numam-dpdk/lib/ethdev/sff_8472.c

281 lines
10 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2022 Intel Corporation
* Implements SFF-8472 optics diagnostics.
*/
#include <stdio.h>
#include "sff_common.h"
/* Offsets in decimal, for direct comparison with the SFF specs */
/* A0-based EEPROM offsets for DOM support checks */
#define SFF_A0_DOM 92
#define SFF_A0_OPTIONS 93
#define SFF_A0_COMP 94
/* EEPROM bit values for various registers */
#define SFF_A0_DOM_EXTCAL RTE_BIT32(4)
#define SFF_A0_DOM_INTCAL RTE_BIT32(5)
#define SFF_A0_DOM_IMPL RTE_BIT32(6)
#define SFF_A0_DOM_PWRT RTE_BIT32(3)
#define SFF_A0_OPTIONS_AW RTE_BIT32(7)
/*
* This is the offset at which the A2 page is in the EEPROM
* blob returned by the kernel.
*/
#define SFF_A2_BASE 0x100
/* A2-based offsets for DOM */
#define SFF_A2_TEMP 96
#define SFF_A2_TEMP_HALRM 0
#define SFF_A2_TEMP_LALRM 2
#define SFF_A2_TEMP_HWARN 4
#define SFF_A2_TEMP_LWARN 6
#define SFF_A2_VCC 98
#define SFF_A2_VCC_HALRM 8
#define SFF_A2_VCC_LALRM 10
#define SFF_A2_VCC_HWARN 12
#define SFF_A2_VCC_LWARN 14
#define SFF_A2_BIAS 100
#define SFF_A2_BIAS_HALRM 16
#define SFF_A2_BIAS_LALRM 18
#define SFF_A2_BIAS_HWARN 20
#define SFF_A2_BIAS_LWARN 22
#define SFF_A2_TX_PWR 102
#define SFF_A2_TX_PWR_HALRM 24
#define SFF_A2_TX_PWR_LALRM 26
#define SFF_A2_TX_PWR_HWARN 28
#define SFF_A2_TX_PWR_LWARN 30
#define SFF_A2_RX_PWR 104
#define SFF_A2_RX_PWR_HALRM 32
#define SFF_A2_RX_PWR_LALRM 34
#define SFF_A2_RX_PWR_HWARN 36
#define SFF_A2_RX_PWR_LWARN 38
#define SFF_A2_ALRM_FLG 112
#define SFF_A2_WARN_FLG 116
/* 32-bit little-endian calibration constants */
#define SFF_A2_CAL_RXPWR4 56
#define SFF_A2_CAL_RXPWR3 60
#define SFF_A2_CAL_RXPWR2 64
#define SFF_A2_CAL_RXPWR1 68
#define SFF_A2_CAL_RXPWR0 72
/* 16-bit little endian calibration constants */
#define SFF_A2_CAL_TXI_SLP 76
#define SFF_A2_CAL_TXI_OFF 78
#define SFF_A2_CAL_TXPWR_SLP 80
#define SFF_A2_CAL_TXPWR_OFF 82
#define SFF_A2_CAL_T_SLP 84
#define SFF_A2_CAL_T_OFF 86
#define SFF_A2_CAL_V_SLP 88
#define SFF_A2_CAL_V_OFF 90
static struct sff_8472_aw_flags {
const char *str; /* Human-readable string, null at the end */
int offset; /* A2-relative address offset */
uint8_t value; /* Alarm is on if (offset & value) != 0. */
} sff_8472_aw_flags[] = {
{ "Laser bias current high alarm", SFF_A2_ALRM_FLG, RTE_BIT32(3) },
{ "Laser bias current low alarm", SFF_A2_ALRM_FLG, RTE_BIT32(2) },
{ "Laser bias current high warning", SFF_A2_WARN_FLG, RTE_BIT32(3) },
{ "Laser bias current low warning", SFF_A2_WARN_FLG, RTE_BIT32(2) },
{ "Laser output power high alarm", SFF_A2_ALRM_FLG, RTE_BIT32(1) },
{ "Laser output power low alarm", SFF_A2_ALRM_FLG, RTE_BIT32(0) },
{ "Laser output power high warning", SFF_A2_WARN_FLG, RTE_BIT32(1) },
{ "Laser output power low warning", SFF_A2_WARN_FLG, RTE_BIT32(0) },
{ "Module temperature high alarm", SFF_A2_ALRM_FLG, RTE_BIT32(7) },
{ "Module temperature low alarm", SFF_A2_ALRM_FLG, RTE_BIT32(6) },
{ "Module temperature high warning", SFF_A2_WARN_FLG, RTE_BIT32(7) },
{ "Module temperature low warning", SFF_A2_WARN_FLG, RTE_BIT32(6) },
{ "Module voltage high alarm", SFF_A2_ALRM_FLG, RTE_BIT32(5) },
{ "Module voltage low alarm", SFF_A2_ALRM_FLG, RTE_BIT32(4) },
{ "Module voltage high warning", SFF_A2_WARN_FLG, RTE_BIT32(5) },
