freebsd-skq/sys/powerpc/aim/vm_machdep.c
jhb ff18363a3e - Overhaul the software interrupt code to use interrupt threads for each
type of software interrupt.  Roughly, what used to be a bit in spending
  now maps to a swi thread.  Each thread can have multiple handlers, just
  like a hardware interrupt thread.
- Instead of using a bitmask of pending interrupts, we schedule the specific
  software interrupt thread to run, so spending, NSWI, and the shandlers
  array are no longer needed.  We can now have an arbitrary number of
  software interrupt threads.  When you register a software interrupt
  thread via sinthand_add(), you get back a struct intrhand that you pass
  to sched_swi() when you wish to schedule your swi thread to run.
- Convert the name of 'struct intrec' to 'struct intrhand' as it is a bit
  more intuitive.  Also, prefix all the members of struct intrhand with
  'ih_'.
- Make swi_net() a MI function since there is now no point in it being
  MD.

Submitted by:	cp
2000-10-25 05:19:40 +00:00

498 lines
13 KiB
C

/*-
* Copyright (c) 1982, 1986 The Regents of the University of California.
* Copyright (c) 1989, 1990 William Jolitz
* Copyright (c) 1994 John Dyson
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department, and William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91
* Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
* $FreeBSD$
*/
/*
* Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Chris G. Demetriou
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/mutex.h>
#include <sys/vnode.h>
#include <sys/vmmeter.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/unistd.h>
#include <machine/clock.h>
#include <machine/cpu.h>
#include <machine/fpu.h>
#include <machine/md_var.h>
#include <machine/prom.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <sys/lock.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
#include <sys/user.h>
/*
* quick version of vm_fault
*/
int
vm_fault_quick(v, prot)
caddr_t v;
int prot;
{
int r;
if (prot & VM_PROT_WRITE)
r = subyte(v, fubyte(v));
else
r = fubyte(v);
return(r);
}
/*
* Finish a fork operation, with process p2 nearly set up.
* Copy and update the pcb, set up the stack so that the child
* ready to run and return to user mode.
*/
void
cpu_fork(p1, p2, flags)
register struct proc *p1, *p2;
int flags;
{
if ((flags & RFPROC) == 0)
return;
p2->p_md.md_tf = p1->p_md.md_tf;
p2->p_md.md_flags = p1->p_md.md_flags & (MDP_FPUSED | MDP_UAC_MASK);
/*
* Cache the physical address of the pcb, so we can
* swap to it easily.
*/
p2->p_md.md_pcbpaddr = (void*)vtophys((vm_offset_t)&p2->p_addr->u_pcb);
/*
* Copy floating point state from the FP chip to the PCB
* if this process has state stored there.
*/
alpha_fpstate_save(p1, 0);
/*
* Copy pcb and stack from proc p1 to p2. We do this as
* cheaply as possible, copying only the active part of the
* stack. The stack and pcb need to agree. Make sure that the
* new process has FEN disabled.
*/
p2->p_addr->u_pcb = p1->p_addr->u_pcb;
p2->p_addr->u_pcb.pcb_hw.apcb_usp = alpha_pal_rdusp();
p2->p_addr->u_pcb.pcb_hw.apcb_flags &= ~ALPHA_PCB_FLAGS_FEN;
/*
* Set the floating point state.
*/
if ((p2->p_addr->u_pcb.pcb_fp_control & IEEE_INHERIT) == 0) {
p2->p_addr->u_pcb.pcb_fp_control = 0;
p2->p_addr->u_pcb.pcb_fp.fpr_cr = (FPCR_DYN_NORMAL
| FPCR_INVD | FPCR_DZED
| FPCR_OVFD | FPCR_INED
| FPCR_UNFD);
}
/*
* Arrange for a non-local goto when the new process
* is started, to resume here, returning nonzero from setjmp.
*/
#ifdef DIAGNOSTIC
if (p1 != curproc)
panic("cpu_fork: curproc");
alpha_fpstate_check(p1);
#endif
/*
* create the child's kernel stack, from scratch.
*/
{
struct user *up = p2->p_addr;
struct trapframe *p2tf;
/*
* Pick a stack pointer, leaving room for a trapframe;
* copy trapframe from parent so return to user mode
* will be to right address, with correct registers.
