f5a18ee76c
Submitted by: Andriy Voskoboinyk <s3erios@gmail.com> Differential Revision: https://reviews.freebsd.org/D3658
687 lines
22 KiB
C
687 lines
22 KiB
C
/*-
|
|
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
|
|
* redistribution must be conditioned upon including a substantially
|
|
* similar Disclaimer requirement for further binary redistribution.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
|
|
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGES.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Driver for the Atheros Wireless LAN controller.
|
|
*
|
|
* This software is derived from work of Atsushi Onoe; his contribution
|
|
* is greatly appreciated.
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_ath.h"
|
|
/*
|
|
* This is needed for register operations which are performed
|
|
* by the driver - eg, calls to ath_hal_gettsf32().
|
|
*
|
|
* It's also required for any AH_DEBUG checks in here, eg the
|
|
* module dependencies.
|
|
*/
|
|
#include "opt_ah.h"
|
|
#include "opt_wlan.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/module.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/smp.h> /* for mp_ncpus */
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_llc.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_regdomain.h>
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
#include <net80211/ieee80211_superg.h>
|
|
#endif
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
#include <net80211/ieee80211_tdma.h>
|
|
#endif
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif
|
|
|
|
#include <dev/ath/if_athvar.h>
|
|
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
|
|
#include <dev/ath/ath_hal/ah_diagcodes.h>
|
|
|
|
#include <dev/ath/if_ath_debug.h>
|
|
#include <dev/ath/if_ath_misc.h>
|
|
#include <dev/ath/if_ath_tsf.h>
|
|
#include <dev/ath/if_ath_tx.h>
|
|
#include <dev/ath/if_ath_sysctl.h>
|
|
#include <dev/ath/if_ath_led.h>
|
|
#include <dev/ath/if_ath_keycache.h>
|
|
#include <dev/ath/if_ath_rx.h>
|
|
#include <dev/ath/if_ath_beacon.h>
|
|
#include <dev/ath/if_athdfs.h>
|
|
|
|
#ifdef ATH_TX99_DIAG
|
|
#include <dev/ath/ath_tx99/ath_tx99.h>
|
|
#endif
|
|
|
|
#ifdef ATH_DEBUG_ALQ
|
|
#include <dev/ath/if_ath_alq.h>
|
|
#endif
|
|
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
#include <dev/ath/if_ath_tdma.h>
|
|
|
|
static void ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
|
|
u_int32_t bintval);
|
|
static void ath_tdma_bintvalsetup(struct ath_softc *sc,
|
|
const struct ieee80211_tdma_state *tdma);
|
|
#endif /* IEEE80211_SUPPORT_TDMA */
|
|
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
static void
|
|
ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_BEACON_TIMERS bt;
|
|
|
|
bt.bt_intval = bintval | HAL_BEACON_ENA;
|
|
bt.bt_nexttbtt = nexttbtt;
|
|
bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
|
|
bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
|
|
bt.bt_nextatim = nexttbtt+1;
|
|
/* Enables TBTT, DBA, SWBA timers by default */
|
|
bt.bt_flags = 0;
|
|
#if 0
|
|
DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
|
|
"%s: intval=%d (0x%08x) nexttbtt=%u (0x%08x), nextdba=%u (0x%08x), nextswba=%u (0x%08x),nextatim=%u (0x%08x)\n",
|
|
__func__,
|
|
bt.bt_intval,
|
|
bt.bt_intval,
|
|
bt.bt_nexttbtt,
|
|
bt.bt_nexttbtt,
|
|
bt.bt_nextdba,
|
|
bt.bt_nextdba,
|
|
bt.bt_nextswba,
|
|
bt.bt_nextswba,
|
|
bt.bt_nextatim,
|
|
bt.bt_nextatim);
|
|
#endif
|
|
|
|
#ifdef ATH_DEBUG_ALQ
|
|
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_TDMA_TIMER_SET)) {
|
|
struct if_ath_alq_tdma_timer_set t;
|
|
t.bt_intval = htobe32(bt.bt_intval);
|
|
t.bt_nexttbtt = htobe32(bt.bt_nexttbtt);
|
|
t.bt_nextdba = htobe32(bt.bt_nextdba);
|
|
t.bt_nextswba = htobe32(bt.bt_nextswba);
|
|
t.bt_nextatim = htobe32(bt.bt_nextatim);
|
|
t.bt_flags = htobe32(bt.bt_flags);
|
|
t.sc_tdmadbaprep = htobe32(sc->sc_tdmadbaprep);
|
|
t.sc_tdmaswbaprep = htobe32(sc->sc_tdmaswbaprep);
|
|
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_TIMER_SET,
|
|
sizeof(t), (char *) &t);
|
|
}
|
|
#endif
|
|
|
|
DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
|
|
"%s: nexttbtt=%u (0x%08x), nexttbtt tsf=%lld (0x%08llx)\n",
|
|
__func__,
|
|
bt.bt_nexttbtt,
|
|
bt.bt_nexttbtt,
|
|
(long long) ( ((u_int64_t) (bt.bt_nexttbtt)) << 10),
|
|
(long long) ( ((u_int64_t) (bt.bt_nexttbtt)) << 10));
|
|
ath_hal_beaconsettimers(ah, &bt);
|
|
}
|
|
|
|
/*
|
|
* Calculate the beacon interval. This is periodic in the
|
|
* superframe for the bss. We assume each station is configured
|
|
* identically wrt transmit rate so the guard time we calculate
|
|
* above will be the same on all stations. Note we need to
|
|
* factor in the xmit time because the hardware will schedule
|
|
* a frame for transmit if the start of the frame is within
|
|
* the burst time. When we get hardware that properly kills
|
|
* frames in the PCU we can reduce/eliminate the guard time.
