numam-dpdk/lib/librte_table/rte_table_hash_key32.c

1204 lines
33 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2017 Intel Corporation
*/
#include <string.h>
#include <stdio.h>
#include <rte_common.h>
#include <rte_mbuf.h>
#include <rte_memory.h>
#include <rte_malloc.h>
#include <rte_log.h>
#include "rte_table_hash.h"
#include "rte_lru.h"
#define KEY_SIZE 32
#define KEYS_PER_BUCKET 4
#define RTE_BUCKET_ENTRY_VALID 0x1LLU
#ifdef RTE_TABLE_STATS_COLLECT
#define RTE_TABLE_HASH_KEY32_STATS_PKTS_IN_ADD(table, val) \
table->stats.n_pkts_in += val
#define RTE_TABLE_HASH_KEY32_STATS_PKTS_LOOKUP_MISS(table, val) \
table->stats.n_pkts_lookup_miss += val
#else
#define RTE_TABLE_HASH_KEY32_STATS_PKTS_IN_ADD(table, val)
#define RTE_TABLE_HASH_KEY32_STATS_PKTS_LOOKUP_MISS(table, val)
#endif
struct rte_bucket_4_32 {
/* Cache line 0 */
uint64_t signature[4 + 1];
uint64_t lru_list;
struct rte_bucket_4_32 *next;
uint64_t next_valid;
/* Cache lines 1 and 2 */
uint64_t key[4][4];
/* Cache line 3 */
uint8_t data[0];
};
struct rte_table_hash {
struct rte_table_stats stats;
/* Input parameters */
uint32_t n_buckets;
uint32_t key_size;
uint32_t entry_size;
uint32_t bucket_size;
uint32_t key_offset;
uint64_t key_mask[4];
rte_table_hash_op_hash f_hash;
uint64_t seed;
/* Extendible buckets */
uint32_t n_buckets_ext;
uint32_t stack_pos;
uint32_t *stack;
/* Lookup table */
uint8_t memory[0] __rte_cache_aligned;
};
static int
keycmp(void *a, void *b, void *b_mask)
{
uint64_t *a64 = a, *b64 = b, *b_mask64 = b_mask;
return (a64[0] != (b64[0] & b_mask64[0])) ||
(a64[1] != (b64[1] & b_mask64[1])) ||
(a64[2] != (b64[2] & b_mask64[2])) ||
(a64[3] != (b64[3] & b_mask64[3]));
}
static void
keycpy(void *dst, void *src, void *src_mask)
{
uint64_t *dst64 = dst, *src64 = src, *src_mask64 = src_mask;
dst64[0] = src64[0] & src_mask64[0];
dst64[1] = src64[1] & src_mask64[1];
dst64[2] = src64[2] & src_mask64[2];
dst64[3] = src64[3] & src_mask64[3];
}
static int
check_params_create(struct rte_table_hash_params *params)
{
/* name */
if (params->name == NULL) {
RTE_LOG(ERR, TABLE, "%s: name invalid value\n", __func__);
return -EINVAL;
}
/* key_size */
if (params->key_size != KEY_SIZE) {
RTE_LOG(ERR, TABLE, "%s: key_size invalid value\n", __func__);
return -EINVAL;
}
/* n_keys */
if (params->n_keys == 0) {
RTE_LOG(ERR, TABLE, "%s: n_keys is zero\n", __func__);
return -EINVAL;
}
/* n_buckets */
if ((params->n_buckets == 0) ||
(!rte_is_power_of_2(params->n_buckets))) {
RTE_LOG(ERR, TABLE, "%s: n_buckets invalid value\n", __func__);
return -EINVAL;
}
/* f_hash */
if (params->f_hash == NULL) {
RTE_LOG(ERR, TABLE, "%s: f_hash function pointer is NULL\n",
__func__);
return -EINVAL;
}
return 0;
}
static void *
rte_table_hash_create_key32_lru(void *params,
int socket_id,
uint32_t entry_size)
{
struct rte_table_hash_params *p = params;
struct rte_table_hash *f;
uint64_t bucket_size, total_size;
uint32_t n_buckets, i;
/* Check input parameters */
if ((check_params_create(p) != 0) ||
((sizeof(struct rte_table_hash) % RTE_CACHE_LINE_SIZE) != 0) ||
((sizeof(struct rte_bucket_4_32) % 64) != 0))
return NULL;
/*
* Table dimensioning
*
* Objective: Pick the number of buckets (n_buckets) so that there a chance
* to store n_keys keys in the table.
*
* Note: Since the buckets do not get extended, it is not possible to
* guarantee that n_keys keys can be stored in the table at any time. In the
* worst case scenario when all the n_keys fall into the same bucket, only
* a maximum of KEYS_PER_BUCKET keys will be stored in the table. This case
* defeats the purpose of the hash table. It indicates unsuitable f_hash or
* n_keys to n_buckets ratio.
