numam-dpdk/drivers/net/mlx4/mlx4_rxtx.c

888 lines
24 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright 2017 6WIND S.A.
* Copyright 2017 Mellanox
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of 6WIND S.A. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* Data plane functions for mlx4 driver.
*/
#include <assert.h>
#include <inttypes.h>
#include <stdint.h>
#include <string.h>
/* Verbs headers do not support -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
#include <rte_branch_prediction.h>
#include <rte_common.h>
#include <rte_io.h>
#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include "mlx4.h"
#include "mlx4_prm.h"
#include "mlx4_rxtx.h"
#include "mlx4_utils.h"
/**
* Pointer-value pair structure used in tx_post_send for saving the first
* DWORD (32 byte) of a TXBB.
*/
struct pv {
struct mlx4_wqe_data_seg *dseg;
uint32_t val;
};
/**
* Stamp a WQE so it won't be reused by the HW.
*
* Routine is used when freeing WQE used by the chip or when failing
* building an WQ entry has failed leaving partial information on the queue.
*
* @param sq
* Pointer to the SQ structure.
* @param index
* Index of the freed WQE.
* @param num_txbbs
* Number of blocks to stamp.
* If < 0 the routine will use the size written in the WQ entry.
* @param owner
* The value of the WQE owner bit to use in the stamp.
*
* @return
* The number of Tx basic blocs (TXBB) the WQE contained.
*/
static int
mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, uint16_t index, uint8_t owner)
{
uint32_t stamp = rte_cpu_to_be_32(MLX4_SQ_STAMP_VAL |
(!!owner << MLX4_SQ_STAMP_SHIFT));
uint8_t *wqe = mlx4_get_send_wqe(sq, (index & sq->txbb_cnt_mask));
uint32_t *ptr = (uint32_t *)wqe;
int i;
int txbbs_size;
int num_txbbs;
/* Extract the size from the control segment of the WQE. */
num_txbbs = MLX4_SIZE_TO_TXBBS((((struct mlx4_wqe_ctrl_seg *)
wqe)->fence_size & 0x3f) << 4);
txbbs_size = num_txbbs * MLX4_TXBB_SIZE;
/* Optimize the common case when there is no wrap-around. */
if (wqe + txbbs_size <= sq->eob) {
/* Stamp the freed descriptor. */
for (i = 0; i < txbbs_size; i += MLX4_SQ_STAMP_STRIDE) {
*ptr = stamp;
ptr += MLX4_SQ_STAMP_DWORDS;
}
} else {
/* Stamp the freed descriptor. */
for (i = 0; i < txbbs_size; i += MLX4_SQ_STAMP_STRIDE) {
*ptr = stamp;
ptr += MLX4_SQ_STAMP_DWORDS;
if ((uint8_t *)ptr >= sq->eob) {
ptr = (uint32_t *)sq->buf;
stamp ^= RTE_BE32(0x80000000);
}
}
}
return num_txbbs;
}
/**
* Manage Tx completions.
*
* When sending a burst, mlx4_tx_burst() posts several WRs.
* To improve performance, a completion event is only required once every
* MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
* for other WRs, but this information would not be used anyway.
*
* @param txq
* Pointer to Tx queue structure.
*
* @return
* 0 on success, -1 on failure.
*/
static int
mlx4_txq_complete(struct txq *txq)
{
unsigned int elts_comp = txq->elts_comp;
unsigned int elts_tail = txq->elts_tail;
const unsigned int elts_n = txq->elts_n;
struct mlx4_cq *cq = &txq->mcq;
struct mlx4_sq *sq = &txq->msq;
struct mlx4_cqe *cqe;
uint32_t cons_index = cq->cons_index;
uint16_t new_index;
uint16_t nr_txbbs = 0;
int pkts = 0;
if (unlikely(elts_comp == 0))
return 0;
/*
* Traverse over all CQ entries reported and handle each WQ entry
* reported by them.
*/
do {
cqe = (struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index);
if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
!!(cons_index & cq->cqe_cnt)))
break;
/*
* Make sure we read the CQE after we read the ownership bit.
