numam-dpdk/drivers/vdpa/mlx5/mlx5_vdpa_mem.c

401 lines
12 KiB
C
Raw Permalink Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2019 Mellanox Technologies, Ltd
*/
#include <stdlib.h>
#include <rte_malloc.h>
#include <rte_errno.h>
#include <rte_common.h>
#include <rte_sched_common.h>
#include <mlx5_prm.h>
#include <mlx5_common.h>
#include "mlx5_vdpa_utils.h"
#include "mlx5_vdpa.h"
void
mlx5_vdpa_mem_dereg(struct mlx5_vdpa_priv *priv)
{
struct mlx5_vdpa_query_mr *mrs =
(struct mlx5_vdpa_query_mr *)priv->mrs;
struct mlx5_vdpa_query_mr *entry;
int i;
if (priv->mrs) {
for (i = priv->num_mrs - 1; i >= 0; i--) {
entry = &mrs[i];
if (entry->is_indirect) {
if (entry->mkey)
claim_zero(
mlx5_devx_cmd_destroy(entry->mkey));
} else {
if (entry->mr)
claim_zero(
mlx5_glue->dereg_mr(entry->mr));
}
}
rte_free(priv->mrs);
priv->mrs = NULL;
priv->num_mrs = 0;
}
if (priv->vmem_info.vmem) {
free(priv->vmem_info.vmem);
priv->vmem_info.vmem = NULL;
}
priv->gpa_mkey_index = 0;
}
static int
mlx5_vdpa_regions_addr_cmp(const void *a, const void *b)
{
const struct rte_vhost_mem_region *region_a = a;
const struct rte_vhost_mem_region *region_b = b;
if (region_a->guest_phys_addr < region_b->guest_phys_addr)
return -1;
if (region_a->guest_phys_addr > region_b->guest_phys_addr)
return 1;
return 0;
}
#define KLM_NUM_MAX_ALIGN(sz) (RTE_ALIGN_CEIL(sz, MLX5_MAX_KLM_BYTE_COUNT) / \
MLX5_MAX_KLM_BYTE_COUNT)
/*
* Allocate and sort the region list and choose indirect mkey mode:
* 1. Calculate GCD, guest memory size and indirect mkey entries num per mode.
* 2. Align GCD to the maximum allowed size(2G) and to be power of 2.
* 2. Decide the indirect mkey mode according to the next rules:
* a. If both KLM_FBS entries number and KLM entries number are bigger
* than the maximum allowed(MLX5_DEVX_MAX_KLM_ENTRIES) - error.
* b. KLM mode if KLM_FBS entries number is bigger than the maximum
* allowed(MLX5_DEVX_MAX_KLM_ENTRIES).
* c. KLM mode if GCD is smaller than the minimum allowed(4K).
* d. KLM mode if the total size of KLM entries is in one cache line
* and the total size of KLM_FBS entries is not in one cache line.
* e. Otherwise, KLM_FBS mode.
