numam-dpdk/app/test-pmd/config.c

1592 lines
42 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2013 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* BSD LICENSE
*
* Copyright(c) 2013 6WIND.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of 6WIND S.A. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdarg.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_debug.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_string_fns.h>
#include "testpmd.h"
static void
print_ethaddr(const char *name, struct ether_addr *eth_addr)
{
printf("%s%02X:%02X:%02X:%02X:%02X:%02X", name,
eth_addr->addr_bytes[0],
eth_addr->addr_bytes[1],
eth_addr->addr_bytes[2],
eth_addr->addr_bytes[3],
eth_addr->addr_bytes[4],
eth_addr->addr_bytes[5]);
}
void
nic_stats_display(portid_t port_id)
{
struct rte_eth_stats stats;
struct rte_port *port = &ports[port_id];
uint8_t i;
static const char *nic_stats_border = "########################";
if (port_id >= nb_ports) {
printf("Invalid port, range is [0, %d]\n", nb_ports - 1);
return;
}
rte_eth_stats_get(port_id, &stats);
printf("\n %s NIC statistics for port %-2d %s\n",
nic_stats_border, port_id, nic_stats_border);
if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
printf(" RX-packets: %-10"PRIu64" RX-errors: %-10"PRIu64"RX-bytes: "
"%-"PRIu64"\n"
" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64"TX-bytes: "
"%-"PRIu64"\n",
stats.ipackets, stats.ierrors, stats.ibytes,
stats.opackets, stats.oerrors, stats.obytes);
}
else {
printf(" RX-packets: %10"PRIu64" RX-errors: %10"PRIu64
" RX-bytes: %10"PRIu64"\n"
" TX-packets: %10"PRIu64" TX-errors: %10"PRIu64
" TX-bytes: %10"PRIu64"\n",
stats.ipackets, stats.ierrors, stats.ibytes,
stats.opackets, stats.oerrors, stats.obytes);
}
/* stats fdir */
if (fdir_conf.mode != RTE_FDIR_MODE_NONE)
printf(" Fdirmiss: %-10"PRIu64" Fdirmatch: %-10"PRIu64"\n",
stats.fdirmiss,
stats.fdirmatch);
if (port->rx_queue_stats_mapping_enabled) {
printf("\n");
for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
printf(" Stats reg %2d RX-packets: %10"PRIu64
" RX-errors: %10"PRIu64
" RX-bytes: %10"PRIu64"\n",
i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
}
}
if (port->tx_queue_stats_mapping_enabled) {
printf("\n");
for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
printf(" Stats reg %2d TX-packets: %10"PRIu64
" TX-bytes: %10"PRIu64"\n",
i, stats.q_opackets[i], stats.q_obytes[i]);
}
}
printf(" %s############################%s\n",
nic_stats_border, nic_stats_border);
}
void
nic_stats_clear(portid_t port_id)
{
if (port_id >= nb_ports) {
printf("Invalid port, range is [0, %d]\n", nb_ports - 1);
return;
}
rte_eth_stats_reset(port_id);
printf("\n NIC statistics for port %d cleared\n", port_id);
}
void
nic_stats_mapping_display(portid_t port_id)
{
struct rte_port *port = &ports[port_id];
uint16_t i;
static const char *nic_stats_mapping_border = "########################";
if (port_id >= nb_ports) {
printf("Invalid port, range is [0, %d]\n", nb_ports - 1);
return;
}
if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
printf("Port id %d - either does not support queue statistic mapping or"
" no queue statistic mapping set\n", port_id);
return;
}
printf("\n %s NIC statistics mapping for port %-2d %s\n",
nic_stats_mapping_border, port_id, nic_stats_mapping_border);
if (port->rx_queue_stats_mapping_enabled) {
for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
if (rx_queue_stats_mappings[i].port_id == port_id) {
printf(" RX-queue %2d mapped to Stats Reg %2d\n",
rx_queue_stats_mappings[i].queue_id,
rx_queue_stats_mappings[i].stats_counter_id);
}
}
printf("\n");
}
if (port->tx_queue_stats_mapping_enabled) {
for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
if (tx_queue_stats_mappings[i].port_id == port_id) {
printf(" TX-queue %2d mapped to Stats Reg %2d\n",
tx_queue_stats_mappings[i].queue_id,
tx_queue_stats_mappings[i].stats_counter_id);
}
}
}
printf(" %s####################################%s\n",
nic_stats_mapping_border, nic_stats_mapping_border);
}
void
port_infos_display(portid_t port_id)
{
struct rte_port *port;
struct rte_eth_link link;
int vlan_offload;
int socket_id;
struct rte_mempool * mp;
static const char *info_border = "*********************";
if (port_id >= nb_ports) {
printf("Invalid port, range is [0, %d]\n", nb_ports - 1);
return;
}
port = &ports[port_id];
rte_eth_link_get_nowait(port_id, &link);
socket_id = rte_eth_dev_socket_id(port_id);
printf("\n%s Infos for port %-2d %s\n",
info_border, port_id, info_border);
print_ethaddr("MAC address: ", &port->eth_addr);
printf("\nConnect to socket: %d",socket_id);
if (port_numa[port_id] != NUMA_NO_CONFIG) {
mp = mbuf_pool_find(port_numa[port_id]);
if (mp)
printf("\nmemory allocation on the socket: %d",
port_numa[port_id]);
} else
printf("\nmemory allocation on the socket: %d",socket_id);
printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
("full-duplex") : ("half-duplex"));
printf("Promiscuous mode: %s\n",
rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
