freebsd-skq/sys/ufs/ffs/ffs_alloc.c

1489 lines
40 KiB
C

/*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_alloc.c 8.8 (Berkeley) 2/21/94
* $Id: ffs_alloc.c,v 1.4 1994/09/20 05:53:24 bde Exp $
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <vm/vm.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
extern u_long nextgennumber;
static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int));
static daddr_t ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
static daddr_t ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
static ino_t ffs_dirpref __P((struct fs *));
static daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
static void ffs_fserr __P((struct fs *, u_int, char *));
static u_long ffs_hashalloc
__P((struct inode *, int, long, int, u_long (*)()));
static ino_t ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
static daddr_t ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
void ffs_clusteracct __P((struct fs *, struct cg *, daddr_t, int));
/*
* Allocate a block in the file system.
*
* The size of the requested block is given, which must be some
* multiple of fs_fsize and <= fs_bsize.
* A preference may be optionally specified. If a preference is given
* the following hierarchy is used to allocate a block:
* 1) allocate the requested block.
* 2) allocate a rotationally optimal block in the same cylinder.
* 3) allocate a block in the same cylinder group.
* 4) quadradically rehash into other cylinder groups, until an
* available block is located.
* If no block preference is given the following heirarchy is used
* to allocate a block:
* 1) allocate a block in the cylinder group that contains the
* inode for the file.
* 2) quadradically rehash into other cylinder groups, until an
* available block is located.
*/
int
ffs_alloc(ip, lbn, bpref, size, cred, bnp)
register struct inode *ip;
daddr_t lbn, bpref;
int size;
struct ucred *cred;
daddr_t *bnp;
{
register struct fs *fs;
daddr_t bno;
int cg, error;
*bnp = 0;
fs = ip->i_fs;
#ifdef DIAGNOSTIC
if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
printf("dev = 0x%lx, bsize = %ld, size = %d, fs = %s\n",
(u_long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
panic("ffs_alloc: bad size");
}
if (cred == NOCRED)
panic("ffs_alloc: missing credential\n");
#endif /* DIAGNOSTIC */
if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
goto nospace;
if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
goto nospace;
#ifdef QUOTA
error = chkdq(ip, (long)btodb(size), cred, 0);
if (error)
return (error);
#endif
if (bpref >= fs->fs_size)
bpref = 0;
if (bpref == 0)
cg = ino_to_cg(fs, ip->i_number);
else
cg = dtog(fs, bpref);
bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
(u_long (*)())ffs_alloccg);
if (bno > 0) {
ip->i_blocks += btodb(size);
ip->i_flag |= IN_CHANGE | IN_UPDATE;
*bnp = bno;
return (0);
}
#ifdef QUOTA
/*
* Restore user's disk quota because allocation failed.
*/
(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
#endif
nospace:
ffs_fserr(fs, cred->cr_uid, "file system full");
uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
return (ENOSPC);
}
/*
* Reallocate a fragment to a bigger size
*
* The number and size of the old block is given, and a preference
* and new size is also specified. The allocator attempts to extend
* the original block. Failing that, the regular block allocator is
* invoked to get an appropriate block.
*/
int
ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
register struct inode *ip;
daddr_t lbprev;
daddr_t bpref;
int osize, nsize;
struct ucred *cred;
struct buf **bpp;
{
register struct fs *fs;
struct buf *bp;
int cg, request, error;
daddr_t bprev, bno;
*bpp = 0;
fs = ip->i_fs;
#ifdef DIAGNOSTIC
if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
(u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
printf(
"dev = 0x%lx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
(u_long)ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
panic("ffs_realloccg: bad size");
}
if (cred == NOCRED)
panic("ffs_realloccg: missing credential\n");
#endif /* DIAGNOSTIC */
if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
goto nospace;
if ((bprev = ip->i_db[lbprev]) == 0) {
printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
panic("ffs_realloccg: bad bprev");
}
/*
* Allocate the extra space in the buffer.
*/
error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp);
if (error) {
brelse(bp);
return (error);
}
#ifdef QUOTA
error = chkdq(ip, (long)btodb(nsize - osize), cred, 0);
if (error) {
brelse(bp);
return (error);
}
#endif
/*
* Check for extension in the existing location.
*/
cg = dtog(fs, bprev);
bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
if (bno) {
if (bp->b_blkno != fsbtodb(fs, bno))
panic("bad blockno");
ip->i_blocks += btodb(nsize - osize);
ip->i_flag |= IN_CHANGE | IN_UPDATE;
allocbuf(bp, nsize);
bp->b_flags |= B_DONE;
bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
*bpp = bp;
return (0);
}
/*
* Allocate a new disk location.
*/
if (bpref >= fs->fs_size)
bpref = 0;
switch ((int)fs->fs_optim) {
case FS_OPTSPACE:
/*
* Allocate an exact sized fragment. Although this makes
* best use of space, we will waste time relocating it if
* the file continues to grow. If the fragmentation is
* less than half of the minimum free reserve, we choose
* to begin optimizing for time.