|
|
*
|
|
* Roundup to 1024 is so we have 1 TU buffer in the guard time
|
|
* to deal with the granularity of the nexttbtt timer. 11n MAC's
|
|
* with 1us timer granularity should allow us to reduce/eliminate
|
|
* this.
|
|
*/
|
|
static void
|
|
ath_tdma_bintvalsetup(struct ath_softc *sc,
|
|
const struct ieee80211_tdma_state *tdma)
|
|
{
|
|
/* copy from vap state (XXX check all vaps have same value?) */
|
|
sc->sc_tdmaslotlen = tdma->tdma_slotlen;
|
|
|
|
sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
|
|
tdma->tdma_slotcnt, 1024);
|
|
sc->sc_tdmabintval >>= 10; /* TSF -> TU */
|
|
if (sc->sc_tdmabintval & 1)
|
|
sc->sc_tdmabintval++;
|
|
|
|
if (tdma->tdma_slot == 0) {
|
|
/*
|
|
* Only slot 0 beacons; other slots respond.
|
|
*/
|
|
sc->sc_imask |= HAL_INT_SWBA;
|
|
sc->sc_tdmaswba = 0; /* beacon immediately */
|
|
} else {
|
|
/* XXX all vaps must be slot 0 or slot !0 */
|
|
sc->sc_imask &= ~HAL_INT_SWBA;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Max 802.11 overhead. This assumes no 4-address frames and
|
|
* the encapsulation done by ieee80211_encap (llc). We also
|
|
* include potential crypto overhead.
|
|
*/
|
|
#define IEEE80211_MAXOVERHEAD \
|
|
(sizeof(struct ieee80211_qosframe) \
|
|
+ sizeof(struct llc) \
|
|
+ IEEE80211_ADDR_LEN \
|
|
+ IEEE80211_WEP_IVLEN \
|
|
+ IEEE80211_WEP_KIDLEN \
|
|
+ IEEE80211_WEP_CRCLEN \
|
|
+ IEEE80211_WEP_MICLEN \
|
|
+ IEEE80211_CRC_LEN)
|
|
|
|
/*
|
|
* Setup initially for tdma operation. Start the beacon
|
|
* timers and enable SWBA if we are slot 0. Otherwise
|
|
* we wait for slot 0 to arrive so we can sync up before
|
|
* starting to transmit.
|
|
*/
|
|
void
|
|
ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
const struct ieee80211_txparam *tp;
|
|
const struct ieee80211_tdma_state *tdma = NULL;
|
|
int rix;
|
|
|
|
if (vap == NULL) {
|
|
vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */
|
|
if (vap == NULL) {
|
|
device_printf(sc->sc_dev, "%s: no vaps?\n", __func__);
|
|
return;
|
|
}
|
|
}
|
|
/* XXX should take a locked ref to iv_bss */
|
|
tp = vap->iv_bss->ni_txparms;
|
|
/*
|
|
* Calculate the guard time for each slot. This is the
|
|
* time to send a maximal-size frame according to the
|
|
* fixed/lowest transmit rate. Note that the interface
|
|
* mtu does not include the 802.11 overhead so we must
|
|
* tack that on (ath_hal_computetxtime includes the
|
|
* preamble and plcp in it's calculation).