printf("Allmulticast mode: %s\n",
rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
printf("Maximum number of MAC addresses: %u\n",
(unsigned int)(port->dev_info.max_mac_addrs));
vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
if (vlan_offload >= 0){
printf("VLAN offload: \n");
if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
printf(" strip on \n");
else
printf(" strip off \n");
if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
printf(" filter on \n");
else
printf(" filter off \n");
if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
printf(" qinq(extend) on \n");
else
printf(" qinq(extend) off \n");
}
}
static int
port_id_is_invalid(portid_t port_id)
{
if (port_id < nb_ports)
return 0;
printf("Invalid port %d (must be < nb_ports=%d)\n", port_id, nb_ports);
return 1;
}
static int
vlan_id_is_invalid(uint16_t vlan_id)
{
if (vlan_id < 4096)
return 0;
printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
return 1;
}
static int
port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
{
uint64_t pci_len;
if (reg_off & 0x3) {
printf("Port register offset 0x%X not aligned on a 4-byte "
"boundary\n",
(unsigned)reg_off);
return 1;
}
pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len;
if (reg_off >= pci_len) {
printf("Port %d: register offset %u (0x%X) out of port PCI "
"resource (length=%"PRIu64")\n",
port_id, (unsigned)reg_off, (unsigned)reg_off, pci_len);
return 1;
}
return 0;
}
static int
reg_bit_pos_is_invalid(uint8_t bit_pos)
{
if (bit_pos <= 31)
return 0;
printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
return 1;
}
#define display_port_and_reg_off(port_id, reg_off) \
printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
static inline void
display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
{
display_port_and_reg_off(port_id, (unsigned)reg_off);
printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
}
void
port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
{
uint32_t reg_v;
if (port_id_is_invalid(port_id))
return;
if (port_reg_off_is_invalid(port_id, reg_off))
return;
if (reg_bit_pos_is_invalid(bit_x))
return;
reg_v = port_id_pci_reg_read(port_id, reg_off);
display_port_and_reg_off(port_id, (unsigned)reg_off);
printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
}
void
port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
uint8_t bit1_pos, uint8_t bit2_pos)
{
uint32_t reg_v;
uint8_t l_bit;
uint8_t h_bit;
if (port_id_is_invalid(port_id))
return;
if (port_reg_off_is_invalid(port_id, reg_off))
return;
if (reg_bit_pos_is_invalid(bit1_pos))
return;
if (reg_bit_pos_is_invalid(bit2_pos))
return;
if (bit1_pos > bit2_pos)
l_bit = bit2_pos, h_bit = bit1_pos;
else
l_bit = bit1_pos, h_bit = bit2_pos;
reg_v = port_id_pci_reg_read(port_id, reg_off);
reg_v >>= l_bit;
if (h_bit < 31)
reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
display_port_and_reg_off(port_id, (unsigned)reg_off);
printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
}
void
port_reg_display(portid_t port_id, uint32_t reg_off)
{
uint32_t reg_v;
if (port_id_is_invalid(port_id))
return;
if (port_reg_off_is_invalid(port_id, reg_off))
return;
reg_v = port_id_pci_reg_read(port_id, reg_off);
display_port_reg_value(port_id, reg_off, reg_v);
}
void
port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
uint8_t bit_v)
{
uint32_t reg_v;
if (port_id_is_invalid(port_id))
return;
if (port_reg_off_is_invalid(port_id, reg_off))
return;
if (reg_bit_pos_is_invalid(bit_pos))
return;
if (bit_v > 1) {
printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
return;
}
reg_v = port_id_pci_reg_read(port_id, reg_off);
if (bit_v == 0)
reg_v &= ~(1 << bit_pos);
else
reg_v |= (1 << bit_pos);
port_id_pci_reg_write(port_id, reg_off, reg_v);
display_port_reg_value(port_id, reg_off, reg_v);
}
void
port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
{
uint32_t max_v;
uint32_t reg_v;
uint8_t l_bit;
uint8_t h_bit;
if (port_id_is_invalid(port_id))
return;
if (port_reg_off_is_invalid(port_id, reg_off))
return;
if (reg_bit_pos_is_invalid(bit1_pos))
return;
if (reg_bit_pos_is_invalid(bit2_pos))
return;
if (bit1_pos > bit2_pos)
l_bit = bit2_pos, h_bit = bit1_pos;
else
l_bit = bit1_pos, h_bit = bit2_pos;
if ((h_bit - l_bit) < 31)
max_v = (1 << (h_bit - l_bit + 1)) - 1;
else
max_v = 0xFFFFFFFF;
if (value > max_v) {
printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
(unsigned)value, (unsigned)value,
(unsigned)max_v, (unsigned)max_v);
return;
}
reg_v = port_id_pci_reg_read(port_id, reg_off);
reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
reg_v |= (value << l_bit); /* Set changed bits */
port_id_pci_reg_write(port_id, reg_off, reg_v);
display_port_reg_value(port_id, reg_off, reg_v);
}
void
port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
{
if (port_id_is_invalid(port_id))
return;
if (port_reg_off_is_invalid(port_id, reg_off))
return;
port_id_pci_reg_write(port_id, reg_off, reg_v);
display_port_reg_value(port_id, reg_off, reg_v);
}
/*
* RX/TX ring descriptors display functions.
