freebsd-skq/sys/svr4/svr4_misc.c
1999-11-21 12:38:21 +00:00

1621 lines
36 KiB
C

/*
* Copyright (c) 1998 Mark Newton
* Copyright (c) 1994 Christos Zoulas
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* SVR4 compatibility module.
*
* SVR4 system calls that are implemented differently in BSD are
* handled here.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/dirent.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/kernel.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/vnode.h>
#include <sys/uio.h>
#include <sys/wait.h>
#include <sys/times.h>
#include <sys/fcntl.h>
#include <sys/sem.h>
#include <sys/msg.h>
#include <sys/ptrace.h>
#include <vm/vm_zone.h>
#include <sys/sysproto.h>
#include <netinet/in.h>
#include <svr4/svr4.h>
#include <svr4/svr4_types.h>
#include <svr4/svr4_signal.h>
#include <svr4/svr4_proto.h>
#include <svr4/svr4_util.h>
#include <svr4/svr4_sysconfig.h>
#include <svr4/svr4_dirent.h>
#include <svr4/svr4_acl.h>
#include <svr4/svr4_time.h>
#include <svr4/svr4_ulimit.h>
#include <svr4/svr4_statvfs.h>
#include <svr4/svr4_hrt.h>
#include <svr4/svr4_mman.h>
#include <svr4/svr4_wait.h>
#include <machine/vmparam.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_map.h>
#if defined(NetBSD)
# if defined(UVM)
# include <uvm/uvm_extern.h>
# endif
#endif
#define BSD_DIRENT(cp) ((struct dirent *)(cp))
static int svr4_mknod __P((struct proc *, register_t *, char *,
svr4_mode_t, svr4_dev_t));
static __inline clock_t timeval_to_clock_t __P((struct timeval *));
static int svr4_setinfo __P((struct proc *, int, svr4_siginfo_t *));
struct svr4_hrtcntl_args;
static int svr4_hrtcntl __P((struct proc *, struct svr4_hrtcntl_args *,
register_t *));
static void bsd_statfs_to_svr4_statvfs __P((const struct statfs *,
struct svr4_statvfs *));
static void bsd_statfs_to_svr4_statvfs64 __P((const struct statfs *,
struct svr4_statvfs64 *));
static struct proc *svr4_pfind __P((pid_t pid));
/* BOGUS noop */
#if defined(BOGUS)
int
svr4_sys_setitimer(p, uap)
register struct proc *p;
struct svr4_sys_setitimer_args *uap;
{
p->p_retval[0] = 0;
return 0;
}
#endif
int
svr4_sys_wait(p, uap)
struct proc *p;
struct svr4_sys_wait_args *uap;
{
struct wait_args w4;
int error, *retval = p->p_retval, st, sig;
size_t sz = sizeof(*SCARG(&w4, status));
SCARG(&w4, rusage) = NULL;
SCARG(&w4, options) = 0;
if (SCARG(uap, status) == NULL) {
caddr_t sg = stackgap_init();
SCARG(&w4, status) = stackgap_alloc(&sg, sz);
}
else
SCARG(&w4, status) = SCARG(uap, status);
SCARG(&w4, pid) = WAIT_ANY;
if ((error = wait4(p, &w4)) != 0)
return error;
if ((error = copyin(SCARG(&w4, status), &st, sizeof(st))) != 0)
return error;
if (WIFSIGNALED(st)) {
sig = WTERMSIG(st);
if (sig >= 0 && sig < NSIG)
st = (st & ~0177) | SVR4_BSD2SVR4_SIG(sig);
} else if (WIFSTOPPED(st)) {
sig = WSTOPSIG(st);
if (sig >= 0 && sig < NSIG)
st = (st & ~0xff00) | (SVR4_BSD2SVR4_SIG(sig) << 8);
}
/*
* It looks like wait(2) on svr4/solaris/2.4 returns
* the status in retval[1], and the pid on retval[0].
*/
retval[1] = st;
if (SCARG(uap, status))
if ((error = copyout(&st, SCARG(uap, status), sizeof(st))) != 0)
return error;
return 0;
}
int
svr4_sys_execv(p, uap)
struct proc *p;
struct svr4_sys_execv_args *uap;
{
struct execve_args ap;
caddr_t sg;
sg = stackgap_init();
CHECKALTEXIST(p, &sg, SCARG(uap, path));
SCARG(&ap, fname) = SCARG(uap, path);
SCARG(&ap, argv) = SCARG(uap, argp);
SCARG(&ap, envv) = NULL;
return execve(p, &ap);
}
int
svr4_sys_execve(p, uap)
struct proc *p;
struct svr4_sys_execve_args *uap;
{
struct execve_args ap;
caddr_t sg;
sg = stackgap_init();
CHECKALTEXIST(p, &sg, uap->path);
SCARG(&ap, fname) = SCARG(uap, path);
SCARG(&ap, argv) = SCARG(uap, argp);
SCARG(&ap, envv) = SCARG(uap, envp);
return execve(p, &ap);
}
int
svr4_sys_time(p, v)
struct proc *p;
struct svr4_sys_time_args *v;
{
struct svr4_sys_time_args *uap = v;
int error = 0;
struct timeval tv;
microtime(&tv);
if (SCARG(uap, t))
error = copyout(&tv.tv_sec, SCARG(uap, t),
sizeof(*(SCARG(uap, t))));
p->p_retval[0] = (int) tv.tv_sec;
return error;
}
/*
* Read SVR4-style directory entries. We suck them into kernel space so
* that they can be massaged before being copied out to user code. Like
* SunOS, we squish out `empty' entries.
*
* This is quite ugly, but what do you expect from compatibility code?
