numam-dpdk/drivers/net/mvneta/mvneta_rxtx.c

1026 lines
24 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Marvell International Ltd.
* Copyright(c) 2018 Semihalf.
* All rights reserved.
*/
#include "mvneta_rxtx.h"
#define MVNETA_PKT_EFFEC_OFFS (MRVL_NETA_PKT_OFFS + MV_MH_SIZE)
#define MRVL_NETA_DEFAULT_TC 0
/** Maximum number of descriptors in shadow queue. Must be power of 2 */
#define MRVL_NETA_TX_SHADOWQ_SIZE MRVL_NETA_TXD_MAX
/** Shadow queue size mask (since shadow queue size is power of 2) */
#define MRVL_NETA_TX_SHADOWQ_MASK (MRVL_NETA_TX_SHADOWQ_SIZE - 1)
/** Minimum number of sent buffers to release from shadow queue to BM */
#define MRVL_NETA_BUF_RELEASE_BURST_SIZE_MIN 16
/** Maximum number of sent buffers to release from shadow queue to BM */
#define MRVL_NETA_BUF_RELEASE_BURST_SIZE_MAX 64
#define MVNETA_COOKIE_ADDR_INVALID ~0ULL
#define MVNETA_COOKIE_HIGH_ADDR_SHIFT (sizeof(neta_cookie_t) * 8)
#define MVNETA_COOKIE_HIGH_ADDR_MASK (~0ULL << MVNETA_COOKIE_HIGH_ADDR_SHIFT)
#define MVNETA_SET_COOKIE_HIGH_ADDR(addr) { \
if (unlikely(cookie_addr_high == MVNETA_COOKIE_ADDR_INVALID)) \
cookie_addr_high = \
(uint64_t)(addr) & MVNETA_COOKIE_HIGH_ADDR_MASK;\
}
#define MVNETA_CHECK_COOKIE_HIGH_ADDR(addr) \
((likely(cookie_addr_high == \
((uint64_t)(addr) & MVNETA_COOKIE_HIGH_ADDR_MASK))) ? 1 : 0)
struct mvneta_rxq {
struct mvneta_priv *priv;
struct rte_mempool *mp;
int queue_id;
int port_id;
int size;
int cksum_enabled;
uint64_t bytes_recv;
uint64_t drop_mac;
uint64_t pkts_processed;
};
/*
* To use buffer harvesting based on loopback port shadow queue structure
* was introduced for buffers information bookkeeping.
*/
struct mvneta_shadow_txq {
int head; /* write index - used when sending buffers */
int tail; /* read index - used when releasing buffers */
u16 size; /* queue occupied size */
struct neta_buff_inf ent[MRVL_NETA_TX_SHADOWQ_SIZE]; /* q entries */
};
struct mvneta_txq {
struct mvneta_priv *priv;
int queue_id;
int port_id;
uint64_t bytes_sent;
struct mvneta_shadow_txq shadow_txq;
int tx_deferred_start;
};
static uint64_t cookie_addr_high = MVNETA_COOKIE_ADDR_INVALID;
static uint16_t rx_desc_free_thresh = MRVL_NETA_BUF_RELEASE_BURST_SIZE_MIN;
static inline int
mvneta_buffs_refill(struct mvneta_priv *priv, struct mvneta_rxq *rxq, u16 *num)
{
struct rte_mbuf *mbufs[MRVL_NETA_BUF_RELEASE_BURST_SIZE_MAX];
struct neta_buff_inf entries[MRVL_NETA_BUF_RELEASE_BURST_SIZE_MAX];
int i, ret;
uint16_t nb_desc = *num;
ret = rte_pktmbuf_alloc_bulk(rxq->mp, mbufs, nb_desc);
if (ret) {
MVNETA_LOG(ERR, "Failed to allocate %u mbufs.", nb_desc);
*num = 0;
return -1;
}
MVNETA_SET_COOKIE_HIGH_ADDR(mbufs[0]);
for (i = 0; i < nb_desc; i++) {
if (unlikely(!MVNETA_CHECK_COOKIE_HIGH_ADDR(mbufs[i]))) {
MVNETA_LOG(ERR,
"mbuf virt high addr 0x%lx out of range 0x%lx",
(uint64_t)mbufs[i] >> 32,
cookie_addr_high >> 32);
*num = 0;
goto out;
}
entries[i].addr = rte_mbuf_data_iova_default(mbufs[i]);
entries[i].cookie = (neta_cookie_t)(uint64_t)mbufs[i];
}
neta_ppio_inq_put_buffs(priv->ppio, rxq->queue_id, entries, num);
out:
for (i = *num; i < nb_desc; i++)
rte_pktmbuf_free(mbufs[i]);
return 0;
}
/**
* Allocate buffers from mempool
* and store addresses in rx descriptors.