*/
static int
rx_queue_id_is_invalid(queueid_t rxq_id)
{
if (rxq_id < nb_rxq)
return 0;
printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
return 1;
}
static int
tx_queue_id_is_invalid(queueid_t txq_id)
{
if (txq_id < nb_txq)
return 0;
printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
return 1;
}
static int
rx_desc_id_is_invalid(uint16_t rxdesc_id)
{
if (rxdesc_id < nb_rxd)
return 0;
printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
rxdesc_id, nb_rxd);
return 1;
}
static int
tx_desc_id_is_invalid(uint16_t txdesc_id)
{
if (txdesc_id < nb_txd)
return 0;
printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
txdesc_id, nb_txd);
return 1;
}
static const struct rte_memzone *
ring_dma_zone_lookup(const char *ring_name, uint8_t port_id, uint16_t q_id)
{
char mz_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz;
rte_snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
mz = rte_memzone_lookup(mz_name);
if (mz == NULL)
printf("%s ring memory zoneof (port %d, queue %d) not"
"found (zone name = %s\n",
ring_name, port_id, q_id, mz_name);
return (mz);
}
union igb_ring_dword {
uint64_t dword;
struct {
uint32_t hi;
uint32_t lo;
} words;
};
struct igb_ring_desc {
union igb_ring_dword lo_dword;
union igb_ring_dword hi_dword;
};
static void
ring_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
{
struct igb_ring_desc *ring;
struct igb_ring_desc rd;
ring = (struct igb_ring_desc *) ring_mz->addr;
rd.lo_dword = rte_le_to_cpu_64(ring[desc_id].lo_dword);
rd.hi_dword = rte_le_to_cpu_64(ring[desc_id].hi_dword);
printf(" 0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
(unsigned)rd.lo_dword.words.lo, (unsigned)rd.lo_dword.words.hi,
(unsigned)rd.hi_dword.words.lo, (unsigned)rd.hi_dword.words.hi);
}
void
rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
{
const struct rte_memzone *rx_mz;
if (port_id_is_invalid(port_id))
return;
if (rx_queue_id_is_invalid(rxq_id))
return;
if (rx_desc_id_is_invalid(rxd_id))
return;
rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
if (rx_mz == NULL)
return;
ring_descriptor_display(rx_mz, rxd_id);
}
void
tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
{
const struct rte_memzone *tx_mz;
if (port_id_is_invalid(port_id))
return;
if (tx_queue_id_is_invalid(txq_id))
return;
if (tx_desc_id_is_invalid(txd_id))
return;
tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
if (tx_mz == NULL)
return;
ring_descriptor_display(tx_mz, txd_id);
}
void
fwd_lcores_config_display(void)
{
lcoreid_t lc_id;
printf("List of forwarding lcores:");
for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
printf(" %2u", fwd_lcores_cpuids[lc_id]);
printf("\n");
}
void
rxtx_config_display(void)
{
printf(" %s packet forwarding - CRC stripping %s - "
"packets/burst=%d\n", cur_fwd_eng->fwd_mode_name,
rx_mode.hw_strip_crc ? "enabled" : "disabled",
nb_pkt_per_burst);
if (cur_fwd_eng == &tx_only_engine)
printf(" packet len=%u - nb packet segments=%d\n",
(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
printf(" nb forwarding cores=%d - nb forwarding ports=%d\n",
nb_fwd_lcores, nb_fwd_ports);
printf(" RX queues=%d - RX desc=%d - RX free threshold=%d\n",
nb_rxq, nb_rxd, rx_free_thresh);
printf(" RX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
rx_thresh.pthresh, rx_thresh.hthresh, rx_thresh.wthresh);
printf(" TX queues=%d - TX desc=%d - TX free threshold=%d\n",
nb_txq, nb_txd, tx_free_thresh);
printf(" TX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
tx_thresh.pthresh, tx_thresh.hthresh, tx_thresh.wthresh);
printf(" TX RS bit threshold=%d - TXQ flags=0x%"PRIx32"\n",
tx_rs_thresh, txq_flags);
}
void
port_rss_reta_info(portid_t port_id,struct rte_eth_rss_reta *reta_conf)
{
uint8_t i,j;
int ret;
if (port_id_is_invalid(port_id))
return;
ret = rte_eth_dev_rss_reta_query(port_id, reta_conf);
if (ret != 0) {
printf("Failed to get RSS RETA info, return code = %d\n", ret);
return;
}
if (reta_conf->mask_lo != 0) {
for (i = 0; i< ETH_RSS_RETA_NUM_ENTRIES/2; i++) {
if (reta_conf->mask_lo & (uint64_t)(1ULL << i))
printf("RSS RETA configuration: hash index=%d,"
"queue=%d\n",i,reta_conf->reta[i]);
}
}
if (reta_conf->mask_hi != 0) {
for (i = 0; i< ETH_RSS_RETA_NUM_ENTRIES/2; i++) {
if(reta_conf->mask_hi & (uint64_t)(1ULL << i)) {
j = (uint8_t)(i + ETH_RSS_RETA_NUM_ENTRIES/2);
printf("RSS RETA configuration: hash index=%d,"
"queue=%d\n",j,reta_conf->reta[j]);
}
}
}
}
/*
* Setup forwarding configuration for each logical core.