*/
int
svr4_sys_getdents64(p, uap)
struct proc *p;
struct svr4_sys_getdents64_args *uap;
{
struct dirent *bdp;
struct vnode *vp;
caddr_t inp, buf; /* BSD-format */
int len, reclen; /* BSD-format */
caddr_t outp; /* SVR4-format */
int resid, svr4_reclen; /* SVR4-format */
struct file *fp;
struct uio auio;
struct iovec aiov;
struct svr4_dirent64 idb;
off_t off; /* true file offset */
int buflen, error, eofflag;
u_long *cookiebuf = NULL, *cookie;
int ncookies = 0, retval = 0, offcnt = 0;
if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
return (error);
if ((fp->f_flag & FREAD) == 0)
return (EBADF);
vp = (struct vnode *)fp->f_data;
if (vp->v_type != VDIR)
return (EINVAL);
buflen = min(MAXBSIZE, SCARG(uap, nbytes));
DPRINTF(("buflen = %d, spec = %d\n", buflen, SCARG(uap, nbytes)));
buf = malloc(buflen, M_TEMP, M_WAITOK);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
off = fp->f_offset;
again:
aiov.iov_base = buf;
aiov.iov_len = buflen;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_rw = UIO_READ;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_procp = p;
auio.uio_resid = buflen;
auio.uio_offset = off;
DPRINTF((">>> off = %d\n", off));
/*
* First we read into the malloc'ed buffer, then
* we massage it into user space, one record at a time.
*/
error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &ncookies,
&cookiebuf);
if (error)
goto out;
inp = buf;
outp = (caddr_t)SCARG(uap, dp);
resid = SCARG(uap, nbytes);
if ((len = buflen - auio.uio_resid) == 0)
goto eof;
for (cookie = cookiebuf; len > 0; len -= reclen) {
bdp = (struct dirent *)inp;
reclen = bdp->d_reclen;
if (reclen & 3)
panic("svr4_getdents64: bad reclen");
if (bdp->d_fileno == 0) {
inp += reclen; /* it is a hole; squish it out */
#if 0
off = *cookie++;
#else
off += reclen;
#endif
DPRINTF(("+++ off = %d\n", off));
continue;
}
svr4_reclen = SVR4_RECLEN(&idb, (bdp->d_namlen));
if (reclen > len || resid < svr4_reclen) {
/* entry too big for buffer, so just stop */
outp++;
DPRINTF(("+++ off = %d\n", off));
break;
}
#if 0
off = *cookie++; /* each entry points to the next */
#else
off += reclen;
#endif
DPRINTF(("+++ off = %d\n", off));
/*
* Massage in place to make a SVR4-shaped dirent (otherwise
* we have to worry about touching user memory outside of
* the copyout() call).
*/
idb.d_ino = (svr4_ino64_t)bdp->d_fileno;
idb.d_off = (svr4_off64_t)off;
idb.d_reclen = (u_short)svr4_reclen;
strcpy(idb.d_name, bdp->d_name);
if ((error = copyout((caddr_t)&idb, outp, svr4_reclen)))
goto out;
DPRINTF(("d_ino = %d\nd_off = %d\nd_reclen = %d\n",
idb.d_ino, idb.d_off, (u_short)idb.d_reclen));
DPRINTF(("d_name = %s\n", idb.d_name));
DPRINTF(("(bdp->d_type = %d, reclen = %d, bdp->d_namelen = %d)\n", bdp->d_type, svr4_reclen, bdp->d_namlen));
/* advance past this real entry */
inp += reclen;
/* advance output past SVR4-shaped entry */
outp += svr4_reclen;
resid -= svr4_reclen;
offcnt += svr4_reclen;
}
DPRINTF(("block finished\n"));
/* if we squished out the whole block, try again */
fp->f_offset = off; /* update the vnode offset */
if (outp == (caddr_t)SCARG(uap, dp))
goto again;
eof:
retval = offcnt; /* SCARG(uap, nbytes) - resid;*/
out:
VOP_UNLOCK(vp, 0, p);
if (cookiebuf)
free(cookiebuf, M_TEMP);
free(buf, M_TEMP);
DPRINTF(("\t\treturning %d\n", retval));
p->p_retval[0] = retval;
return error;
}
int
svr4_sys_getdents(p, uap)
struct proc *p;
struct svr4_sys_getdents_args *uap;
{
struct dirent *bdp;
struct vnode *vp;
caddr_t inp, buf; /* BSD-format */
int len, reclen; /* BSD-format */
caddr_t outp; /* SVR4-format */
int resid, svr4_reclen; /* SVR4-format */
struct file *fp;
struct uio auio;
struct iovec aiov;
struct svr4_dirent idb;
off_t off; /* true file offset */
int buflen, error, eofflag;
u_long *cookiebuf = NULL, *cookie;
int ncookies = 0, *retval = p->p_retval;
if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
return (error);
if ((fp->f_flag & FREAD) == 0)
return (EBADF);
vp = (struct vnode *)fp->f_data;
if (vp->v_type != VDIR)
return (EINVAL);
buflen = min(MAXBSIZE, SCARG(uap, nbytes));
buf = malloc(buflen, M_TEMP, M_WAITOK);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
off = fp->f_offset;
again:
aiov.iov_base = buf;
aiov.iov_len = buflen;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_rw = UIO_READ;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_procp = p;
auio.uio_resid = buflen;
auio.uio_offset = off;
/*
* First we read into the malloc'ed buffer, then
* we massage it into user space, one record at a time.
