546 lines
15 KiB
C
546 lines
15 KiB
C
|
/* SPDX-License-Identifier: BSD-3-Clause
|
||
|
* Copyright(c) 2020 Inspur Corporation
|
||
|
*/
|
||
|
|
||
|
#include <rte_malloc.h>
|
||
|
#include <rte_mbuf.h>
|
||
|
#include <rte_cycles.h>
|
||
|
#include <rte_ethdev.h>
|
||
|
#include <rte_udp.h>
|
||
|
|
||
|
#include "gro_vxlan_udp4.h"
|
||
|
|
||
|
void *
|
||
|
gro_vxlan_udp4_tbl_create(uint16_t socket_id,
|
||
|
uint16_t max_flow_num,
|
||
|
uint16_t max_item_per_flow)
|
||
|
{
|
||
|
struct gro_vxlan_udp4_tbl *tbl;
|
||
|
size_t size;
|
||
|
uint32_t entries_num, i;
|
||
|
|
||
|
entries_num = max_flow_num * max_item_per_flow;
|
||
|
entries_num = RTE_MIN(entries_num, GRO_VXLAN_UDP4_TBL_MAX_ITEM_NUM);
|
||
|
|
||
|
if (entries_num == 0)
|
||
|
return NULL;
|
||
|
|
||
|
tbl = rte_zmalloc_socket(__func__,
|
||
|
sizeof(struct gro_vxlan_udp4_tbl),
|
||
|
RTE_CACHE_LINE_SIZE,
|
||
|
socket_id);
|
||
|
if (tbl == NULL)
|
||
|
return NULL;
|
||
|
|
||
|
size = sizeof(struct gro_vxlan_udp4_item) * entries_num;
|
||
|
tbl->items = rte_zmalloc_socket(__func__,
|
||
|
size,
|
||
|
RTE_CACHE_LINE_SIZE,
|
||
|
socket_id);
|
||
|
if (tbl->items == NULL) {
|
||
|
rte_free(tbl);
|
||
|
return NULL;
|
||
|
}
|
||
|
tbl->max_item_num = entries_num;
|
||
|
|
||
|
size = sizeof(struct gro_vxlan_udp4_flow) * entries_num;
|
||
|
tbl->flows = rte_zmalloc_socket(__func__,
|
||
|
size,
|
||
|
RTE_CACHE_LINE_SIZE,
|
||
|
socket_id);
|
||
|
if (tbl->flows == NULL) {
|
||
|
rte_free(tbl->items);
|
||
|
rte_free(tbl);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < entries_num; i++)
|
||
|
tbl->flows[i].start_index = INVALID_ARRAY_INDEX;
|
||
|
tbl->max_flow_num = entries_num;
|
||
|
|
||
|
return tbl;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
gro_vxlan_udp4_tbl_destroy(void *tbl)
|
||
|
{
|
||
|
struct gro_vxlan_udp4_tbl *vxlan_tbl = tbl;
|
||
|
|
||
|
if (vxlan_tbl) {
|
||
|
rte_free(vxlan_tbl->items);
|
||
|
rte_free(vxlan_tbl->flows);
|
||
|
}
|
||
|
rte_free(vxlan_tbl);
|
||
|
}
|
||
|
|
||
|
static inline uint32_t
|
||
|
find_an_empty_item(struct gro_vxlan_udp4_tbl *tbl)
|
||
|
{
|
||
|
uint32_t max_item_num = tbl->max_item_num, i;
|
||
|
|
||
|
for (i = 0; i < max_item_num; i++)
|
||
|
if (tbl->items[i].inner_item.firstseg == NULL)
|
||
|
return i;
|
||
|
return INVALID_ARRAY_INDEX;
|
||
|
}
|
||
|
|
||
|
static inline uint32_t
|
||
|
find_an_empty_flow(struct gro_vxlan_udp4_tbl *tbl)
|
||
|
{
|
||
|
uint32_t max_flow_num = tbl->max_flow_num, i;
|
||
|
|
||
|
for (i = 0; i < max_flow_num; i++)
|
||
|
if (tbl->flows[i].start_index == INVALID_ARRAY_INDEX)
|
||
|
return i;
|
||
|
return INVALID_ARRAY_INDEX;
|
||
|
}
|
||
|
|
||
|
static inline uint32_t
|
||
|
insert_new_item(struct gro_vxlan_udp4_tbl *tbl,
|
||
|
struct rte_mbuf *pkt,
|
||
|
uint64_t start_time,
|
||
|
uint32_t prev_idx,
|
||
|
uint16_t frag_offset,
|
||
|
uint8_t is_last_frag)
|
||
|
{
|
||
|
uint32_t item_idx;
|
||
|
|
||
|
item_idx = find_an_empty_item(tbl);
|
||
|
if (unlikely(item_idx == INVALID_ARRAY_INDEX))
|
||
|
return INVALID_ARRAY_INDEX;
|
||
|
|
||
|