|
|
*/
|
|
tdma = vap->iv_tdma;
|
|
if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
|
|
rix = ath_tx_findrix(sc, tp->ucastrate);
|
|
else
|
|
rix = ath_tx_findrix(sc, tp->mcastrate);
|
|
|
|
/*
|
|
* If the chip supports enforcing TxOP on transmission,
|
|
* we can just delete the guard window. It isn't at all required.
|
|
*/
|
|
if (sc->sc_hasenforcetxop) {
|
|
sc->sc_tdmaguard = 0;
|
|
} else {
|
|
/* XXX short preamble assumed */
|
|
/* XXX non-11n rate assumed */
|
|
sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
|
|
vap->iv_ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
|
|
}
|
|
|
|
ath_hal_intrset(ah, 0);
|
|
|
|
ath_beaconq_config(sc); /* setup h/w beacon q */
|
|
if (sc->sc_setcca)
|
|
ath_hal_setcca(ah, AH_FALSE); /* disable CCA */
|
|
ath_tdma_bintvalsetup(sc, tdma); /* calculate beacon interval */
|
|
ath_tdma_settimers(sc, sc->sc_tdmabintval,
|
|
sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
|
|
sc->sc_syncbeacon = 0;
|
|
|
|
sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
|
|
sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
|
|
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
|
|
"bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
|
|
tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
|
|
tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
|
|
sc->sc_tdmadbaprep);
|
|
|
|
#ifdef ATH_DEBUG_ALQ
|
|
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_TDMA_TIMER_CONFIG)) {
|
|
struct if_ath_alq_tdma_timer_config t;
|
|
|
|
t.tdma_slot = htobe32(tdma->tdma_slot);
|
|
t.tdma_slotlen = htobe32(tdma->tdma_slotlen);
|
|
t.tdma_slotcnt = htobe32(tdma->tdma_slotcnt);
|
|
t.tdma_bintval = htobe32(tdma->tdma_bintval);
|
|
t.tdma_guard = htobe32(sc->sc_tdmaguard);
|
|
t.tdma_scbintval = htobe32(sc->sc_tdmabintval);
|
|
t.tdma_dbaprep = htobe32(sc->sc_tdmadbaprep);
|
|
|
|
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_TIMER_CONFIG,
|
|
sizeof(t), (char *) &t);
|
|
}
|
|
#endif /* ATH_DEBUG_ALQ */
|
|
}
|
|
|
|
/*
|
|
* Update tdma operation. Called from the 802.11 layer
|
|
* when a beacon is received from the TDMA station operating
|
|
* in the slot immediately preceding us in the bss. Use
|
|
* the rx timestamp for the beacon frame to update our
|
|
* beacon timers so we follow their schedule. Note that
|
|
* by using the rx timestamp we implicitly include the
|
|
* propagation delay in our schedule.
|
|
*
|
|
* XXX TODO: since the changes for the AR5416 and later chips
|
|
* involved changing the TSF/TU calculations, we need to make
|
|
* sure that various calculations wrap consistently.
|
|
*
|
|
* A lot of the problems stemmed from the calculations wrapping
|
|
* at 65,535 TU. Since a lot of the math is still being done in
|
|
* TU, please audit it to ensure that when the TU values programmed
|
|
* into the timers wrap at (2^31)-1 TSF, all the various terms
|
|
* wrap consistently.
|
|
*/
|
|
void
|
|
ath_tdma_update(struct ieee80211_node *ni,
|
|
const struct ieee80211_tdma_param *tdma, int changed)
|
|
{
|
|
#define TSF_TO_TU(_h,_l) \
|
|
((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
|
|
#define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10)
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
const HAL_RATE_TABLE *rt = sc->sc_currates;
|
|
u_int64_t tsf, rstamp, nextslot, nexttbtt, nexttbtt_full;
|
|
u_int32_t txtime, nextslottu;
|
|
int32_t tudelta, tsfdelta;
|
|
const struct ath_rx_status *rs;
|
|
int rix;
|
|
|
|
sc->sc_stats.ast_tdma_update++;
|
|
|
|
/*
|
|
* Check for and adopt configuration changes.
