numam-dpdk/app/test/test_hash_perf.c

568 lines
14 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <inttypes.h>
#include <rte_lcore.h>
#include <rte_cycles.h>
#include <rte_malloc.h>
#include <rte_hash.h>
#include <rte_hash_crc.h>
#include <rte_jhash.h>
#include <rte_fbk_hash.h>
#include <rte_random.h>
#include <rte_string_fns.h>
#include "test.h"
#define MAX_ENTRIES (1 << 19)
#define KEYS_TO_ADD (MAX_ENTRIES * 3 / 4) /* 75% table utilization */
#define NUM_LOOKUPS (KEYS_TO_ADD * 5) /* Loop among keys added, several times */
#define BUCKET_SIZE 4
#define NUM_BUCKETS (MAX_ENTRIES / BUCKET_SIZE)
#define MAX_KEYSIZE 64
#define NUM_KEYSIZES 10
#define NUM_SHUFFLES 10
#define BURST_SIZE 16
enum operations {
ADD = 0,
LOOKUP,
LOOKUP_MULTI,
DELETE,
NUM_OPERATIONS
};
static uint32_t hashtest_key_lens[] = {
/* standard key sizes */
4, 8, 16, 32, 48, 64,
/* IPv4 SRC + DST + protocol, unpadded */
9,
/* IPv4 5-tuple, unpadded */
13,
/* IPv6 5-tuple, unpadded */
37,
/* IPv6 5-tuple, padded to 8-byte boundary */
40
};
struct rte_hash *h[NUM_KEYSIZES];
/* Array that stores if a slot is full */
uint8_t slot_taken[MAX_ENTRIES];
/* Array to store number of cycles per operation */
uint64_t cycles[NUM_KEYSIZES][NUM_OPERATIONS][2];
/* Array to store all input keys */
uint8_t keys[KEYS_TO_ADD][MAX_KEYSIZE];
/* Array to store the precomputed hash for 'keys' */
hash_sig_t signatures[KEYS_TO_ADD];
/* Array to store how many busy entries have each bucket */
uint8_t buckets[NUM_BUCKETS];
/* Array to store the positions where keys are added */
int32_t positions[KEYS_TO_ADD];
/* Parameters used for hash table in unit test functions. */
static struct rte_hash_parameters ut_params = {
.entries = MAX_ENTRIES,
.bucket_entries = BUCKET_SIZE,
.hash_func = rte_jhash,
.hash_func_init_val = 0,
};
static int
create_table(unsigned table_index)
{
char name[RTE_HASH_NAMESIZE];
sprintf(name, "test_hash%d", hashtest_key_lens[table_index]);
ut_params.name = name;
ut_params.key_len = hashtest_key_lens[table_index];
ut_params.socket_id = rte_socket_id();
h[table_index] = rte_hash_find_existing(name);
if (h[table_index] != NULL)
/*
* If table was already created, free it to create it again,
* so we force it is empty
*/
rte_hash_free(h[table_index]);
h[table_index] = rte_hash_create(&ut_params);
if (h[table_index] == NULL) {
printf("Error creating table\n");
return -1;
}
return 0;
}
/* Shuffle the keys that have been added, so lookups will be totally random */
static void
shuffle_input_keys(unsigned table_index)
{
unsigned i;
uint32_t swap_idx;
uint8_t temp_key[RTE_HASH_KEY_LENGTH_MAX];
hash_sig_t temp_signature;
int32_t temp_position;
for (i = KEYS_TO_ADD - 1; i > 0; i--) {
swap_idx = rte_rand() % i;
memcpy(temp_key, keys[i], hashtest_key_lens[table_index]);
temp_signature = signatures[i];
temp_position = positions[i];
memcpy(keys[i], keys[swap_idx], hashtest_key_lens[table_index]);
signatures[i] = signatures[swap_idx];
positions[i] = positions[swap_idx];
memcpy(keys[swap_idx], temp_key, hashtest_key_lens[table_index]);
signatures[swap_idx] = temp_signature;
positions[swap_idx] = temp_position;
}
}
/*
* Looks for random keys which
* ALL can fit in hash table (no errors)
*/
static int
get_input_keys(unsigned table_index)
{
unsigned i, j;
unsigned bucket_idx, incr, success = 1;
uint8_t k = 0;
int32_t ret;
const uint32_t bucket_bitmask = NUM_BUCKETS - 1;
/* Reset all arrays */
for (i = 0; i < MAX_ENTRIES; i++)
slot_taken[i] = 0;
for (i = 0; i < NUM_BUCKETS; i++)
buckets[i] = 0;
for (j = 0; j < hashtest_key_lens[table_index]; j++)
keys[0][j] = 0;
/*
* Add only entries that are not duplicated and that fits in the table
* (cannot store more than BUCKET_SIZE entries in a bucket).