*
* MIN(n_buckets) = (n_keys + KEYS_PER_BUCKET - 1) / KEYS_PER_BUCKET
*/
n_buckets = rte_align32pow2(
(p->n_keys + KEYS_PER_BUCKET - 1) / KEYS_PER_BUCKET);
n_buckets = RTE_MAX(n_buckets, p->n_buckets);
/* Memory allocation */
bucket_size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct rte_bucket_4_32) +
KEYS_PER_BUCKET * entry_size);
total_size = sizeof(struct rte_table_hash) + n_buckets * bucket_size;
if (total_size > SIZE_MAX) {
RTE_LOG(ERR, TABLE, "%s: Cannot allocate %" PRIu64 " bytes "
"for hash table %s\n",
__func__, total_size, p->name);
return NULL;
}
f = rte_zmalloc_socket(p->name,
(size_t)total_size,
RTE_CACHE_LINE_SIZE,
socket_id);
if (f == NULL) {
RTE_LOG(ERR, TABLE, "%s: Cannot allocate %" PRIu64 " bytes "
"for hash table %s\n",
__func__, total_size, p->name);
return NULL;
}
RTE_LOG(INFO, TABLE,
"%s: Hash table %s memory footprint "
"is %" PRIu64 " bytes\n",
__func__, p->name, total_size);
/* Memory initialization */
f->n_buckets = n_buckets;
f->key_size = KEY_SIZE;
f->entry_size = entry_size;
f->bucket_size = bucket_size;
f->key_offset = p->key_offset;
f->f_hash = p->f_hash;
f->seed = p->seed;
if (p->key_mask != NULL) {
f->key_mask[0] = ((uint64_t *)p->key_mask)[0];
f->key_mask[1] = ((uint64_t *)p->key_mask)[1];
f->key_mask[2] = ((uint64_t *)p->key_mask)[2];
f->key_mask[3] = ((uint64_t *)p->key_mask)[3];
} else {
f->key_mask[0] = 0xFFFFFFFFFFFFFFFFLLU;
f->key_mask[1] = 0xFFFFFFFFFFFFFFFFLLU;
f->key_mask[2] = 0xFFFFFFFFFFFFFFFFLLU;
f->key_mask[3] = 0xFFFFFFFFFFFFFFFFLLU;
}
for (i = 0; i < n_buckets; i++) {
struct rte_bucket_4_32 *bucket;
bucket = (struct rte_bucket_4_32 *) &f->memory[i *
f->bucket_size];
bucket->lru_list = 0x0000000100020003LLU;
}
return f;
}
static int
rte_table_hash_free_key32_lru(void *table)
{
struct rte_table_hash *f = table;
/* Check input parameters */
if (f == NULL) {
RTE_LOG(ERR, TABLE, "%s: table parameter is NULL\n", __func__);
return -EINVAL;
}
rte_free(f);
return 0;
}
static int
rte_table_hash_entry_add_key32_lru(
void *table,
void *key,
void *entry,
int *key_found,
void **entry_ptr)
{
struct rte_table_hash *f = table;
struct rte_bucket_4_32 *bucket;
uint64_t signature, pos;
uint32_t bucket_index, i;
signature = f->f_hash(key, f->key_mask, f->key_size, f->seed);
bucket_index = signature & (f->n_buckets - 1);
bucket = (struct rte_bucket_4_32 *)
&f->memory[bucket_index * f->bucket_size];
signature |= RTE_BUCKET_ENTRY_VALID;
/* Key is present in the bucket */
for (i = 0; i < 4; i++) {
uint64_t bucket_signature = bucket->signature[i];
uint8_t *bucket_key = (uint8_t *) &bucket->key[i];
if ((bucket_signature == signature) &&
(keycmp(bucket_key, key, f->key_mask) == 0)) {
uint8_t *bucket_data = &bucket->data[i * f->entry_size];
memcpy(bucket_data, entry, f->entry_size);
lru_update(bucket, i);
*key_found = 1;
*entry_ptr = (void *) bucket_data;
return 0;
}
}
/* Key is not present in the bucket */
for (i = 0; i < 4; i++) {
uint64_t bucket_signature = bucket->signature[i];
uint8_t *bucket_key = (uint8_t *) &bucket->key[i];
if (bucket_signature == 0) {
uint8_t *bucket_data = &bucket->data[i * f->entry_size];
bucket->signature[i] = signature;
keycpy(bucket_key, key, f->key_mask);
memcpy(bucket_data, entry, f->entry_size);
lru_update(bucket, i);
*key_found = 0;
*entry_ptr = (void *) bucket_data;
return 0;
}
}
/* Bucket full: replace LRU entry */
pos = lru_pos(bucket);
bucket->signature[pos] = signature;
keycpy(&bucket->key[pos], key, f->key_mask);
memcpy(&bucket->data[pos * f->entry_size], entry, f->entry_size);
lru_update(bucket, pos);
*key_found = 0;
*entry_ptr = (void *) &bucket->data[pos * f->entry_size];
return 0;
}
static int
rte_table_hash_entry_delete_key32_lru(
void *table,
void *key,
int *key_found,
void *entry)
{
struct rte_table_hash *f = table;
struct rte_bucket_4_32 *bucket;
uint64_t signature;
uint32_t bucket_index, i;
signature = f->f_hash(key, f->key_mask, f->key_size, f->seed);
bucket_index = signature & (f->n_buckets - 1);
bucket = (struct rte_bucket_4_32 *)
&f->memory[bucket_index * f->bucket_size];
signature |= RTE_BUCKET_ENTRY_VALID;
/* Key is present in the bucket */
for (i = 0; i < 4; i++) {
uint64_t bucket_signature = bucket->signature[i];
uint8_t *bucket_key = (uint8_t *) &bucket->key[i];
if ((bucket_signature == signature) &&
(keycmp(bucket_key, key, f->key_mask) == 0)) {
uint8_t *bucket_data = &bucket->data[i * f->entry_size];
bucket->signature[i] = 0;
*key_found = 1;
if (entry)
memcpy(entry, bucket_data, f->entry_size);
return 0;
}
}
/* Key is not present in the bucket */
*key_found = 0;
return 0;
}
static void *
rte_table_hash_create_key32_ext(void *params,
int socket_id,
uint32_t entry_size)
{
struct rte_table_hash_params *p = params;
struct rte_table_hash *f;
uint64_t bucket_size, stack_size, total_size;
uint32_t n_buckets_ext, i;
/* Check input parameters */
if ((check_params_create(p) != 0) ||
((sizeof(struct rte_table_hash) % RTE_CACHE_LINE_SIZE) != 0) ||
((sizeof(struct rte_bucket_4_32) % 64) != 0))
return NULL;
/*
* Table dimensioning
*
* Objective: Pick the number of bucket extensions (n_buckets_ext) so that
* it is guaranteed that n_keys keys can be stored in the table at any time.