tbl->items[item_idx].inner_item.firstseg = pkt;
|
||
|
tbl->items[item_idx].inner_item.lastseg = rte_pktmbuf_lastseg(pkt);
|
||
|
tbl->items[item_idx].inner_item.start_time = start_time;
|
||
|
tbl->items[item_idx].inner_item.next_pkt_idx = INVALID_ARRAY_INDEX;
|
||
|
tbl->items[item_idx].inner_item.frag_offset = frag_offset;
|
||
|
tbl->items[item_idx].inner_item.is_last_frag = is_last_frag;
|
||
|
tbl->items[item_idx].inner_item.nb_merged = 1;
|
||
|
tbl->item_num++;
|
||
|
|
||
|
/* If the previous packet exists, chain the new one with it. */
|
||
|
if (prev_idx != INVALID_ARRAY_INDEX) {
|
||
|
tbl->items[item_idx].inner_item.next_pkt_idx =
|
||
|
tbl->items[prev_idx].inner_item.next_pkt_idx;
|
||
|
tbl->items[prev_idx].inner_item.next_pkt_idx = item_idx;
|
||
|
}
|
||
|
|
||
|
return item_idx;
|
||
|
}
|
||
|
|
||
|
static inline uint32_t
|
||
|
delete_item(struct gro_vxlan_udp4_tbl *tbl,
|
||
|
uint32_t item_idx,
|
||
|
uint32_t prev_item_idx)
|
||
|
{
|
||
|
uint32_t next_idx = tbl->items[item_idx].inner_item.next_pkt_idx;
|
||
|
|
||
|
/* NULL indicates an empty item. */
|
||
|
tbl->items[item_idx].inner_item.firstseg = NULL;
|
||
|
tbl->item_num--;
|
||
|
if (prev_item_idx != INVALID_ARRAY_INDEX)
|
||
|
tbl->items[prev_item_idx].inner_item.next_pkt_idx = next_idx;
|
||
|
|
||
|
return next_idx;
|
||
|
}
|
||
|
|
||
|
static inline uint32_t
|
||
|
insert_new_flow(struct gro_vxlan_udp4_tbl *tbl,
|
||
|
struct vxlan_udp4_flow_key *src,
|
||
|
uint32_t item_idx)
|
||
|
{
|
||
|
struct vxlan_udp4_flow_key *dst;
|
||
|
uint32_t flow_idx;
|
||
|
|
||
|
flow_idx = find_an_empty_flow(tbl);
|
||
|
if (unlikely(flow_idx == INVALID_ARRAY_INDEX))
|
||
|
return INVALID_ARRAY_INDEX;
|
||
|
|
||
|
dst = &(tbl->flows[flow_idx].key);
|
||
|
|
||
|
rte_ether_addr_copy(&(src->inner_key.eth_saddr),
|
||
|
&(dst->inner_key.eth_saddr));
|
||
|
rte_ether_addr_copy(&(src->inner_key.eth_daddr),
|
||
|
&(dst->inner_key.eth_daddr));
|
||
|
dst->inner_key.ip_src_addr = src->inner_key.ip_src_addr;
|
||
|
dst->inner_key.ip_dst_addr = src->inner_key.ip_dst_addr;
|
||
|
dst->inner_key.ip_id = src->inner_key.ip_id;
|
||
|
|
||
|
dst->vxlan_hdr.vx_flags = src->vxlan_hdr.vx_flags;
|
||
|
dst->vxlan_hdr.vx_vni = src->vxlan_hdr.vx_vni;
|
||
|
rte_ether_addr_copy(&(src->outer_eth_saddr), &(dst->outer_eth_saddr));
|
||
|
rte_ether_addr_copy(&(src->outer_eth_daddr), &(dst->outer_eth_daddr));
|
||
|
dst->outer_ip_src_addr = src->outer_ip_src_addr;
|
||
|
dst->outer_ip_dst_addr = src->outer_ip_dst_addr;
|
||
|
dst->outer_dst_port = src->outer_dst_port;
|
||
|
|
||
|
tbl->flows[flow_idx].start_index = item_idx;
|
||
|
tbl->flow_num++;
|
||
|
|
||
|
return flow_idx;
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
is_same_vxlan_udp4_flow(struct vxlan_udp4_flow_key k1,
|
||
|
struct vxlan_udp4_flow_key k2)
|
||
|
{
|
||
|
/* For VxLAN packet, outer udp src port is calculated from
|
||
|
* inner packet RSS hash, udp src port of the first UDP
|
||
|
* fragment is different from one of other UDP fragments
|
||
|
* even if they are same flow, so we have to skip outer udp
|
||
|
* src port comparison here.