*/
request = nsize;
if (fs->fs_minfree < 5 ||
fs->fs_cstotal.cs_nffree >
fs->fs_dsize * fs->fs_minfree / (2 * 100))
break;
log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
fs->fs_fsmnt);
fs->fs_optim = FS_OPTTIME;
break;
case FS_OPTTIME:
/*
* At this point we have discovered a file that is trying to
* grow a small fragment to a larger fragment. To save time,
* we allocate a full sized block, then free the unused portion.
* If the file continues to grow, the `ffs_fragextend' call
* above will be able to grow it in place without further
* copying. If aberrant programs cause disk fragmentation to
* grow within 2% of the free reserve, we choose to begin
* optimizing for space.
*/
request = fs->fs_bsize;
if (fs->fs_cstotal.cs_nffree <
fs->fs_dsize * (fs->fs_minfree - 2) / 100)
break;
log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
fs->fs_fsmnt);
fs->fs_optim = FS_OPTSPACE;
break;
default:
printf("dev = 0x%lx, optim = %ld, fs = %s\n",
(u_long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
panic("ffs_realloccg: bad optim");
/* NOTREACHED */
}
bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
(u_long (*)())ffs_alloccg);
if (bno > 0) {
bp->b_blkno = fsbtodb(fs, bno);
(void) vnode_pager_uncache(ITOV(ip));
ffs_blkfree(ip, bprev, (long)osize);
if (nsize < request)
ffs_blkfree(ip, bno + numfrags(fs, nsize),
(long)(request - nsize));
ip->i_blocks += btodb(nsize - osize);
ip->i_flag |= IN_CHANGE | IN_UPDATE;
allocbuf(bp, nsize);
bp->b_flags |= B_DONE;
bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
*bpp = bp;
return (0);
}
#ifdef QUOTA
/*
* Restore user's disk quota because allocation failed.
*/
(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
#endif
brelse(bp);
nospace:
/*
* no space available
*/
ffs_fserr(fs, cred->cr_uid, "file system full");
uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
return (ENOSPC);
}
/*
* Reallocate a sequence of blocks into a contiguous sequence of blocks.
*
* The vnode and an array of buffer pointers for a range of sequential
* logical blocks to be made contiguous is given. The allocator attempts
* to find a range of sequential blocks starting as close as possible to
* an fs_rotdelay offset from the end of the allocation for the logical
* block immediately preceeding the current range. If successful, the
* physical block numbers in the buffer pointers and in the inode are
* changed to reflect the new allocation. If unsuccessful, the allocation
* is left unchanged. The success in doing the reallocation is returned.
* Note that the error return is not reflected back to the user. Rather
* the previous block allocation will be used.
*/
#include <sys/sysctl.h>
int doasyncfree = 1;
#ifdef DEBUG
struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
#endif
int
ffs_reallocblks(ap)
struct vop_reallocblks_args /* {
struct vnode *a_vp;
struct cluster_save *a_buflist;
} */ *ap;
{
struct fs *fs;
struct inode *ip;
struct vnode *vp;
struct buf *sbp, *ebp;
daddr_t *bap, *sbap, *ebap = 0;
struct cluster_save *buflist;
daddr_t start_lbn, end_lbn, soff, newblk, blkno;
struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
int i, len, start_lvl, end_lvl, pref, ssize;
vp = ap->a_vp;
ip = VTOI(vp);
fs = ip->i_fs;
if (fs->fs_contigsumsize <= 0)
return (ENOSPC);
buflist = ap->a_buflist;
len = buflist->bs_nchildren;
start_lbn = buflist->bs_children[0]->b_lblkno;
end_lbn = start_lbn + len - 1;
#ifdef DIAGNOSTIC
for (i = 1; i < len; i++)
if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
panic("ffs_reallocblks: non-cluster");
#endif
/*
* If the latest allocation is in a new cylinder group, assume that
* the filesystem has decided to move and do not force it back to
* the previous cylinder group.
*/
if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
return (ENOSPC);
if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
return (ENOSPC);
/*
* Get the starting offset and block map for the first block.
*/
if (start_lvl == 0) {
sbap = &ip->i_db[0];
soff = start_lbn;
} else {
idp = &start_ap[start_lvl - 1];
if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
brelse(sbp);
return (ENOSPC);
}
sbap = (daddr_t *)sbp->b_data;
soff = idp->in_off;
}
/*
* Find the preferred location for the cluster.
*/
pref = ffs_blkpref(ip, start_lbn, soff, sbap);
/*
* If the block range spans two block maps, get the second map.
*/
if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
ssize = len;
} else {
#ifdef DIAGNOSTIC
if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
panic("ffs_reallocblk: start == end");
#endif
ssize = len - (idp->in_off + 1);
if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
goto fail;
ebap = (daddr_t *)ebp->b_data;
}
/*
* Search the block map looking for an allocation of the desired size.
*/
if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
len, (u_long (*)())ffs_clusteralloc)) == 0)
goto fail;
/*
* We have found a new contiguous block.