*
* @return
* 0 on success, negative error value otherwise.
*/
static inline int
mvneta_buffs_alloc(struct mvneta_priv *priv, struct mvneta_rxq *rxq, int *num)
{
uint16_t nb_desc, nb_desc_burst, sent = 0;
int ret = 0;
nb_desc = *num;
do {
nb_desc_burst =
(nb_desc < MRVL_NETA_BUF_RELEASE_BURST_SIZE_MAX) ?
nb_desc : MRVL_NETA_BUF_RELEASE_BURST_SIZE_MAX;
ret = mvneta_buffs_refill(priv, rxq, &nb_desc_burst);
if (unlikely(ret || !nb_desc_burst))
break;
sent += nb_desc_burst;
nb_desc -= nb_desc_burst;
} while (nb_desc);
*num = sent;
return ret;
}
static inline void
mvneta_fill_shadowq(struct mvneta_shadow_txq *sq, struct rte_mbuf *buf)
{
sq->ent[sq->head].cookie = (uint64_t)buf;
sq->ent[sq->head].addr = buf ?
rte_mbuf_data_iova_default(buf) : 0;
sq->head = (sq->head + 1) & MRVL_NETA_TX_SHADOWQ_MASK;
sq->size++;
}
static inline void
mvneta_fill_desc(struct neta_ppio_desc *desc, struct rte_mbuf *buf)
{
neta_ppio_outq_desc_reset(desc);
neta_ppio_outq_desc_set_phys_addr(desc, rte_pktmbuf_iova(buf));
neta_ppio_outq_desc_set_pkt_offset(desc, 0);
neta_ppio_outq_desc_set_pkt_len(desc, rte_pktmbuf_data_len(buf));
}
/**
* Release already sent buffers to mempool.
*
* @param ppio
* Pointer to the port structure.
* @param sq
* Pointer to the shadow queue.
* @param qid
* Queue id number.
* @param force
* Force releasing packets.
*/
static inline void
mvneta_sent_buffers_free(struct neta_ppio *ppio,
struct mvneta_shadow_txq *sq, int qid)
{
struct neta_buff_inf *entry;
uint16_t nb_done = 0;
int i;
int tail = sq->tail;
neta_ppio_get_num_outq_done(ppio, qid, &nb_done);
if (nb_done > sq->size) {
MVNETA_LOG(ERR, "nb_done: %d, sq->size %d",
nb_done, sq->size);
return;
}
for (i = 0; i < nb_done; i++) {
entry = &sq->ent[tail];
if (unlikely(!entry->addr)) {
MVNETA_LOG(DEBUG,
"Shadow memory @%d: cookie(%lx), pa(%lx)!",
tail, (u64)entry->cookie,
(u64)entry->addr);
tail = (tail + 1) & MRVL_NETA_TX_SHADOWQ_MASK;
continue;
}
struct rte_mbuf *mbuf;
mbuf = (struct rte_mbuf *)
(cookie_addr_high | entry->cookie);
rte_pktmbuf_free(mbuf);
tail = (tail + 1) & MRVL_NETA_TX_SHADOWQ_MASK;
}
sq->tail = tail;
sq->size -= nb_done;
}
/**
* Return packet type information and l3/l4 offsets.
*
* @param desc
* Pointer to the received packet descriptor.
* @param l3_offset
* l3 packet offset.
* @param l4_offset
* l4 packet offset.
*
* @return
* Packet type information.
*/
static inline uint64_t
mvneta_desc_to_packet_type_and_offset(struct neta_ppio_desc *desc,
uint8_t *l3_offset, uint8_t *l4_offset)
{
enum neta_inq_l3_type l3_type;
enum neta_inq_l4_type l4_type;
uint64_t packet_type;
neta_ppio_inq_desc_get_l3_info(desc, &l3_type, l3_offset);
neta_ppio_inq_desc_get_l4_info(desc, &l4_type, l4_offset);
packet_type = RTE_PTYPE_L2_ETHER;
if (NETA_RXD_GET_VLAN_INFO(desc))
packet_type |= RTE_PTYPE_L2_ETHER_VLAN;
switch (l3_type) {
case NETA_INQ_L3_TYPE_IPV4_BAD:
case NETA_INQ_L3_TYPE_IPV4_OK:
packet_type |= RTE_PTYPE_L3_IPV4;
break;
case NETA_INQ_L3_TYPE_IPV6:
packet_type |= RTE_PTYPE_L3_IPV6;
break;
default:
packet_type |= RTE_PTYPE_UNKNOWN;
MVNETA_LOG(DEBUG, "Failed to recognize l3 packet type");
break;
}
switch (l4_type) {
case NETA_INQ_L4_TYPE_TCP:
packet_type |= RTE_PTYPE_L4_TCP;
break;
case NETA_INQ_L4_TYPE_UDP:
packet_type |= RTE_PTYPE_L4_UDP;
break;
default:
packet_type |= RTE_PTYPE_UNKNOWN;
MVNETA_LOG(DEBUG, "Failed to recognize l4 packet type");
break;
}
return packet_type;
}
/**
* Prepare offload information.