* Regardless a key has been added correctly or not (success),
* the next one to try will be increased by 1.
*/
for (i = 0; i < KEYS_TO_ADD;) {
incr = 0;
if (i != 0) {
keys[i][0] = ++k;
/* Overflow, need to increment the next byte */
if (keys[i][0] == 0)
incr = 1;
for (j = 1; j < hashtest_key_lens[table_index]; j++) {
/* Do not increase next byte */
if (incr == 0)
if (success == 1)
keys[i][j] = keys[i - 1][j];
else
keys[i][j] = keys[i][j];
/* Increase next byte by one */
else {
if (success == 1)
keys[i][j] = keys[i-1][j] + 1;
else
keys[i][j] = keys[i][j] + 1;
if (keys[i][j] == 0)
incr = 1;
else
incr = 0;
}
}
}
success = 0;
signatures[i] = rte_hash_hash(h[table_index], keys[i]);
bucket_idx = signatures[i] & bucket_bitmask;
/* If bucket is full, do not try to insert the key */
if (buckets[bucket_idx] == BUCKET_SIZE)
continue;
/* If key can be added, leave in successful key arrays "keys" */
ret = rte_hash_add_key_with_hash(h[table_index], keys[i],
signatures[i]);
if (ret >= 0) {
/* If key is already added, ignore the entry and do not store */
if (slot_taken[ret])
continue;
else {
/* Store the returned position and mark slot as taken */
slot_taken[ret] = 1;
buckets[bucket_idx]++;
success = 1;
i++;
}
}
}
/* Reset the table, so we can measure the time to add all the entries */
rte_hash_free(h[table_index]);
h[table_index] = rte_hash_create(&ut_params);
return 0;
}
static int
timed_adds(unsigned with_hash, unsigned table_index)
{
unsigned i;
const uint64_t start_tsc = rte_rdtsc();
int32_t ret;
for (i = 0; i < KEYS_TO_ADD; i++) {
if (with_hash)
ret = rte_hash_add_key_with_hash(h[table_index],
(const void *) keys[i],
signatures[i]);
else
ret = rte_hash_add_key(h[table_index], keys[i]);
if (ret >= 0)
positions[i] = ret;
else {
printf("Failed to add key number %u\n", ret);
return -1;
}
}
const uint64_t end_tsc = rte_rdtsc();
const uint64_t time_taken = end_tsc - start_tsc;
cycles[table_index][ADD][with_hash] = time_taken/KEYS_TO_ADD;
return 0;
}
static int
timed_lookups(unsigned with_hash, unsigned table_index)
{
unsigned i, j;
const uint64_t start_tsc = rte_rdtsc();
int32_t ret;
for (i = 0; i < NUM_LOOKUPS/KEYS_TO_ADD; i++) {
for (j = 0; j < KEYS_TO_ADD; j++) {
if (with_hash)
ret = rte_hash_lookup_with_hash(h[table_index],
(const void *) keys[j],
signatures[j]);
else
ret = rte_hash_lookup(h[table_index], keys[j]);
if (ret < 0 || ret != positions[j]) {
printf("Key looked up in %d, should be in %d\n",
ret, positions[j]);
return -1;
}
}
}
const uint64_t end_tsc = rte_rdtsc();
const uint64_t time_taken = end_tsc - start_tsc;
cycles[table_index][LOOKUP][with_hash] = time_taken/NUM_LOOKUPS;
return 0;
}
static int
timed_lookups_multi(unsigned table_index)
{