*
* First we have to replace the old block pointers with the new
* block pointers in the inode and indirect blocks associated
* with the file.
*/
blkno = newblk;
for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
if (i == ssize)
bap = ebap;
#ifdef DIAGNOSTIC
if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
panic("ffs_reallocblks: alloc mismatch");
#endif
*bap++ = blkno;
}
/*
* Next we must write out the modified inode and indirect blocks.
* For strict correctness, the writes should be synchronous since
* the old block values may have been written to disk. In practise
* they are almost never written, but if we are concerned about
* strict correctness, the `doasyncfree' flag should be set to zero.
*
* The test on `doasyncfree' should be changed to test a flag
* that shows whether the associated buffers and inodes have
* been written. The flag should be set when the cluster is
* started and cleared whenever the buffer or inode is flushed.
* We can then check below to see if it is set, and do the
* synchronous write only when it has been cleared.
*/
if (sbap != &ip->i_db[0]) {
if (doasyncfree)
bdwrite(sbp);
else
bwrite(sbp);
} else {
ip->i_flag |= IN_CHANGE | IN_UPDATE;
if (!doasyncfree)
VOP_UPDATE(vp, &time, &time, 1);
}
if (ssize < len)
if (doasyncfree)
bdwrite(ebp);
else
bwrite(ebp);
/*
* Last, free the old blocks and assign the new blocks to the buffers.
*/
for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
fs->fs_bsize);
buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
}
return (0);
fail:
if (ssize < len)
brelse(ebp);
if (sbap != &ip->i_db[0])
brelse(sbp);
return (ENOSPC);
}
/*
* Allocate an inode in the file system.
*
* If allocating a directory, use ffs_dirpref to select the inode.
* If allocating in a directory, the following hierarchy is followed:
* 1) allocate the preferred inode.
* 2) allocate an inode in the same cylinder group.
* 3) quadradically rehash into other cylinder groups, until an
* available inode is located.
* If no inode preference is given the following heirarchy is used
* to allocate an inode:
* 1) allocate an inode in cylinder group 0.
* 2) quadradically rehash into other cylinder groups, until an
* available inode is located.
*/
int
ffs_valloc(ap)
struct vop_valloc_args /* {
struct vnode *a_pvp;
int a_mode;
struct ucred *a_cred;
struct vnode **a_vpp;
} */ *ap;
{
register struct vnode *pvp = ap->a_pvp;
register struct inode *pip;
register struct fs *fs;
register struct inode *ip;
mode_t mode = ap->a_mode;
ino_t ino, ipref;
int cg, error;
*ap->a_vpp = NULL;
pip = VTOI(pvp);
fs = pip->i_fs;
if (fs->fs_cstotal.cs_nifree == 0)
goto noinodes;
if ((mode & IFMT) == IFDIR)
ipref = ffs_dirpref(fs);
else
ipref = pip->i_number;
if (ipref >= fs->fs_ncg * fs->fs_ipg)
ipref = 0;
cg = ino_to_cg(fs, ipref);
ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
if (ino == 0)
goto noinodes;
error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
if (error) {
VOP_VFREE(pvp, ino, mode);
return (error);
}
ip = VTOI(*ap->a_vpp);
if (ip->i_mode) {
printf("mode = 0%o, inum = %ld, fs = %s\n",
ip->i_mode, ip->i_number, fs->fs_fsmnt);
panic("ffs_valloc: dup alloc");
}
if (ip->i_blocks) { /* XXX */
printf("free inode %s/%ld had %ld blocks\n",
fs->fs_fsmnt, ino, ip->i_blocks);
ip->i_blocks = 0;
}
ip->i_flags = 0;
/*
* Set up a new generation number for this inode.
*/
if (++nextgennumber < (u_long)time.tv_sec)
nextgennumber = time.tv_sec;
ip->i_gen = nextgennumber;
return (0);
noinodes:
ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
return (ENOSPC);
}
/*
* Find a cylinder to place a directory.
*
* The policy implemented by this algorithm is to select from
* among those cylinder groups with above the average number of
* free inodes, the one with the smallest number of directories.
*/
static ino_t
ffs_dirpref(fs)
register struct fs *fs;
{
int cg, minndir, mincg, avgifree;
avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
minndir = fs->fs_ipg;
mincg = 0;
for (cg = 0; cg < fs->fs_ncg; cg++)
if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
mincg = cg;
minndir = fs->fs_cs(fs, cg).cs_ndir;
}
return ((ino_t)(fs->fs_ipg * mincg));
}
/*
* Select the desired position for the next block in a file. The file is
* logically divided into sections. The first section is composed of the
* direct blocks. Each additional section contains fs_maxbpg blocks.