|
||
|
*/
|
||
|
return (rte_is_same_ether_addr(&k1.outer_eth_saddr,
|
||
|
&k2.outer_eth_saddr) &&
|
||
|
rte_is_same_ether_addr(&k1.outer_eth_daddr,
|
||
|
&k2.outer_eth_daddr) &&
|
||
|
(k1.outer_ip_src_addr == k2.outer_ip_src_addr) &&
|
||
|
(k1.outer_ip_dst_addr == k2.outer_ip_dst_addr) &&
|
||
|
(k1.outer_dst_port == k2.outer_dst_port) &&
|
||
|
(k1.vxlan_hdr.vx_flags == k2.vxlan_hdr.vx_flags) &&
|
||
|
(k1.vxlan_hdr.vx_vni == k2.vxlan_hdr.vx_vni) &&
|
||
|
is_same_udp4_flow(k1.inner_key, k2.inner_key));
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
udp4_check_vxlan_neighbor(struct gro_vxlan_udp4_item *item,
|
||
|
uint16_t frag_offset,
|
||
|
uint16_t ip_dl)
|
||
|
{
|
||
|
struct rte_mbuf *pkt = item->inner_item.firstseg;
|
||
|
int cmp;
|
||
|
uint16_t l2_offset;
|
||
|
int ret = 0;
|
||
|
|
||
|
/* Note: if outer DF bit is set, i.e outer_is_atomic is 0,
|
||
|
* we needn't compare outer_ip_id because they are same,
|
||
|
* for the case outer_is_atomic is 1, we also have no way
|
||
|
* to compare outer_ip_id because the difference between
|
||
|
* outer_ip_ids of two received packets isn't always +/-1.
|
||
|
* So skip outer_ip_id comparison here.
|
||
|
*/
|
||
|
|
||
|
l2_offset = pkt->outer_l2_len + pkt->outer_l3_len;
|
||
|
cmp = udp4_check_neighbor(&item->inner_item, frag_offset, ip_dl,
|
||
|
l2_offset);
|
||
|
if (cmp > 0)
|
||
|
/* Append the new packet. */
|
||
|
ret = 1;
|
||
|
else if (cmp < 0)
|
||
|
/* Prepend the new packet. */
|
||
|
ret = -1;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
merge_two_vxlan_udp4_packets(struct gro_vxlan_udp4_item *item,
|
||
|
struct rte_mbuf *pkt,
|
||
|
int cmp,
|
||
|
uint16_t frag_offset,
|
||
|
uint8_t is_last_frag)
|
||
|
{
|
||
|
if (merge_two_udp4_packets(&item->inner_item, pkt, cmp, frag_offset,
|
||
|
is_last_frag,
|
||
|
pkt->outer_l2_len + pkt->outer_l3_len)) {
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
update_vxlan_header(struct gro_vxlan_udp4_item *item)
|
||
|
{
|
||
|
struct rte_ipv4_hdr *ipv4_hdr;
|
||
|
struct rte_udp_hdr *udp_hdr;
|
||
|
struct rte_mbuf *pkt = item->inner_item.firstseg;
|
||
|
uint16_t len;
|
||
|
uint16_t frag_offset;
|
||
|
|
||
|
/* Update the outer IPv4 header. */
|
||
|
len = pkt->pkt_len - pkt->outer_l2_len;
|
||
|
ipv4_hdr = (struct rte_ipv4_hdr *)(rte_pktmbuf_mtod(pkt, char *) +
|
||
|
pkt->outer_l2_len);
|
||
|
ipv4_hdr->total_length = rte_cpu_to_be_16(len);
|
||
|
|
||
|
/* Update the outer UDP header. */
|
||
|
len -= pkt->outer_l3_len;
|
||
|
udp_hdr = (struct rte_udp_hdr *)((char *)ipv4_hdr + pkt->outer_l3_len);
|
||
|
udp_hdr->dgram_len = rte_cpu_to_be_16(len);
|
||
|
|
||
|
/* Update the inner IPv4 header. */
|
||
|
len -= pkt->l2_len;
|
||
|
ipv4_hdr = (struct rte_ipv4_hdr *)((char *)udp_hdr + pkt->l2_len);
|
||
|
ipv4_hdr->total_length = rte_cpu_to_be_16(len);
|
||
|
|
||
|
/* Clear MF bit if it is last fragment */
|
||
|
if (item->inner_item.is_last_frag) {
|
||
|
frag_offset = rte_be_to_cpu_16(ipv4_hdr->fragment_offset);