*/
static void
setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
{
streamid_t nb_fs_per_lcore;
streamid_t nb_fs;
streamid_t sm_id;
lcoreid_t nb_extra;
lcoreid_t nb_fc;
lcoreid_t nb_lc;
lcoreid_t lc_id;
nb_fs = cfg->nb_fwd_streams;
nb_fc = cfg->nb_fwd_lcores;
if (nb_fs <= nb_fc) {
nb_fs_per_lcore = 1;
nb_extra = 0;
} else {
nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
nb_extra = (lcoreid_t) (nb_fs % nb_fc);
}
nb_lc = (lcoreid_t) (nb_fc - nb_extra);
sm_id = 0;
for (lc_id = 0; lc_id < nb_lc; lc_id++) {
fwd_lcores[lc_id]->stream_idx = sm_id;
fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
}
/*
* Assign extra remaining streams, if any.
*/
nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
for (lc_id = 0; lc_id < nb_extra; lc_id++) {
fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
}
}
static void
simple_fwd_config_setup(void)
{
portid_t i;
portid_t j;
portid_t inc = 2;
if (port_topology == PORT_TOPOLOGY_CHAINED) {
inc = 1;
} else if (nb_fwd_ports % 2) {
printf("\nWarning! Cannot handle an odd number of ports "
"with the current port topology. Configuration "
"must be changed to have an even number of ports, "
"or relaunch application with "
"--port-topology=chained\n\n");
}
cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
cur_fwd_config.nb_fwd_streams =
(streamid_t) cur_fwd_config.nb_fwd_ports;
/* reinitialize forwarding streams */
init_fwd_streams();
/*
* In the simple forwarding test, the number of forwarding cores
* must be lower or equal to the number of forwarding ports.
*/
cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
cur_fwd_config.nb_fwd_lcores =
(lcoreid_t) cur_fwd_config.nb_fwd_ports;
setup_fwd_config_of_each_lcore(&cur_fwd_config);
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) {
j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports);
fwd_streams[i]->rx_port = fwd_ports_ids[i];
fwd_streams[i]->rx_queue = 0;
fwd_streams[i]->tx_port = fwd_ports_ids[j];
fwd_streams[i]->tx_queue = 0;
fwd_streams[i]->peer_addr = j;
if (port_topology == PORT_TOPOLOGY_PAIRED) {
fwd_streams[j]->rx_port = fwd_ports_ids[j];
fwd_streams[j]->rx_queue = 0;
fwd_streams[j]->tx_port = fwd_ports_ids[i];
fwd_streams[j]->tx_queue = 0;
fwd_streams[j]->peer_addr = i;
}
}
}
/**
* For the RSS forwarding test, each core is assigned on every port a transmit
* queue whose index is the index of the core itself. This approach limits the
* maximumm number of processing cores of the RSS test to the maximum number of
* TX queues supported by the devices.
*
* Each core is assigned a single stream, each stream being composed of
* a RX queue to poll on a RX port for input messages, associated with
* a TX queue of a TX port where to send forwarded packets.