*/
rte_rmb();
if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
MLX4_CQE_OPCODE_ERROR)) {
struct mlx4_err_cqe *cqe_err =
(struct mlx4_err_cqe *)cqe;
ERROR("%p CQE error - vendor syndrome: 0x%x"
" syndrome: 0x%x\n",
(void *)txq, cqe_err->vendor_err,
cqe_err->syndrome);
}
/* Get WQE index reported in the CQE. */
new_index =
rte_be_to_cpu_16(cqe->wqe_index) & sq->txbb_cnt_mask;
do {
/* Free next descriptor. */
nr_txbbs +=
mlx4_txq_stamp_freed_wqe(sq,
(sq->tail + nr_txbbs) & sq->txbb_cnt_mask,
!!((sq->tail + nr_txbbs) & sq->txbb_cnt));
pkts++;
} while (((sq->tail + nr_txbbs) & sq->txbb_cnt_mask) !=
new_index);
cons_index++;
} while (1);
if (unlikely(pkts == 0))
return 0;
/*
* Update CQ.
* To prevent CQ overflow we first update CQ consumer and only then
* the ring consumer.
*/
cq->cons_index = cons_index;
*cq->set_ci_db = rte_cpu_to_be_32(cq->cons_index & MLX4_CQ_DB_CI_MASK);
rte_wmb();
sq->tail = sq->tail + nr_txbbs;
/* Update the list of packets posted for transmission. */
elts_comp -= pkts;
assert(elts_comp <= txq->elts_comp);
/*
* Assume completion status is successful as nothing can be done about
* it anyway.
*/
elts_tail += pkts;
if (elts_tail >= elts_n)
elts_tail -= elts_n;
txq->elts_tail = elts_tail;
txq->elts_comp = elts_comp;
return 0;
}
/**
* Get memory pool (MP) from mbuf. If mbuf is indirect, the pool from which
* the cloned mbuf is allocated is returned instead.
*
* @param buf
* Pointer to mbuf.
*
* @return
* Memory pool where data is located for given mbuf.
*/
static struct rte_mempool *
mlx4_txq_mb2mp(struct rte_mbuf *buf)
{
if (unlikely(RTE_MBUF_INDIRECT(buf)))
return rte_mbuf_from_indirect(buf)->pool;
return buf->pool;
}
/**
* Get memory region (MR) <-> memory pool (MP) association from txq->mp2mr[].
* Add MP to txq->mp2mr[] if it's not registered yet. If mp2mr[] is full,
* remove an entry first.
*
* @param txq
* Pointer to Tx queue structure.
* @param[in] mp
* Memory pool for which a memory region lkey must be returned.
*
* @return
* mr->lkey on success, (uint32_t)-1 on failure.
*/
uint32_t
mlx4_txq_mp2mr(struct txq *txq, struct rte_mempool *mp)
{
unsigned int i;
struct ibv_mr *mr;
for (i = 0; (i != RTE_DIM(txq->mp2mr)); ++i) {
if (unlikely(txq->mp2mr[i].mp == NULL)) {
/* Unknown MP, add a new MR for it. */
break;
}
if (txq->mp2mr[i].mp == mp) {
assert(txq->mp2mr[i].lkey != (uint32_t)-1);
assert(txq->mp2mr[i].mr->lkey == txq->mp2mr[i].lkey);
return txq->mp2mr[i].lkey;
}
}
/* Add a new entry, register MR first. */
DEBUG("%p: discovered new memory pool \"%s\" (%p)",
(void *)txq, mp->name, (void *)mp);
mr = mlx4_mp2mr(txq->priv->pd, mp);
if (unlikely(mr == NULL)) {
DEBUG("%p: unable to configure MR, ibv_reg_mr() failed.",
(void *)txq);
return (uint32_t)-1;
}
if (unlikely(i == RTE_DIM(txq->mp2mr))) {
/* Table is full, remove oldest entry. */
DEBUG("%p: MR <-> MP table full, dropping oldest entry.",
(void *)txq);
--i;
claim_zero(ibv_dereg_mr(txq->mp2mr[0].mr));
memmove(&txq->mp2mr[0], &txq->mp2mr[1],
(sizeof(txq->mp2mr) - sizeof(txq->mp2mr[0])));
}
/* Store the new entry. */
txq->mp2mr[i].mp = mp;
txq->mp2mr[i].mr = mr;
txq->mp2mr[i].lkey = mr->lkey;
DEBUG("%p: new MR lkey for MP \"%s\" (%p): 0x%08" PRIu32,
(void *)txq, mp->name, (void *)mp, txq->mp2mr[i].lkey);
return txq->mp2mr[i].lkey;
}
/**
* Posts a single work request to a send queue.