*
* The worst case scenario takes place when all the n_keys keys fall into
* the same bucket. Actually, due to the KEYS_PER_BUCKET scheme, the worst
* case takes place when (n_keys - KEYS_PER_BUCKET + 1) keys fall into the
* same bucket, while the remaining (KEYS_PER_BUCKET - 1) keys each fall
* into a different bucket. This case defeats the purpose of the hash table.
* It indicates unsuitable f_hash or n_keys to n_buckets ratio.
*
* n_buckets_ext = n_keys / KEYS_PER_BUCKET + KEYS_PER_BUCKET - 1
*/
n_buckets_ext = p->n_keys / KEYS_PER_BUCKET + KEYS_PER_BUCKET - 1;
/* Memory allocation */
bucket_size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct rte_bucket_4_32) +
KEYS_PER_BUCKET * entry_size);
stack_size = RTE_CACHE_LINE_ROUNDUP(n_buckets_ext * sizeof(uint32_t));
total_size = sizeof(struct rte_table_hash) +
(p->n_buckets + n_buckets_ext) * bucket_size + stack_size;
if (total_size > SIZE_MAX) {
RTE_LOG(ERR, TABLE, "%s: Cannot allocate %" PRIu64 " bytes "
"for hash table %s\n",
__func__, total_size, p->name);
return NULL;
}
f = rte_zmalloc_socket(p->name,
(size_t)total_size,
RTE_CACHE_LINE_SIZE,
socket_id);
if (f == NULL) {
RTE_LOG(ERR, TABLE, "%s: Cannot allocate %" PRIu64 " bytes "
"for hash table %s\n",
__func__, total_size, p->name);
return NULL;
}
RTE_LOG(INFO, TABLE,
"%s: Hash table %s memory footprint "
"is %" PRIu64" bytes\n",
__func__, p->name, total_size);
/* Memory initialization */
f->n_buckets = p->n_buckets;
f->key_size = KEY_SIZE;
f->entry_size = entry_size;
f->bucket_size = bucket_size;
f->key_offset = p->key_offset;
f->f_hash = p->f_hash;
f->seed = p->seed;
f->n_buckets_ext = n_buckets_ext;
f->stack_pos = n_buckets_ext;
f->stack = (uint32_t *)
&f->memory[(p->n_buckets + n_buckets_ext) * f->bucket_size];
if (p->key_mask != NULL) {
f->key_mask[0] = (((uint64_t *)p->key_mask)[0]);
f->key_mask[1] = (((uint64_t *)p->key_mask)[1]);
f->key_mask[2] = (((uint64_t *)p->key_mask)[2]);
f->key_mask[3] = (((uint64_t *)p->key_mask)[3]);
} else {
f->key_mask[0] = 0xFFFFFFFFFFFFFFFFLLU;
f->key_mask[1] = 0xFFFFFFFFFFFFFFFFLLU;
f->key_mask[2] = 0xFFFFFFFFFFFFFFFFLLU;
f->key_mask[3] = 0xFFFFFFFFFFFFFFFFLLU;
}
for (i = 0; i < n_buckets_ext; i++)
f->stack[i] = i;
return f;
}
static int
rte_table_hash_free_key32_ext(void *table)
{
struct rte_table_hash *f = table;
/* Check input parameters */
if (f == NULL) {
RTE_LOG(ERR, TABLE, "%s: table parameter is NULL\n", __func__);
return -EINVAL;
}
rte_free(f);
return 0;
}
static int
rte_table_hash_entry_add_key32_ext(
void *table,
void *key,
void *entry,
int *key_found,
void **entry_ptr)
{
struct rte_table_hash *f = table;
struct rte_bucket_4_32 *bucket0, *bucket, *bucket_prev;
uint64_t signature;
uint32_t bucket_index, i;
signature = f->f_hash(key, f->key_mask, f->key_size, f->seed);
bucket_index = signature & (f->n_buckets - 1);
bucket0 = (struct rte_bucket_4_32 *)
&f->memory[bucket_index * f->bucket_size];
signature |= RTE_BUCKET_ENTRY_VALID;
/* Key is present in the bucket */
for (bucket = bucket0; bucket != NULL; bucket = bucket->next) {
for (i = 0; i < 4; i++) {
uint64_t bucket_signature = bucket->signature[i];
uint8_t *bucket_key = (uint8_t *) &bucket->key[i];
if ((bucket_signature == signature) &&
(keycmp(bucket_key, key, f->key_mask) == 0)) {
uint8_t *bucket_data = &bucket->data[i *
f->entry_size];
memcpy(bucket_data, entry, f->entry_size);
*key_found = 1;
*entry_ptr = (void *) bucket_data;
return 0;
}
}
}
/* Key is not present in the bucket */
for (bucket_prev = NULL, bucket = bucket0; bucket != NULL;
bucket_prev = bucket, bucket = bucket->next)
for (i = 0; i < 4; i++) {
uint64_t bucket_signature = bucket->signature[i];
uint8_t *bucket_key = (uint8_t *) &bucket->key[i];
if (bucket_signature == 0) {
uint8_t *bucket_data = &bucket->data[i *
f->entry_size];