* All packets received on the RX queue of index "RxQj" of the RX port "RxPi"
* are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two
* following rules:
* - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd
* - TxQl = RxQj
*/
static void
rss_fwd_config_setup(void)
{
portid_t rxp;
portid_t txp;
queueid_t rxq;
queueid_t nb_q;
lcoreid_t lc_id;
nb_q = nb_rxq;
if (nb_q > nb_txq)
nb_q = nb_txq;
cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
cur_fwd_config.nb_fwd_streams =
(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
if (cur_fwd_config.nb_fwd_streams > cur_fwd_config.nb_fwd_lcores)
cur_fwd_config.nb_fwd_streams =
(streamid_t)cur_fwd_config.nb_fwd_lcores;
else
cur_fwd_config.nb_fwd_lcores =
(lcoreid_t)cur_fwd_config.nb_fwd_streams;
/* reinitialize forwarding streams */
init_fwd_streams();
setup_fwd_config_of_each_lcore(&cur_fwd_config);
rxp = 0; rxq = 0;
for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
struct fwd_stream *fs;
fs = fwd_streams[lc_id];
if ((rxp & 0x1) == 0)
txp = (portid_t) (rxp + 1);
else
txp = (portid_t) (rxp - 1);
fs->rx_port = fwd_ports_ids[rxp];
fs->rx_queue = rxq;
fs->tx_port = fwd_ports_ids[txp];
fs->tx_queue = rxq;
fs->peer_addr = fs->tx_port;
rxq = (queueid_t) (rxq + 1);
if (rxq < nb_q)
continue;
/*
* rxq == nb_q
* Restart from RX queue 0 on next RX port
*/
rxq = 0;
if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
rxp = (portid_t)
(rxp + ((nb_ports >> 1) / nb_fwd_ports));
else
rxp = (portid_t) (rxp + 1);
}
}
/*
* In DCB and VT on,the mapping of 128 receive queues to 128 transmit queues.
*/
static void
dcb_rxq_2_txq_mapping(queueid_t rxq, queueid_t *txq)
{
if(dcb_q_mapping == DCB_4_TCS_Q_MAPPING) {
if (rxq < 32)
/* tc0: 0-31 */
*txq = rxq;
else if (rxq < 64) {
/* tc1: 64-95 */
*txq = (uint16_t)(rxq + 32);
}
else {
/* tc2: 96-111;tc3:112-127 */
*txq = (uint16_t)(rxq/2 + 64);
}
}
else {
if (rxq < 16)
/* tc0 mapping*/
*txq = rxq;
else if (rxq < 32) {
/* tc1 mapping*/
*txq = (uint16_t)(rxq + 16);
}
else if (rxq < 64) {
/*tc2,tc3 mapping */
*txq = (uint16_t)(rxq + 32);
}
else {
/* tc4,tc5,tc6 and tc7 mapping */
*txq = (uint16_t)(rxq/2 + 64);
}
}
}
/**
* For the DCB forwarding test, each core is assigned on every port multi-transmit
* queue.
*
* Each core is assigned a multi-stream, each stream being composed of
* a RX queue to poll on a RX port for input messages, associated with
* a TX queue of a TX port where to send forwarded packets.
* All packets received on the RX queue of index "RxQj" of the RX port "RxPi"
* are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two
* following rules:
* In VT mode,
* - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd
* - TxQl = RxQj
* In non-VT mode,
* - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd
* There is a mapping of RxQj to TxQl to be required,and the mapping was implemented
* in dcb_rxq_2_txq_mapping function.
*/
static void
dcb_fwd_config_setup(void)
{
portid_t rxp;
portid_t txp;
queueid_t rxq;
queueid_t nb_q;
lcoreid_t lc_id;
uint8_t sm_id;
nb_q = nb_rxq;
cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
cur_fwd_config.nb_fwd_streams =
(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
/* reinitialize forwarding streams */
init_fwd_streams();
setup_fwd_config_of_each_lcore(&cur_fwd_config);
rxp = 0; rxq = 0;
for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
/* a fwd core can run multi-streams */
for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++)
{
struct fwd_stream *fs;
fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
if ((rxp & 0x1) == 0)
txp = (portid_t) (rxp + 1);
else
txp = (portid_t) (rxp - 1);
fs->rx_port = fwd_ports_ids[rxp];
fs->rx_queue = rxq;
fs->tx_port = fwd_ports_ids[txp];
if (dcb_q_mapping == DCB_VT_Q_MAPPING)
fs->tx_queue = rxq;
else
dcb_rxq_2_txq_mapping(rxq, &fs->tx_queue);
fs->peer_addr = fs->tx_port;
rxq = (queueid_t) (rxq + 1);
if (rxq < nb_q)
continue;
rxq = 0;
if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
rxp = (portid_t)
(rxp + ((nb_ports >> 1) / nb_fwd_ports));
else
rxp = (portid_t) (rxp + 1);
}
}
}
void
fwd_config_setup(void)
{
cur_fwd_config.fwd_eng = cur_fwd_eng;
if ((nb_rxq > 1) && (nb_txq > 1)){
if (dcb_config)
dcb_fwd_config_setup();
else
rss_fwd_config_setup();
}
else
simple_fwd_config_setup();
}
static void
pkt_fwd_config_display(struct fwd_config *cfg)
{
struct fwd_stream *fs;
lcoreid_t lc_id;
streamid_t sm_id;
printf("%s packet forwarding - ports=%d - cores=%d - streams=%d - "
"NUMA support %s\n",