*
* If no blocks have been allocated in the first section, the policy is to
* request a block in the same cylinder group as the inode that describes
* the file. If no blocks have been allocated in any other section, the
* policy is to place the section in a cylinder group with a greater than
* average number of free blocks. An appropriate cylinder group is found
* by using a rotor that sweeps the cylinder groups. When a new group of
* blocks is needed, the sweep begins in the cylinder group following the
* cylinder group from which the previous allocation was made. The sweep
* continues until a cylinder group with greater than the average number
* of free blocks is found. If the allocation is for the first block in an
* indirect block, the information on the previous allocation is unavailable;
* here a best guess is made based upon the logical block number being
* allocated.
*
* If a section is already partially allocated, the policy is to
* contiguously allocate fs_maxcontig blocks. The end of one of these
* contiguous blocks and the beginning of the next is physically separated
* so that the disk head will be in transit between them for at least
* fs_rotdelay milliseconds. This is to allow time for the processor to
* schedule another I/O transfer.
*/
daddr_t
ffs_blkpref(ip, lbn, indx, bap)
struct inode *ip;
daddr_t lbn;
int indx;
daddr_t *bap;
{
register struct fs *fs;
register int cg;
int avgbfree, startcg;
daddr_t nextblk;
fs = ip->i_fs;
if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
if (lbn < NDADDR) {
cg = ino_to_cg(fs, ip->i_number);
return (fs->fs_fpg * cg + fs->fs_frag);
}
/*
* Find a cylinder with greater than average number of
* unused data blocks.
*/
if (indx == 0 || bap[indx - 1] == 0)
startcg =
ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
else
startcg = dtog(fs, bap[indx - 1]) + 1;
startcg %= fs->fs_ncg;
avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
for (cg = startcg; cg < fs->fs_ncg; cg++)
if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
fs->fs_cgrotor = cg;
return (fs->fs_fpg * cg + fs->fs_frag);
}
for (cg = 0; cg <= startcg; cg++)
if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
fs->fs_cgrotor = cg;
return (fs->fs_fpg * cg + fs->fs_frag);
}
return (NULL);
}
/*
* One or more previous blocks have been laid out. If less
* than fs_maxcontig previous blocks are contiguous, the
* next block is requested contiguously, otherwise it is
* requested rotationally delayed by fs_rotdelay milliseconds.
*/
nextblk = bap[indx - 1] + fs->fs_frag;
if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
blkstofrags(fs, fs->fs_maxcontig) != nextblk)
return (nextblk);
if (fs->fs_rotdelay != 0)
/*
* Here we convert ms of delay to frags as:
* (frags) = (ms) * (rev/sec) * (sect/rev) /
* ((sect/frag) * (ms/sec))
* then round up to the next block.
*/
nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
(NSPF(fs) * 1000), fs->fs_frag);
return (nextblk);
}
/*
* Implement the cylinder overflow algorithm.
*
* The policy implemented by this algorithm is:
* 1) allocate the block in its requested cylinder group.
* 2) quadradically rehash on the cylinder group number.
* 3) brute force search for a free block.
*/
/*VARARGS5*/
static u_long
ffs_hashalloc(ip, cg, pref, size, allocator)
struct inode *ip;
int cg;
long pref;
int size; /* size for data blocks, mode for inodes */
u_long (*allocator)();
{
register struct fs *fs;
long result;
int i, icg = cg;
fs = ip->i_fs;
/*
* 1: preferred cylinder group
*/
result = (*allocator)(ip, cg, pref, size);
if (result)
return (result);
/*
* 2: quadratic rehash
*/
for (i = 1; i < fs->fs_ncg; i *= 2) {
cg += i;
if (cg >= fs->fs_ncg)
cg -= fs->fs_ncg;
result = (*allocator)(ip, cg, 0, size);
if (result)
return (result);
}
/*
* 3: brute force search
* Note that we start at i == 2, since 0 was checked initially,
* and 1 is always checked in the quadratic rehash.
*/
cg = (icg + 2) % fs->fs_ncg;
for (i = 2; i < fs->fs_ncg; i++) {
result = (*allocator)(ip, cg, 0, size);
if (result)
return (result);
cg++;
if (cg == fs->fs_ncg)
cg = 0;
}
return (NULL);
}
/*
* Determine whether a fragment can be extended.
*
* Check to see if the necessary fragments are available, and
* if they are, allocate them.
*/
static daddr_t
ffs_fragextend(ip, cg, bprev, osize, nsize)
struct inode *ip;
int cg;
long bprev;
int osize, nsize;
{
register struct fs *fs;
register struct cg *cgp;
struct buf *bp;
long bno;
int frags, bbase;
int i, error;
fs = ip->i_fs;
if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
return (NULL);
frags = numfrags(fs, nsize);
bbase = fragnum(fs, bprev);
if (bbase > fragnum(fs, (bprev + frags - 1))) {
/* cannot extend across a block boundary */
return (NULL);
}
error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
(int)fs->fs_cgsize, NOCRED, &bp);
if (error) {
brelse(bp);
return (NULL);
}
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp)) {
brelse(bp);
return (NULL);
}
cgp->cg_time = time.tv_sec;
bno = dtogd(fs, bprev);
for (i = numfrags(fs, osize); i < frags; i++)
if (isclr(cg_blksfree(cgp), bno + i)) {
brelse(bp);
return (NULL);
}
/*
* the current fragment can be extended
* deduct the count on fragment being extended into
* increase the count on the remaining fragment (if any)
* allocate the extended piece
*/
for (i = frags; i < fs->fs_frag - bbase; i++)
if (isclr(cg_blksfree(cgp), bno + i))
break;
cgp->cg_frsum[i - numfrags(fs, osize)]--;
if (i != frags)
cgp->cg_frsum[i - frags]++;
for (i = numfrags(fs, osize); i < frags; i++) {
clrbit(cg_blksfree(cgp), bno + i);
cgp->cg_cs.cs_nffree--;
fs->fs_cstotal.cs_nffree--;
fs->fs_cs(fs, cg).cs_nffree--;
}
fs->fs_fmod = 1;
bdwrite(bp);
return (bprev);
}
/*
* Determine whether a block can be allocated.