bucket->signature[i] = signature;
keycpy(bucket_key, key, f->key_mask);
memcpy(bucket_data, entry, f->entry_size);
*key_found = 0;
*entry_ptr = (void *) bucket_data;
return 0;
}
}
/* Bucket full: extend bucket */
if (f->stack_pos > 0) {
bucket_index = f->stack[--f->stack_pos];
bucket = (struct rte_bucket_4_32 *)
&f->memory[(f->n_buckets + bucket_index) *
f->bucket_size];
bucket_prev->next = bucket;
bucket_prev->next_valid = 1;
bucket->signature[0] = signature;
keycpy(&bucket->key[0], key, f->key_mask);
memcpy(&bucket->data[0], entry, f->entry_size);
*key_found = 0;
*entry_ptr = (void *) &bucket->data[0];
return 0;
}
return -ENOSPC;
}
static int
rte_table_hash_entry_delete_key32_ext(
void *table,
void *key,
int *key_found,
void *entry)
{
struct rte_table_hash *f = table;
struct rte_bucket_4_32 *bucket0, *bucket, *bucket_prev;
uint64_t signature;
uint32_t bucket_index, i;
signature = f->f_hash(key, f->key_mask, f->key_size, f->seed);
bucket_index = signature & (f->n_buckets - 1);
bucket0 = (struct rte_bucket_4_32 *)
&f->memory[bucket_index * f->bucket_size];
signature |= RTE_BUCKET_ENTRY_VALID;
/* Key is present in the bucket */
for (bucket_prev = NULL, bucket = bucket0; bucket != NULL;
bucket_prev = bucket, bucket = bucket->next)
for (i = 0; i < 4; i++) {
uint64_t bucket_signature = bucket->signature[i];
uint8_t *bucket_key = (uint8_t *) &bucket->key[i];
if ((bucket_signature == signature) &&
(keycmp(bucket_key, key, f->key_mask) == 0)) {
uint8_t *bucket_data = &bucket->data[i *
f->entry_size];
bucket->signature[i] = 0;
*key_found = 1;
if (entry)
memcpy(entry, bucket_data, f->entry_size);
if ((bucket->signature[0] == 0) &&
(bucket->signature[1] == 0) &&
(bucket->signature[2] == 0) &&
(bucket->signature[3] == 0) &&
(bucket_prev != NULL)) {
bucket_prev->next = bucket->next;
bucket_prev->next_valid =
bucket->next_valid;
memset(bucket, 0,
sizeof(struct rte_bucket_4_32));
bucket_index = (((uint8_t *)bucket -
(uint8_t *)f->memory)/f->bucket_size) - f->n_buckets;
f->stack[f->stack_pos++] = bucket_index;
}
return 0;
}
}
/* Key is not present in the bucket */
*key_found = 0;
return 0;
}
#define lookup_key32_cmp(key_in, bucket, pos, f) \
{ \
uint64_t xor[4][4], or[4], signature[4], k[4]; \
\
k[0] = key_in[0] & f->key_mask[0]; \
k[1] = key_in[1] & f->key_mask[1]; \
k[2] = key_in[2] & f->key_mask[2]; \
k[3] = key_in[3] & f->key_mask[3]; \
\
signature[0] = ((~bucket->signature[0]) & 1); \
signature[1] = ((~bucket->signature[1]) & 1); \
signature[2] = ((~bucket->signature[2]) & 1); \
signature[3] = ((~bucket->signature[3]) & 1); \
\
xor[0][0] = k[0] ^ bucket->key[0][0]; \
xor[0][1] = k[1] ^ bucket->key[0][1]; \
xor[0][2] = k[2] ^ bucket->key[0][2]; \
xor[0][3] = k[3] ^ bucket->key[0][3]; \
\
xor[1][0] = k[0] ^ bucket->key[1][0]; \
xor[1][1] = k[1] ^ bucket->key[1][1]; \
xor[1][2] = k[2] ^ bucket->key[1][2]; \
xor[1][3] = k[3] ^ bucket->key[1][3]; \
\
xor[2][0] = k[0] ^ bucket->key[2][0]; \
xor[2][1] = k[1] ^ bucket->key[2][1]; \
xor[2][2] = k[2] ^ bucket->key[2][2]; \
xor[2][3] = k[3] ^ bucket->key[2][3]; \
\
xor[3][0] = k[0] ^ bucket->key[3][0]; \
xor[3][1] = k[1] ^ bucket->key[3][1]; \
xor[3][2] = k[2] ^ bucket->key[3][2]; \
xor[3][3] = k[3] ^ bucket->key[3][3]; \
\
or[0] = xor[0][0] | xor[0][1] | xor[0][2] | xor[0][3] | signature[0];\
or[1] = xor[1][0] | xor[1][1] | xor[1][2] | xor[1][3] | signature[1];\
or[2] = xor[2][0] | xor[2][1] | xor[2][2] | xor[2][3] | signature[2];\
or[3] = xor[3][0] | xor[3][1] | xor[3][2] | xor[3][3] | signature[3];\
\
pos = 4; \
if (or[0] == 0) \
pos = 0; \
if (or[1] == 0) \
pos = 1; \
if (or[2] == 0) \
pos = 2; \
if (or[3] == 0) \
pos = 3; \
}
#define lookup1_stage0(pkt0_index, mbuf0, pkts, pkts_mask, f) \
{ \
uint64_t pkt_mask; \
uint32_t key_offset = f->key_offset; \
\