|
||
|
ipv4_hdr->fragment_offset =
|
||
|
rte_cpu_to_be_16(frag_offset & ~RTE_IPV4_HDR_MF_FLAG);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int32_t
|
||
|
gro_vxlan_udp4_reassemble(struct rte_mbuf *pkt,
|
||
|
struct gro_vxlan_udp4_tbl *tbl,
|
||
|
uint64_t start_time)
|
||
|
{
|
||
|
struct rte_ether_hdr *outer_eth_hdr, *eth_hdr;
|
||
|
struct rte_ipv4_hdr *outer_ipv4_hdr, *ipv4_hdr;
|
||
|
struct rte_udp_hdr *udp_hdr;
|
||
|
struct rte_vxlan_hdr *vxlan_hdr;
|
||
|
uint16_t frag_offset;
|
||
|
uint8_t is_last_frag;
|
||
|
int16_t ip_dl;
|
||
|
uint16_t ip_id;
|
||
|
|
||
|
struct vxlan_udp4_flow_key key;
|
||
|
uint32_t cur_idx, prev_idx, item_idx;
|
||
|
uint32_t i, max_flow_num, remaining_flow_num;
|
||
|
int cmp;
|
||
|
uint16_t hdr_len;
|
||
|
uint8_t find;
|
||
|
|
||
|
outer_eth_hdr = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *);
|
||
|
outer_ipv4_hdr = (struct rte_ipv4_hdr *)((char *)outer_eth_hdr +
|
||
|
pkt->outer_l2_len);
|
||
|
|
||
|
udp_hdr = (struct rte_udp_hdr *)((char *)outer_ipv4_hdr +
|
||
|
pkt->outer_l3_len);
|
||
|
vxlan_hdr = (struct rte_vxlan_hdr *)((char *)udp_hdr +
|
||
|
sizeof(struct rte_udp_hdr));
|
||
|
eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_hdr +
|
||
|
sizeof(struct rte_vxlan_hdr));
|
||
|
/* l2_len = outer udp hdr len + vxlan hdr len + inner l2 len */
|
||
|
ipv4_hdr = (struct rte_ipv4_hdr *)((char *)udp_hdr + pkt->l2_len);
|
||
|
|
||
|
/*
|
||
|
* Don't process the packet which has non-fragment inner IP.
|
||
|
*/
|
||
|
if (!is_ipv4_fragment(ipv4_hdr))
|
||
|
return -1;
|
||
|
|
||
|
hdr_len = pkt->outer_l2_len + pkt->outer_l3_len + pkt->l2_len +
|
||
|
pkt->l3_len;
|
||
|
/*
|
||
|
* Don't process the packet whose payload length is less than or
|
||
|
* equal to 0.
|
||
|
*/
|
||
|
if (pkt->pkt_len <= hdr_len)
|
||
|
return -1;
|
||
|
|
||
|
ip_dl = pkt->pkt_len - hdr_len;
|
||
|
|
||
|
ip_id = rte_be_to_cpu_16(ipv4_hdr->packet_id);
|
||
|
frag_offset = rte_be_to_cpu_16(ipv4_hdr->fragment_offset);
|
||
|
is_last_frag = ((frag_offset & RTE_IPV4_HDR_MF_FLAG) == 0) ? 1 : 0;
|
||
|
frag_offset = (uint16_t)(frag_offset & RTE_IPV4_HDR_OFFSET_MASK) << 3;
|
||
|
|
||
|
rte_ether_addr_copy(&(eth_hdr->s_addr), &(key.inner_key.eth_saddr));
|
||
|
rte_ether_addr_copy(&(eth_hdr->d_addr), &(key.inner_key.eth_daddr));
|
||
|
key.inner_key.ip_src_addr = ipv4_hdr->src_addr;
|
||
|
key.inner_key.ip_dst_addr = ipv4_hdr->dst_addr;
|
||
|
key.inner_key.ip_id = ip_id;
|
||
|
|
||
|
key.vxlan_hdr.vx_flags = vxlan_hdr->vx_flags;
|
||
|
key.vxlan_hdr.vx_vni = vxlan_hdr->vx_vni;
|
||
|
rte_ether_addr_copy(&(outer_eth_hdr->s_addr), &(key.outer_eth_saddr));
|
||
|
rte_ether_addr_copy(&(outer_eth_hdr->d_addr), &(key.outer_eth_daddr));
|
||
|
key.outer_ip_src_addr = outer_ipv4_hdr->src_addr;
|
||
|
key.outer_ip_dst_addr = outer_ipv4_hdr->dst_addr;
|
||
|
/* Note: It is unnecessary to save outer_src_port here because it can
|
||
|
* be different for VxLAN UDP fragments from the same flow.