*
* @param txq
* Target Tx queue.
* @param pkt
* Packet to transmit.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static inline int
mlx4_post_send(struct txq *txq, struct rte_mbuf *pkt)
{
struct mlx4_wqe_ctrl_seg *ctrl;
struct mlx4_wqe_data_seg *dseg;
struct mlx4_sq *sq = &txq->msq;
struct rte_mbuf *buf;
union {
uint32_t flags;
uint16_t flags16[2];
} srcrb;
uint32_t head_idx = sq->head & sq->txbb_cnt_mask;
uint32_t lkey;
uintptr_t addr;
uint32_t owner_opcode = MLX4_OPCODE_SEND;
uint32_t byte_count;
int wqe_real_size;
int nr_txbbs;
int rc;
struct pv *pv = (struct pv *)txq->bounce_buf;
int pv_counter = 0;
/* Calculate the needed work queue entry size for this packet. */
wqe_real_size = sizeof(struct mlx4_wqe_ctrl_seg) +
pkt->nb_segs * sizeof(struct mlx4_wqe_data_seg);
nr_txbbs = MLX4_SIZE_TO_TXBBS(wqe_real_size);
/*
* Check that there is room for this WQE in the send queue and that
* the WQE size is legal.
*/
if (((sq->head - sq->tail) + nr_txbbs +
sq->headroom_txbbs) >= sq->txbb_cnt ||
nr_txbbs > MLX4_MAX_WQE_TXBBS) {
rc = ENOSPC;
goto err;
}
/* Get the control and data entries of the WQE. */
ctrl = (struct mlx4_wqe_ctrl_seg *)mlx4_get_send_wqe(sq, head_idx);
dseg = (struct mlx4_wqe_data_seg *)((uintptr_t)ctrl +
sizeof(struct mlx4_wqe_ctrl_seg));
/* Fill the data segments with buffer information. */
for (buf = pkt; buf != NULL; buf = buf->next, dseg++) {
addr = rte_pktmbuf_mtod(buf, uintptr_t);
rte_prefetch0((volatile void *)addr);
/* Handle WQE wraparound. */
if (unlikely(dseg >= (struct mlx4_wqe_data_seg *)sq->eob))
dseg = (struct mlx4_wqe_data_seg *)sq->buf;
dseg->addr = rte_cpu_to_be_64(addr);
/* Memory region key for this memory pool. */
lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(buf));
if (unlikely(lkey == (uint32_t)-1)) {
/* MR does not exist. */
DEBUG("%p: unable to get MP <-> MR association",
(void *)txq);
/*
* Restamp entry in case of failure.
* Make sure that size is written correctly
* Note that we give ownership to the SW, not the HW.
*/
ctrl->fence_size = (wqe_real_size >> 4) & 0x3f;
mlx4_txq_stamp_freed_wqe(sq, head_idx,
(sq->head & sq->txbb_cnt) ? 0 : 1);
rc = EFAULT;
goto err;
}
dseg->lkey = rte_cpu_to_be_32(lkey);
if (likely(buf->data_len)) {
byte_count = rte_cpu_to_be_32(buf->data_len);
} else {
/*
* Zero length segment is treated as inline segment
* with zero data.
*/
byte_count = RTE_BE32(0x80000000);
}
/*
* If the data segment is not at the beginning of a
* Tx basic block (TXBB) then write the byte count,
* else postpone the writing to just before updating the
* control segment.
*/
if ((uintptr_t)dseg & (uintptr_t)(MLX4_TXBB_SIZE - 1)) {
/*
* Need a barrier here before writing the byte_count
* fields to make sure that all the data is visible
* before the byte_count field is set.
* Otherwise, if the segment begins a new cacheline,
* the HCA prefetcher could grab the 64-byte chunk and
* get a valid (!= 0xffffffff) byte count but stale
* data, and end up sending the wrong data.