*
* @param ol_flags
* Offload flags.
* @param l3_type
* Pointer to the neta_ouq_l3_type structure.
* @param l4_type
* Pointer to the neta_outq_l4_type structure.
* @param gen_l3_cksum
* Will be set to 1 in case l3 checksum is computed.
* @param l4_cksum
* Will be set to 1 in case l4 checksum is computed.
*/
static inline void
mvneta_prepare_proto_info(uint64_t ol_flags,
enum neta_outq_l3_type *l3_type,
enum neta_outq_l4_type *l4_type,
int *gen_l3_cksum,
int *gen_l4_cksum)
{
/*
* Based on ol_flags prepare information
* for neta_ppio_outq_desc_set_proto_info() which setups descriptor
* for offloading.
* in most of the checksum cases ipv4 must be set, so this is the
* default value
*/
*l3_type = NETA_OUTQ_L3_TYPE_IPV4;
*gen_l3_cksum = ol_flags & RTE_MBUF_F_TX_IP_CKSUM ? 1 : 0;
if (ol_flags & RTE_MBUF_F_TX_IPV6) {
*l3_type = NETA_OUTQ_L3_TYPE_IPV6;
/* no checksum for ipv6 header */
*gen_l3_cksum = 0;
}
if (ol_flags & RTE_MBUF_F_TX_TCP_CKSUM) {
*l4_type = NETA_OUTQ_L4_TYPE_TCP;
*gen_l4_cksum = 1;
} else if (ol_flags & RTE_MBUF_F_TX_UDP_CKSUM) {
*l4_type = NETA_OUTQ_L4_TYPE_UDP;
*gen_l4_cksum = 1;
} else {
*l4_type = NETA_OUTQ_L4_TYPE_OTHER;
/* no checksum for other type */
*gen_l4_cksum = 0;
}
}
/**
* Get offload information from the received packet descriptor.
*
* @param desc
* Pointer to the received packet descriptor.
*
* @return
* Mbuf offload flags.
*/
static inline uint64_t
mvneta_desc_to_ol_flags(struct neta_ppio_desc *desc)
{
uint64_t flags;
enum neta_inq_desc_status status;
status = neta_ppio_inq_desc_get_l3_pkt_error(desc);
if (unlikely(status != NETA_DESC_ERR_OK))
flags = RTE_MBUF_F_RX_IP_CKSUM_BAD;
else
flags = RTE_MBUF_F_RX_IP_CKSUM_GOOD;
status = neta_ppio_inq_desc_get_l4_pkt_error(desc);
if (unlikely(status != NETA_DESC_ERR_OK))
flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
else
flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
return flags;
}
/**
* DPDK callback for transmit.
*
* @param txq
* Generic pointer transmit queue.
* @param tx_pkts
* Packets to transmit.
* @param nb_pkts
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted.
*/
static uint16_t
mvneta_tx_pkt_burst(void *txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct mvneta_txq *q = txq;
struct mvneta_shadow_txq *sq;
struct neta_ppio_desc descs[nb_pkts];
int i, bytes_sent = 0;
uint16_t num, sq_free_size;
uint64_t addr;
sq = &q->shadow_txq;
if (unlikely(!nb_pkts || !q->priv->ppio))
return 0;
if (sq->size)
mvneta_sent_buffers_free(q->priv->ppio,
sq, q->queue_id);
sq_free_size = MRVL_NETA_TX_SHADOWQ_SIZE - sq->size - 1;
if (unlikely(nb_pkts > sq_free_size)) {
MVNETA_LOG(DEBUG,
"No room in shadow queue for %d packets! %d packets will be sent.",
nb_pkts, sq_free_size);
nb_pkts = sq_free_size;
}
for (i = 0; i < nb_pkts; i++) {
struct rte_mbuf *mbuf = tx_pkts[i];
int gen_l3_cksum, gen_l4_cksum;
enum neta_outq_l3_type l3_type;
enum neta_outq_l4_type l4_type;
/* Fill first mbuf info in shadow queue */
mvneta_fill_shadowq(sq, mbuf);
mvneta_fill_desc(&descs[i], mbuf);
bytes_sent += rte_pktmbuf_pkt_len(mbuf);
if (!(mbuf->ol_flags & MVNETA_TX_PKT_OFFLOADS))
continue;
mvneta_prepare_proto_info(mbuf->ol_flags, &l3_type, &l4_type,
&gen_l3_cksum, &gen_l4_cksum);
neta_ppio_outq_desc_set_proto_info(&descs[i], l3_type, l4_type,
mbuf->l2_len,
mbuf->l2_len + mbuf->l3_len,
gen_l3_cksum, gen_l4_cksum);
}
num = nb_pkts;
neta_ppio_send(q->priv->ppio, q->queue_id, descs, &nb_pkts);
/* number of packets that were not sent */
if (unlikely(num > nb_pkts)) {
for (i = nb_pkts; i < num; i++) {
sq->head = (MRVL_NETA_TX_SHADOWQ_SIZE + sq->head - 1) &
MRVL_NETA_TX_SHADOWQ_MASK;
addr = cookie_addr_high | sq->ent[sq->head].cookie;
bytes_sent -=
rte_pktmbuf_pkt_len((struct rte_mbuf *)addr);
}
sq->size -= num - nb_pkts;
}
q->bytes_sent += bytes_sent;
return nb_pkts;
}
/** DPDK callback for S/G transmit.
