mutilate/Connection.h
Daniel Byrne 9e7fa3d1e9 shm
2022-05-25 18:43:34 -04:00

842 lines
24 KiB
C++

// -*- c++-mode -*-
#ifndef CONNECTION_H
#define CONNECTION_H
#include <queue>
#include <string>
#include <fstream>
#include <map>
#include <unordered_map>
#include <event2/bufferevent.h>
#include <event2/dns.h>
#include <event2/event.h>
#include <event2/util.h>
#include "bipbuffer.h"
#include "AdaptiveSampler.h"
#include "cmdline.h"
#include "ConnectionOptions.h"
#include "ConnectionStats.h"
#include "Generator.h"
#include "Operation.h"
#include "util.h"
#include "blockingconcurrentqueue.h"
#include "Protocol.h"
#define OPAQUE_MAX 64000
#define hashsize(n) ((unsigned long int)1<<(n))
#define hashmask(n) (hashsize(n)-1)
#define MAX_BUFFER_SIZE 10*1024*1024
#define MAX_LEVELS 2+1
using namespace std;
using namespace moodycamel;
typedef struct _evicted_type {
bool evicted;
uint32_t evictedFlags;
uint32_t serverFlags;
uint32_t clsid;
uint32_t evictedKeyLen;
uint32_t evictedLen;
char *evictedKey;
char *evictedData;
} evicted_t;
typedef struct resp {
uint32_t opaque;
int opcode;
bool found;
evicted_t* evict;
} resp_t;
void bev_event_cb(struct bufferevent *bev, short events, void *ptr);
void bev_read_cb(struct bufferevent *bev, void *ptr);
void bev_event_cb1(struct bufferevent *bev, short events, void *ptr);
void bev_event_cb1_approx(struct bufferevent *bev, short events, void *ptr);
void bev_event_cb1_approx_batch(struct bufferevent *bev, short events, void *ptr);
void bev_read_cb1(struct bufferevent *bev, void *ptr);
void bev_read_cb1_approx(struct bufferevent *bev, void *ptr);
void bev_read_cb1_approx_batch(struct bufferevent *bev, void *ptr);
void bev_event_cb2(struct bufferevent *bev, short events, void *ptr);
void bev_event_cb2_approx(struct bufferevent *bev, short events, void *ptr);
void bev_event_cb2_approx_batch(struct bufferevent *bev, short events, void *ptr);
void bev_read_cb2(struct bufferevent *bev, void *ptr);
void bev_read_cb2_approx(struct bufferevent *bev, void *ptr);
void bev_read_cb2_approx_batch(struct bufferevent *bev, void *ptr);
void bev_write_cb(struct bufferevent *bev, void *ptr);
void bev_write_cb_m(struct bufferevent *bev, void *ptr);
void bev_write_cb_m_approx(struct bufferevent *bev, void *ptr);
void bev_write_cb_m_approx_batch(struct bufferevent *bev, void *ptr);
void timer_cb(evutil_socket_t fd, short what, void *ptr);
void timer_cb_m(evutil_socket_t fd, short what, void *ptr);
void timer_cb_m_approx(evutil_socket_t fd, short what, void *ptr);
void timer_cb_m_approx_batch(evutil_socket_t fd, short what, void *ptr);
class Protocol;
class Connection {
public:
Connection(struct event_base* _base, struct evdns_base* _evdns,
string _hostname, string _port, options_t options,
//ConcurrentQueue<string> *a_trace_queue,
bool sampling = true);
~Connection();
int do_connect();
double start_time; // Time when this connection began operations.
ConnectionStats stats;
options_t options;
bool is_ready() { return read_state == IDLE; }
void set_priority(int pri);
// state commands
void start() { drive_write_machine(); }
void start_loading();
void reset();
bool check_exit_condition(double now = 0.0);
// event callbacks
void event_callback(short events);
void read_callback();
void write_callback();
void timer_callback();
uint32_t get_cid();
//void set_queue(ConcurrentQueue<string> *a_trace_queue);
void set_queue(queue<string> *a_trace_queue);
void set_lock(pthread_mutex_t* a_lock);
private:
string hostname;
string port;
struct event_base *base;
struct evdns_base *evdns;
struct bufferevent *bev;
struct event *timer; // Used to control inter-transmission time.
double next_time; // Inter-transmission time parameters.