*/
error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &ncookies,
&cookiebuf);
if (error)
goto out;
inp = buf;
outp = SCARG(uap, buf);
resid = SCARG(uap, nbytes);
if ((len = buflen - auio.uio_resid) == 0)
goto eof;
for (cookie = cookiebuf; len > 0; len -= reclen) {
bdp = (struct dirent *)inp;
reclen = bdp->d_reclen;
if (reclen & 3)
panic("svr4_getdents: bad reclen");
off = *cookie++; /* each entry points to the next */
if ((off >> 32) != 0) {
uprintf("svr4_getdents: dir offset too large for emulated program");
error = EINVAL;
goto out;
}
if (bdp->d_fileno == 0) {
inp += reclen; /* it is a hole; squish it out */
continue;
}
svr4_reclen = SVR4_RECLEN(&idb, bdp->d_namlen);
if (reclen > len || resid < svr4_reclen) {
/* entry too big for buffer, so just stop */
outp++;
break;
}
/*
* Massage in place to make a SVR4-shaped dirent (otherwise
* we have to worry about touching user memory outside of
* the copyout() call).
*/
idb.d_ino = (svr4_ino_t)bdp->d_fileno;
idb.d_off = (svr4_off_t)off;
idb.d_reclen = (u_short)svr4_reclen;
strcpy(idb.d_name, bdp->d_name);
if ((error = copyout((caddr_t)&idb, outp, svr4_reclen)))
goto out;
/* advance past this real entry */
inp += reclen;
/* advance output past SVR4-shaped entry */
outp += svr4_reclen;
resid -= svr4_reclen;
}
/* if we squished out the whole block, try again */
if (outp == SCARG(uap, buf))
goto again;
fp->f_offset = off; /* update the vnode offset */
eof:
*retval = SCARG(uap, nbytes) - resid;
out:
VOP_UNLOCK(vp, 0, p);
if (cookiebuf)
free(cookiebuf, M_TEMP);
free(buf, M_TEMP);
return error;
}
int
svr4_sys_mmap(p, uap)
struct proc *p;
struct svr4_sys_mmap_args *uap;
{
struct mmap_args mm;
int *retval;
retval = p->p_retval;
#define _MAP_NEW 0x80000000
/*
* Verify the arguments.
*/
if (SCARG(uap, prot) & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
return EINVAL; /* XXX still needed? */
if (SCARG(uap, len) == 0)
return EINVAL;
SCARG(&mm, prot) = SCARG(uap, prot);
SCARG(&mm, len) = SCARG(uap, len);
SCARG(&mm, flags) = SCARG(uap, flags) & ~_MAP_NEW;
SCARG(&mm, fd) = SCARG(uap, fd);
SCARG(&mm, addr) = SCARG(uap, addr);
SCARG(&mm, pos) = SCARG(uap, pos);
return mmap(p, &mm);
}
int
svr4_sys_mmap64(p, uap)
struct proc *p;
struct svr4_sys_mmap64_args *uap;
{
struct mmap_args mm;
void *rp;
#define _MAP_NEW 0x80000000
/*
* Verify the arguments.
*/
if (SCARG(uap, prot) & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
return EINVAL; /* XXX still needed? */
if (SCARG(uap, len) == 0)
return EINVAL;
SCARG(&mm, prot) = SCARG(uap, prot);
SCARG(&mm, len) = SCARG(uap, len);
SCARG(&mm, flags) = SCARG(uap, flags) & ~_MAP_NEW;
SCARG(&mm, fd) = SCARG(uap, fd);
SCARG(&mm, addr) = SCARG(uap, addr);
SCARG(&mm, pos) = SCARG(uap, pos);
rp = (void *) round_page((vm_offset_t)(p->p_vmspace->vm_daddr + MAXDSIZ));
if ((SCARG(&mm, flags) & MAP_FIXED) == 0 &&
SCARG(&mm, addr) != 0 && (void *)SCARG(&mm, addr) < rp)
SCARG(&mm, addr) = rp;
return mmap(p, &mm);
}
int
svr4_sys_fchroot(p, uap)
struct proc *p;
struct svr4_sys_fchroot_args *uap;
{
struct filedesc *fdp = p->p_fd;
struct vnode *vp;
struct file *fp;
int error;
if ((error = suser(p)) != 0)
return error;
if ((error = getvnode(fdp, SCARG(uap, fd), &fp)) != 0)
return error;
vp = (struct vnode *) fp->f_data;
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
if (vp->v_type != VDIR)
error = ENOTDIR;
else
error = VOP_ACCESS(vp, VEXEC, p->p_ucred, p);
VOP_UNLOCK(vp, 0, p);
if (error)
return error;
VREF(vp);
if (fdp->fd_rdir != NULL)
vrele(fdp->fd_rdir);
fdp->fd_rdir = vp;
return 0;
}
static int
svr4_mknod(p, retval, path, mode, dev)
struct proc *p;
register_t *retval;
char *path;
svr4_mode_t mode;