*/
rte_io_wmb();
dseg->byte_count = byte_count;
} else {
/*
* This data segment starts at the beginning of a new
* TXBB, so we need to postpone its byte_count writing
* for later.
*/
pv[pv_counter].dseg = dseg;
pv[pv_counter++].val = byte_count;
}
}
/* Write the first DWORD of each TXBB save earlier. */
if (pv_counter) {
/* Need a barrier here before writing the byte_count. */
rte_io_wmb();
for (--pv_counter; pv_counter >= 0; pv_counter--)
pv[pv_counter].dseg->byte_count = pv[pv_counter].val;
}
/* Fill the control parameters for this packet. */
ctrl->fence_size = (wqe_real_size >> 4) & 0x3f;
/*
* For raw Ethernet, the SOLICIT flag is used to indicate that no ICRC
* should be calculated.
*/
txq->elts_comp_cd -= nr_txbbs;
if (unlikely(txq->elts_comp_cd <= 0)) {
txq->elts_comp_cd = txq->elts_comp_cd_init;
srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
MLX4_WQE_CTRL_CQ_UPDATE);
} else {
srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT);
}
/* Enable HW checksum offload if requested */
if (txq->csum &&
(pkt->ol_flags &
(PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) {
const uint64_t is_tunneled = (pkt->ol_flags &
(PKT_TX_TUNNEL_GRE |
PKT_TX_TUNNEL_VXLAN));
if (is_tunneled && txq->csum_l2tun) {
owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM |
MLX4_WQE_CTRL_IL4_HDR_CSUM;
if (pkt->ol_flags & PKT_TX_OUTER_IP_CKSUM)
srcrb.flags |=
RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM);
} else {
srcrb.flags |= RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM |
MLX4_WQE_CTRL_TCP_UDP_CSUM);
}
}
if (txq->lb) {
/*
* Copy destination MAC address to the WQE, this allows
* loopback in eSwitch, so that VFs and PF can communicate
* with each other.
*/
srcrb.flags16[0] = *(rte_pktmbuf_mtod(pkt, uint16_t *));
ctrl->imm = *(rte_pktmbuf_mtod_offset(pkt, uint32_t *,
sizeof(uint16_t)));
} else {
ctrl->imm = 0;
}
ctrl->srcrb_flags = srcrb.flags;
/*
* Make sure descriptor is fully written before
* setting ownership bit (because HW can start
* executing as soon as we do).
*/
rte_wmb();
ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode |
((sq->head & sq->txbb_cnt) ?
MLX4_BIT_WQE_OWN : 0));
sq->head += nr_txbbs;
return 0;
err:
rte_errno = rc;
return -rc;
}
/**
* DPDK callback for Tx.
*
* @param dpdk_txq
* Generic pointer to Tx queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct txq *txq = (struct txq *)dpdk_txq;
unsigned int elts_head = txq->elts_head;
const unsigned int elts_n = txq->elts_n;
unsigned int elts_comp = 0;
unsigned int bytes_sent = 0;
unsigned int i;
unsigned int max;
int err;
assert(txq->elts_comp_cd != 0);
mlx4_txq_complete(txq);
max = (elts_n - (elts_head - txq->elts_tail));
if (max > elts_n)
max -= elts_n;
assert(max >= 1);
assert(max <= elts_n);
/* Always leave one free entry in the ring. */
--max;
if (max == 0)
return 0;
if (max > pkts_n)
max = pkts_n;
for (i = 0; (i != max); ++i) {
struct rte_mbuf *buf = pkts[i];
unsigned int elts_head_next =
(((elts_head + 1) == elts_n) ? 0 : elts_head + 1);
struct txq_elt *elt_next = &(*txq->elts)[elts_head_next];
struct txq_elt *elt = &(*txq->elts)[elts_head];
/* Clean up old buffer. */
if (likely(elt->buf != NULL)) {
struct rte_mbuf *tmp = elt->buf;
#ifndef NDEBUG
/* Poisoning. */
memset(elt, 0x66, sizeof(*elt));
#endif
/* Faster than rte_pktmbuf_free(). */
do {
struct rte_mbuf *next = tmp->next;
rte_pktmbuf_free_seg(tmp);
tmp = next;
} while (tmp != NULL);
}
RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
/* Post the packet for sending. */
err = mlx4_post_send(txq, buf);
if (unlikely(err)) {
elt->buf = NULL;
goto stop;
}
elt->buf = buf;
bytes_sent += buf->pkt_len;
++elts_comp;
elts_head = elts_head_next;
}
stop:
/* Take a shortcut if nothing must be sent. */
if (unlikely(i == 0))
return 0;
/* Increment send statistics counters. */
txq->stats.opackets += i;
txq->stats.obytes += bytes_sent;
/* Make sure that descriptors are written before doorbell record. */
rte_wmb();
/* Ring QP doorbell. */
rte_write32(txq->msq.doorbell_qpn, txq->msq.db);
txq->elts_head = elts_head;
txq->elts_comp += elts_comp;
return i;
}
/**
* Translate Rx completion flags to packet type.