double last_rx; // Used to moderate transmission rate.
double last_tx;
enum read_state_enum {
INIT_READ,
CONN_SETUP,
LOADING,
IDLE,
WAITING_FOR_GET,
WAITING_FOR_SET,
WAITING_FOR_DELETE,
MAX_READ_STATE,
};
enum write_state_enum {
INIT_WRITE,
ISSUING,
WAITING_FOR_TIME,
WAITING_FOR_OPQ,
MAX_WRITE_STATE,
};
read_state_enum read_state;
write_state_enum write_state;
// Parameters to track progress of the data loader.
int loader_issued, loader_completed;
uint32_t opaque;
int issue_buf_size;
int issue_buf_n;
unsigned char *issue_buf_pos;
unsigned char *issue_buf;
bool last_quiet;
uint32_t total;
uint32_t cid;
int eof;
Protocol *prot;
Generator *valuesize;
Generator *keysize;
KeyGenerator *keygen;
Generator *iagen;
//std::vector<std::vector<Operation>> op_queue;
std::unordered_map<uint32_t,Operation> op_queue;
uint32_t op_queue_size;
pthread_mutex_t* lock;
//ConcurrentQueue<string> *trace_queue;
queue<string> *trace_queue;
// state machine functions / event processing
void pop_op(Operation *op);
void output_op(Operation *op, int type, bool was_found);
//void finish_op(Operation *op);
void finish_op(Operation *op,int was_hit);
void issue_something(double now = 0.0);
int issue_something_trace(double now = 0.0);
void issue_getset(double now = 0.0);
int issue_getsetorset(double now = 0.0);
void drive_write_machine(double now = 0.0);
// request functions
void issue_sasl();
void issue_noop(double now = 0.0);
void issue_get(const char* key, double now = 0.0);
int issue_get_with_len(const char* key, int valuelen, double now = 0.0, bool quiet = false);
int issue_set(const char* key, const char* value, int length,
double now = 0.0, bool is_access = false);
void issue_set_miss(const char* key, const char* value, int length);
void issue_delete90(double now = 0.0);
// protocol fucntions
int set_request_ascii(const char* key, const char* value, int length);
int set_request_binary(const char* key, const char* value, int length);
int set_request_resp(const char* key, const char* value, int length);
int get_request_ascii(const char* key);
int get_request_binary(const char* key);
int get_request_resp(const char* key);
bool consume_binary_response(evbuffer *input);
bool consume_ascii_line(evbuffer *input, bool &done);
bool consume_resp_line(evbuffer *input, bool &done);
};
class ConnectionMulti {
public:
ConnectionMulti(struct event_base* _base, struct evdns_base* _evdns,
string _hostname1, string _hostname2, string _port, options_t options,
bool sampling = true, int fd1 = -1, int fd2 = -1);
~ConnectionMulti();
int do_connect();
double start_time; // Time when this connection began operations.
ConnectionStats stats;
options_t options;
bool is_ready() { return read_state == IDLE; }
void set_priority(int pri);
// state commands
void start() {
//fprintf(stderr,"connid: %d starting...\n",cid);
drive_write_machine();
}
void start_loading();
void reset();
bool check_exit_condition(double now = 0.0);
void event_callback1(short events);
void event_callback2(short events);
void read_callback1();
void read_callback2();
// event callbacks
void write_callback();
void timer_callback();
int eof;
uint32_t get_cid();
//void set_queue(ConcurrentQueue<string> *a_trace_queue);
int add_to_wb_keys(string wb_key);
int add_to_copy_keys(string key);
void del_wb_keys(string wb_key);
void del_copy_keys(string key);
void set_g_wbkeys(unordered_map<string,vector<Operation*>> *a_wb_keys);
void set_queue(queue<Operation*> *a_trace_queue);
void set_lock(pthread_mutex_t* a_lock);
private:
string hostname1;
string hostname2;
string port;
double o_percent;
int trace_queue_n;
struct event_base *base;
struct evdns_base *evdns;
struct bufferevent *bev1;
struct bufferevent *bev2;
struct event *timer; // Used to control inter-transmission time.
double next_time; // Inter-transmission time parameters.
double last_rx; // Used to moderate transmission rate.