*/
p2tf = p2->p_md.md_tf = (struct trapframe *)
((char *)p2->p_addr + USPACE - sizeof(struct trapframe));
bcopy(p1->p_md.md_tf, p2->p_md.md_tf,
sizeof(struct trapframe));
/*
* Set up return-value registers as fork() libc stub expects.
*/
p2tf->tf_regs[FRAME_V0] = 0; /* child's pid (linux) */
p2tf->tf_regs[FRAME_A3] = 0; /* no error */
p2tf->tf_regs[FRAME_A4] = 1; /* is child (FreeBSD) */
/*
* Arrange for continuation at child_return(), which
* will return to exception_return(). Note that the child
* process doesn't stay in the kernel for long!
*
* This is an inlined version of cpu_set_kpc.
*/
up->u_pcb.pcb_hw.apcb_ksp = (u_int64_t)p2tf;
up->u_pcb.pcb_context[0] =
(u_int64_t)child_return; /* s0: pc */
up->u_pcb.pcb_context[1] =
(u_int64_t)exception_return; /* s1: ra */
up->u_pcb.pcb_context[2] = (u_long) p2; /* s2: a0 */
up->u_pcb.pcb_context[7] =
(u_int64_t)switch_trampoline; /* ra: assembly magic */
/*
* Clear the saved recursion count for sched_lock
* since the child needs only one count which is
* released in switch_trampoline.
*/
up->u_pcb.pcb_schednest = 0;
}
}
/*
* Intercept the return address from a freshly forked process that has NOT
* been scheduled yet.
*
* This is needed to make kernel threads stay in kernel mode.
*/
void
cpu_set_fork_handler(p, func, arg)
struct proc *p;
void (*func) __P((void *));
void *arg;
{
/*
* Note that the trap frame follows the args, so the function
* is really called like this: func(arg, frame);
*/
p->p_addr->u_pcb.pcb_context[0] = (u_long) func;
p->p_addr->u_pcb.pcb_context[2] = (u_long) arg;
}
/*
* cpu_exit is called as the last action during exit.
* We release the address space of the process, block interrupts,
* and call switch_exit. switch_exit switches to proc0's PCB and stack,
* then jumps into the middle of cpu_switch, as if it were switching
* from proc0.
*/
void
cpu_exit(p)
register struct proc *p;
{
alpha_fpstate_drop(p);
(void) splhigh();
mtx_enter(&sched_lock, MTX_SPIN);
mtx_exit(&Giant, MTX_DEF);
cnt.v_swtch++;
cpu_switch();
panic("cpu_exit");
}
void
cpu_wait(p)
struct proc *p;
{
/* drop per-process resources */
pmap_dispose_proc(p);
/* and clean-out the vmspace */
vmspace_free(p->p_vmspace);
}
/*
* Dump the machine specific header information at the start of a core dump.
*/
int
cpu_coredump(p, vp, cred)
struct proc *p;
struct vnode *vp;
struct ucred *cred;
{
return (vn_rdwr(UIO_WRITE, vp, (caddr_t) p->p_addr, ctob(UPAGES),
(off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, (int *)NULL,
p));
}
#ifdef notyet
static void
setredzone(pte, vaddr)
u_short *pte;
caddr_t vaddr;
{
/* eventually do this by setting up an expand-down stack segment
for ss0: selector, allowing stack access down to top of u.
this means though that protection violations need to be handled
thru a double fault exception that must do an integral task
switch to a known good context, within which a dump can be
taken. a sensible scheme might be to save the initial context
used by sched (that has physical memory mapped 1:1 at bottom)
and take the dump while still in mapped mode */
}
#endif
/*
* Map an IO request into kernel virtual address space.
*
* All requests are (re)mapped into kernel VA space.
* Notice that we use b_bufsize for the size of the buffer
* to be mapped. b_bcount might be modified by the driver.
*/
void
vmapbuf(bp)
register struct buf *bp;
{
register caddr_t addr, v, kva;
vm_offset_t pa;
if ((bp->b_flags & B_PHYS) == 0)
panic("vmapbuf");
for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page(bp->b_data);
addr < bp->b_data + bp->b_bufsize;
addr += PAGE_SIZE, v += PAGE_SIZE) {
/*
* Do the vm_fault if needed; do the copy-on-write thing
* when reading stuff off device into memory.