{ "Module voltage low warning", SFF_A2_WARN_FLG, RTE_BIT32(4) },
{ "Laser rx power high alarm", SFF_A2_ALRM_FLG + 1, RTE_BIT32(7) },
{ "Laser rx power low alarm", SFF_A2_ALRM_FLG + 1, RTE_BIT32(6) },
{ "Laser rx power high warning", SFF_A2_WARN_FLG + 1, RTE_BIT32(7) },
{ "Laser rx power low warning", SFF_A2_WARN_FLG + 1, RTE_BIT32(6) },
{ NULL, 0, 0 },
};
/* Most common case: 16-bit unsigned integer in a certain unit */
#define A2_OFFSET_TO_U16(offset) \
(data[SFF_A2_BASE + (offset)] << 8 | data[SFF_A2_BASE + (offset) + 1])
/* Calibration slope is a number between 0.0 included and 256.0 excluded. */
#define A2_OFFSET_TO_SLP(offset) \
(data[SFF_A2_BASE + (offset)] + data[SFF_A2_BASE + (offset) + 1] / 256.)
/* Calibration offset is an integer from -32768 to 32767 */
#define A2_OFFSET_TO_OFF(offset) \
((int16_t)A2_OFFSET_TO_U16(offset))
/* RXPWR(x) are IEEE-754 floating point numbers in big-endian format */
#define A2_OFFSET_TO_RXPWRx(offset) \
(befloattoh((const uint32_t *)(data + SFF_A2_BASE + (offset))))
/*
* 2-byte internal temperature conversions:
* First byte is a signed 8-bit integer, which is the temp decimal part
* Second byte are 1/256th of degree, which are added to the dec part.
*/
#define A2_OFFSET_TO_TEMP(offset) ((int16_t)A2_OFFSET_TO_U16(offset))
static void sff_8472_dom_parse(const uint8_t *data, struct sff_diags *sd)
{
sd->bias_cur[SFF_MCURR] = A2_OFFSET_TO_U16(SFF_A2_BIAS);
sd->bias_cur[SFF_HALRM] = A2_OFFSET_TO_U16(SFF_A2_BIAS_HALRM);
sd->bias_cur[SFF_LALRM] = A2_OFFSET_TO_U16(SFF_A2_BIAS_LALRM);
sd->bias_cur[SFF_HWARN] = A2_OFFSET_TO_U16(SFF_A2_BIAS_HWARN);
sd->bias_cur[SFF_LWARN] = A2_OFFSET_TO_U16(SFF_A2_BIAS_LWARN);
sd->sfp_voltage[SFF_MCURR] = A2_OFFSET_TO_U16(SFF_A2_VCC);
sd->sfp_voltage[SFF_HALRM] = A2_OFFSET_TO_U16(SFF_A2_VCC_HALRM);
sd->sfp_voltage[SFF_LALRM] = A2_OFFSET_TO_U16(SFF_A2_VCC_LALRM);
sd->sfp_voltage[SFF_HWARN] = A2_OFFSET_TO_U16(SFF_A2_VCC_HWARN);
sd->sfp_voltage[SFF_LWARN] = A2_OFFSET_TO_U16(SFF_A2_VCC_LWARN);
sd->tx_power[SFF_MCURR] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR);
sd->tx_power[SFF_HALRM] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_HALRM);
sd->tx_power[SFF_LALRM] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_LALRM);
sd->tx_power[SFF_HWARN] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_HWARN);
sd->tx_power[SFF_LWARN] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_LWARN);
sd->rx_power[SFF_MCURR] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR);
sd->rx_power[SFF_HALRM] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_HALRM);
sd->rx_power[SFF_LALRM] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_LALRM);
sd->rx_power[SFF_HWARN] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_HWARN);
sd->rx_power[SFF_LWARN] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_LWARN);
sd->sfp_temp[SFF_MCURR] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP);
sd->sfp_temp[SFF_HALRM] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_HALRM);
sd->sfp_temp[SFF_LALRM] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_LALRM);
sd->sfp_temp[SFF_HWARN] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_HWARN);
sd->sfp_temp[SFF_LWARN] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_LWARN);
}
/* Converts to a float from a big-endian 4-byte source buffer. */