|
|
*/
|
|
if (changed != 0) {
|
|
const struct ieee80211_tdma_state *ts = vap->iv_tdma;
|
|
|
|
ath_tdma_bintvalsetup(sc, ts);
|
|
if (changed & TDMA_UPDATE_SLOTLEN)
|
|
ath_wme_update(ic);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_TDMA,
|
|
"%s: adopt slot %u slotcnt %u slotlen %u us "
|
|
"bintval %u TU\n", __func__,
|
|
ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
|
|
sc->sc_tdmabintval);
|
|
|
|
/* XXX right? */
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
/* NB: beacon timers programmed below */
|
|
}
|
|
|
|
/* extend rx timestamp to 64 bits */
|
|
rs = sc->sc_lastrs;
|
|
tsf = ath_hal_gettsf64(ah);
|
|
rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
|
|
/*
|
|
* The rx timestamp is set by the hardware on completing
|
|
* reception (at the point where the rx descriptor is DMA'd
|
|
* to the host). To find the start of our next slot we
|
|
* must adjust this time by the time required to send
|
|
* the packet just received.
|
|
*/
|
|
rix = rt->rateCodeToIndex[rs->rs_rate];
|
|
|
|
/*
|
|
* To calculate the packet duration for legacy rates, we
|
|
* only need the rix and preamble.
|
|
*
|
|
* For 11n non-aggregate frames, we also need the channel
|
|
* width and short/long guard interval.
|
|
*
|
|
* For 11n aggregate frames, the required hacks are a little
|
|
* more subtle. You need to figure out the frame duration
|
|
* for each frame, including the delimiters. However, when
|
|
* a frame isn't received successfully, we won't hear it
|
|
* (unless you enable reception of CRC errored frames), so
|
|
* your duration calculation is going to be off.
|
|
*
|
|
* However, we can assume that the beacon frames won't be
|
|
* transmitted as aggregate frames, so we should be okay.
|
|
* Just add a check to ensure that we aren't handed something
|
|
* bad.
|
|
*
|
|
* For ath_hal_pkt_txtime() - for 11n rates, shortPreamble is
|
|
* actually short guard interval. For legacy rates,
|
|
* it's short preamble.
|
|
*/
|
|
txtime = ath_hal_pkt_txtime(ah, rt, rs->rs_datalen,
|
|
rix,
|
|
!! (rs->rs_flags & HAL_RX_2040),
|
|
(rix & 0x80) ?
|
|
(! (rs->rs_flags & HAL_RX_GI)) : rt->info[rix].shortPreamble);
|
|
/* NB: << 9 is to cvt to TU and /2 */
|
|
nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
|
|
|
|
/*
|
|
* For 802.11n chips: nextslottu needs to be the full TSF space,
|
|
* not just 0..65535 TU.
|
|
*/
|
|
nextslottu = TSF_TO_TU(nextslot>>32, nextslot);
|
|
/*
|
|
* Retrieve the hardware NextTBTT in usecs
|
|
* and calculate the difference between what the
|
|
* other station thinks and what we have programmed. This
|
|
* lets us figure how to adjust our timers to match. The
|
|
* adjustments are done by pulling the TSF forward and possibly
|
|
* rewriting the beacon timers.
|
|
*/
|
|
/*
|
|
* The logic here assumes the nexttbtt counter is in TSF
|
|
* but the prr-11n NICs are in TU. The HAL shifts them
|
|
* to TSF but there's two important differences:
|
|
*
|
|
* + The TU->TSF values have 0's for the low 9 bits, and
|
|
* + The counter wraps at TU_TO_TSF(HAL_BEACON_PERIOD + 1) for
|
|
* the pre-11n NICs, but not for the 11n NICs.
|
|
*
|
|
* So for now, just make sure the nexttbtt value we get
|
|
* matches the second issue or once nexttbtt exceeds this
|
|
* value, tsfdelta ends up becoming very negative and all
|
|
* of the adjustments get very messed up.
|
|
*/
|
|
|
|
/*
|
|
* We need to track the full nexttbtt rather than having it
|
|
* truncated at HAL_BEACON_PERIOD, as programming the
|
|
* nexttbtt (and related) registers for the 11n chips is
|
|
* actually going to take the full 32 bit space, rather than
|
|
* just 0..65535 TU.