*
* Check to see if a block of the appropriate size is available,
* and if it is, allocate it.
*/
static daddr_t
ffs_alloccg(ip, cg, bpref, size)
struct inode *ip;
int cg;
daddr_t bpref;
int size;
{
register struct fs *fs;
register struct cg *cgp;
struct buf *bp;
register int i;
int error, bno, frags, allocsiz;
fs = ip->i_fs;
if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
return (NULL);
error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
(int)fs->fs_cgsize, NOCRED, &bp);
if (error) {
brelse(bp);
return (NULL);
}
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp) ||
(cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
brelse(bp);
return (NULL);
}
cgp->cg_time = time.tv_sec;
if (size == fs->fs_bsize) {
bno = ffs_alloccgblk(fs, cgp, bpref);
bdwrite(bp);
return (bno);
}
/*
* check to see if any fragments are already available
* allocsiz is the size which will be allocated, hacking
* it down to a smaller size if necessary
*/
frags = numfrags(fs, size);
for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
if (cgp->cg_frsum[allocsiz] != 0)
break;
if (allocsiz == fs->fs_frag) {
/*
* no fragments were available, so a block will be
* allocated, and hacked up
*/
if (cgp->cg_cs.cs_nbfree == 0) {
brelse(bp);
return (NULL);
}
bno = ffs_alloccgblk(fs, cgp, bpref);
bpref = dtogd(fs, bno);
for (i = frags; i < fs->fs_frag; i++)
setbit(cg_blksfree(cgp), bpref + i);
i = fs->fs_frag - frags;
cgp->cg_cs.cs_nffree += i;
fs->fs_cstotal.cs_nffree += i;
fs->fs_cs(fs, cg).cs_nffree += i;
fs->fs_fmod = 1;
cgp->cg_frsum[i]++;
bdwrite(bp);
return (bno);
}
bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
if (bno < 0) {
brelse(bp);
return (NULL);
}
for (i = 0; i < frags; i++)
clrbit(cg_blksfree(cgp), bno + i);
cgp->cg_cs.cs_nffree -= frags;
fs->fs_cstotal.cs_nffree -= frags;
fs->fs_cs(fs, cg).cs_nffree -= frags;
fs->fs_fmod = 1;
cgp->cg_frsum[allocsiz]--;
if (frags != allocsiz)
cgp->cg_frsum[allocsiz - frags]++;
bdwrite(bp);
return (cg * fs->fs_fpg + bno);
}
/*
* Allocate a block in a cylinder group.
*
* This algorithm implements the following policy:
* 1) allocate the requested block.
* 2) allocate a rotationally optimal block in the same cylinder.
* 3) allocate the next available block on the block rotor for the
* specified cylinder group.
* Note that this routine only allocates fs_bsize blocks; these
* blocks may be fragmented by the routine that allocates them.
*/
static daddr_t
ffs_alloccgblk(fs, cgp, bpref)
register struct fs *fs;
register struct cg *cgp;
daddr_t bpref;
{
daddr_t bno, blkno;
int cylno, pos, delta;
short *cylbp;
register int i;
if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
bpref = cgp->cg_rotor;
goto norot;
}
bpref = blknum(fs, bpref);
bpref = dtogd(fs, bpref);
/*
* if the requested block is available, use it
*/
if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
bno = bpref;
goto gotit;
}
/*
* check for a block available on the same cylinder
*/
cylno = cbtocylno(fs, bpref);
if (cg_blktot(cgp)[cylno] == 0)
goto norot;
if (fs->fs_cpc == 0) {
/*
* Block layout information is not available.
* Leaving bpref unchanged means we take the
* next available free block following the one
* we just allocated. Hopefully this will at
* least hit a track cache on drives of unknown
* geometry (e.g. SCSI).
*/
goto norot;
}
/*
* check the summary information to see if a block is
* available in the requested cylinder starting at the
* requested rotational position and proceeding around.
