No need for proc lock. */
|
|
if ((p->p_flag & P_TOTAL_STOP) != 0)
|
|
goto again;
|
|
}
|
|
sx_xunlock(&allproc_lock);
|
|
}
|
|
|
|
/* #define TOTAL_STOP_DEBUG 1 */
|
|
#ifdef TOTAL_STOP_DEBUG
|
|
volatile static int ap_resume;
|
|
#include <sys/mount.h>
|
|
|
|
static int
|
|
sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, val;
|
|
|
|
val = 0;
|
|
ap_resume = 0;
|
|
error = sysctl_handle_int(oidp, &val, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
if (val != 0) {
|
|
stop_all_proc();
|
|
syncer_suspend();
|
|
while (ap_resume == 0)
|
|
;
|
|
syncer_resume();
|
|
resume_all_proc();
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
|
|
CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
|
|
sysctl_debug_stop_all_proc, "I",
|
|
"");
|
|
#endif
|