double last_tx;
vector<string> wb_keys;
enum read_state_enum {
INIT_READ,
CONN_SETUP,
LOADING,
IDLE,
WAITING_FOR_GET,
WAITING_FOR_SET,
WAITING_FOR_DELETE,
MAX_READ_STATE,
};
enum write_state_enum {
INIT_WRITE,
ISSUING,
WAITING_FOR_TIME,
WAITING_FOR_OPQ,
MAX_WRITE_STATE,
};
read_state_enum read_state;
write_state_enum write_state;
// Parameters to track progress of the data loader.
int loader_issued, loader_completed;
uint32_t *opaque;
int *issue_buf_size;
int *issue_buf_n;
unsigned char **issue_buf_pos;
unsigned char **issue_buf;
bool last_quiet1;
bool last_quiet2;
uint32_t total;
uint32_t cid;
//std::vector<std::queue<Operation>> op_queue;
Operation ***op_queue;
uint32_t *op_queue_size;
map<string,int> key_hist;
Generator *valuesize;
Generator *keysize;
KeyGenerator *keygen;
Generator *iagen;
pthread_mutex_t* lock;
unordered_map<string,vector<Operation*>> *g_wb_keys;
queue<Operation*> *trace_queue;
// state machine functions / event processing
void pop_op(Operation *op);
void output_op(Operation *op, int type, bool was_found);
//void finish_op(Operation *op);
void finish_op(Operation *op,int was_hit);
int issue_getsetorset(double now = 0.0);
void drive_write_machine(double now = 0.0);
// request functions
void issue_sasl();
void issue_noop(double now = 0.0, int level = 1);
int issue_touch(const char* key, int valuelen, double now, int level);
int issue_delete(const char* key, double now, uint32_t flags);
int issue_get_with_len(const char* key, int valuelen, double now, bool quiet, uint32_t flags, Operation *l1 = NULL);
int issue_set(const char* key, const char* value, int length, double now, uint32_t flags);
// protocol fucntions
int set_request_ascii(const char* key, const char* value, int length);
int set_request_binary(const char* key, const char* value, int length);
int set_request_resp(const char* key, const char* value, int length);
int get_request_ascii(const char* key);
int get_request_binary(const char* key);
int get_request_resp(const char* key);
bool consume_binary_response(evbuffer *input);
bool consume_ascii_line(evbuffer *input, bool &done);
bool consume_resp_line(evbuffer *input, bool &done);
};
class ConnectionMultiApprox {
public:
ConnectionMultiApprox(struct event_base* _base, struct evdns_base* _evdns,
string _hostname1, string _hostname2, string _port, options_t options,
bool sampling = true, int fd1 = -1, int fd2 = -1);
~ConnectionMultiApprox();
int do_connect();
double start_time; // Time when this connection began operations.
ConnectionStats stats;
options_t options;
bool is_ready() { return read_state == IDLE; }
void set_priority(int pri);
// state commands
void start() {
//fprintf(stderr,"connid: %d starting...\n",cid);
drive_write_machine();
}
void start_loading();
void reset();
bool check_exit_condition(double now = 0.0);
void event_callback1(short events);
void event_callback2(short events);
void read_callback1();
void read_callback2();
// event callbacks
void write_callback();
void timer_callback();
int eof;
uint32_t get_cid();
//void set_queue(ConcurrentQueue<string> *a_trace_queue);
int add_to_wb_keys(string wb_key);
int add_to_copy_keys(string key);
int add_to_touch_keys(string key);
void del_wb_keys(string wb_key);
void del_copy_keys(string key);
void del_touch_keys(string key);
void set_g_wbkeys(unordered_map<string,vector<Operation*>> *a_wb_keys);
void set_queue(queue<Operation*> *a_trace_queue);
void set_lock(pthread_mutex_t* a_lock);
private:
string hostname1;
string hostname2;
string port;
double o_percent;
int trace_queue_n;
struct event_base *base;
struct evdns_base *evdns;
struct bufferevent *bev1;
struct bufferevent *bev2;
struct event *timer; // Used to control inter-transmission time.
double next_time; // Inter-transmission time parameters.
double last_rx; // Used to moderate transmission rate.