*/
cylbp = cg_blks(fs, cgp, cylno);
pos = cbtorpos(fs, bpref);
for (i = pos; i < fs->fs_nrpos; i++)
if (cylbp[i] > 0)
break;
if (i == fs->fs_nrpos)
for (i = 0; i < pos; i++)
if (cylbp[i] > 0)
break;
if (cylbp[i] > 0) {
/*
* found a rotational position, now find the actual
* block. A panic if none is actually there.
*/
pos = cylno % fs->fs_cpc;
bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
if (fs_postbl(fs, pos)[i] == -1) {
printf("pos = %d, i = %d, fs = %s\n",
pos, i, fs->fs_fsmnt);
panic("ffs_alloccgblk: cyl groups corrupted");
}
for (i = fs_postbl(fs, pos)[i];; ) {
if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
bno = blkstofrags(fs, (bno + i));
goto gotit;
}
delta = fs_rotbl(fs)[i];
if (delta <= 0 ||
delta + i > fragstoblks(fs, fs->fs_fpg))
break;
i += delta;
}
printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
panic("ffs_alloccgblk: can't find blk in cyl");
}
norot:
/*
* no blocks in the requested cylinder, so take next
* available one in this cylinder group.
*/
bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
if (bno < 0)
return (NULL);
cgp->cg_rotor = bno;
gotit:
blkno = fragstoblks(fs, bno);
ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
ffs_clusteracct(fs, cgp, blkno, -1);
cgp->cg_cs.cs_nbfree--;
fs->fs_cstotal.cs_nbfree--;
fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
cylno = cbtocylno(fs, bno);
cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
cg_blktot(cgp)[cylno]--;
fs->fs_fmod = 1;
return (cgp->cg_cgx * fs->fs_fpg + bno);
}
/*
* Determine whether a cluster can be allocated.
*
* We do not currently check for optimal rotational layout if there
* are multiple choices in the same cylinder group. Instead we just
* take the first one that we find following bpref.
*/
static daddr_t
ffs_clusteralloc(ip, cg, bpref, len)
struct inode *ip;
int cg;
daddr_t bpref;
int len;
{
register struct fs *fs;
register struct cg *cgp;
struct buf *bp;
int i, run, bno, bit, map;
u_char *mapp;
fs = ip->i_fs;
if (fs->fs_cs(fs, cg).cs_nbfree < len)
return (NULL);
if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
NOCRED, &bp))
goto fail;
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp))
goto fail;
/*
* Check to see if a cluster of the needed size (or bigger) is
* available in this cylinder group.
*/
for (i = len; i <= fs->fs_contigsumsize; i++)
if (cg_clustersum(cgp)[i] > 0)
break;
if (i > fs->fs_contigsumsize)
goto fail;
/*
* Search the cluster map to find a big enough cluster.
* We take the first one that we find, even if it is larger
* than we need as we prefer to get one close to the previous
* block allocation. We do not search before the current
* preference point as we do not want to allocate a block
* that is allocated before the previous one (as we will
* then have to wait for another pass of the elevator
* algorithm before it will be read). We prefer to fail and
* be recalled to try an allocation in the next cylinder group.
*/
if (dtog(fs, bpref) != cg)
bpref = 0;
else
bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
mapp = &cg_clustersfree(cgp)[bpref / NBBY];
map = *mapp++;
bit = 1 << (bpref % NBBY);
for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
if ((map & bit) == 0) {
run = 0;
} else {
run++;
if (run == len)
break;
}
if ((i & (NBBY - 1)) != (NBBY - 1)) {
bit <<= 1;
} else {
map = *mapp++;
bit = 1;
}
}
if (i == cgp->cg_nclusterblks)
goto fail;
/*
* Allocate the cluster that we have found.
*/
bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
len = blkstofrags(fs, len);
for (i = 0; i < len; i += fs->fs_frag)
if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
panic("ffs_clusteralloc: lost block");
brelse(bp);
return (bno);
fail:
brelse(bp);
return (0);
}
/*
* Determine whether an inode can be allocated.
*
* Check to see if an inode is available, and if it is,
* allocate it using the following policy:
* 1) allocate the requested inode.
* 2) allocate the next available inode after the requested
* inode in the specified cylinder group.