|
|
*/
|
|
nexttbtt_full = ath_hal_getnexttbtt(ah);
|
|
nexttbtt = nexttbtt_full % (TU_TO_TSF(HAL_BEACON_PERIOD + 1));
|
|
tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
|
|
"rs->rstamp %llu rstamp %llu tsf %llu txtime %d, nextslot %llu, "
|
|
"nextslottu %d, nextslottume %d\n",
|
|
(unsigned long long) rs->rs_tstamp,
|
|
(unsigned long long) rstamp,
|
|
(unsigned long long) tsf, txtime,
|
|
(unsigned long long) nextslot,
|
|
nextslottu, TSF_TO_TU(nextslot >> 32, nextslot));
|
|
DPRINTF(sc, ATH_DEBUG_TDMA,
|
|
" beacon tstamp: %llu (0x%016llx)\n",
|
|
(unsigned long long) le64toh(ni->ni_tstamp.tsf),
|
|
(unsigned long long) le64toh(ni->ni_tstamp.tsf));
|
|
|
|
DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
|
|
"nexttbtt %llu (0x%08llx) tsfdelta %d avg +%d/-%d\n",
|
|
(unsigned long long) nexttbtt,
|
|
(long long) nexttbtt,
|
|
tsfdelta,
|
|
TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
|
|
|
|
if (tsfdelta < 0) {
|
|
TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
|
|
TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
|
|
tsfdelta = -tsfdelta % 1024;
|
|
nextslottu++;
|
|
} else if (tsfdelta > 0) {
|
|
TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
|
|
TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
|
|
tsfdelta = 1024 - (tsfdelta % 1024);
|
|
nextslottu++;
|
|
} else {
|
|
TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
|
|
TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
|
|
}
|
|
tudelta = nextslottu - TSF_TO_TU(nexttbtt_full >> 32, nexttbtt_full);
|
|
|
|
#ifdef ATH_DEBUG_ALQ
|
|
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_TDMA_BEACON_STATE)) {
|
|
struct if_ath_alq_tdma_beacon_state t;
|
|
t.rx_tsf = htobe64(rstamp);
|
|
t.beacon_tsf = htobe64(le64toh(ni->ni_tstamp.tsf));
|
|
t.tsf64 = htobe64(tsf);
|
|
t.nextslot_tsf = htobe64(nextslot);
|
|
t.nextslot_tu = htobe32(nextslottu);
|
|
t.txtime = htobe32(txtime);
|
|
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_BEACON_STATE,
|
|
sizeof(t), (char *) &t);
|
|
}
|
|
|
|
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_TDMA_SLOT_CALC)) {
|
|
struct if_ath_alq_tdma_slot_calc t;
|
|
|
|
t.nexttbtt = htobe64(nexttbtt_full);
|
|
t.next_slot = htobe64(nextslot);
|
|
t.tsfdelta = htobe32(tsfdelta);
|
|
t.avg_plus = htobe32(TDMA_AVG(sc->sc_avgtsfdeltap));
|
|
t.avg_minus = htobe32(TDMA_AVG(sc->sc_avgtsfdeltam));
|
|
|
|
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_SLOT_CALC,
|
|
sizeof(t), (char *) &t);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Copy sender's timetstamp into tdma ie so they can
|
|
* calculate roundtrip time. We submit a beacon frame
|
|
* below after any timer adjustment. The frame goes out
|
|
* at the next TBTT so the sender can calculate the
|
|
* roundtrip by inspecting the tdma ie in our beacon frame.
|
|
*
|
|
* NB: This tstamp is subtlely preserved when
|
|
* IEEE80211_BEACON_TDMA is marked (e.g. when the
|
|
* slot position changes) because ieee80211_add_tdma
|
|
* skips over the data.
|
|
*/
|
|
memcpy(vap->iv_bcn_off.bo_tdma +
|
|
__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
|
|
&ni->ni_tstamp.data, 8);
|
|
#if 0
|
|
DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
|
|
"tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n",
|
|
(unsigned long long) tsf, (unsigned long long) nextslot,
|
|
(int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta);
|
|
#endif
|
|
/*
|
|
* Adjust the beacon timers only when pulling them forward
|
|
* or when going back by less than the beacon interval.
|
|
* Negative jumps larger than the beacon interval seem to
|
|
* cause the timers to stop and generally cause instability.
|
|
* This basically filters out jumps due to missed beacons.