*
* @param txq
* Generic pointer transmit queue.
* @param tx_pkts
* Packets to transmit.
* @param nb_pkts
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted.
*/
static uint16_t
mvneta_tx_sg_pkt_burst(void *txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct mvneta_txq *q = txq;
struct mvneta_shadow_txq *sq;
struct neta_ppio_desc descs[nb_pkts * NETA_PPIO_DESC_NUM_FRAGS];
struct neta_ppio_sg_pkts pkts;
uint8_t frags[nb_pkts];
int i, j, bytes_sent = 0;
int tail, tail_first;
uint16_t num, sq_free_size;
uint16_t nb_segs, total_descs = 0;
uint64_t addr;
sq = &q->shadow_txq;
pkts.frags = frags;
pkts.num = 0;
if (unlikely(!q->priv->ppio))
return 0;
if (sq->size)
mvneta_sent_buffers_free(q->priv->ppio,
sq, q->queue_id);
/* Save shadow queue free size */
sq_free_size = MRVL_NETA_TX_SHADOWQ_SIZE - sq->size - 1;
tail = 0;
for (i = 0; i < nb_pkts; i++) {
struct rte_mbuf *mbuf = tx_pkts[i];
struct rte_mbuf *seg = NULL;
int gen_l3_cksum, gen_l4_cksum;
enum neta_outq_l3_type l3_type;
enum neta_outq_l4_type l4_type;
nb_segs = mbuf->nb_segs;
total_descs += nb_segs;
/*
* Check if total_descs does not exceed
* shadow queue free size
*/
if (unlikely(total_descs > sq_free_size)) {
total_descs -= nb_segs;
MVNETA_LOG(DEBUG,
"No room in shadow queue for %d packets! "
"%d packets will be sent.",
nb_pkts, i);
break;
}
/* Check if nb_segs does not exceed the max nb of desc per
* fragmented packet
*/
if (unlikely(nb_segs > NETA_PPIO_DESC_NUM_FRAGS)) {
total_descs -= nb_segs;
MVNETA_LOG(ERR,
"Too many segments. Packet won't be sent.");
break;
}
pkts.frags[pkts.num] = nb_segs;
pkts.num++;
tail_first = tail;
seg = mbuf;
for (j = 0; j < nb_segs - 1; j++) {
/* For the subsequent segments, set shadow queue
* buffer to NULL
*/
mvneta_fill_shadowq(sq, NULL);
mvneta_fill_desc(&descs[tail], seg);
tail++;
seg = seg->next;
}
/* Put first mbuf info in last shadow queue entry */
mvneta_fill_shadowq(sq, mbuf);
/* Update descriptor with last segment */
mvneta_fill_desc(&descs[tail++], seg);
bytes_sent += rte_pktmbuf_pkt_len(mbuf);
if (!(mbuf->ol_flags & MVNETA_TX_PKT_OFFLOADS))
continue;
mvneta_prepare_proto_info(mbuf->ol_flags, &l3_type, &l4_type,
&gen_l3_cksum, &gen_l4_cksum);
neta_ppio_outq_desc_set_proto_info(&descs[tail_first],
l3_type, l4_type,
mbuf->l2_len,
mbuf->l2_len + mbuf->l3_len,
gen_l3_cksum, gen_l4_cksum);
}
num = total_descs;
neta_ppio_send_sg(q->priv->ppio, q->queue_id, descs, &total_descs,
&pkts);
/* number of packets that were not sent */
if (unlikely(num > total_descs)) {
for (i = total_descs; i < num; i++) {
sq->head = (MRVL_NETA_TX_SHADOWQ_SIZE +
sq->head - 1) &
MRVL_NETA_TX_SHADOWQ_MASK;
addr = sq->ent[sq->head].cookie;
if (addr) {
struct rte_mbuf *mbuf;
mbuf = (struct rte_mbuf *)
(cookie_addr_high | addr);
bytes_sent -= rte_pktmbuf_pkt_len(mbuf);
}
}
sq->size -= num - total_descs;
nb_pkts = pkts.num;
}
q->bytes_sent += bytes_sent;
return nb_pkts;
}
/**
* Set tx burst function according to offload flag
*
* @param dev
* Pointer to Ethernet device structure.