static float befloattoh(const uint32_t *source)
{
union {
uint32_t src;
float dst;
} converter;
converter.src = ntohl(*source);
return converter.dst;
}
static void sff_8472_calibration(const uint8_t *data, struct sff_diags *sd)
{
unsigned long i;
uint16_t rx_reading;
/* Calibration should occur for all values (threshold and current) */
for (i = 0; i < RTE_DIM(sd->bias_cur); ++i) {
/*
* Apply calibration formula 1 (Temp., Voltage, Bias, Tx Power)
*/
sd->bias_cur[i] *= A2_OFFSET_TO_SLP(SFF_A2_CAL_TXI_SLP);
sd->tx_power[i] *= A2_OFFSET_TO_SLP(SFF_A2_CAL_TXPWR_SLP);
sd->sfp_voltage[i] *= A2_OFFSET_TO_SLP(SFF_A2_CAL_V_SLP);
sd->sfp_temp[i] *= A2_OFFSET_TO_SLP(SFF_A2_CAL_T_SLP);
sd->bias_cur[i] += A2_OFFSET_TO_OFF(SFF_A2_CAL_TXI_OFF);
sd->tx_power[i] += A2_OFFSET_TO_OFF(SFF_A2_CAL_TXPWR_OFF);
sd->sfp_voltage[i] += A2_OFFSET_TO_OFF(SFF_A2_CAL_V_OFF);
sd->sfp_temp[i] += A2_OFFSET_TO_OFF(SFF_A2_CAL_T_OFF);
/*
* Apply calibration formula 2 (Rx Power only)
*/
rx_reading = sd->rx_power[i];
sd->rx_power[i] = A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR0);
sd->rx_power[i] += rx_reading *
A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR1);
sd->rx_power[i] += rx_reading *
A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR2);
sd->rx_power[i] += rx_reading *
A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR3);
}
}
static void sff_8472_parse_eeprom(const uint8_t *data, struct sff_diags *sd)
{
sd->supports_dom = data[SFF_A0_DOM] & SFF_A0_DOM_IMPL;
sd->supports_alarms = data[SFF_A0_OPTIONS] & SFF_A0_OPTIONS_AW;
sd->calibrated_ext = data[SFF_A0_DOM] & SFF_A0_DOM_EXTCAL;
sd->rx_power_type = data[SFF_A0_DOM] & SFF_A0_DOM_PWRT;
sff_8472_dom_parse(data, sd);
/*
* If the SFP is externally calibrated, we need to read calibration data
* and compensate the already stored readings.
*/
if (sd->calibrated_ext)
sff_8472_calibration(data, sd);
}
void sff_8472_show_all(const uint8_t *data, struct rte_tel_data *d)
{
struct sff_diags sd = {0};
const char *rx_power_string = NULL;
char val_string[SFF_ITEM_VAL_COMPOSE_SIZE];
int i;
sff_8472_parse_eeprom(data, &sd);
if (!sd.supports_dom) {
ssf_add_dict_string(d, "Optical diagnostics support", "No");
return;
}
ssf_add_dict_string(d, "Optical diagnostics support", "Yes");
SFF_SPRINT_BIAS(val_string, sd.bias_cur[SFF_MCURR]);
ssf_add_dict_string(d, "Laser bias current", val_string);
SFF_SPRINT_xX_PWR(val_string, sd.tx_power[SFF_MCURR]);
ssf_add_dict_string(d, "Laser output power", val_string);
if (!sd.rx_power_type)
rx_power_string = "Receiver signal OMA";
else
rx_power_string = "Receiver signal average optical power";
SFF_SPRINT_xX_PWR(val_string, sd.rx_power[SFF_MCURR]);
ssf_add_dict_string(d, rx_power_string, val_string);
SFF_SPRINT_TEMP(val_string, sd.sfp_temp[SFF_MCURR]);
ssf_add_dict_string(d, "Module temperature", val_string);
SFF_SPRINT_VCC(val_string, sd.sfp_voltage[SFF_MCURR]);
ssf_add_dict_string(d, "Module voltage", val_string);
ssf_add_dict_string(d, "Alarm/warning flags implemented",
(sd.supports_alarms ? "Yes" : "No"));
if (sd.supports_alarms) {
for (i = 0; sff_8472_aw_flags[i].str; ++i) {
ssf_add_dict_string(d, sff_8472_aw_flags[i].str,
data[SFF_A2_BASE + sff_8472_aw_flags[i].offset]
& sff_8472_aw_flags[i].value ? "On" : "Off");
}
sff_show_thresholds(sd, d);
}
}