|
|
*/
|
|
if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
|
|
DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
|
|
"%s: calling ath_tdma_settimers; nextslottu=%d, bintval=%d\n",
|
|
__func__,
|
|
nextslottu,
|
|
sc->sc_tdmabintval);
|
|
ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
|
|
sc->sc_stats.ast_tdma_timers++;
|
|
}
|
|
if (tsfdelta > 0) {
|
|
uint64_t tsf;
|
|
|
|
/* XXX should just teach ath_hal_adjusttsf() to do this */
|
|
tsf = ath_hal_gettsf64(ah);
|
|
ath_hal_settsf64(ah, tsf + tsfdelta);
|
|
DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
|
|
"%s: calling ath_hal_adjusttsf: TSF=%llu, tsfdelta=%d\n",
|
|
__func__,
|
|
(unsigned long long) tsf,
|
|
tsfdelta);
|
|
|
|
#ifdef ATH_DEBUG_ALQ
|
|
if (if_ath_alq_checkdebug(&sc->sc_alq,
|
|
ATH_ALQ_TDMA_TSF_ADJUST)) {
|
|
struct if_ath_alq_tdma_tsf_adjust t;
|
|
|
|
t.tsfdelta = htobe32(tsfdelta);
|
|
t.tsf64_old = htobe64(tsf);
|
|
t.tsf64_new = htobe64(tsf + tsfdelta);
|
|
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_TSF_ADJUST,
|
|
sizeof(t), (char *) &t);
|
|
}
|
|
#endif /* ATH_DEBUG_ALQ */
|
|
sc->sc_stats.ast_tdma_tsf++;
|
|
}
|
|
ath_tdma_beacon_send(sc, vap); /* prepare response */
|
|
#undef TU_TO_TSF
|
|
#undef TSF_TO_TU
|
|
}
|
|
|
|
/*
|
|
* Transmit a beacon frame at SWBA. Dynamic updates
|
|
* to the frame contents are done as needed.
|
|
*/
|
|
void
|
|
ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf;
|
|
int otherant;
|
|
|
|
/*
|
|
* Check if the previous beacon has gone out. If
|
|
* not don't try to post another, skip this period
|
|
* and wait for the next. Missed beacons indicate
|
|
* a problem and should not occur. If we miss too
|
|
* many consecutive beacons reset the device.
|
|
*/
|
|
if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
|
|
sc->sc_bmisscount++;
|
|
DPRINTF(sc, ATH_DEBUG_BEACON,
|
|
"%s: missed %u consecutive beacons\n",
|
|
__func__, sc->sc_bmisscount);
|
|
if (sc->sc_bmisscount >= ath_bstuck_threshold)
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
|
|
return;
|
|
}
|
|
if (sc->sc_bmisscount != 0) {
|
|
DPRINTF(sc, ATH_DEBUG_BEACON,
|
|
"%s: resume beacon xmit after %u misses\n",
|
|
__func__, sc->sc_bmisscount);
|
|
sc->sc_bmisscount = 0;
|
|
}
|
|
|
|
/*
|
|
* Check recent per-antenna transmit statistics and flip
|
|
* the default antenna if noticeably more frames went out
|
|
* on the non-default antenna.
|
|
* XXX assumes 2 anntenae
|
|
*/
|
|
if (!sc->sc_diversity) {
|
|
otherant = sc->sc_defant & 1 ? 2 : 1;
|
|
if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
|
|
ath_setdefantenna(sc, otherant);
|
|
sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
|
|
}
|
|
|
|
bf = ath_beacon_generate(sc, vap);
|
|
/* XXX We don't do cabq traffic, but just for completeness .. */
|
|
ATH_TXQ_LOCK(sc->sc_cabq);
|
|
ath_beacon_cabq_start(sc);
|
|
ATH_TXQ_UNLOCK(sc->sc_cabq);
|
|
|
|
if (bf != NULL) {
|
|
/*
|
|
* Stop any current dma and put the new frame on the queue.
|
|
* This should never fail since we check above that no frames
|
|
* are still pending on the queue.
|
|
*/
|
|
if ((! sc->sc_isedma) &&
|
|
(! ath_hal_stoptxdma(ah, sc->sc_bhalq))) {
|
|
DPRINTF(sc, ATH_DEBUG_ANY,
|
|
"%s: beacon queue %u did not stop?\n",
|
|
__func__, sc->sc_bhalq);
|
|
/* NB: the HAL still stops DMA, so proceed */
|
|
}
|
|
ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
|
|
ath_hal_txstart(ah, sc->sc_bhalq);
|
|
|
|
sc->sc_stats.ast_be_xmit++; /* XXX per-vap? */
|
|
|
|
/*
|
|
* Record local TSF for our last send for use
|
|
* in arbitrating slot collisions.
|
|
*/
|
|
/* XXX should take a locked ref to iv_bss */
|
|
vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
|
|
}
|
|
}
|
|
#endif /* IEEE80211_SUPPORT_TDMA */
|