double last_tx;
enum read_state_enum {
INIT_READ,
CONN_SETUP,
LOADING,
IDLE,
WAITING_FOR_GET,
WAITING_FOR_SET,
WAITING_FOR_DELETE,
MAX_READ_STATE,
};
enum write_state_enum {
INIT_WRITE,
ISSUING,
WAITING_FOR_TIME,
WAITING_FOR_OPQ,
MAX_WRITE_STATE,
};
read_state_enum read_state;
write_state_enum write_state;
// Parameters to track progress of the data loader.
int loader_issued, loader_completed;
uint32_t *opaque;
int *issue_buf_size;
int *issue_buf_n;
unsigned char **issue_buf_pos;
unsigned char **issue_buf;
bool last_quiet1;
bool last_quiet2;
uint32_t total;
uint32_t cid;
uint32_t gets;
uint32_t gloc;
uint32_t ghits;
uint32_t sloc;
uint32_t esets;
uint32_t isets;
uint32_t iloc;
//std::vector<std::queue<Operation>> op_queue;
Operation ***op_queue;
uint32_t *op_queue_size;
Generator *valuesize;
Generator *keysize;
KeyGenerator *keygen;
Generator *iagen;
pthread_mutex_t* lock;
unordered_map<string,vector<Operation*>> *g_wb_keys;
queue<Operation*> *trace_queue;
// state machine functions / event processing
void pop_op(Operation *op);
void output_op(Operation *op, int type, bool was_found);
//void finish_op(Operation *op);
void finish_op(Operation *op,int was_hit);
int issue_getsetorset(double now = 0.0);
void drive_write_machine(double now = 0.0);
// request functions
void issue_sasl();
int issue_op(Operation* op);
void issue_noop(double now = 0.0, int level = 1);
int issue_touch(const char* key, int valuelen, double now, int level);
int issue_delete(const char* key, double now, uint32_t flags);
int issue_get_with_len(const char* key, int valuelen, double now, bool quiet, uint32_t flags, Operation *l1 = NULL);
int issue_get_with_len(Operation *pop, double now, bool quiet, uint32_t flags, Operation *l1 = NULL);
int issue_set(const char* key, const char* value, int length, double now, uint32_t flags);
int issue_set(Operation *pop, const char* value, double now, uint32_t flags);
// protocol fucntions
int set_request_ascii(const char* key, const char* value, int length);
int set_request_binary(const char* key, const char* value, int length);
int set_request_resp(const char* key, const char* value, int length);
int get_request_ascii(const char* key);
int get_request_binary(const char* key);
int get_request_resp(const char* key);
bool consume_binary_response(evbuffer *input);
bool consume_ascii_line(evbuffer *input, bool &done);
bool consume_resp_line(evbuffer *input, bool &done);
};
class ConnectionMultiApproxBatch {
public:
ConnectionMultiApproxBatch(struct event_base* _base, struct evdns_base* _evdns,
string _hostname1, string _hostname2, string _port, options_t options,
bool sampling = true, int fd1 = -1, int fd2 = -1);
~ConnectionMultiApproxBatch();
int do_connect();
double start_time; // Time when this connection began operations.
ConnectionStats stats;
options_t options;
bool is_ready() { return read_state == IDLE; }
void set_priority(int pri);
// state commands
void start() {
//fprintf(stderr,"connid: %d starting...\n",cid);
drive_write_machine();
}
void start_loading();
void reset();
bool check_exit_condition(double now = 0.0);
void event_callback1(short events);
void event_callback2(short events);
void read_callback1();
void read_callback2();
void read_callback1_v1();
void read_callback2_v1();
// event callbacks
void write_callback();
void timer_callback();
int eof;
uint32_t get_cid();
//void set_queue(ConcurrentQueue<string> *a_trace_queue);
int add_to_wb_keys(string wb_key);
int add_to_copy_keys(string key);
int add_to_touch_keys(string key);
void del_wb_keys(string wb_key);
void del_copy_keys(string key);
void del_touch_keys(string key);
void set_g_wbkeys(unordered_map<string,vector<Operation*>> *a_wb_keys);
void set_queue(queue<Operation*> *a_trace_queue);
void set_lock(pthread_mutex_t* a_lock);
int send_write_buffer(int level);
int add_get_op_to_queue(Operation *pop, int level);
int add_set_to_queue(Operation *pop, int level, const char *value);
size_t handle_response_batch(unsigned char *rbuf_pos, resp_t *resp,
size_t read_bytes, size_t consumed_bytes,
int level, int extra);
private:
string hostname1;
string hostname2;
string port;
double o_percent;
int trace_queue_n;
struct event_base *base;
struct evdns_base *evdns;
struct bufferevent *bev1;
struct bufferevent *bev2;
struct event *timer; // Used to control inter-transmission time.