svr4_dev_t dev;
{
caddr_t sg = stackgap_init();
CHECKALTEXIST(p, &sg, path);
if (S_ISFIFO(mode)) {
struct mkfifo_args ap;
SCARG(&ap, path) = path;
SCARG(&ap, mode) = mode;
return mkfifo(p, &ap);
} else {
struct mknod_args ap;
SCARG(&ap, path) = path;
SCARG(&ap, mode) = mode;
SCARG(&ap, dev) = dev;
return mknod(p, &ap);
}
}
int
svr4_sys_mknod(p, uap)
register struct proc *p;
struct svr4_sys_mknod_args *uap;
{
int *retval = p->p_retval;
return svr4_mknod(p, retval,
SCARG(uap, path), SCARG(uap, mode),
(svr4_dev_t)svr4_to_bsd_odev_t(SCARG(uap, dev)));
}
int
svr4_sys_xmknod(p, uap)
struct proc *p;
struct svr4_sys_xmknod_args *uap;
{
int *retval = p->p_retval;
return svr4_mknod(p, retval,
SCARG(uap, path), SCARG(uap, mode),
(svr4_dev_t)svr4_to_bsd_dev_t(SCARG(uap, dev)));
}
int
svr4_sys_vhangup(p, uap)
struct proc *p;
struct svr4_sys_vhangup_args *uap;
{
return 0;
}
int
svr4_sys_sysconfig(p, uap)
struct proc *p;
struct svr4_sys_sysconfig_args *uap;
{
int *retval;
retval = &(p->p_retval[0]);
switch (SCARG(uap, name)) {
case SVR4_CONFIG_UNUSED:
*retval = 0;
break;
case SVR4_CONFIG_NGROUPS:
*retval = NGROUPS_MAX;
break;
case SVR4_CONFIG_CHILD_MAX:
*retval = maxproc;
break;
case SVR4_CONFIG_OPEN_FILES:
*retval = maxfiles;
break;
case SVR4_CONFIG_POSIX_VER:
*retval = 198808;
break;
case SVR4_CONFIG_PAGESIZE:
*retval = PAGE_SIZE;
break;
case SVR4_CONFIG_CLK_TCK:
*retval = 60; /* should this be `hz', ie. 100? */
break;
case SVR4_CONFIG_XOPEN_VER:
*retval = 2; /* XXX: What should that be? */
break;
case SVR4_CONFIG_PROF_TCK:
*retval = 60; /* XXX: What should that be? */
break;
case SVR4_CONFIG_NPROC_CONF:
*retval = 1; /* Only one processor for now */
break;
case SVR4_CONFIG_NPROC_ONLN:
*retval = 1; /* And it better be online */
break;
case SVR4_CONFIG_AIO_LISTIO_MAX:
case SVR4_CONFIG_AIO_MAX:
case SVR4_CONFIG_AIO_PRIO_DELTA_MAX:
*retval = 0; /* No aio support */
break;
case SVR4_CONFIG_DELAYTIMER_MAX:
*retval = 0; /* No delaytimer support */
break;
case SVR4_CONFIG_MQ_OPEN_MAX:
*retval = msginfo.msgmni;
break;
case SVR4_CONFIG_MQ_PRIO_MAX:
*retval = 0; /* XXX: Don't know */
break;
case SVR4_CONFIG_RTSIG_MAX:
*retval = 0;
break;
case SVR4_CONFIG_SEM_NSEMS_MAX:
*retval = seminfo.semmni;
break;
case SVR4_CONFIG_SEM_VALUE_MAX:
*retval = seminfo.semvmx;
break;
case SVR4_CONFIG_SIGQUEUE_MAX:
*retval = 0; /* XXX: Don't know */
break;
case SVR4_CONFIG_SIGRT_MIN:
case SVR4_CONFIG_SIGRT_MAX:
*retval = 0; /* No real time signals */
break;
case SVR4_CONFIG_TIMER_MAX:
*retval = 3; /* XXX: real, virtual, profiling */
break;
#if defined(NOTYET)
case SVR4_CONFIG_PHYS_PAGES:
#if defined(UVM)
*retval = uvmexp.free; /* XXX: free instead of total */
#else
*retval = cnt.v_free_count; /* XXX: free instead of total */
#endif
break;
case SVR4_CONFIG_AVPHYS_PAGES:
#if defined(UVM)
*retval = uvmexp.active; /* XXX: active instead of avg */
#else
*retval = cnt.v_active_count; /* XXX: active instead of avg */
#endif
break;
#endif /* NOTYET */
default:
return EINVAL;
}
return 0;
}
extern int swap_pager_full;
/* ARGSUSED */
int
svr4_sys_break(p, uap)
struct proc *p;
struct svr4_sys_break_args *uap;
{
struct vmspace *vm = p->p_vmspace;
vm_offset_t new, old, base, ns;
int rv;
base = round_page((vm_offset_t) vm->vm_daddr);
ns = (vm_offset_t)SCARG(uap, nsize);
new = round_page(ns);
if (new > base) {
if ((new - base) > (unsigned) p->p_rlimit[RLIMIT_DATA].rlim_cur) {
return ENOMEM;
}
if (new >= VM_MAXUSER_ADDRESS) {
return (ENOMEM);
}
} else if (new < base) {
/*
* This is simply an invalid value. If someone wants to
* do fancy address space manipulations, mmap and munmap
* can do most of what the user would want.