*/
vm_fault_quick(addr,
(bp->b_iocmd == BIO_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
pa = trunc_page(pmap_kextract((vm_offset_t) addr));
if (pa == 0)
panic("vmapbuf: page not present");
vm_page_hold(PHYS_TO_VM_PAGE(pa));
pmap_kenter((vm_offset_t) v, pa);
}
kva = bp->b_saveaddr;
bp->b_saveaddr = bp->b_data;
bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
}
/*
* Free the io map PTEs associated with this IO operation.
* We also invalidate the TLB entries and restore the original b_addr.
*/
void
vunmapbuf(bp)
register struct buf *bp;
{
register caddr_t addr;
vm_offset_t pa;
if ((bp->b_flags & B_PHYS) == 0)
panic("vunmapbuf");
for (addr = (caddr_t)trunc_page(bp->b_data);
addr < bp->b_data + bp->b_bufsize;
addr += PAGE_SIZE) {
pa = trunc_page(pmap_kextract((vm_offset_t) addr));
pmap_kremove((vm_offset_t) addr);
vm_page_unhold(PHYS_TO_VM_PAGE(pa));
}
bp->b_data = bp->b_saveaddr;
}
/*
* Reset back to firmware.
*/
void
cpu_reset()
{
prom_halt(0);
}
int
grow_stack(p, sp)
struct proc *p;
size_t sp;
{
int rv;
rv = vm_map_growstack (p, sp);
if (rv != KERN_SUCCESS)
return (0);
return (1);
}
static int cnt_prezero;
SYSCTL_INT(_machdep, OID_AUTO, cnt_prezero, CTLFLAG_RD, &cnt_prezero, 0, "");
/*
* Implement the pre-zeroed page mechanism.
* This routine is called from the idle loop.
*/
#define ZIDLE_LO(v) ((v) * 2 / 3)
#define ZIDLE_HI(v) ((v) * 4 / 5)
int
vm_page_zero_idle()
{
static int free_rover;
static int zero_state;
vm_page_t m;
int s;
/*
* Attempt to maintain approximately 1/2 of our free pages in a
* PG_ZERO'd state. Add some hysteresis to (attempt to) avoid
* generally zeroing a page when the system is near steady-state.
* Otherwise we might get 'flutter' during disk I/O / IPC or
* fast sleeps. We also do not want to be continuously zeroing
* pages because doing so may flush our L1 and L2 caches too much.
*/
if (zero_state && vm_page_zero_count >= ZIDLE_LO(cnt.v_free_count))
return(0);
if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
return(0);
#ifdef SMP
if (KLOCK_ENTER(M_TRY)) {
#endif
s = splvm();
m = vm_page_list_find(PQ_FREE, free_rover, FALSE);
zero_state = 0;
if (m != NULL && (m->flags & PG_ZERO) == 0) {
vm_page_queues[m->queue].lcnt--;
TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
m->queue = PQ_NONE;
splx(s);
#if 0
rel_mplock();
#endif
pmap_zero_page(VM_PAGE_TO_PHYS(m));
#if 0
get_mplock();
#endif
(void)splvm();
vm_page_flag_set(m, PG_ZERO);
m->queue = PQ_FREE + m->pc;
vm_page_queues[m->queue].lcnt++;
TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m,
pageq);
++vm_page_zero_count;
++cnt_prezero;
if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
zero_state = 1;
}
free_rover = (free_rover + PQ_PRIME2) & PQ_L2_MASK;
splx(s);
#ifdef SMP
KLOCK_EXIT;
#endif
return (1);
#ifdef SMP
}
#endif
return (0);
}
/*
* Software interrupt handler for queued VM system processing.
*/
void
swi_vm(void *dummy)
{
if (busdma_swi_pending != 0)
busdma_swi();
}
/*
* Tell whether this address is in some physical memory region.
* Currently used by the kernel coredump code in order to avoid
* dumping the ``ISA memory hole'' which could cause indefinite hangs,
* or other unpredictable behaviour.
*/
int
is_physical_memory(addr)
vm_offset_t addr;
{
/*
* stuff other tests for known memory-mapped devices (PCI?)
* here
*/
return 1;
}