double next_time; // Inter-transmission time parameters.
double last_rx; // Used to moderate transmission rate.
double last_tx;
enum read_state_enum {
INIT_READ,
CONN_SETUP,
LOADING,
IDLE,
WAITING_FOR_GET,
WAITING_FOR_SET,
WAITING_FOR_DELETE,
MAX_READ_STATE,
};
enum write_state_enum {
INIT_WRITE,
ISSUING,
WAITING_FOR_TIME,
WAITING_FOR_OPQ,
MAX_WRITE_STATE,
};
read_state_enum read_state;
write_state_enum write_state;
// Parameters to track progress of the data loader.
int loader_issued, loader_completed;
uint32_t *opaque;
int *issue_buf_size;
int *issue_buf_n;
unsigned char **issue_buf_pos;
unsigned char **issue_buf;
bool last_quiet1;
bool last_quiet2;
uint32_t total;
uint32_t cid;
uint32_t gets;
uint32_t gloc;
uint32_t ghits;
uint32_t sloc;
uint32_t esets;
uint32_t isets;
uint32_t iloc;
uint32_t clsid_;
uint32_t incl_;
uint32_t buffer_size_;
unsigned char* buffer_write[MAX_LEVELS];
unsigned char* buffer_read[MAX_LEVELS];
unsigned char* buffer_write_pos[MAX_LEVELS];
unsigned char* buffer_read_pos[MAX_LEVELS];
unsigned char* buffer_lasthdr[MAX_LEVELS];
unsigned char* buffer_leftover[MAX_LEVELS];
uint32_t buffer_read_n[MAX_LEVELS];
uint32_t buffer_write_n[MAX_LEVELS];
uint32_t buffer_read_nbytes[MAX_LEVELS];
uint32_t buffer_write_nbytes[MAX_LEVELS];
//std::vector<std::queue<Operation>> op_queue;
Operation ***op_queue;
uint32_t *op_queue_size;
Generator *valuesize;
Generator *keysize;
KeyGenerator *keygen;
Generator *iagen;
pthread_mutex_t* lock;
unordered_map<string,vector<Operation*>> *g_wb_keys;
queue<Operation*> *trace_queue;
// state machine functions / event processing
void pop_op(Operation *op);
void output_op(Operation *op, int type, bool was_found);
//void finish_op(Operation *op);
void finish_op(Operation *op,int was_hit);
int issue_getsetorset(double now = 0.0);
void drive_write_machine(double now = 0.0);
// request functions
void issue_sasl();
int issue_op(Operation* op);
int issue_noop(int level = 1);
size_t fill_read_buffer(int level, int *extra);
int issue_touch(const char* key, int valuelen, double now, int level);
int issue_delete(const char* key, double now, uint32_t flags);
int issue_get_with_len(const char* key, int valuelen, double now, bool quiet, uint32_t flags, Operation *l1 = NULL);
int issue_get_with_len(Operation *pop, double now, bool quiet, uint32_t flags, Operation *l1 = NULL);
int issue_set(const char* key, const char* value, int length, double now, uint32_t flags);
int issue_set(Operation *pop, const char* value, double now, uint32_t flags);
// protocol fucntions
int set_request_ascii(const char* key, const char* value, int length);
int set_request_binary(const char* key, const char* value, int length);
int set_request_resp(const char* key, const char* value, int length);
int get_request_ascii(const char* key);
int get_request_binary(const char* key);
int get_request_resp(const char* key);
bool consume_binary_response(evbuffer *input);
bool consume_ascii_line(evbuffer *input, bool &done);
bool consume_resp_line(evbuffer *input, bool &done);
};
class ConnectionMultiApproxShm {
public:
ConnectionMultiApproxShm(options_t options, bool sampling = true);
~ConnectionMultiApproxShm();
int do_connect();
double start_time; // Time when this connection began operations.