*/
return EINVAL;
}
old = base + ctob(vm->vm_dsize);
if (new > old) {
vm_size_t diff;
if (swap_pager_full) {
return (ENOMEM);
}
diff = new - old;
rv = vm_map_find(&vm->vm_map, NULL, 0, &old, diff, FALSE,
VM_PROT_ALL, VM_PROT_ALL, 0);
if (rv != KERN_SUCCESS) {
return (ENOMEM);
}
vm->vm_dsize += btoc(diff);
} else if (new < old) {
rv = vm_map_remove(&vm->vm_map, new, old);
if (rv != KERN_SUCCESS) {
return (ENOMEM);
}
vm->vm_dsize -= btoc(old - new);
}
return (0);
}
static __inline clock_t
timeval_to_clock_t(tv)
struct timeval *tv;
{
return tv->tv_sec * hz + tv->tv_usec / (1000000 / hz);
}
int
svr4_sys_times(p, uap)
struct proc *p;
struct svr4_sys_times_args *uap;
{
int error, *retval = p->p_retval;
struct tms tms;
struct timeval t;
struct rusage *ru;
struct rusage r;
struct getrusage_args ga;
caddr_t sg = stackgap_init();
ru = stackgap_alloc(&sg, sizeof(struct rusage));
SCARG(&ga, who) = RUSAGE_SELF;
SCARG(&ga, rusage) = ru;
error = getrusage(p, &ga);
if (error)
return error;
if ((error = copyin(ru, &r, sizeof r)) != 0)
return error;
tms.tms_utime = timeval_to_clock_t(&r.ru_utime);
tms.tms_stime = timeval_to_clock_t(&r.ru_stime);
SCARG(&ga, who) = RUSAGE_CHILDREN;
error = getrusage(p, &ga);
if (error)
return error;
if ((error = copyin(ru, &r, sizeof r)) != 0)
return error;
tms.tms_cutime = timeval_to_clock_t(&r.ru_utime);
tms.tms_cstime = timeval_to_clock_t(&r.ru_stime);
microtime(&t);
*retval = timeval_to_clock_t(&t);
return copyout(&tms, SCARG(uap, tp), sizeof(tms));
}
int
svr4_sys_ulimit(p, uap)
struct proc *p;
struct svr4_sys_ulimit_args *uap;
{
int *retval = p->p_retval;
switch (SCARG(uap, cmd)) {
case SVR4_GFILLIM:
*retval = p->p_rlimit[RLIMIT_FSIZE].rlim_cur / 512;
if (*retval == -1)
*retval = 0x7fffffff;
return 0;
case SVR4_SFILLIM:
{
int error;
struct __setrlimit_args srl;
struct rlimit krl;
caddr_t sg = stackgap_init();
struct rlimit *url = (struct rlimit *)
stackgap_alloc(&sg, sizeof *url);
krl.rlim_cur = SCARG(uap, newlimit) * 512;
krl.rlim_max = p->p_rlimit[RLIMIT_FSIZE].rlim_max;
error = copyout(&krl, url, sizeof(*url));
if (error)
return error;
SCARG(&srl, which) = RLIMIT_FSIZE;
SCARG(&srl, rlp) = (struct orlimit *)url;
error = setrlimit(p, &srl);
if (error)
return error;
*retval = p->p_rlimit[RLIMIT_FSIZE].rlim_cur;
if (*retval == -1)
*retval = 0x7fffffff;
return 0;
}
case SVR4_GMEMLIM:
{
struct vmspace *vm = p->p_vmspace;
register_t r = p->p_rlimit[RLIMIT_DATA].rlim_cur;
if (r == -1)
r = 0x7fffffff;
r += (long) vm->vm_daddr;
if (r < 0)
r = 0x7fffffff;
*retval = r;
return 0;
}
case SVR4_GDESLIM:
*retval = p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
if (*retval == -1)
*retval = 0x7fffffff;
return 0;
default:
return EINVAL;
}
}
static struct proc *
svr4_pfind(pid)
pid_t pid;
{
struct proc *p;
/* look in the live processes */
if ((p = pfind(pid)) != NULL)
return p;
/* look in the zombies */
for (p = zombproc.lh_first; p != 0; p = p->p_list.le_next)
if (p->p_pid == pid)
return p;
return NULL;
}
int
svr4_sys_pgrpsys(p, uap)
struct proc *p;
struct svr4_sys_pgrpsys_args *uap;
{
int *retval = p->p_retval;
switch (SCARG(uap, cmd)) {
case 1: /* setpgrp() */
/*
* SVR4 setpgrp() (which takes no arguments) has the
* semantics that the session ID is also created anew, so
* in almost every sense, setpgrp() is identical to
* setsid() for SVR4. (Under BSD, the difference is that
* a setpgid(0,0) will not create a new session.)
*/
setsid(p, NULL);
/*FALLTHROUGH*/
case 0: /* getpgrp() */
*retval = p->p_pgrp->pg_id;
return 0;
case 2: /* getsid(pid) */
if (SCARG(uap, pid) != 0 &&
(p = svr4_pfind(SCARG(uap, pid))) == NULL)
return ESRCH;
/*
* This has already been initialized to the pid of
* the session leader.
*/
*retval = (register_t) p->p_session->s_leader->p_pid;
return 0;
case 3: /* setsid() */
return setsid(p, NULL);
case 4: /* getpgid(pid) */
if (SCARG(uap, pid) != 0 &&
(p = svr4_pfind(SCARG(uap, pid))) == NULL)
return ESRCH;
*retval = (int) p->p_pgrp->pg_id;
return 0;
case 5: /* setpgid(pid, pgid); */
{
struct setpgid_args sa;
SCARG(&sa, pid) = SCARG(uap, pid);
SCARG(&sa, pgid) = SCARG(uap, pgid);
return setpgid(p, &sa);
}
default:
return EINVAL;
}
}
#define syscallarg(x) union { x datum; register_t pad; }
struct svr4_hrtcntl_args {
int cmd;
int fun;
int clk;
svr4_hrt_interval_t * iv;
svr4_hrt_time_t * ti;
};
static int
svr4_hrtcntl(p, uap, retval)
struct proc *p;
struct svr4_hrtcntl_args *uap;
register_t *retval;
{
switch (SCARG(uap, fun)) {
case SVR4_HRT_CNTL_RES:
DPRINTF(("htrcntl(RES)\n"));
*retval = SVR4_HRT_USEC;
return 0;
case SVR4_HRT_CNTL_TOFD:
DPRINTF(("htrcntl(TOFD)\n"));
{
struct timeval tv;
svr4_hrt_time_t t;
if (SCARG(uap, clk) != SVR4_HRT_CLK_STD) {
DPRINTF(("clk == %d\n", SCARG(uap, clk)));
return EINVAL;
}
if (SCARG(uap, ti) == NULL) {
DPRINTF(("ti NULL\n"));
return EINVAL;
}
microtime(&tv);
t.h_sec = tv.tv_sec;
t.h_rem = tv.tv_usec;
t.h_res = SVR4_HRT_USEC;
return copyout(&t, SCARG(uap, ti), sizeof(t));
}
case SVR4_HRT_CNTL_START:
DPRINTF(("htrcntl(START)\n"));
return ENOSYS;
case SVR4_HRT_CNTL_GET:
DPRINTF(("htrcntl(GET)\n"));
return ENOSYS;
default:
DPRINTF(("Bad htrcntl command %d\n", SCARG(uap, fun)));
return ENOSYS;
}
}
int
svr4_sys_hrtsys(p, uap)
struct proc *p;
struct svr4_sys_hrtsys_args *uap;
{
int *retval = p->p_retval;
switch (SCARG(uap, cmd)) {
case SVR4_HRT_CNTL:
return svr4_hrtcntl(p, (struct svr4_hrtcntl_args *) uap,
retval);
case SVR4_HRT_ALRM:
DPRINTF(("hrtalarm\n"));
return ENOSYS;
case SVR4_HRT_SLP:
DPRINTF(("hrtsleep\n"));
return ENOSYS;
case SVR4_HRT_CAN:
DPRINTF(("hrtcancel\n"));
return ENOSYS;
default:
DPRINTF(("Bad hrtsys command %d\n", SCARG(uap, cmd)));
return EINVAL;
}
}
static int
svr4_setinfo(p, st, s)
struct proc *p;
int st;
svr4_siginfo_t *s;
{
svr4_siginfo_t i;
int sig;
memset(&i, 0, sizeof(i));
i.si_signo = SVR4_SIGCHLD;
i.si_errno = 0; /* XXX? */
if (p) {
i.si_pid = p->p_pid;
if (p->p_stat == SZOMB) {
i.si_stime = p->p_ru->ru_stime.tv_sec;
i.si_utime = p->p_ru->ru_utime.tv_sec;
}
else {
i.si_stime = p->p_stats->p_ru.ru_stime.tv_sec;
i.si_utime = p->p_stats->p_ru.ru_utime.tv_sec;
}
}
if (WIFEXITED(st)) {
i.si_status = WEXITSTATUS(st);
i.si_code = SVR4_CLD_EXITED;
} else if (WIFSTOPPED(st)) {
sig = WSTOPSIG(st);
if (sig >= 0 && sig < NSIG)
i.si_status = SVR4_BSD2SVR4_SIG(sig);
if (i.si_status == SVR4_SIGCONT)
i.si_code = SVR4_CLD_CONTINUED;
else
i.si_code = SVR4_CLD_STOPPED;
} else {
sig = WTERMSIG(st);
if (sig >= 0 && sig < NSIG)
i.si_status = SVR4_BSD2SVR4_SIG(sig);
if (WCOREDUMP(st))
i.si_code = SVR4_CLD_DUMPED;
else
i.si_code = SVR4_CLD_KILLED;
}
DPRINTF(("siginfo [pid %ld signo %d code %d errno %d status %d]\n",
i.si_pid, i.si_signo, i.si_code, i.si_errno, i.si_status));
return copyout(&i, s, sizeof(i));
}
int
svr4_sys_waitsys(p, uap)
struct proc *p;
struct svr4_sys_waitsys_args *uap;
{
int nfound;
int error, *retval = p->p_retval;
struct proc *q, *t;
switch (SCARG(uap, grp)) {
case SVR4_P_PID:
break;
case SVR4_P_PGID:
SCARG(uap, id) = -p->p_pgid;
break;
case SVR4_P_ALL:
SCARG(uap, id) = WAIT_ANY;
break;
default:
return EINVAL;
}
DPRINTF(("waitsys(%d, %d, %p, %x)\n",
SCARG(uap, grp), SCARG(uap, id),
SCARG(uap, info), SCARG(uap, options)));
loop:
nfound = 0;
for (q = p->p_children.lh_first; q != 0; q = q->p_sibling.le_next) {
if (SCARG(uap, id) != WAIT_ANY &&
q->p_pid != SCARG(uap, id) &&
q->p_pgid != -SCARG(uap, id)) {
DPRINTF(("pid %d pgid %d != %d\n", q->p_pid,
q->p_pgid, SCARG(uap, id)));
continue;
}
nfound++;
if (q->p_stat == SZOMB &&
((SCARG(uap, options) & (SVR4_WEXITED|SVR4_WTRAPPED)))) {
*retval = 0;
DPRINTF(("found %d\n", q->p_pid));
if ((error = svr4_setinfo(q, q->p_xstat,
SCARG(uap, info))) != 0)
return error;
if ((SCARG(uap, options) & SVR4_WNOWAIT)) {
DPRINTF(("Don't wait\n"));
return 0;
}
/*
* If we got the child via ptrace(2) or procfs, and
* the parent is different (meaning the process was
* attached, rather than run as a child), then we need
* to give it back to the ol dparent, and send the
* parent a SIGCHLD. The rest of the cleanup will be
* done when the old parent waits on the child.
*/
if ((q->p_flag & P_TRACED) &&
q->p_oppid != q->p_pptr->p_pid) {
t = pfind(q->p_oppid);
proc_reparent(q, t ? t : initproc);
q->p_oppid = 0;
q->p_flag &= ~(P_TRACED | P_WAITED);
wakeup((caddr_t)q->p_pptr);
return 0;
}
q->p_xstat = 0;
ruadd(&p->p_stats->p_cru, q->p_ru);
FREE(q->p_ru, M_ZOMBIE);
/*
* Finally finished with old proc entry.
* Unlink it from its process group and free it.
*/
leavepgrp(q);
LIST_REMOVE(q, p_list); /* off zombproc */
LIST_REMOVE(q, p_sibling);
/*
* Decrement the count of procs running with this uid.
*/
(void)chgproccnt(q->p_cred->p_ruid, -1);
/*
* Free up credentials.
*/
if (--q->p_cred->p_refcnt == 0) {
crfree(q->p_ucred);
FREE(q->p_cred, M_SUBPROC);
}
/*
* Release reference to text vnode
*/
if (q->p_textvp)
vrele(q->p_textvp);
/*
* Give machine-dependent layer a chance
* to free anything that cpu_exit couldn't
* release while still running in process context.