*/
static struct rte_vhost_memory *
mlx5_vdpa_vhost_mem_regions_prepare(int vid, uint8_t *mode, uint64_t *mem_size,
uint64_t *gcd, uint32_t *entries_num)
{
struct rte_vhost_memory *mem;
uint64_t size;
uint64_t klm_entries_num = 0;
uint64_t klm_fbs_entries_num;
uint32_t i;
int ret = rte_vhost_get_mem_table(vid, &mem);
if (ret < 0) {
DRV_LOG(ERR, "Failed to get VM memory layout vid =%d.", vid);
rte_errno = EINVAL;
return NULL;
}
qsort(mem->regions, mem->nregions, sizeof(mem->regions[0]),
mlx5_vdpa_regions_addr_cmp);
*mem_size = (mem->regions[(mem->nregions - 1)].guest_phys_addr) +
(mem->regions[(mem->nregions - 1)].size) -
(mem->regions[0].guest_phys_addr);
*gcd = 0;
for (i = 0; i < mem->nregions; ++i) {
DRV_LOG(INFO, "Region %u: HVA 0x%" PRIx64 ", GPA 0x%" PRIx64
", size 0x%" PRIx64 ".", i,
mem->regions[i].host_user_addr,
mem->regions[i].guest_phys_addr, mem->regions[i].size);
if (i > 0) {
/* Hole handle. */
size = mem->regions[i].guest_phys_addr -
(mem->regions[i - 1].guest_phys_addr +
mem->regions[i - 1].size);
*gcd = rte_get_gcd64(*gcd, size);
klm_entries_num += KLM_NUM_MAX_ALIGN(size);
}
size = mem->regions[i].size;
*gcd = rte_get_gcd64(*gcd, size);
klm_entries_num += KLM_NUM_MAX_ALIGN(size);
}
if (*gcd > MLX5_MAX_KLM_BYTE_COUNT)
*gcd = rte_get_gcd64(*gcd, MLX5_MAX_KLM_BYTE_COUNT);
if (!RTE_IS_POWER_OF_2(*gcd)) {
uint64_t candidate_gcd = rte_align64prevpow2(*gcd);
while (candidate_gcd > 1 && (*gcd % candidate_gcd))
candidate_gcd /= 2;
DRV_LOG(DEBUG, "GCD 0x%" PRIx64 " is not power of 2. Adjusted "
"GCD is 0x%" PRIx64 ".", *gcd, candidate_gcd);
*gcd = candidate_gcd;
}
klm_fbs_entries_num = *mem_size / *gcd;
if (*gcd < MLX5_MIN_KLM_FIXED_BUFFER_SIZE || klm_fbs_entries_num >
MLX5_DEVX_MAX_KLM_ENTRIES ||
((klm_entries_num * sizeof(struct mlx5_klm)) <=
RTE_CACHE_LINE_SIZE && (klm_fbs_entries_num *
sizeof(struct mlx5_klm)) >
RTE_CACHE_LINE_SIZE)) {
*mode = MLX5_MKC_ACCESS_MODE_KLM;
*entries_num = klm_entries_num;
DRV_LOG(INFO, "Indirect mkey mode is KLM.");
} else {
*mode = MLX5_MKC_ACCESS_MODE_KLM_FBS;
*entries_num = klm_fbs_entries_num;
DRV_LOG(INFO, "Indirect mkey mode is KLM Fixed Buffer Size.");
}
DRV_LOG(DEBUG, "Memory registration information: nregions = %u, "
"mem_size = 0x%" PRIx64 ", GCD = 0x%" PRIx64
", klm_fbs_entries_num = 0x%" PRIx64 ", klm_entries_num = 0x%"
PRIx64 ".", mem->nregions, *mem_size, *gcd, klm_fbs_entries_num,
klm_entries_num);
if (*entries_num > MLX5_DEVX_MAX_KLM_ENTRIES) {
DRV_LOG(ERR, "Failed to prepare memory of vid %d - memory is "
"too fragmented.", vid);
free(mem);
return NULL;
}
return mem;
}
static int
mlx5_vdpa_mem_cmp(struct rte_vhost_memory *mem1, struct rte_vhost_memory *mem2)
{
uint32_t i;
if (mem1->nregions != mem2->nregions)
return -1;
for (i = 0; i < mem1->nregions; i++) {
if (mem1->regions[i].guest_phys_addr !=
mem2->regions[i].guest_phys_addr)
return -1;
if (mem1->regions[i].size != mem2->regions[i].size)
return -1;
}
return 0;
}
#define KLM_SIZE_MAX_ALIGN(sz) ((sz) > MLX5_MAX_KLM_BYTE_COUNT ? \
MLX5_MAX_KLM_BYTE_COUNT : (sz))
static int
mlx5_vdpa_create_indirect_mkey(struct mlx5_vdpa_priv *priv)
{
struct mlx5_devx_mkey_attr mkey_attr;
struct mlx5_vdpa_query_mr *mrs =
(struct mlx5_vdpa_query_mr *)priv->mrs;
struct mlx5_vdpa_query_mr *entry;
struct rte_vhost_mem_region *reg;
uint8_t mode = priv->vmem_info.mode;
uint32_t entries_num = priv->vmem_info.entries_num;
struct rte_vhost_memory *mem = priv->vmem_info.vmem;
struct mlx5_klm klm_array[entries_num];
uint64_t gcd = priv->vmem_info.gcd;
int ret = -rte_errno;
uint64_t klm_size;
int klm_index = 0;
uint64_t k;
uint32_t i;
/* If it is the last entry, create indirect mkey. */
for (i = 0; i < mem->nregions; i++) {
entry = &mrs[i];
reg = &mem->regions[i];
if (i > 0) {
uint64_t sadd;
uint64_t empty_region_sz = reg->guest_phys_addr -
(mem->regions[i - 1].guest_phys_addr +
mem->regions[i - 1].size);
if (empty_region_sz > 0) {
sadd = mem->regions[i - 1].guest_phys_addr +
mem->regions[i - 1].size;
klm_size = mode == MLX5_MKC_ACCESS_MODE_KLM ?