*/
static ino_t
ffs_nodealloccg(ip, cg, ipref, mode)
struct inode *ip;
int cg;
daddr_t ipref;
int mode;
{
register struct fs *fs;
register struct cg *cgp;
struct buf *bp;
int error, start, len, loc, map, i;
fs = ip->i_fs;
if (fs->fs_cs(fs, cg).cs_nifree == 0)
return (NULL);
error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
(int)fs->fs_cgsize, NOCRED, &bp);
if (error) {
brelse(bp);
return (NULL);
}
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
brelse(bp);
return (NULL);
}
cgp->cg_time = time.tv_sec;
if (ipref) {
ipref %= fs->fs_ipg;
if (isclr(cg_inosused(cgp), ipref))
goto gotit;
}
start = cgp->cg_irotor / NBBY;
len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
if (loc == 0) {
len = start + 1;
start = 0;
loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
if (loc == 0) {
printf("cg = %d, irotor = %d, fs = %s\n",
cg, cgp->cg_irotor, fs->fs_fsmnt);
panic("ffs_nodealloccg: map corrupted");
/* NOTREACHED */
}
}
i = start + len - loc;
map = cg_inosused(cgp)[i];
ipref = i * NBBY;
for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
if ((map & i) == 0) {
cgp->cg_irotor = ipref;
goto gotit;
}
}
printf("fs = %s\n", fs->fs_fsmnt);
panic("ffs_nodealloccg: block not in map");
/* NOTREACHED */
gotit:
setbit(cg_inosused(cgp), ipref);
cgp->cg_cs.cs_nifree--;
fs->fs_cstotal.cs_nifree--;
fs->fs_cs(fs, cg).cs_nifree--;
fs->fs_fmod = 1;
if ((mode & IFMT) == IFDIR) {
cgp->cg_cs.cs_ndir++;
fs->fs_cstotal.cs_ndir++;
fs->fs_cs(fs, cg).cs_ndir++;
}
bdwrite(bp);
return (cg * fs->fs_ipg + ipref);
}
/*
* Free a block or fragment.
*
* The specified block or fragment is placed back in the
* free map. If a fragment is deallocated, a possible
* block reassembly is checked.
*/
void
ffs_blkfree(ip, bno, size)
register struct inode *ip;
daddr_t bno;
long size;
{
register struct fs *fs;
register struct cg *cgp;
struct buf *bp;
daddr_t blkno;
int i, error, cg, blk, frags, bbase;
fs = ip->i_fs;
if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
printf("dev = 0x%lx, bsize = %ld, size = %ld, fs = %s\n",
(u_long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
panic("blkfree: bad size");
}
cg = dtog(fs, bno);
if ((u_int)bno >= fs->fs_size) {
printf("bad block %d, ino %d\n", bno, ip->i_number);
ffs_fserr(fs, ip->i_uid, "bad block");
return;
}
error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
(int)fs->fs_cgsize, NOCRED, &bp);
if (error) {
brelse(bp);
return;
}
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp)) {
brelse(bp);
return;
}
cgp->cg_time = time.tv_sec;
bno = dtogd(fs, bno);
if (size == fs->fs_bsize) {
blkno = fragstoblks(fs, bno);
if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
printf("dev = 0x%x, block = %d, fs = %s\n",
ip->i_dev, bno, fs->fs_fsmnt);
panic("blkfree: freeing free block");
}
ffs_setblock(fs, cg_blksfree(cgp), blkno);
ffs_clusteracct(fs, cgp, blkno, 1);
cgp->cg_cs.cs_nbfree++;
fs->fs_cstotal.cs_nbfree++;
fs->fs_cs(fs, cg).cs_nbfree++;
i = cbtocylno(fs, bno);
cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
cg_blktot(cgp)[i]++;
} else {
bbase = bno - fragnum(fs, bno);
/*
* decrement the counts associated with the old frags
*/
blk = blkmap(fs, cg_blksfree(cgp), bbase);
ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
/*
* deallocate the fragment
*/
frags = numfrags(fs, size);
for (i = 0; i < frags; i++) {
if (isset(cg_blksfree(cgp), bno + i)) {
printf("dev = 0x%x, block = %d, fs = %s\n",
ip->i_dev, bno + i, fs->fs_fsmnt);
panic("blkfree: freeing free frag");
}
setbit(cg_blksfree(cgp), bno + i);
}
cgp->cg_cs.cs_nffree += i;
fs->fs_cstotal.cs_nffree += i;
fs->fs_cs(fs, cg).cs_nffree += i;
/*
* add back in counts associated with the new frags
*/
blk = blkmap(fs, cg_blksfree(cgp), bbase);
ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
/*
* if a complete block has been reassembled, account for it
*/
blkno = fragstoblks(fs, bbase);
if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
cgp->cg_cs.cs_nffree -= fs->fs_frag;
fs->fs_cstotal.cs_nffree -= fs->fs_frag;
fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
ffs_clusteracct(fs, cgp, blkno, 1);
cgp->cg_cs.cs_nbfree++;
fs->fs_cstotal.cs_nbfree++;
fs->fs_cs(fs, cg).cs_nbfree++;
i = cbtocylno(fs, bbase);
cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
cg_blktot(cgp)[i]++;
}
}
fs->fs_fmod = 1;
bdwrite(bp);
}
/*
* Free an inode.
*
* The specified inode is placed back in the free map.