*/
cpu_wait(q);
#if defined(__NetBSD__)
pool_put(&proc_pool, q);
#endif
nprocs--;
return 0;
}
if (q->p_stat == SSTOP && (q->p_flag & P_WAITED) == 0 &&
(q->p_flag & P_TRACED ||
(SCARG(uap, options) & (SVR4_WSTOPPED|SVR4_WCONTINUED)))) {
DPRINTF(("jobcontrol %d\n", q->p_pid));
if (((SCARG(uap, options) & SVR4_WNOWAIT)) == 0)
q->p_flag |= P_WAITED;
*retval = 0;
return svr4_setinfo(q, W_STOPCODE(q->p_xstat),
SCARG(uap, info));
}
}
if (nfound == 0)
return ECHILD;
if (SCARG(uap, options) & SVR4_WNOHANG) {
*retval = 0;
if ((error = svr4_setinfo(NULL, 0, SCARG(uap, info))) != 0)
return error;
return 0;
}
if ((error = tsleep((caddr_t)p, PWAIT | PCATCH, "svr4_wait", 0)) != 0)
return error;
goto loop;
}
static void
bsd_statfs_to_svr4_statvfs(bfs, sfs)
const struct statfs *bfs;
struct svr4_statvfs *sfs;
{
sfs->f_bsize = bfs->f_iosize; /* XXX */
sfs->f_frsize = bfs->f_bsize;
sfs->f_blocks = bfs->f_blocks;
sfs->f_bfree = bfs->f_bfree;
sfs->f_bavail = bfs->f_bavail;
sfs->f_files = bfs->f_files;
sfs->f_ffree = bfs->f_ffree;
sfs->f_favail = bfs->f_ffree;
sfs->f_fsid = bfs->f_fsid.val[0];
memcpy(sfs->f_basetype, bfs->f_fstypename, sizeof(sfs->f_basetype));
sfs->f_flag = 0;
if (bfs->f_flags & MNT_RDONLY)
sfs->f_flag |= SVR4_ST_RDONLY;
if (bfs->f_flags & MNT_NOSUID)
sfs->f_flag |= SVR4_ST_NOSUID;
sfs->f_namemax = MAXNAMLEN;
memcpy(sfs->f_fstr, bfs->f_fstypename, sizeof(sfs->f_fstr)); /* XXX */
memset(sfs->f_filler, 0, sizeof(sfs->f_filler));
}
static void
bsd_statfs_to_svr4_statvfs64(bfs, sfs)
const struct statfs *bfs;
struct svr4_statvfs64 *sfs;
{
sfs->f_bsize = bfs->f_iosize; /* XXX */
sfs->f_frsize = bfs->f_bsize;
sfs->f_blocks = bfs->f_blocks;
sfs->f_bfree = bfs->f_bfree;
sfs->f_bavail = bfs->f_bavail;
sfs->f_files = bfs->f_files;
sfs->f_ffree = bfs->f_ffree;
sfs->f_favail = bfs->f_ffree;
sfs->f_fsid = bfs->f_fsid.val[0];
memcpy(sfs->f_basetype, bfs->f_fstypename, sizeof(sfs->f_basetype));
sfs->f_flag = 0;
if (bfs->f_flags & MNT_RDONLY)
sfs->f_flag |= SVR4_ST_RDONLY;
if (bfs->f_flags & MNT_NOSUID)
sfs->f_flag |= SVR4_ST_NOSUID;
sfs->f_namemax = MAXNAMLEN;
memcpy(sfs->f_fstr, bfs->f_fstypename, sizeof(sfs->f_fstr)); /* XXX */
memset(sfs->f_filler, 0, sizeof(sfs->f_filler));
}
int
svr4_sys_statvfs(p, uap)
struct proc *p;
struct svr4_sys_statvfs_args *uap;
{
struct statfs_args fs_args;
caddr_t sg = stackgap_init();
struct statfs *fs = stackgap_alloc(&sg, sizeof(struct statfs));
struct statfs bfs;
struct svr4_statvfs sfs;
int error;
CHECKALTEXIST(p, &sg, SCARG(uap, path));
SCARG(&fs_args, path) = SCARG(uap, path);
SCARG(&fs_args, buf) = fs;
if ((error = statfs(p, &fs_args)) != 0)
return error;
if ((error = copyin(fs, &bfs, sizeof(bfs))) != 0)
return error;
bsd_statfs_to_svr4_statvfs(&bfs, &sfs);
return copyout(&sfs, SCARG(uap, fs), sizeof(sfs));
}
int
svr4_sys_fstatvfs(p, uap)
struct proc *p;
struct svr4_sys_fstatvfs_args *uap;
{
struct fstatfs_args fs_args;
caddr_t sg = stackgap_init();
struct statfs *fs = stackgap_alloc(&sg, sizeof(struct statfs));
struct statfs bfs;
struct svr4_statvfs sfs;
int error;
SCARG(&fs_args, fd) = SCARG(uap, fd);
SCARG(&fs_args, buf) = fs;
if ((error = fstatfs(p, &fs_args)) != 0)
return error;
if ((error = copyin(fs, &bfs, sizeof(bfs))) != 0)
return error;
bsd_statfs_to_svr4_statvfs(&bfs, &sfs);
return copyout(&sfs, SCARG(uap, fs), sizeof(sfs));
}
int
svr4_sys_statvfs64(p, uap)
struct proc *p;
struct svr4_sys_statvfs64_args *uap;
{
struct statfs_args fs_args;
caddr_t sg = stackgap_init();
struct statfs *fs = stackgap_alloc(&sg, sizeof(struct statfs));
struct statfs bfs;
struct svr4_statvfs64 sfs;
int error;
CHECKALTEXIST(p, &sg, SCARG(uap, path));
SCARG(&fs_args, path) = SCARG(uap, path);
SCARG(&fs_args, buf) = fs;
if ((error = statfs(p, &fs_args)) != 0)
return error;