pkt0_index = __builtin_ctzll(pkts_mask); \
pkt_mask = 1LLU << pkt0_index; \
pkts_mask &= ~pkt_mask; \
\
mbuf0 = pkts[pkt0_index]; \
rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf0, key_offset));\
}
#define lookup1_stage1(mbuf1, bucket1, f) \
{ \
uint64_t *key; \
uint64_t signature; \
uint32_t bucket_index; \
\
key = RTE_MBUF_METADATA_UINT64_PTR(mbuf1, f->key_offset); \
signature = f->f_hash(key, f->key_mask, KEY_SIZE, f->seed); \
\
bucket_index = signature & (f->n_buckets - 1); \
bucket1 = (struct rte_bucket_4_32 *) \
&f->memory[bucket_index * f->bucket_size]; \
rte_prefetch0(bucket1); \
rte_prefetch0((void *)(((uintptr_t) bucket1) + RTE_CACHE_LINE_SIZE));\
rte_prefetch0((void *)(((uintptr_t) bucket1) + 2 * RTE_CACHE_LINE_SIZE));\
}
#define lookup1_stage2_lru(pkt2_index, mbuf2, bucket2, \
pkts_mask_out, entries, f) \
{ \
void *a; \
uint64_t pkt_mask; \
uint64_t *key; \
uint32_t pos; \
\
key = RTE_MBUF_METADATA_UINT64_PTR(mbuf2, f->key_offset);\
lookup_key32_cmp(key, bucket2, pos, f); \
\
pkt_mask = (bucket2->signature[pos] & 1LLU) << pkt2_index;\
pkts_mask_out |= pkt_mask; \
\
a = (void *) &bucket2->data[pos * f->entry_size]; \
rte_prefetch0(a); \
entries[pkt2_index] = a; \
lru_update(bucket2, pos); \
}
#define lookup1_stage2_ext(pkt2_index, mbuf2, bucket2, pkts_mask_out,\
entries, buckets_mask, buckets, keys, f) \
{ \
struct rte_bucket_4_32 *bucket_next; \
void *a; \
uint64_t pkt_mask, bucket_mask; \
uint64_t *key; \
uint32_t pos; \
\
key = RTE_MBUF_METADATA_UINT64_PTR(mbuf2, f->key_offset);\
lookup_key32_cmp(key, bucket2, pos, f); \
\
pkt_mask = (bucket2->signature[pos] & 1LLU) << pkt2_index;\
pkts_mask_out |= pkt_mask; \
\
a = (void *) &bucket2->data[pos * f->entry_size]; \
rte_prefetch0(a); \
entries[pkt2_index] = a; \
\
bucket_mask = (~pkt_mask) & (bucket2->next_valid << pkt2_index);\
buckets_mask |= bucket_mask; \
bucket_next = bucket2->next; \
buckets[pkt2_index] = bucket_next; \
keys[pkt2_index] = key; \
}
#define lookup_grinder(pkt_index, buckets, keys, pkts_mask_out, \
entries, buckets_mask, f) \
{ \
struct rte_bucket_4_32 *bucket, *bucket_next; \
void *a; \
uint64_t pkt_mask, bucket_mask; \
uint64_t *key; \
uint32_t pos; \
\
bucket = buckets[pkt_index]; \
key = keys[pkt_index]; \
\
lookup_key32_cmp(key, bucket, pos, f); \
\
pkt_mask = (bucket->signature[pos] & 1LLU) << pkt_index;\
pkts_mask_out |= pkt_mask; \
\
a = (void *) &bucket->data[pos * f->entry_size]; \
rte_prefetch0(a); \
entries[pkt_index] = a; \
\
bucket_mask = (~pkt_mask) & (bucket->next_valid << pkt_index);\
buckets_mask |= bucket_mask; \
bucket_next = bucket->next; \
rte_prefetch0(bucket_next); \
rte_prefetch0((void *)(((uintptr_t) bucket_next) + RTE_CACHE_LINE_SIZE));\
rte_prefetch0((void *)(((uintptr_t) bucket_next) + \
2 * RTE_CACHE_LINE_SIZE)); \
buckets[pkt_index] = bucket_next; \
keys[pkt_index] = key; \
}
#define lookup2_stage0(pkt00_index, pkt01_index, mbuf00, mbuf01,\
pkts, pkts_mask, f) \
{ \
uint64_t pkt00_mask, pkt01_mask; \
uint32_t key_offset = f->key_offset; \
\
pkt00_index = __builtin_ctzll(pkts_mask); \
pkt00_mask = 1LLU << pkt00_index; \
pkts_mask &= ~pkt00_mask; \
\
mbuf00 = pkts[pkt00_index]; \
rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf00, key_offset));\
\
pkt01_index = __builtin_ctzll(pkts_mask); \
pkt01_mask = 1LLU << pkt01_index; \
pkts_mask &= ~pkt01_mask; \
\
mbuf01 = pkts[pkt01_index]; \
rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf01, key_offset));\
}
#define lookup2_stage0_with_odd_support(pkt00_index, pkt01_index,\
mbuf00, mbuf01, pkts, pkts_mask, f) \
{ \
uint64_t pkt00_mask, pkt01_mask; \
uint32_t key_offset = f->key_offset; \
\
pkt00_index = __builtin_ctzll(pkts_mask); \
pkt00_mask = 1LLU << pkt00_index; \
pkts_mask &= ~pkt00_mask; \
\
mbuf00 = pkts[pkt00_index]; \
rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf00, key_offset)); \
\
pkt01_index = __builtin_ctzll(pkts_mask); \
if (pkts_mask == 0) \
pkt01_index = pkt00_index; \
\
pkt01_mask = 1LLU << pkt01_index; \
pkts_mask &= ~pkt01_mask; \
\
mbuf01 = pkts[pkt01_index]; \
rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf01, key_offset)); \
}
#define lookup2_stage1(mbuf10, mbuf11, bucket10, bucket11, f) \
{ \
uint64_t *key10, *key11; \
uint64_t signature10, signature11; \
uint32_t bucket10_index, bucket11_index; \
\
key10 = RTE_MBUF_METADATA_UINT64_PTR(mbuf10, f->key_offset); \
signature10 = f->f_hash(key10, f->key_mask, KEY_SIZE, f->seed); \
\
bucket10_index = signature10 & (f->n_buckets - 1); \
bucket10 = (struct rte_bucket_4_32 *) \
&f->memory[bucket10_index * f->bucket_size]; \
rte_prefetch0(bucket10); \
rte_prefetch0((void *)(((uintptr_t) bucket10) + RTE_CACHE_LINE_SIZE));\
rte_prefetch0((void *)(((uintptr_t) bucket10) + 2 * RTE_CACHE_LINE_SIZE));\
\
key11 = RTE_MBUF_METADATA_UINT64_PTR(mbuf11, f->key_offset); \
signature11 = f->f_hash(key11, f->key_mask, KEY_SIZE, f->seed);\
\
bucket11_index = signature11 & (f->n_buckets - 1); \
bucket11 = (struct rte_bucket_4_32 *) \
&f->memory[bucket11_index * f->bucket_size]; \
rte_prefetch0(bucket11); \
rte_prefetch0((void *)(((uintptr_t) bucket11) + RTE_CACHE_LINE_SIZE));\
rte_prefetch0((void *)(((uintptr_t) bucket11) + 2 * RTE_CACHE_LINE_SIZE));\
}
#define lookup2_stage2_lru(pkt20_index, pkt21_index, mbuf20, mbuf21,\
bucket20, bucket21, pkts_mask_out, entries, f) \
{ \
void *a20, *a21; \
uint64_t pkt20_mask, pkt21_mask; \
uint64_t *key20, *key21; \
uint32_t pos20, pos21; \
\
key20 = RTE_MBUF_METADATA_UINT64_PTR(mbuf20, f->key_offset);\
key21 = RTE_MBUF_METADATA_UINT64_PTR(mbuf21, f->key_offset);\
\
lookup_key32_cmp(key20, bucket20, pos20, f); \
lookup_key32_cmp(key21, bucket21, pos21, f); \
\
pkt20_mask = (bucket20->signature[pos20] & 1LLU) << pkt20_index;\
pkt21_mask = (bucket21->signature[pos21] & 1LLU) << pkt21_index;\
pkts_mask_out |= pkt20_mask | pkt21_mask; \
\
a20 = (void *) &bucket20->data[pos20 * f->entry_size]; \
a21 = (void *) &bucket21->data[pos21 * f->entry_size]; \
rte_prefetch0(a20); \
rte_prefetch0(a21); \
entries[pkt20_index] = a20; \
entries[pkt21_index] = a21; \
lru_update(bucket20, pos20); \
lru_update(bucket21, pos21); \
}
#define lookup2_stage2_ext(pkt20_index, pkt21_index, mbuf20, mbuf21, bucket20, \
bucket21, pkts_mask_out, entries, buckets_mask, buckets, keys, f)\
{ \
struct rte_bucket_4_32 *bucket20_next, *bucket21_next; \
void *a20, *a21; \
uint64_t pkt20_mask, pkt21_mask, bucket20_mask, bucket21_mask;\
uint64_t *key20, *key21; \
uint32_t pos20, pos21; \
\
key20 = RTE_MBUF_METADATA_UINT64_PTR(mbuf20, f->key_offset);\
key21 = RTE_MBUF_METADATA_UINT64_PTR(mbuf21, f->key_offset);\
\
lookup_key32_cmp(key20, bucket20, pos20, f); \
lookup_key32_cmp(key21, bucket21, pos21, f); \
\
pkt20_mask = (bucket20->signature[pos20] & 1LLU) << pkt20_index;\
pkt21_mask = (bucket21->signature[pos21] & 1LLU) << pkt21_index;\
pkts_mask_out |= pkt20_mask | pkt21_mask; \
\
a20 = (void *) &bucket20->data[pos20 * f->entry_size]; \
a21 = (void *) &bucket21->data[pos21 * f->entry_size]; \
rte_prefetch0(a20); \
rte_prefetch0(a21); \
entries[pkt20_index] = a20; \
entries[pkt21_index] = a21; \
\
bucket20_mask = (~pkt20_mask) & (bucket20->next_valid << pkt20_index);\
bucket21_mask = (~pkt21_mask) & (bucket21->next_valid << pkt21_index);\
buckets_mask |= bucket20_mask | bucket21_mask; \
bucket20_next = bucket20->next; \
bucket21_next = bucket21->next; \
buckets[pkt20_index] = bucket20_next; \
buckets[pkt21_index] = bucket21_next; \
keys[pkt20_index] = key20; \
keys[pkt21_index] = key21; \
}
static int
rte_table_hash_lookup_key32_lru(
void *table,
struct rte_mbuf **pkts,