cfg->fwd_eng->fwd_mode_name,
cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
numa_support == 1 ? "enabled" : "disabled");
for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
printf("Logical Core %u (socket %u) forwards packets on "
"%d streams:",
fwd_lcores_cpuids[lc_id],
rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
fwd_lcores[lc_id]->stream_nb);
for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
printf("\n RX P=%d/Q=%d (socket %u) -> TX "
"P=%d/Q=%d (socket %u) ",
fs->rx_port, fs->rx_queue,
ports[fs->rx_port].socket_id,
fs->tx_port, fs->tx_queue,
ports[fs->tx_port].socket_id);
print_ethaddr("peer=",
&peer_eth_addrs[fs->peer_addr]);
}
printf("\n");
}
printf("\n");
}
void
fwd_config_display(void)
{
if((dcb_config) && (nb_fwd_lcores == 1)) {
printf("In DCB mode,the nb forwarding cores should be larger than 1\n");
return;
}
fwd_config_setup();
pkt_fwd_config_display(&cur_fwd_config);
}
int
set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
{
unsigned int i;
unsigned int lcore_cpuid;
int record_now;
record_now = 0;
again:
for (i = 0; i < nb_lc; i++) {
lcore_cpuid = lcorelist[i];
if (! rte_lcore_is_enabled(lcore_cpuid)) {
printf("lcore %u not enabled\n", lcore_cpuid);
return -1;
}
if (lcore_cpuid == rte_get_master_lcore()) {
printf("lcore %u cannot be masked on for running "
"packet forwarding, which is the master lcore "
"and reserved for command line parsing only\n",
lcore_cpuid);
return -1;
}
if (record_now)
fwd_lcores_cpuids[i] = lcore_cpuid;
}
if (record_now == 0) {
record_now = 1;
goto again;
}
nb_cfg_lcores = (lcoreid_t) nb_lc;
if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
printf("previous number of forwarding cores %u - changed to "
"number of configured cores %u\n",
(unsigned int) nb_fwd_lcores, nb_lc);
nb_fwd_lcores = (lcoreid_t) nb_lc;
}
return 0;
}
int
set_fwd_lcores_mask(uint64_t lcoremask)
{
unsigned int lcorelist[64];
unsigned int nb_lc;
unsigned int i;
if (lcoremask == 0) {
printf("Invalid NULL mask of cores\n");
return -1;
}
nb_lc = 0;
for (i = 0; i < 64; i++) {
if (! ((uint64_t)(1ULL << i) & lcoremask))
continue;
lcorelist[nb_lc++] = i;
}
return set_fwd_lcores_list(lcorelist, nb_lc);
}
void
set_fwd_lcores_number(uint16_t nb_lc)
{
if (nb_lc > nb_cfg_lcores) {
printf("nb fwd cores %u > %u (max. number of configured "
"lcores) - ignored\n",
(unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
return;
}
nb_fwd_lcores = (lcoreid_t) nb_lc;
printf("Number of forwarding cores set to %u\n",
(unsigned int) nb_fwd_lcores);
}
void
set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
{
unsigned int i;
portid_t port_id;
int record_now;
record_now = 0;
again:
for (i = 0; i < nb_pt; i++) {
port_id = (portid_t) portlist[i];
if (port_id >= nb_ports) {
printf("Invalid port id %u > %u\n",
(unsigned int) port_id,
(unsigned int) nb_ports);
return;
}
if (record_now)
fwd_ports_ids[i] = port_id;
}
if (record_now == 0) {
record_now = 1;
goto again;
}
nb_cfg_ports = (portid_t) nb_pt;
if (nb_fwd_ports != (portid_t) nb_pt) {
printf("previous number of forwarding ports %u - changed to "
"number of configured ports %u\n",
(unsigned int) nb_fwd_ports, nb_pt);
nb_fwd_ports = (portid_t) nb_pt;
}
}
void
set_fwd_ports_mask(uint64_t portmask)
{
unsigned int portlist[64];
unsigned int nb_pt;
unsigned int i;
if (portmask == 0) {
printf("Invalid NULL mask of ports\n");
return;
}
nb_pt = 0;
for (i = 0; i < 64; i++) {
if (! ((uint64_t)(1ULL << i) & portmask))
continue;
portlist[nb_pt++] = i;
}
set_fwd_ports_list(portlist, nb_pt);
}
void
set_fwd_ports_number(uint16_t nb_pt)
{
if (nb_pt > nb_cfg_ports) {
printf("nb fwd ports %u > %u (number of configured "
"ports) - ignored\n",
(unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
return;
}
nb_fwd_ports = (portid_t) nb_pt;
printf("Number of forwarding ports set to %u\n",
(unsigned int) nb_fwd_ports);
}
void
set_nb_pkt_per_burst(uint16_t nb)
{
if (nb > MAX_PKT_BURST) {
printf("nb pkt per burst: %u > %u (maximum packet per burst) "
" ignored\n",
(unsigned int) nb, (unsigned int) MAX_PKT_BURST);
return;
}
nb_pkt_per_burst = nb;
printf("Number of packets per burst set to %u\n",
(unsigned int) nb_pkt_per_burst);
}
void
set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
{
uint16_t tx_pkt_len;
unsigned i;
if (nb_segs >= (unsigned) nb_txd) {
printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
nb_segs, (unsigned int) nb_txd);
return;
}
/*
* Check that each segment length is greater or equal than
* the mbuf data sise.