if ((error = copyin(fs, &bfs, sizeof(bfs))) != 0)
return error;
bsd_statfs_to_svr4_statvfs64(&bfs, &sfs);
return copyout(&sfs, SCARG(uap, fs), sizeof(sfs));
}
int
svr4_sys_fstatvfs64(p, uap)
struct proc *p;
struct svr4_sys_fstatvfs64_args *uap;
{
struct fstatfs_args fs_args;
caddr_t sg = stackgap_init();
struct statfs *fs = stackgap_alloc(&sg, sizeof(struct statfs));
struct statfs bfs;
struct svr4_statvfs64 sfs;
int error;
SCARG(&fs_args, fd) = SCARG(uap, fd);
SCARG(&fs_args, buf) = fs;
if ((error = fstatfs(p, &fs_args)) != 0)
return error;
if ((error = copyin(fs, &bfs, sizeof(bfs))) != 0)
return error;
bsd_statfs_to_svr4_statvfs64(&bfs, &sfs);
return copyout(&sfs, SCARG(uap, fs), sizeof(sfs));
}
int
svr4_sys_alarm(p, uap)
struct proc *p;
struct svr4_sys_alarm_args *uap;
{
int error;
struct itimerval *itp, *oitp;
struct setitimer_args sa;
caddr_t sg = stackgap_init();
itp = stackgap_alloc(&sg, sizeof(*itp));
oitp = stackgap_alloc(&sg, sizeof(*oitp));
timevalclear(&itp->it_interval);
itp->it_value.tv_sec = SCARG(uap, sec);
itp->it_value.tv_usec = 0;
SCARG(&sa, which) = ITIMER_REAL;
SCARG(&sa, itv) = itp;
SCARG(&sa, oitv) = oitp;
error = setitimer(p, &sa);
if (error)
return error;
if (oitp->it_value.tv_usec)
oitp->it_value.tv_sec++;
p->p_retval[0] = oitp->it_value.tv_sec;
return 0;
}
int
svr4_sys_gettimeofday(p, uap)
struct proc *p;
struct svr4_sys_gettimeofday_args *uap;
{
if (SCARG(uap, tp)) {
struct timeval atv;
microtime(&atv);
return copyout(&atv, SCARG(uap, tp), sizeof (atv));
}
return 0;
}
int
svr4_sys_facl(p, uap)
struct proc *p;
struct svr4_sys_facl_args *uap;
{
int *retval;
retval = p->p_retval;
*retval = 0;
switch (SCARG(uap, cmd)) {
case SVR4_SYS_SETACL:
/* We don't support acls on any filesystem */
return ENOSYS;
case SVR4_SYS_GETACL:
return copyout(retval, &SCARG(uap, num),
sizeof(SCARG(uap, num)));
case SVR4_SYS_GETACLCNT:
return 0;
default:
return EINVAL;
}
}
int
svr4_sys_acl(p, uap)
struct proc *p;
struct svr4_sys_acl_args *uap;
{
/* XXX: for now the same */
return svr4_sys_facl(p, (struct svr4_sys_facl_args *)uap);
}
int
svr4_sys_auditsys(p, uap)
struct proc *p;
struct svr4_sys_auditsys_args *uap;
{
/*
* XXX: Big brother is *not* watching.
*/
return 0;
}
int
svr4_sys_memcntl(p, uap)
struct proc *p;
struct svr4_sys_memcntl_args *uap;
{
switch (SCARG(uap, cmd)) {
case SVR4_MC_SYNC:
{
struct msync_args msa;
SCARG(&msa, addr) = SCARG(uap, addr);
SCARG(&msa, len) = SCARG(uap, len);
SCARG(&msa, flags) = (int)SCARG(uap, arg);
return msync(p, &msa);
}
case SVR4_MC_ADVISE:
{
struct madvise_args maa;
SCARG(&maa, addr) = SCARG(uap, addr);
SCARG(&maa, len) = SCARG(uap, len);
SCARG(&maa, behav) = (int)SCARG(uap, arg);
return madvise(p, &maa);
}
case SVR4_MC_LOCK:
case SVR4_MC_UNLOCK:
case SVR4_MC_LOCKAS:
case SVR4_MC_UNLOCKAS:
return EOPNOTSUPP;
default:
return ENOSYS;
}
}
int
svr4_sys_nice(p, uap)
struct proc *p;
struct svr4_sys_nice_args *uap;
{
struct setpriority_args ap;
int error;
SCARG(&ap, which) = PRIO_PROCESS;
SCARG(&ap, who) = 0;
SCARG(&ap, prio) = SCARG(uap, prio);
if ((error = setpriority(p, &ap)) != 0)
return error;
/* the cast is stupid, but the structures are the same */
if ((error = getpriority(p, (struct getpriority_args *)&ap)) != 0)
return error;
return 0;
}
int
svr4_sys_resolvepath(p, uap)
struct proc *p;
struct svr4_sys_resolvepath_args *uap;
{
struct nameidata nd;
int error, *retval = p->p_retval;
NDINIT(&nd, LOOKUP, NOFOLLOW | SAVENAME, UIO_USERSPACE,
SCARG(uap, path), p);
if ((error = namei(&nd)) != 0)
return error;
if ((error = copyout(nd.ni_cnd.cn_pnbuf, SCARG(uap, buf),
SCARG(uap, bufsiz))) != 0)
goto bad;
*retval = strlen(nd.ni_cnd.cn_pnbuf) < SCARG(uap, bufsiz) ?
strlen(nd.ni_cnd.cn_pnbuf) + 1 : SCARG(uap, bufsiz);
bad:
vput(nd.ni_vp);
zfree(namei_zone, nd.ni_cnd.cn_pnbuf);
return error;
}