uint64_t pkts_mask,
uint64_t *lookup_hit_mask,
void **entries)
{
struct rte_table_hash *f = (struct rte_table_hash *) table;
struct rte_bucket_4_32 *bucket10, *bucket11, *bucket20, *bucket21;
struct rte_mbuf *mbuf00, *mbuf01, *mbuf10, *mbuf11, *mbuf20, *mbuf21;
uint32_t pkt00_index, pkt01_index, pkt10_index;
uint32_t pkt11_index, pkt20_index, pkt21_index;
uint64_t pkts_mask_out = 0;
__rte_unused uint32_t n_pkts_in = __builtin_popcountll(pkts_mask);
RTE_TABLE_HASH_KEY32_STATS_PKTS_IN_ADD(f, n_pkts_in);
/* Cannot run the pipeline with less than 5 packets */
if (__builtin_popcountll(pkts_mask) < 5) {
for ( ; pkts_mask; ) {
struct rte_bucket_4_32 *bucket;
struct rte_mbuf *mbuf;
uint32_t pkt_index;
lookup1_stage0(pkt_index, mbuf, pkts, pkts_mask, f);
lookup1_stage1(mbuf, bucket, f);
lookup1_stage2_lru(pkt_index, mbuf, bucket,
pkts_mask_out, entries, f);
}
*lookup_hit_mask = pkts_mask_out;
RTE_TABLE_HASH_KEY32_STATS_PKTS_LOOKUP_MISS(f, n_pkts_in - __builtin_popcountll(pkts_mask_out));
return 0;
}
/*
* Pipeline fill
*
*/
/* Pipeline stage 0 */
lookup2_stage0(pkt00_index, pkt01_index, mbuf00, mbuf01, pkts,
pkts_mask, f);
/* Pipeline feed */
mbuf10 = mbuf00;
mbuf11 = mbuf01;
pkt10_index = pkt00_index;
pkt11_index = pkt01_index;
/* Pipeline stage 0 */
lookup2_stage0(pkt00_index, pkt01_index, mbuf00, mbuf01, pkts,
pkts_mask, f);
/* Pipeline stage 1 */
lookup2_stage1(mbuf10, mbuf11, bucket10, bucket11, f);
/*
* Pipeline run
*
*/
for ( ; pkts_mask; ) {
/* Pipeline feed */
bucket20 = bucket10;
bucket21 = bucket11;
mbuf20 = mbuf10;
mbuf21 = mbuf11;
mbuf10 = mbuf00;
mbuf11 = mbuf01;
pkt20_index = pkt10_index;
pkt21_index = pkt11_index;
pkt10_index = pkt00_index;
pkt11_index = pkt01_index;
/* Pipeline stage 0 */
lookup2_stage0_with_odd_support(pkt00_index, pkt01_index,
mbuf00, mbuf01, pkts, pkts_mask, f);
/* Pipeline stage 1 */
lookup2_stage1(mbuf10, mbuf11, bucket10, bucket11, f);
/* Pipeline stage 2 */
lookup2_stage2_lru(pkt20_index, pkt21_index,
mbuf20, mbuf21, bucket20, bucket21, pkts_mask_out,
entries, f);
}
/*
* Pipeline flush
*
*/
/* Pipeline feed */
bucket20 = bucket10;
bucket21 = bucket11;
mbuf20 = mbuf10;
mbuf21 = mbuf11;
mbuf10 = mbuf00;
mbuf11 = mbuf01;
pkt20_index = pkt10_index;
pkt21_index = pkt11_index;
pkt10_index = pkt00_index;
pkt11_index = pkt01_index;
/* Pipeline stage 1 */
lookup2_stage1(mbuf10, mbuf11, bucket10, bucket11, f);
/* Pipeline stage 2 */
lookup2_stage2_lru(pkt20_index, pkt21_index,
mbuf20, mbuf21, bucket20, bucket21, pkts_mask_out, entries, f);
/* Pipeline feed */
bucket20 = bucket10;
bucket21 = bucket11;
mbuf20 = mbuf10;
mbuf21 = mbuf11;
pkt20_index = pkt10_index;
pkt21_index = pkt11_index;
/* Pipeline stage 2 */
lookup2_stage2_lru(pkt20_index, pkt21_index,
mbuf20, mbuf21, bucket20, bucket21, pkts_mask_out, entries, f);
*lookup_hit_mask = pkts_mask_out;
RTE_TABLE_HASH_KEY32_STATS_PKTS_LOOKUP_MISS(f, n_pkts_in - __builtin_popcountll(pkts_mask_out));
return 0;
} /* rte_table_hash_lookup_key32_lru() */
static int
rte_table_hash_lookup_key32_ext(
void *table,
struct rte_mbuf **pkts,
uint64_t pkts_mask,
uint64_t *lookup_hit_mask,
void **entries)
{
struct rte_table_hash *f = (struct rte_table_hash *) table;
struct rte_bucket_4_32 *bucket10, *bucket11, *bucket20, *bucket21;
struct rte_mbuf *mbuf00, *mbuf01, *mbuf10, *mbuf11, *mbuf20, *mbuf21;
uint32_t pkt00_index, pkt01_index, pkt10_index;
uint32_t pkt11_index, pkt20_index, pkt21_index;
uint64_t pkts_mask_out = 0, buckets_mask = 0;
struct rte_bucket_4_32 *buckets[RTE_PORT_IN_BURST_SIZE_MAX];
uint64_t *keys[RTE_PORT_IN_BURST_SIZE_MAX];
__rte_unused uint32_t n_pkts_in = __builtin_popcountll(pkts_mask);
RTE_TABLE_HASH_KEY32_STATS_PKTS_IN_ADD(f, n_pkts_in);
/* Cannot run the pipeline with less than 5 packets */
if (__builtin_popcountll(pkts_mask) < 5) {