*/
void
mvneta_set_tx_function(struct rte_eth_dev *dev)
{
struct mvneta_priv *priv = dev->data->dev_private;
/* Use a simple Tx queue (no offloads, no multi segs) if possible */
if (priv->multiseg) {
MVNETA_LOG(INFO, "Using multi-segment tx callback");
dev->tx_pkt_burst = mvneta_tx_sg_pkt_burst;
} else {
MVNETA_LOG(INFO, "Using single-segment tx callback");
dev->tx_pkt_burst = mvneta_tx_pkt_burst;
}
}
/**
* DPDK callback for receive.
*
* @param rxq
* Generic pointer to the receive queue.
* @param rx_pkts
* Array to store received packets.
* @param nb_pkts
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received.
*/
uint16_t
mvneta_rx_pkt_burst(void *rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct mvneta_rxq *q = rxq;
struct neta_ppio_desc descs[nb_pkts];
int i, ret, rx_done = 0, rx_dropped = 0;
if (unlikely(!q || !q->priv->ppio))
return 0;
ret = neta_ppio_recv(q->priv->ppio, q->queue_id,
descs, &nb_pkts);
if (unlikely(ret < 0)) {
MVNETA_LOG(ERR, "Failed to receive packets");
return 0;
}
for (i = 0; i < nb_pkts; i++) {
struct rte_mbuf *mbuf;
uint8_t l3_offset, l4_offset;
enum neta_inq_desc_status status;
uint64_t addr;
addr = cookie_addr_high |
neta_ppio_inq_desc_get_cookie(&descs[i]);
mbuf = (struct rte_mbuf *)addr;
rte_pktmbuf_reset(mbuf);
/* drop packet in case of mac, overrun or resource error */
status = neta_ppio_inq_desc_get_l2_pkt_error(&descs[i]);
if (unlikely(status != NETA_DESC_ERR_OK)) {
/* Release the mbuf to the mempool since
* it won't be transferred to tx path
*/
rte_pktmbuf_free(mbuf);
q->drop_mac++;
rx_dropped++;
continue;
}
mbuf->data_off += MVNETA_PKT_EFFEC_OFFS;
mbuf->pkt_len = neta_ppio_inq_desc_get_pkt_len(&descs[i]);
mbuf->data_len = mbuf->pkt_len;
mbuf->port = q->port_id;
mbuf->packet_type =
mvneta_desc_to_packet_type_and_offset(&descs[i],
&l3_offset,
&l4_offset);
mbuf->l2_len = l3_offset;
mbuf->l3_len = l4_offset - l3_offset;
if (likely(q->cksum_enabled))
mbuf->ol_flags = mvneta_desc_to_ol_flags(&descs[i]);
rx_pkts[rx_done++] = mbuf;
q->bytes_recv += mbuf->pkt_len;
}
q->pkts_processed += rx_done + rx_dropped;
if (q->pkts_processed > rx_desc_free_thresh) {
int buf_to_refill = rx_desc_free_thresh;
ret = mvneta_buffs_alloc(q->priv, q, &buf_to_refill);
if (ret)
MVNETA_LOG(ERR, "Refill failed");
q->pkts_processed -= buf_to_refill;
}
return rx_done;
}
/**
* DPDK callback to configure the receive queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* RX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param conf
* Thresholds parameters (unused_).
* @param mp
* Memory pool for buffer allocations.
*
* @return
* 0 on success, negative error value otherwise.