|
||
|
*/
|
||
|
key.outer_dst_port = udp_hdr->dst_port;
|
||
|
|
||
|
/* Search for a matched flow. */
|
||
|
max_flow_num = tbl->max_flow_num;
|
||
|
remaining_flow_num = tbl->flow_num;
|
||
|
find = 0;
|
||
|
for (i = 0; i < max_flow_num && remaining_flow_num; i++) {
|
||
|
if (tbl->flows[i].start_index != INVALID_ARRAY_INDEX) {
|
||
|
if (is_same_vxlan_udp4_flow(tbl->flows[i].key, key)) {
|
||
|
find = 1;
|
||
|
break;
|
||
|
}
|
||
|
remaining_flow_num--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Can't find a matched flow. Insert a new flow and store the
|
||
|
* packet into the flow.
|
||
|
*/
|
||
|
if (find == 0) {
|
||
|
item_idx = insert_new_item(tbl, pkt, start_time,
|
||
|
INVALID_ARRAY_INDEX, frag_offset,
|
||
|
is_last_frag);
|
||
|
if (unlikely(item_idx == INVALID_ARRAY_INDEX))
|
||
|
return -1;
|
||
|
if (insert_new_flow(tbl, &key, item_idx) ==
|
||
|
INVALID_ARRAY_INDEX) {
|
||
|
/*
|
||
|
* Fail to insert a new flow, so
|
||
|
* delete the inserted packet.
|
||
|
*/
|
||
|
delete_item(tbl, item_idx, INVALID_ARRAY_INDEX);
|
||
|
return -1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Check all packets in the flow and try to find a neighbor. */
|
||
|
cur_idx = tbl->flows[i].start_index;
|
||
|
prev_idx = cur_idx;
|
||
|
do {
|
||
|
cmp = udp4_check_vxlan_neighbor(&(tbl->items[cur_idx]),
|
||
|
frag_offset, ip_dl);
|
||
|
if (cmp) {
|
||
|
if (merge_two_vxlan_udp4_packets(
|
||
|
&(tbl->items[cur_idx]),
|
||
|
pkt, cmp, frag_offset,
|
||
|
is_last_frag)) {
|
||
|
return 1;
|
||
|
}
|
||
|
/*
|
||
|
* Can't merge two packets, as the packet
|
||
|
* length will be greater than the max value.
|
||
|
* Insert the packet into the flow.