ConnectionStats stats;
options_t options;
bool is_ready() { return read_state == IDLE; }
void set_priority(int pri);
void start_loading();
void reset();
bool check_exit_condition(double now = 0.0);
void event_callback1(short events);
void event_callback2(short events);
void read_callback1();
void read_callback2();
void read_callback1_v1();
void read_callback2_v1();
// event callbacks
void write_callback();
void timer_callback();
int eof;
uint32_t get_cid();
//void set_queue(ConcurrentQueue<string> *a_trace_queue);
int add_to_wb_keys(string wb_key);
int add_to_copy_keys(string key);
int add_to_touch_keys(string key);
void del_wb_keys(string wb_key);
void del_copy_keys(string key);
void del_touch_keys(string key);
void set_g_wbkeys(unordered_map<string,vector<Operation*>> *a_wb_keys);
void set_queue(queue<Operation*> *a_trace_queue);
void set_lock(pthread_mutex_t* a_lock);
int send_write_buffer(int level);
int add_get_op_to_queue(Operation *pop, int level);
int add_set_to_queue(Operation *pop, int level, const char *value);
size_t handle_response_batch(unsigned char *rbuf_pos, resp_t *resp,
size_t read_bytes, size_t consumed_bytes,
int level, int extra);
void drive_write_machine_shm(double now = 0.0);
bipbuf_t* bipbuf_in[3];
bipbuf_t* bipbuf_out[3];
pthread_mutex_t* lock_in[3];
pthread_mutex_t* lock_out[3];
private:
string hostname1;
string hostname2;
string port;
double o_percent;
int trace_queue_n;
struct event *timer; // Used to control inter-transmission time.
double next_time; // Inter-transmission time parameters.
double last_rx; // Used to moderate transmission rate.
double last_tx;
enum read_state_enum {
INIT_READ,
CONN_SETUP,
LOADING,
IDLE,
WAITING_FOR_GET,
WAITING_FOR_SET,
WAITING_FOR_DELETE,
MAX_READ_STATE,
};
enum write_state_enum {
INIT_WRITE,
ISSUING,
WAITING_FOR_TIME,
WAITING_FOR_OPQ,
MAX_WRITE_STATE,
};
read_state_enum read_state;
write_state_enum write_state;
// Parameters to track progress of the data loader.
int loader_issued, loader_completed;
uint32_t *opaque;
int *issue_buf_size;
int *issue_buf_n;
unsigned char **issue_buf_pos;
unsigned char **issue_buf;
bool last_quiet1;
bool last_quiet2;
uint32_t total;
uint32_t cid;
uint32_t gets;
uint32_t gloc;
uint32_t ghits;
uint32_t sloc;
uint32_t esets;
uint32_t isets;
uint32_t iloc;
//std::vector<std::queue<Operation>> op_queue;
Operation ***op_queue;
uint32_t *op_queue_size;
Generator *valuesize;
Generator *keysize;
KeyGenerator *keygen;
Generator *iagen;
pthread_mutex_t* lock;
unordered_map<string,vector<Operation*>> *g_wb_keys;
queue<Operation*> *trace_queue;
// state machine functions / event processing
void pop_op(Operation *op);
void output_op(Operation *op, int type, bool was_found);
//void finish_op(Operation *op);
void finish_op(Operation *op,int was_hit);
int issue_getsetorset(double now = 0.0);
// request functions
void issue_sasl();
int issue_op(Operation* op);
void issue_noop(int level = 1);
size_t fill_read_buffer(int level, int *extra);
int issue_touch(const char* key, int valuelen, double now, int level);
int issue_delete(const char* key, double now, uint32_t flags);
int issue_get_with_len(const char* key, int valuelen, double now, bool quiet, uint32_t flags, Operation *l1 = NULL);
int issue_get_with_len(Operation *pop, double now, bool quiet, uint32_t flags, Operation *l1 = NULL);
int issue_set(const char* key, const char* value, int length, double now, uint32_t flags);
int issue_set(Operation *pop, const char* value, double now, uint32_t flags);
int read_response_l1();
void read_response_l2();
// protocol fucntions
int set_request_ascii(const char* key, const char* value, int length);
int set_request_binary(const char* key, const char* value, int length);
int set_request_resp(const char* key, const char* value, int length);
int get_request_ascii(const char* key);
int get_request_binary(const char* key);
int get_request_resp(const char* key);
bool consume_binary_response(evbuffer *input);
bool consume_ascii_line(evbuffer *input, bool &done);
bool consume_resp_line(evbuffer *input, bool &done);
};
#endif