*/
int
mvneta_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket,
const struct rte_eth_rxconf *conf __rte_unused,
struct rte_mempool *mp)
{
struct mvneta_priv *priv = dev->data->dev_private;
struct mvneta_rxq *rxq;
uint32_t frame_size, buf_size = rte_pktmbuf_data_room_size(mp);
ethdev: fix max Rx packet length There is a confusion on setting max Rx packet length, this patch aims to clarify it. 'rte_eth_dev_configure()' API accepts max Rx packet size via 'uint32_t max_rx_pkt_len' field of the config struct 'struct rte_eth_conf'. Also 'rte_eth_dev_set_mtu()' API can be used to set the MTU, and result stored into '(struct rte_eth_dev)->data->mtu'. These two APIs are related but they work in a disconnected way, they store the set values in different variables which makes hard to figure out which one to use, also having two different method for a related functionality is confusing for the users. Other issues causing confusion is: * maximum transmission unit (MTU) is payload of the Ethernet frame. And 'max_rx_pkt_len' is the size of the Ethernet frame. Difference is Ethernet frame overhead, and this overhead may be different from device to device based on what device supports, like VLAN and QinQ. * 'max_rx_pkt_len' is only valid when application requested jumbo frame, which adds additional confusion and some APIs and PMDs already discards this documented behavior. * For the jumbo frame enabled case, 'max_rx_pkt_len' is an mandatory field, this adds configuration complexity for application. As solution, both APIs gets MTU as parameter, and both saves the result in same variable '(struct rte_eth_dev)->data->mtu'. For this 'max_rx_pkt_len' updated as 'mtu', and it is always valid independent from jumbo frame. For 'rte_eth_dev_configure()', 'dev->data->dev_conf.rxmode.mtu' is user request and it should be used only within configure function and result should be stored to '(struct rte_eth_dev)->data->mtu'. After that point both application and PMD uses MTU from this variable. When application doesn't provide an MTU during 'rte_eth_dev_configure()' default 'RTE_ETHER_MTU' value is used. Additional clarification done on scattered Rx configuration, in relation to MTU and Rx buffer size. MTU is used to configure the device for physical Rx/Tx size limitation, Rx buffer is where to store Rx packets, many PMDs use mbuf data buffer size as Rx buffer size. PMDs compare MTU against Rx buffer size to decide enabling scattered Rx or not. If scattered Rx is not supported by device, MTU bigger than Rx buffer size should fail. Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com> Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com> Acked-by: Somnath Kotur <somnath.kotur@broadcom.com> Acked-by: Huisong Li <lihuisong@huawei.com> Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru> Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com> Acked-by: Rosen Xu <rosen.xu@intel.com> Acked-by: Hyong Youb Kim <hyonkim@cisco.com>
2021-10-18 13:48:48 +00:00
uint32_t max_rx_pktlen = dev->data->mtu + RTE_ETHER_HDR_LEN;
frame_size = buf_size - RTE_PKTMBUF_HEADROOM - MVNETA_PKT_EFFEC_OFFS;
ethdev: fix max Rx packet length There is a confusion on setting max Rx packet length, this patch aims to clarify it. 'rte_eth_dev_configure()' API accepts max Rx packet size via 'uint32_t max_rx_pkt_len' field of the config struct 'struct rte_eth_conf'. Also 'rte_eth_dev_set_mtu()' API can be used to set the MTU, and result stored into '(struct rte_eth_dev)->data->mtu'. These two APIs are related but they work in a disconnected way, they store the set values in different variables which makes hard to figure out which one to use, also having two different method for a related functionality is confusing for the users. Other issues causing confusion is: * maximum transmission unit (MTU) is payload of the Ethernet frame. And 'max_rx_pkt_len' is the size of the Ethernet frame. Difference is Ethernet frame overhead, and this overhead may be different from device to device based on what device supports, like VLAN and QinQ. * 'max_rx_pkt_len' is only valid when application requested jumbo frame, which adds additional confusion and some APIs and PMDs already discards this documented behavior. * For the jumbo frame enabled case, 'max_rx_pkt_len' is an mandatory field, this adds configuration complexity for application. As solution, both APIs gets MTU as parameter, and both saves the result in same variable '(struct rte_eth_dev)->data->mtu'. For this 'max_rx_pkt_len' updated as 'mtu', and it is always valid independent from jumbo frame. For 'rte_eth_dev_configure()', 'dev->data->dev_conf.rxmode.mtu' is user request and it should be used only within configure function and result should be stored to '(struct rte_eth_dev)->data->mtu'. After that point both application and PMD uses MTU from this variable. When application doesn't provide an MTU during 'rte_eth_dev_configure()' default 'RTE_ETHER_MTU' value is used. Additional clarification done on scattered Rx configuration, in relation to MTU and Rx buffer size. MTU is used to configure the device for physical Rx/Tx size limitation, Rx buffer is where to store Rx packets, many PMDs use mbuf data buffer size as Rx buffer size. PMDs compare MTU against Rx buffer size to decide enabling scattered Rx or not. If scattered Rx is not supported by device, MTU bigger than Rx buffer size should fail. Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com> Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com> Acked-by: Somnath Kotur <somnath.kotur@broadcom.com> Acked-by: Huisong Li <lihuisong@huawei.com> Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru> Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com> Acked-by: Rosen Xu <rosen.xu@intel.com> Acked-by: Hyong Youb Kim <hyonkim@cisco.com>