* Check also that the total packet length is greater or equal than the
* size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
*/
tx_pkt_len = 0;
for (i = 0; i < nb_segs; i++) {
if (seg_lengths[i] > (unsigned) mbuf_data_size) {
printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
i, seg_lengths[i], (unsigned) mbuf_data_size);
return;
}
tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
}
if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
printf("total packet length=%u < %d - give up\n",
(unsigned) tx_pkt_len,
(int)(sizeof(struct ether_hdr) + 20 + 8));
return;
}
for (i = 0; i < nb_segs; i++)
tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
tx_pkt_length = tx_pkt_len;
tx_pkt_nb_segs = (uint8_t) nb_segs;
}
void
set_pkt_forwarding_mode(const char *fwd_mode_name)
{
struct fwd_engine *fwd_eng;
unsigned i;
i = 0;
while ((fwd_eng = fwd_engines[i]) != NULL) {
if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
printf("Set %s packet forwarding mode\n",
fwd_mode_name);
cur_fwd_eng = fwd_eng;
return;
}
i++;
}
printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
}
void
set_verbose_level(uint16_t vb_level)
{
printf("Change verbose level from %u to %u\n",
(unsigned int) verbose_level, (unsigned int) vb_level);
verbose_level = vb_level;
}
void
vlan_extend_set(portid_t port_id, int on)
{
int diag;
int vlan_offload;
if (port_id_is_invalid(port_id))
return;
vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
if (on)
vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
else
vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
if (diag < 0)
printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
"diag=%d\n", port_id, on, diag);
}
void
rx_vlan_strip_set(portid_t port_id, int on)
{
int diag;
int vlan_offload;
if (port_id_is_invalid(port_id))
return;
vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
if (on)
vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
else
vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
if (diag < 0)
printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
"diag=%d\n", port_id, on, diag);
}
void
rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
{
int diag;
if (port_id_is_invalid(port_id))
return;
diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
if (diag < 0)
printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
"diag=%d\n", port_id, queue_id, on, diag);
}
void
rx_vlan_filter_set(portid_t port_id, int on)
{
int diag;
int vlan_offload;
if (port_id_is_invalid(port_id))
return;
vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
if (on)
vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
else
vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
if (diag < 0)
printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
"diag=%d\n", port_id, on, diag);
}
void
rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
{
int diag;
if (port_id_is_invalid(port_id))
return;
if (vlan_id_is_invalid(vlan_id))
return;
diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
if (diag == 0)
return;
printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
"diag=%d\n",
port_id, vlan_id, on, diag);
}
void
rx_vlan_all_filter_set(portid_t port_id, int on)
{
uint16_t vlan_id;
if (port_id_is_invalid(port_id))
return;
for (vlan_id = 0; vlan_id < 4096; vlan_id++)
rx_vft_set(port_id, vlan_id, on);
}
void
vlan_tpid_set(portid_t port_id, uint16_t tp_id)
{
int diag;
if (port_id_is_invalid(port_id))
return;
diag = rte_eth_dev_set_vlan_ether_type(port_id, tp_id);
if (diag == 0)
return;
printf("tx_vlan_tpid_set(port_pi=%d, tpid=%d) failed "
"diag=%d\n",
port_id, tp_id, diag);
}
void
tx_vlan_set(portid_t port_id, uint16_t vlan_id)
{
if (port_id_is_invalid(port_id))
return;
if (vlan_id_is_invalid(vlan_id))
return;
ports[port_id].tx_ol_flags |= PKT_TX_VLAN_PKT;
ports[port_id].tx_vlan_id = vlan_id;
}
void
tx_vlan_reset(portid_t port_id)
{
if (port_id_is_invalid(port_id))
return;
ports[port_id].tx_ol_flags &= ~PKT_TX_VLAN_PKT;
}
void
set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
{
uint16_t i;
uint8_t existing_mapping_found = 0;
if (port_id_is_invalid(port_id))
return;
if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
return;
if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
printf("map_value not in required range 0..%d\n",
RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
return;
}
if (!is_rx) { /*then tx*/
for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