KLM_SIZE_MAX_ALIGN(empty_region_sz) : gcd;
for (k = 0; k < empty_region_sz;
k += klm_size) {
klm_array[klm_index].byte_count =
k + klm_size > empty_region_sz ?
empty_region_sz - k : klm_size;
klm_array[klm_index].mkey =
priv->null_mr->lkey;
klm_array[klm_index].address = sadd + k;
klm_index++;
}
}
}
klm_size = mode == MLX5_MKC_ACCESS_MODE_KLM ?
KLM_SIZE_MAX_ALIGN(reg->size) : gcd;
for (k = 0; k < reg->size; k += klm_size) {
klm_array[klm_index].byte_count = k + klm_size >
reg->size ? reg->size - k : klm_size;
klm_array[klm_index].mkey = entry->mr->lkey;
klm_array[klm_index].address = reg->guest_phys_addr + k;
klm_index++;
}
}
memset(&mkey_attr, 0, sizeof(mkey_attr));
mkey_attr.addr = (uintptr_t)(mem->regions[0].guest_phys_addr);
mkey_attr.size = priv->vmem_info.size;
mkey_attr.pd = priv->cdev->pdn;
mkey_attr.umem_id = 0;
/* Must be zero for KLM mode. */
mkey_attr.log_entity_size = mode == MLX5_MKC_ACCESS_MODE_KLM_FBS ?
rte_log2_u64(gcd) : 0;
mkey_attr.pg_access = 0;
mkey_attr.klm_array = klm_array;
mkey_attr.klm_num = klm_index;
entry = &mrs[mem->nregions];
entry->mkey = mlx5_devx_cmd_mkey_create(priv->cdev->ctx, &mkey_attr);
if (!entry->mkey) {
DRV_LOG(ERR, "Failed to create indirect Mkey.");
rte_errno = -ret;
return ret;
}
entry->is_indirect = 1;
priv->gpa_mkey_index = entry->mkey->id;
return 0;
}
/*
* The target here is to group all the physical memory regions of the
* virtio device in one indirect mkey.
* For KLM Fixed Buffer Size mode (HW find the translation entry in one
* read according to the guest phisical address):
* All the sub-direct mkeys of it must be in the same size, hence, each
* one of them should be in the GCD size of all the virtio memory
* regions and the holes between them.
* For KLM mode (each entry may be in different size so HW must iterate
* the entries):
* Each virtio memory region and each hole between them have one entry,
* just need to cover the maximum allowed size(2G) by splitting entries
* which their associated memory regions are bigger than 2G.
* It means that each virtio memory region may be mapped to more than
* one direct mkey in the 2 modes.
* All the holes of invalid memory between the virtio memory regions
* will be mapped to the null memory region for security.