*/
int
ffs_vfree(ap)
struct vop_vfree_args /* {
struct vnode *a_pvp;
ino_t a_ino;
int a_mode;
} */ *ap;
{
register struct fs *fs;
register struct cg *cgp;
register struct inode *pip;
ino_t ino = ap->a_ino;
struct buf *bp;
int error, cg;
pip = VTOI(ap->a_pvp);
fs = pip->i_fs;
if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
pip->i_dev, ino, fs->fs_fsmnt);
cg = ino_to_cg(fs, ino);
error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
(int)fs->fs_cgsize, NOCRED, &bp);
if (error) {
brelse(bp);
return (0);
}
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp)) {
brelse(bp);
return (0);
}
cgp->cg_time = time.tv_sec;
ino %= fs->fs_ipg;
if (isclr(cg_inosused(cgp), ino)) {
printf("dev = 0x%lx, ino = %d, fs = %s\n",
(u_long)pip->i_dev, ino, fs->fs_fsmnt);
if (fs->fs_ronly == 0)
panic("ifree: freeing free inode");
}
clrbit(cg_inosused(cgp), ino);
if (ino < cgp->cg_irotor)
cgp->cg_irotor = ino;
cgp->cg_cs.cs_nifree++;
fs->fs_cstotal.cs_nifree++;
fs->fs_cs(fs, cg).cs_nifree++;
if ((ap->a_mode & IFMT) == IFDIR) {
cgp->cg_cs.cs_ndir--;
fs->fs_cstotal.cs_ndir--;
fs->fs_cs(fs, cg).cs_ndir--;
}
fs->fs_fmod = 1;
bdwrite(bp);
return (0);
}
/*
* Find a block of the specified size in the specified cylinder group.
*
* It is a panic if a request is made to find a block if none are
* available.
*/
static daddr_t
ffs_mapsearch(fs, cgp, bpref, allocsiz)
register struct fs *fs;
register struct cg *cgp;
daddr_t bpref;
int allocsiz;
{
daddr_t bno;
int start, len, loc, i;
int blk, field, subfield, pos;
/*
* find the fragment by searching through the free block
* map for an appropriate bit pattern
*/
if (bpref)
start = dtogd(fs, bpref) / NBBY;
else
start = cgp->cg_frotor / NBBY;
len = howmany(fs->fs_fpg, NBBY) - start;
loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
(u_char *)fragtbl[fs->fs_frag],
(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
if (loc == 0) {
len = start + 1;
start = 0;
loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
(u_char *)fragtbl[fs->fs_frag],
(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
if (loc == 0) {
printf("start = %d, len = %d, fs = %s\n",
start, len, fs->fs_fsmnt);
panic("ffs_alloccg: map corrupted");
/* NOTREACHED */
}
}
bno = (start + len - loc) * NBBY;
cgp->cg_frotor = bno;
/*
* found the byte in the map
* sift through the bits to find the selected frag
*/
for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
blk = blkmap(fs, cg_blksfree(cgp), bno);
blk <<= 1;
field = around[allocsiz];
subfield = inside[allocsiz];
for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
if ((blk & field) == subfield)
return (bno + pos);
field <<= 1;
subfield <<= 1;
}
}
printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
panic("ffs_alloccg: block not in map");
return (-1);
}
/*
* Update the cluster map because of an allocation or free.
*
* Cnt == 1 means free; cnt == -1 means allocating.
*/
void
ffs_clusteracct(fs, cgp, blkno, cnt)
struct fs *fs;
struct cg *cgp;
daddr_t blkno;
int cnt;
{
long *sump;
u_char *freemapp, *mapp;
int i, start, end, forw, back, map, bit;
if (fs->fs_contigsumsize <= 0)
return;
freemapp = cg_clustersfree(cgp);
sump = cg_clustersum(cgp);
/*
* Allocate or clear the actual block.
*/
if (cnt > 0)
setbit(freemapp, blkno);
else
clrbit(freemapp, blkno);
/*
* Find the size of the cluster going forward.
*/
start = blkno + 1;
end = start + fs->fs_contigsumsize;
if (end >= cgp->cg_nclusterblks)
end = cgp->cg_nclusterblks;
mapp = &freemapp[start / NBBY];
map = *mapp++;
bit = 1 << (start % NBBY);
for (i = start; i < end; i++) {
if ((map & bit) == 0)
break;
if ((i & (NBBY - 1)) != (NBBY - 1)) {
bit <<= 1;
} else {
map = *mapp++;
bit = 1;
}
}
forw = i - start;
/*
* Find the size of the cluster going backward.
*/
start = blkno - 1;
end = start - fs->fs_contigsumsize;
if (end < 0)
end = -1;
mapp = &freemapp[start / NBBY];
map = *mapp--;
bit = 1 << (start % NBBY);
for (i = start; i > end; i--) {
if ((map & bit) == 0)
break;
if ((i & (NBBY - 1)) != 0) {
bit >>= 1;
} else {
map = *mapp--;
bit = 1 << (NBBY - 1);
}
}
back = start - i;
/*
* Account for old cluster and the possibly new forward and
* back clusters.
*/
i = back + forw + 1;
if (i > fs->fs_contigsumsize)
i = fs->fs_contigsumsize;
sump[i] += cnt;
if (back > 0)
sump[back] -= cnt;
if (forw > 0)
sump[forw] -= cnt;
}
/*
* Fserr prints the name of a file system with an error diagnostic.
*
* The form of the error message is:
* fs: error message
*/
static void
ffs_fserr(fs, uid, cp)
struct fs *fs;
u_int uid;
char *cp;
{
log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
}