2021-10-18 13:48:48 +00:00
if (frame_size < max_rx_pktlen) {
MVNETA_LOG(ERR,
"Mbuf size must be increased to %u bytes to hold up "
"to %u bytes of data.",
ethdev: fix max Rx packet length There is a confusion on setting max Rx packet length, this patch aims to clarify it. 'rte_eth_dev_configure()' API accepts max Rx packet size via 'uint32_t max_rx_pkt_len' field of the config struct 'struct rte_eth_conf'. Also 'rte_eth_dev_set_mtu()' API can be used to set the MTU, and result stored into '(struct rte_eth_dev)->data->mtu'. These two APIs are related but they work in a disconnected way, they store the set values in different variables which makes hard to figure out which one to use, also having two different method for a related functionality is confusing for the users. Other issues causing confusion is: * maximum transmission unit (MTU) is payload of the Ethernet frame. And 'max_rx_pkt_len' is the size of the Ethernet frame. Difference is Ethernet frame overhead, and this overhead may be different from device to device based on what device supports, like VLAN and QinQ. * 'max_rx_pkt_len' is only valid when application requested jumbo frame, which adds additional confusion and some APIs and PMDs already discards this documented behavior. * For the jumbo frame enabled case, 'max_rx_pkt_len' is an mandatory field, this adds configuration complexity for application. As solution, both APIs gets MTU as parameter, and both saves the result in same variable '(struct rte_eth_dev)->data->mtu'. For this 'max_rx_pkt_len' updated as 'mtu', and it is always valid independent from jumbo frame. For 'rte_eth_dev_configure()', 'dev->data->dev_conf.rxmode.mtu' is user request and it should be used only within configure function and result should be stored to '(struct rte_eth_dev)->data->mtu'. After that point both application and PMD uses MTU from this variable. When application doesn't provide an MTU during 'rte_eth_dev_configure()' default 'RTE_ETHER_MTU' value is used. Additional clarification done on scattered Rx configuration, in relation to MTU and Rx buffer size. MTU is used to configure the device for physical Rx/Tx size limitation, Rx buffer is where to store Rx packets, many PMDs use mbuf data buffer size as Rx buffer size. PMDs compare MTU against Rx buffer size to decide enabling scattered Rx or not. If scattered Rx is not supported by device, MTU bigger than Rx buffer size should fail. Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com> Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com> Acked-by: Somnath Kotur <somnath.kotur@broadcom.com> Acked-by: Huisong Li <lihuisong@huawei.com> Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru> Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com> Acked-by: Rosen Xu <rosen.xu@intel.com> Acked-by: Hyong Youb Kim <hyonkim@cisco.com>
2021-10-18 13:48:48 +00:00
max_rx_pktlen + buf_size - frame_size,
max_rx_pktlen);
dev->data->mtu = frame_size - RTE_ETHER_HDR_LEN;
MVNETA_LOG(INFO, "Setting MTU to %u", dev->data->mtu);
}
if (dev->data->rx_queues[idx]) {
rte_free(dev->data->rx_queues[idx]);
dev->data->rx_queues[idx] = NULL;
}
rxq = rte_zmalloc_socket("rxq", sizeof(*rxq), 0, socket);
if (!rxq)
return -ENOMEM;
rxq->priv = priv;
rxq->mp = mp;
rxq->cksum_enabled = dev->data->dev_conf.rxmode.offloads &
RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
rxq->queue_id = idx;
rxq->port_id = dev->data->port_id;
rxq->size = desc;
rx_desc_free_thresh = RTE_MIN(rx_desc_free_thresh, (desc / 2));
priv->ppio_params.inqs_params.tcs_params[MRVL_NETA_DEFAULT_TC].size =
desc;
dev->data->rx_queues[idx] = rxq;
return 0;
}
/**
* DPDK callback to configure the transmit queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* Transmit queue index.
* @param desc
* Number of descriptors to configure in the queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param conf
* Tx queue configuration parameters.
*
* @return
* 0 on success, negative error value otherwise.
*/
int
mvneta_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_txconf *conf)
{
struct mvneta_priv *priv = dev->data->dev_private;
struct mvneta_txq *txq;
if (dev->data->tx_queues[idx]) {
rte_free(dev->data->tx_queues[idx]);
dev->data->tx_queues[idx] = NULL;
}
txq = rte_zmalloc_socket("txq", sizeof(*txq), 0, socket);
if (!txq)
return -ENOMEM;
txq->priv = priv;
txq->queue_id = idx;
txq->port_id = dev->data->port_id;
txq->tx_deferred_start = conf->tx_deferred_start;
dev->data->tx_queues[idx] = txq;
priv->ppio_params.outqs_params.outqs_params[idx].size = desc;
priv->ppio_params.outqs_params.outqs_params[idx].weight = 1;
return 0;
}
/**
* DPDK callback to release the transmit queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param qid
* Transmit queue index.
*/
void
mvneta_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
struct mvneta_txq *q = dev->data->tx_queues[qid];
if (!q)
return;
rte_free(q);
}
/**
* Return mbufs to mempool.