unsigned i, j, k;
int32_t positions_burst[BURST_SIZE];
const void *keys_burst[BURST_SIZE];
const uint64_t start_tsc = rte_rdtsc();
for (i = 0; i < NUM_LOOKUPS/KEYS_TO_ADD; i++) {
for (j = 0; j < KEYS_TO_ADD/BURST_SIZE; j++) {
for (k = 0; k < BURST_SIZE; k++)
keys_burst[k] = keys[j * BURST_SIZE + k];
rte_hash_lookup_bulk(h[table_index],
(const void **) keys_burst,
BURST_SIZE,
positions_burst);
for (k = 0; k < BURST_SIZE; k++) {
if (positions_burst[k] != positions[j * BURST_SIZE + k]) {
printf("Key looked up in %d, should be in %d\n",
positions_burst[k],
positions[j * BURST_SIZE + k]);
return -1;
}
}
}
}
const uint64_t end_tsc = rte_rdtsc();
const uint64_t time_taken = end_tsc - start_tsc;
cycles[table_index][LOOKUP_MULTI][0] = time_taken/NUM_LOOKUPS;
return 0;
}
static int
timed_deletes(unsigned with_hash, unsigned table_index)
{
unsigned i;
const uint64_t start_tsc = rte_rdtsc();
int32_t ret;
for (i = 0; i < KEYS_TO_ADD; i++) {
if (with_hash)
ret = rte_hash_del_key_with_hash(h[table_index],
(const void *) keys[i],
signatures[i]);
else
ret = rte_hash_del_key(h[table_index],
(const void *) keys[i]);
if (ret >= 0)
positions[i] = ret;
else {
printf("Failed to add key number %u\n", ret);
return -1;
}
}
const uint64_t end_tsc = rte_rdtsc();
const uint64_t time_taken = end_tsc - start_tsc;
cycles[table_index][DELETE][with_hash] = time_taken/KEYS_TO_ADD;
return 0;
}
static void
free_table(unsigned table_index)
{
rte_hash_free(h[table_index]);
}
static int
reset_table(unsigned table_index)
{
free_table(table_index);
if (create_table(table_index) != 0)
return -1;
return 0;
}
static int
run_all_tbl_perf_tests(void)
{
unsigned i, j;
printf("Measuring performance, please wait");
fflush(stdout);
for (i = 0; i < NUM_KEYSIZES; i++) {
if (create_table(i) < 0)
return -1;
if (get_input_keys(i) < 0)
return -1;
if (timed_adds(0, i) < 0)
return -1;
for (j = 0; j < NUM_SHUFFLES; j++)
shuffle_input_keys(i);
if (timed_lookups(0, i) < 0)
return -1;
if (timed_lookups_multi(i) < 0)
return -1;
if (timed_deletes(0, i) < 0)
return -1;
/* Print a dot to show progress on operations */
printf(".");
fflush(stdout);
if (reset_table(i) < 0)
return -1;
if (timed_adds(1, i) < 0)
return -1;
for (j = 0; j < NUM_SHUFFLES; j++)
shuffle_input_keys(i);
if (timed_lookups(1, i) < 0)
return -1;
if (timed_deletes(1, i) < 0)
return -1;
/* Print a dot to show progress on operations */
printf(".");
fflush(stdout);
free_table(i);
}
printf("\nResults (in CPU cycles/operation)\n");
printf("---------------------------------\n");
printf("\nWithout pre-computed hash values\n");
printf("\n%-18s%-18s%-18s%-18s%-18s\n",
"Keysize", "Add", "Lookup", "Lookup_bulk", "Delete");
for (i = 0; i < NUM_KEYSIZES; i++) {