for ( ; pkts_mask; ) {
struct rte_bucket_4_32 *bucket;
struct rte_mbuf *mbuf;
uint32_t pkt_index;
lookup1_stage0(pkt_index, mbuf, pkts, pkts_mask, f);
lookup1_stage1(mbuf, bucket, f);
lookup1_stage2_ext(pkt_index, mbuf, bucket,
pkts_mask_out, entries, buckets_mask, buckets,
keys, f);
}
goto grind_next_buckets;
}
/*
* Pipeline fill
*
*/
/* Pipeline stage 0 */
lookup2_stage0(pkt00_index, pkt01_index, mbuf00, mbuf01, pkts,
pkts_mask, f);
/* Pipeline feed */
mbuf10 = mbuf00;
mbuf11 = mbuf01;
pkt10_index = pkt00_index;
pkt11_index = pkt01_index;
/* Pipeline stage 0 */
lookup2_stage0(pkt00_index, pkt01_index, mbuf00, mbuf01, pkts,
pkts_mask, f);
/* Pipeline stage 1 */
lookup2_stage1(mbuf10, mbuf11, bucket10, bucket11, f);
/*
* Pipeline run
*
*/
for ( ; pkts_mask; ) {
/* Pipeline feed */
bucket20 = bucket10;
bucket21 = bucket11;
mbuf20 = mbuf10;
mbuf21 = mbuf11;
mbuf10 = mbuf00;
mbuf11 = mbuf01;
pkt20_index = pkt10_index;
pkt21_index = pkt11_index;
pkt10_index = pkt00_index;
pkt11_index = pkt01_index;
/* Pipeline stage 0 */
lookup2_stage0_with_odd_support(pkt00_index, pkt01_index,
mbuf00, mbuf01, pkts, pkts_mask, f);
/* Pipeline stage 1 */
lookup2_stage1(mbuf10, mbuf11, bucket10, bucket11, f);
/* Pipeline stage 2 */
lookup2_stage2_ext(pkt20_index, pkt21_index, mbuf20, mbuf21,
bucket20, bucket21, pkts_mask_out, entries,
buckets_mask, buckets, keys, f);
}
/*
* Pipeline flush
*
*/
/* Pipeline feed */
bucket20 = bucket10;
bucket21 = bucket11;
mbuf20 = mbuf10;
mbuf21 = mbuf11;
mbuf10 = mbuf00;
mbuf11 = mbuf01;
pkt20_index = pkt10_index;
pkt21_index = pkt11_index;
pkt10_index = pkt00_index;
pkt11_index = pkt01_index;
/* Pipeline stage 1 */
lookup2_stage1(mbuf10, mbuf11, bucket10, bucket11, f);
/* Pipeline stage 2 */
lookup2_stage2_ext(pkt20_index, pkt21_index, mbuf20, mbuf21,
bucket20, bucket21, pkts_mask_out, entries,
buckets_mask, buckets, keys, f);
/* Pipeline feed */
bucket20 = bucket10;
bucket21 = bucket11;
mbuf20 = mbuf10;
mbuf21 = mbuf11;
pkt20_index = pkt10_index;
pkt21_index = pkt11_index;
/* Pipeline stage 2 */
lookup2_stage2_ext(pkt20_index, pkt21_index, mbuf20, mbuf21,
bucket20, bucket21, pkts_mask_out, entries,
buckets_mask, buckets, keys, f);
grind_next_buckets:
/* Grind next buckets */
for ( ; buckets_mask; ) {
uint64_t buckets_mask_next = 0;
for ( ; buckets_mask; ) {
uint64_t pkt_mask;
uint32_t pkt_index;
pkt_index = __builtin_ctzll(buckets_mask);
pkt_mask = 1LLU << pkt_index;
buckets_mask &= ~pkt_mask;
lookup_grinder(pkt_index, buckets, keys, pkts_mask_out,
entries, buckets_mask_next, f);
}
buckets_mask = buckets_mask_next;
}
*lookup_hit_mask = pkts_mask_out;
RTE_TABLE_HASH_KEY32_STATS_PKTS_LOOKUP_MISS(f, n_pkts_in - __builtin_popcountll(pkts_mask_out));
return 0;
} /* rte_table_hash_lookup_key32_ext() */
static int
rte_table_hash_key32_stats_read(void *table, struct rte_table_stats *stats, int clear)
{
struct rte_table_hash *t = table;
if (stats != NULL)
memcpy(stats, &t->stats, sizeof(t->stats));
if (clear)
memset(&t->stats, 0, sizeof(t->stats));
return 0;
}
struct rte_table_ops rte_table_hash_key32_lru_ops = {
.f_create = rte_table_hash_create_key32_lru,
.f_free = rte_table_hash_free_key32_lru,
.f_add = rte_table_hash_entry_add_key32_lru,
.f_delete = rte_table_hash_entry_delete_key32_lru,
.f_add_bulk = NULL,
.f_delete_bulk = NULL,
.f_lookup = rte_table_hash_lookup_key32_lru,
.f_stats = rte_table_hash_key32_stats_read,
};
struct rte_table_ops rte_table_hash_key32_ext_ops = {
.f_create = rte_table_hash_create_key32_ext,
.f_free = rte_table_hash_free_key32_ext,
.f_add = rte_table_hash_entry_add_key32_ext,
.f_delete = rte_table_hash_entry_delete_key32_ext,
.f_add_bulk = NULL,
.f_delete_bulk = NULL,
.f_lookup = rte_table_hash_lookup_key32_ext,
.f_stats = rte_table_hash_key32_stats_read,
};