*/
int
mlx5_vdpa_mem_register(struct mlx5_vdpa_priv *priv)
{
void *mrs;
uint8_t mode = 0;
int ret = -rte_errno;
uint32_t i, thrd_idx, data[1];
uint32_t remaining_cnt = 0, err_cnt = 0, task_num = 0;
struct rte_vhost_memory *mem = mlx5_vdpa_vhost_mem_regions_prepare
(priv->vid, &mode, &priv->vmem_info.size,
&priv->vmem_info.gcd, &priv->vmem_info.entries_num);
if (!mem)
return -rte_errno;
if (priv->vmem_info.vmem != NULL) {
if (mlx5_vdpa_mem_cmp(mem, priv->vmem_info.vmem) == 0) {
/* VM memory not changed, reuse resources. */
free(mem);
return 0;
}
mlx5_vdpa_mem_dereg(priv);
}
priv->vmem_info.vmem = mem;
priv->vmem_info.mode = mode;
priv->num_mrs = mem->nregions;
if (!priv->num_mrs || priv->num_mrs >= MLX5_VDPA_MAX_MRS) {
DRV_LOG(ERR,
"Invalid number of memory regions.");
goto error;
}
/* The last one is indirect mkey entry. */
priv->num_mrs++;
mrs = rte_zmalloc("mlx5 vDPA memory regions",
sizeof(struct mlx5_vdpa_query_mr) * priv->num_mrs, 0);
priv->mrs = mrs;
if (!priv->mrs) {
DRV_LOG(ERR, "Failed to allocate private memory regions.");
goto error;
}
if (priv->use_c_thread) {
uint32_t main_task_idx[mem->nregions];
for (i = 0; i < mem->nregions; i++) {
thrd_idx = i % (conf_thread_mng.max_thrds + 1);
if (!thrd_idx) {
main_task_idx[task_num] = i;
task_num++;
continue;
}
thrd_idx = priv->last_c_thrd_idx + 1;
if (thrd_idx >= conf_thread_mng.max_thrds)
thrd_idx = 0;
priv->last_c_thrd_idx = thrd_idx;
data[0] = i;
if (mlx5_vdpa_task_add(priv, thrd_idx,
MLX5_VDPA_TASK_REG_MR,
&remaining_cnt, &err_cnt,
(void **)&data, 1)) {
DRV_LOG(ERR,
"Fail to add task mem region (%d)", i);
main_task_idx[task_num] = i;
task_num++;
}
}
for (i = 0; i < task_num; i++) {
ret = mlx5_vdpa_register_mr(priv,
main_task_idx[i]);
if (ret) {
DRV_LOG(ERR,
"Failed to register mem region %d.", i);
goto error;
}
}
if (mlx5_vdpa_c_thread_wait_bulk_tasks_done(&remaining_cnt,
&err_cnt, 100)) {
DRV_LOG(ERR,
"Failed to wait register mem region tasks ready.");
goto error;
}
} else {
for (i = 0; i < mem->nregions; i++) {
ret = mlx5_vdpa_register_mr(priv, i);
if (ret) {
DRV_LOG(ERR,
"Failed to register mem region %d.", i);
goto error;
}
}
}
ret = mlx5_vdpa_create_indirect_mkey(priv);
if (ret) {
DRV_LOG(ERR, "Failed to create indirect mkey .");
goto error;
}
return 0;
error:
mlx5_vdpa_mem_dereg(priv);
rte_errno = -ret;
return ret;
}
int
mlx5_vdpa_register_mr(struct mlx5_vdpa_priv *priv, uint32_t idx)
{
struct rte_vhost_memory *mem = priv->vmem_info.vmem;
struct mlx5_vdpa_query_mr *mrs =
(struct mlx5_vdpa_query_mr *)priv->mrs;
struct mlx5_vdpa_query_mr *entry;
struct rte_vhost_mem_region *reg;
int ret;
reg = &mem->regions[idx];
entry = &mrs[idx];
entry->mr = mlx5_glue->reg_mr_iova
(priv->cdev->pd,
(void *)(uintptr_t)(reg->host_user_addr),
reg->size, reg->guest_phys_addr,
IBV_ACCESS_LOCAL_WRITE);
if (!entry->mr) {
DRV_LOG(ERR, "Failed to create direct Mkey.");
ret = -rte_errno;
return ret;
}
entry->is_indirect = 0;
return 0;
}