if ((tx_queue_stats_mappings[i].port_id == port_id) &&
(tx_queue_stats_mappings[i].queue_id == queue_id)) {
tx_queue_stats_mappings[i].stats_counter_id = map_value;
existing_mapping_found = 1;
break;
}
}
if (!existing_mapping_found) { /* A new additional mapping... */
tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
nb_tx_queue_stats_mappings++;
}
}
else { /*rx*/
for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
if ((rx_queue_stats_mappings[i].port_id == port_id) &&
(rx_queue_stats_mappings[i].queue_id == queue_id)) {
rx_queue_stats_mappings[i].stats_counter_id = map_value;
existing_mapping_found = 1;
break;
}
}
if (!existing_mapping_found) { /* A new additional mapping... */
rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
nb_rx_queue_stats_mappings++;
}
}
}
void
tx_cksum_set(portid_t port_id, uint8_t cksum_mask)
{
uint16_t tx_ol_flags;
if (port_id_is_invalid(port_id))
return;
/* Clear last 4 bits and then set L3/4 checksum mask again */
tx_ol_flags = (uint16_t) (ports[port_id].tx_ol_flags & 0xFFF0);
ports[port_id].tx_ol_flags = (uint16_t) ((cksum_mask & 0xf) | tx_ol_flags);
}
void
fdir_add_signature_filter(portid_t port_id, uint8_t queue_id,
struct rte_fdir_filter *fdir_filter)
{
int diag;
if (port_id_is_invalid(port_id))
return;
diag = rte_eth_dev_fdir_add_signature_filter(port_id, fdir_filter,
queue_id);
if (diag == 0)
return;
printf("rte_eth_dev_fdir_add_signature_filter for port_id=%d failed "
"diag=%d\n", port_id, diag);
}
void
fdir_update_signature_filter(portid_t port_id, uint8_t queue_id,
struct rte_fdir_filter *fdir_filter)
{
int diag;
if (port_id_is_invalid(port_id))
return;
diag = rte_eth_dev_fdir_update_signature_filter(port_id, fdir_filter,
queue_id);
if (diag == 0)
return;
printf("rte_eth_dev_fdir_update_signature_filter for port_id=%d failed "
"diag=%d\n", port_id, diag);
}
void
fdir_remove_signature_filter(portid_t port_id,
struct rte_fdir_filter *fdir_filter)
{
int diag;
if (port_id_is_invalid(port_id))
return;
diag = rte_eth_dev_fdir_remove_signature_filter(port_id, fdir_filter);
if (diag == 0)
return;
printf("rte_eth_dev_fdir_add_signature_filter for port_id=%d failed "
"diag=%d\n", port_id, diag);
}
void
fdir_get_infos(portid_t port_id)
{
struct rte_eth_fdir fdir_infos;
static const char *fdir_stats_border = "########################";
if (port_id_is_invalid(port_id))
return;
rte_eth_dev_fdir_get_infos(port_id, &fdir_infos);
printf("\n %s FDIR infos for port %-2d %s\n",
fdir_stats_border, port_id, fdir_stats_border);
printf(" collision: %-10"PRIu64" free: %"PRIu64"\n"
" maxhash: %-10"PRIu64" maxlen: %"PRIu64"\n"
" add: %-10"PRIu64" remove: %"PRIu64"\n"
" f_add: %-10"PRIu64" f_remove: %"PRIu64"\n",
(uint64_t)(fdir_infos.collision), (uint64_t)(fdir_infos.free),
(uint64_t)(fdir_infos.maxhash), (uint64_t)(fdir_infos.maxlen),
fdir_infos.add, fdir_infos.remove,
fdir_infos.f_add, fdir_infos.f_remove);
printf(" %s############################%s\n",
fdir_stats_border, fdir_stats_border);
}
void
fdir_add_perfect_filter(portid_t port_id, uint16_t soft_id, uint8_t queue_id,
uint8_t drop, struct rte_fdir_filter *fdir_filter)
{
int diag;
if (port_id_is_invalid(port_id))
return;
diag = rte_eth_dev_fdir_add_perfect_filter(port_id, fdir_filter,
soft_id, queue_id, drop);
if (diag == 0)
return;
printf("rte_eth_dev_fdir_add_perfect_filter for port_id=%d failed "
"diag=%d\n", port_id, diag);
}
void
fdir_update_perfect_filter(portid_t port_id, uint16_t soft_id, uint8_t queue_id,
uint8_t drop, struct rte_fdir_filter *fdir_filter)
{
int diag;
if (port_id_is_invalid(port_id))
return;
diag = rte_eth_dev_fdir_update_perfect_filter(port_id, fdir_filter,
soft_id, queue_id, drop);
if (diag == 0)
return;
printf("rte_eth_dev_fdir_update_perfect_filter for port_id=%d failed "
"diag=%d\n", port_id, diag);
}
void
fdir_remove_perfect_filter(portid_t port_id, uint16_t soft_id,
struct rte_fdir_filter *fdir_filter)
{
int diag;
if (port_id_is_invalid(port_id))
return;
diag = rte_eth_dev_fdir_remove_perfect_filter(port_id, fdir_filter,
soft_id);
if (diag == 0)
return;
printf("rte_eth_dev_fdir_update_perfect_filter for port_id=%d failed "
"diag=%d\n", port_id, diag);
}
void
fdir_set_masks(portid_t port_id, struct rte_fdir_masks *fdir_masks)
{
int diag;
if (port_id_is_invalid(port_id))
return;
diag = rte_eth_dev_fdir_set_masks(port_id, fdir_masks);
if (diag == 0)
return;
printf("rte_eth_dev_set_masks_filter for port_id=%d failed "
"diag=%d\n", port_id, diag);
}