*
* @param rxq
* Pointer to rx queue structure
* @param desc
* Array of rx descriptors
*/
static void
mvneta_recv_buffs_free(struct neta_ppio_desc *desc, uint16_t num)
{
uint64_t addr;
uint8_t i;
for (i = 0; i < num; i++) {
if (desc) {
addr = cookie_addr_high |
neta_ppio_inq_desc_get_cookie(desc);
if (addr)
rte_pktmbuf_free((struct rte_mbuf *)addr);
desc++;
}
}
}
int
mvneta_alloc_rx_bufs(struct rte_eth_dev *dev)
{
struct mvneta_priv *priv = dev->data->dev_private;
int ret = 0, i;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct mvneta_rxq *rxq = dev->data->rx_queues[i];
int num = rxq->size;
ret = mvneta_buffs_alloc(priv, rxq, &num);
if (ret || num != rxq->size) {
rte_free(rxq);
return ret;
}
}
return 0;
}
/**
* Flush single receive queue.
*
* @param rxq
* Pointer to rx queue structure.
* @param descs
* Array of rx descriptors
*/
static void
mvneta_rx_queue_flush(struct mvneta_rxq *rxq)
{
struct neta_ppio_desc *descs;
struct neta_buff_inf *bufs;
uint16_t num;
int ret, i;
descs = rte_malloc("rxdesc", MRVL_NETA_RXD_MAX * sizeof(*descs), 0);
if (descs == NULL) {
MVNETA_LOG(ERR, "Failed to allocate descs.");
return;
}
bufs = rte_malloc("buffs", MRVL_NETA_RXD_MAX * sizeof(*bufs), 0);
if (bufs == NULL) {
MVNETA_LOG(ERR, "Failed to allocate bufs.");
rte_free(descs);
return;
}
do {
num = MRVL_NETA_RXD_MAX;
ret = neta_ppio_recv(rxq->priv->ppio,
rxq->queue_id,
descs, &num);
mvneta_recv_buffs_free(descs, num);
} while (ret == 0 && num);
rxq->pkts_processed = 0;
num = MRVL_NETA_RXD_MAX;
neta_ppio_inq_get_all_buffs(rxq->priv->ppio, rxq->queue_id, bufs, &num);
MVNETA_LOG(INFO, "freeing %u unused bufs.", num);
for (i = 0; i < num; i++) {
uint64_t addr;
if (bufs[i].cookie) {
addr = cookie_addr_high | bufs[i].cookie;
rte_pktmbuf_free((struct rte_mbuf *)addr);
}
}
rte_free(descs);
rte_free(bufs);
}
/**
* Flush single transmit queue.
*
* @param txq
* Pointer to tx queue structure
*/
static void
mvneta_tx_queue_flush(struct mvneta_txq *txq)
{
struct mvneta_shadow_txq *sq = &txq->shadow_txq;
if (sq->size)
mvneta_sent_buffers_free(txq->priv->ppio, sq,
txq->queue_id);
/* free the rest of them */
while (sq->tail != sq->head) {
uint64_t addr = cookie_addr_high |
sq->ent[sq->tail].cookie;
rte_pktmbuf_free((struct rte_mbuf *)addr);
sq->tail = (sq->tail + 1) & MRVL_NETA_TX_SHADOWQ_MASK;
}
memset(sq, 0, sizeof(*sq));
}
void
mvneta_flush_queues(struct rte_eth_dev *dev)
{
int i;
MVNETA_LOG(INFO, "Flushing rx queues");
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct mvneta_rxq *rxq = dev->data->rx_queues[i];
mvneta_rx_queue_flush(rxq);
}
MVNETA_LOG(INFO, "Flushing tx queues");
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct mvneta_txq *txq = dev->data->tx_queues[i];
mvneta_tx_queue_flush(txq);
}
}
/**
* DPDK callback to release the receive queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param qid
* Receive queue index.
*/
void
mvneta_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
struct mvneta_rxq *q = dev->data->rx_queues[qid];
if (!q)
return;
/* If dev_stop was called already, mbufs are already
* returned to mempool and ppio is deinitialized.
* Skip this step.
*/
if (q->priv->ppio)
mvneta_rx_queue_flush(q);
rte_free(q);
}
/**
* DPDK callback to get information about specific receive queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param rx_queue_id
* Receive queue index.
* @param qinfo
* Receive queue information structure.
*/
void
mvneta_rxq_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct mvneta_rxq *q = dev->data->rx_queues[rx_queue_id];
qinfo->mp = q->mp;
qinfo->nb_desc = q->size;
}
/**
* DPDK callback to get information about specific transmit queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param tx_queue_id
* Transmit queue index.
* @param qinfo
* Transmit queue information structure.
*/
void
mvneta_txq_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
struct rte_eth_txq_info *qinfo)
{
struct mvneta_priv *priv = dev->data->dev_private;
qinfo->nb_desc =
priv->ppio_params.outqs_params.outqs_params[tx_queue_id].size;
}