*
* @param flags
* Rx completion flags returned by mlx4_cqe_flags().
*
* @return
* Packet type in mbuf format.
*/
static inline uint32_t
rxq_cq_to_pkt_type(uint32_t flags)
{
uint32_t pkt_type;
if (flags & MLX4_CQE_L2_TUNNEL)
pkt_type =
mlx4_transpose(flags,
MLX4_CQE_L2_TUNNEL_IPV4,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN) |
mlx4_transpose(flags,
MLX4_CQE_STATUS_IPV4_PKT,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN);
else
pkt_type = mlx4_transpose(flags,
MLX4_CQE_STATUS_IPV4_PKT,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN);
return pkt_type;
}
/**
* Translate Rx completion flags to offload flags.
*
* @param flags
* Rx completion flags returned by mlx4_cqe_flags().
* @param csum
* Whether Rx checksums are enabled.
* @param csum_l2tun
* Whether Rx L2 tunnel checksums are enabled.
*
* @return
* Offload flags (ol_flags) in mbuf format.
*/
static inline uint32_t
rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun)
{
uint32_t ol_flags = 0;
if (csum)
ol_flags |=
mlx4_transpose(flags,
MLX4_CQE_STATUS_IP_HDR_CSUM_OK,
PKT_RX_IP_CKSUM_GOOD) |
mlx4_transpose(flags,
MLX4_CQE_STATUS_TCP_UDP_CSUM_OK,
PKT_RX_L4_CKSUM_GOOD);
if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun)
ol_flags |=
mlx4_transpose(flags,
MLX4_CQE_L2_TUNNEL_IPOK,
PKT_RX_IP_CKSUM_GOOD) |
mlx4_transpose(flags,
MLX4_CQE_L2_TUNNEL_L4_CSUM,
PKT_RX_L4_CKSUM_GOOD);
return ol_flags;
}
/**
* Extract checksum information from CQE flags.
*
* @param cqe
* Pointer to CQE structure.
* @param csum
* Whether Rx checksums are enabled.
* @param csum_l2tun
* Whether Rx L2 tunnel checksums are enabled.
*
* @return
* CQE checksum information.
*/
static inline uint32_t
mlx4_cqe_flags(struct mlx4_cqe *cqe, int csum, int csum_l2tun)
{
uint32_t flags = 0;
/*
* The relevant bits are in different locations on their
* CQE fields therefore we can join them in one 32bit
* variable.
*/
if (csum)
flags = (rte_be_to_cpu_32(cqe->status) &
MLX4_CQE_STATUS_IPV4_CSUM_OK);
if (csum_l2tun)
flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) &
(MLX4_CQE_L2_TUNNEL |
MLX4_CQE_L2_TUNNEL_IPOK |
MLX4_CQE_L2_TUNNEL_L4_CSUM |
MLX4_CQE_L2_TUNNEL_IPV4));
return flags;
}
/**
* Poll one CQE from CQ.
*
* @param rxq
* Pointer to the receive queue structure.
* @param[out] out
* Just polled CQE.
*
* @return
* Number of bytes of the CQE, 0 in case there is no completion.