printf("%-18d", hashtest_key_lens[i]);
for (j = 0; j < NUM_OPERATIONS; j++)
printf("%-18"PRIu64, cycles[i][j][0]);
printf("\n");
}
printf("\nWith pre-computed hash values\n");
printf("\n%-18s%-18s%-18s%-18s%-18s\n",
"Keysize", "Add", "Lookup", "Lookup_bulk", "Delete");
for (i = 0; i < NUM_KEYSIZES; i++) {
printf("%-18d", hashtest_key_lens[i]);
for (j = 0; j < NUM_OPERATIONS; j++)
printf("%-18"PRIu64, cycles[i][j][1]);
printf("\n");
}
return 0;
}
/* Control operation of performance testing of fbk hash. */
#define LOAD_FACTOR 0.667 /* How full to make the hash table. */
#define TEST_SIZE 1000000 /* How many operations to time. */
#define TEST_ITERATIONS 30 /* How many measurements to take. */
#define ENTRIES (1 << 15) /* How many entries. */
static int
fbk_hash_perf_test(void)
{
struct rte_fbk_hash_params params = {
.name = "fbk_hash_test",
.entries = ENTRIES,
.entries_per_bucket = 4,
.socket_id = rte_socket_id(),
};
struct rte_fbk_hash_table *handle = NULL;
uint32_t *keys = NULL;
unsigned indexes[TEST_SIZE];
uint64_t lookup_time = 0;
unsigned added = 0;
unsigned value = 0;
uint32_t key;
uint16_t val;
unsigned i, j;
handle = rte_fbk_hash_create(&params);
if (handle == NULL) {
printf("Error creating table\n");
return -1;
}
keys = rte_zmalloc(NULL, ENTRIES * sizeof(*keys), 0);
if (keys == NULL) {
printf("fbk hash: memory allocation for key store failed\n");
return -1;
}
/* Generate random keys and values. */
for (i = 0; i < ENTRIES; i++) {
key = (uint32_t)rte_rand();
key = ((uint64_t)key << 32) | (uint64_t)rte_rand();
val = (uint16_t)rte_rand();
if (rte_fbk_hash_add_key(handle, key, val) == 0) {
keys[added] = key;
added++;
}
if (added > (LOAD_FACTOR * ENTRIES))
break;
}
for (i = 0; i < TEST_ITERATIONS; i++) {
uint64_t begin;
uint64_t end;
/* Generate random indexes into keys[] array. */
for (j = 0; j < TEST_SIZE; j++)
indexes[j] = rte_rand() % added;
begin = rte_rdtsc();
/* Do lookups */
for (j = 0; j < TEST_SIZE; j++)
value += rte_fbk_hash_lookup(handle, keys[indexes[j]]);
end = rte_rdtsc();
lookup_time += (double)(end - begin);
}
printf("\n\n *** FBK Hash function performance test results ***\n");
/*
* The use of the 'value' variable ensures that the hash lookup is not
* being optimised out by the compiler.
*/
if (value != 0)
printf("Number of ticks per lookup = %g\n",
(double)lookup_time /
((double)TEST_ITERATIONS * (double)TEST_SIZE));
rte_fbk_hash_free(handle);
return 0;
}
static int
test_hash_perf(void)
{
if (run_all_tbl_perf_tests() < 0)
return -1;
if (fbk_hash_perf_test() < 0)
return -1;
return 0;
}
static struct test_command hash_perf_cmd = {
.command = "hash_perf_autotest",
.callback = test_hash_perf,
};
REGISTER_TEST_COMMAND(hash_perf_cmd);