*/
static unsigned int
mlx4_cq_poll_one(struct rxq *rxq, struct mlx4_cqe **out)
{
int ret = 0;
struct mlx4_cqe *cqe = NULL;
struct mlx4_cq *cq = &rxq->mcq;
cqe = (struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index);
if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
!!(cq->cons_index & cq->cqe_cnt))
goto out;
/*
* Make sure we read CQ entry contents after we've checked the
* ownership bit.
*/
rte_rmb();
assert(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK));
assert((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) !=
MLX4_CQE_OPCODE_ERROR);
ret = rte_be_to_cpu_32(cqe->byte_cnt);
++cq->cons_index;
out:
*out = cqe;
return ret;
}
/**
* DPDK callback for Rx with scattered packets support.
*
* @param dpdk_rxq
* Generic pointer to Rx queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct rxq *rxq = dpdk_rxq;
const uint32_t wr_cnt = (1 << rxq->elts_n) - 1;
const uint16_t sges_n = rxq->sges_n;
struct rte_mbuf *pkt = NULL;
struct rte_mbuf *seg = NULL;
unsigned int i = 0;
uint32_t rq_ci = rxq->rq_ci << sges_n;
int len = 0;
while (pkts_n) {
struct mlx4_cqe *cqe;
uint32_t idx = rq_ci & wr_cnt;
struct rte_mbuf *rep = (*rxq->elts)[idx];
volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx];
/* Update the 'next' pointer of the previous segment. */
if (pkt)
seg->next = rep;
seg = rep;
rte_prefetch0(seg);
rte_prefetch0(scat);
rep = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(rep == NULL)) {
++rxq->stats.rx_nombuf;
if (!pkt) {
/*
* No buffers before we even started,
* bail out silently.
*/
break;
}
while (pkt != seg) {
assert(pkt != (*rxq->elts)[idx]);
rep = pkt->next;
pkt->next = NULL;
pkt->nb_segs = 1;
rte_mbuf_raw_free(pkt);
pkt = rep;
}
break;
}
if (!pkt) {
/* Looking for the new packet. */
len = mlx4_cq_poll_one(rxq, &cqe);
if (!len) {
rte_mbuf_raw_free(rep);
break;
}
if (unlikely(len < 0)) {
/* Rx error, packet is likely too large. */
rte_mbuf_raw_free(rep);
++rxq->stats.idropped;
goto skip;
}
pkt = seg;
if (rxq->csum | rxq->csum_l2tun) {
uint32_t flags =
mlx4_cqe_flags(cqe,
rxq->csum,
rxq->csum_l2tun);
pkt->ol_flags =
rxq_cq_to_ol_flags(flags,
rxq->csum,
rxq->csum_l2tun);
pkt->packet_type = rxq_cq_to_pkt_type(flags);
} else {
pkt->packet_type = 0;
pkt->ol_flags = 0;
}
pkt->pkt_len = len;
}
rep->nb_segs = 1;
rep->port = rxq->port_id;
rep->data_len = seg->data_len;
rep->data_off = seg->data_off;
(*rxq->elts)[idx] = rep;
/*
* Fill NIC descriptor with the new buffer. The lkey and size
* of the buffers are already known, only the buffer address
* changes.
*/
scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
if (len > seg->data_len) {
len -= seg->data_len;
++pkt->nb_segs;
++rq_ci;
continue;
}
/* The last segment. */
seg->data_len = len;
/* Increment bytes counter. */
rxq->stats.ibytes += pkt->pkt_len;
/* Return packet. */
*(pkts++) = pkt;
pkt = NULL;
--pkts_n;
++i;
skip:
/* Align consumer index to the next stride. */
rq_ci >>= sges_n;
++rq_ci;
rq_ci <<= sges_n;
}
if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci))
return 0;
/* Update the consumer index. */
rxq->rq_ci = rq_ci >> sges_n;
rte_wmb();
*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
*rxq->mcq.set_ci_db =
rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK);
/* Increment packets counter. */
rxq->stats.ipackets += i;
return i;
}
/**
* Dummy DPDK callback for Tx.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_txq
* Generic pointer to Tx queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
(void)dpdk_txq;
(void)pkts;
(void)pkts_n;
return 0;
}
/**
* Dummy DPDK callback for Rx.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_rxq
* Generic pointer to Rx queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
(void)dpdk_rxq;
(void)pkts;
(void)pkts_n;
return 0;
}