|
||
|
*/
|
||
|
if (insert_new_item(tbl, pkt, start_time, prev_idx,
|
||
|
frag_offset, is_last_frag) ==
|
||
|
INVALID_ARRAY_INDEX)
|
||
|
return -1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Ensure inserted items are ordered by frag_offset */
|
||
|
if (frag_offset
|
||
|
< tbl->items[cur_idx].inner_item.frag_offset) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
prev_idx = cur_idx;
|
||
|
cur_idx = tbl->items[cur_idx].inner_item.next_pkt_idx;
|
||
|
} while (cur_idx != INVALID_ARRAY_INDEX);
|
||
|
|
||
|
/* Can't find neighbor. Insert the packet into the flow. */
|
||
|
if (cur_idx == tbl->flows[i].start_index) {
|
||
|
/* Insert it before the first packet of the flow */
|
||
|
item_idx = insert_new_item(tbl, pkt, start_time,
|
||
|
INVALID_ARRAY_INDEX, frag_offset,
|
||
|
is_last_frag);
|
||
|
if (unlikely(item_idx == INVALID_ARRAY_INDEX))
|
||
|
return -1;
|
||
|
tbl->items[item_idx].inner_item.next_pkt_idx = cur_idx;
|
||
|
tbl->flows[i].start_index = item_idx;
|
||
|
} else {
|
||
|
if (insert_new_item(tbl, pkt, start_time, prev_idx,
|
||
|
frag_offset, is_last_frag
|
||
|
) == INVALID_ARRAY_INDEX)
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
gro_vxlan_udp4_merge_items(struct gro_vxlan_udp4_tbl *tbl,
|
||
|
uint32_t start_idx)
|
||
|
{
|
||
|
uint16_t frag_offset;
|
||
|
uint8_t is_last_frag;
|
||
|
int16_t ip_dl;
|
||
|
struct rte_mbuf *pkt;
|
||
|
int cmp;
|
||
|
uint32_t item_idx;
|
||
|
uint16_t hdr_len;
|
||
|
|
||
|
item_idx = tbl->items[start_idx].inner_item.next_pkt_idx;
|
||
|
while (item_idx != INVALID_ARRAY_INDEX) {
|
||
|
pkt = tbl->items[item_idx].inner_item.firstseg;
|
||
|
hdr_len = pkt->outer_l2_len + pkt->outer_l3_len + pkt->l2_len +
|
||
|
pkt->l3_len;
|
||
|
ip_dl = pkt->pkt_len - hdr_len;
|
||
|
frag_offset = tbl->items[item_idx].inner_item.frag_offset;
|
||
|
is_last_frag = tbl->items[item_idx].inner_item.is_last_frag;
|
||
|
cmp = udp4_check_vxlan_neighbor(&(tbl->items[start_idx]),
|
||
|
frag_offset, ip_dl);
|
||
|
if (cmp) {
|
||
|
if (merge_two_vxlan_udp4_packets(
|
||
|
&(tbl->items[start_idx]),
|
||
|
pkt, cmp, frag_offset,
|
||
|
is_last_frag)) {
|
||
|
item_idx = delete_item(tbl, item_idx,
|
||
|
INVALID_ARRAY_INDEX);
|
||
|
tbl->items[start_idx].inner_item.next_pkt_idx
|
||
|
= item_idx;
|
||
|
} else
|
||
|
return 0;
|
||
|
} else
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
uint16_t
|
||
|
gro_vxlan_udp4_tbl_timeout_flush(struct gro_vxlan_udp4_tbl *tbl,
|
||
|
uint64_t flush_timestamp,
|
||
|
struct rte_mbuf **out,
|
||
|
uint16_t nb_out)
|
||
|
{
|
||
|
uint16_t k = 0;
|
||
|
uint32_t i, j;
|
||
|
uint32_t max_flow_num = tbl->max_flow_num;
|
||
|
|
||
|
for (i = 0; i < max_flow_num; i++) {
|
||
|
if (unlikely(tbl->flow_num == 0))
|
||
|
return k;
|
||
|
|
||
|
j = tbl->flows[i].start_index;
|
||
|
while (j != INVALID_ARRAY_INDEX) {
|
||
|
if (tbl->items[j].inner_item.start_time <=
|
||
|
flush_timestamp) {
|
||
|
gro_vxlan_udp4_merge_items(tbl, j);
|
||
|
out[k++] = tbl->items[j].inner_item.firstseg;
|
||
|
if (tbl->items[j].inner_item.nb_merged > 1)
|
||
|
update_vxlan_header(&(tbl->items[j]));
|
||
|
/*
|
||
|
* Delete the item and get the next packet
|
||
|
* index.
|
||
|
*/
|
||
|
j = delete_item(tbl, j, INVALID_ARRAY_INDEX);
|
||
|
tbl->flows[i].start_index = j;
|
||
|
if (j == INVALID_ARRAY_INDEX)
|
||
|
tbl->flow_num--;
|
||
|
|
||
|
if (unlikely(k == nb_out))
|
||
|
return k;
|
||
|
} else
|
||
|
/*
|
||
|
* Flushing packets does not strictly follow
|
||
|
* timestamp. It does not flush left packets of
|
||
|
* the flow this time once it finds one item
|
||
|
* whose start_time is greater than
|
||
|
* flush_timestamp. So go to check other flows.
|
||
|
*/
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
return k;
|
||
|
}
|
||
|
|
||
|
uint32_t
|
||
|
gro_vxlan_udp4_tbl_pkt_count(void *tbl)
|
||
|
{
|
||
|
struct gro_vxlan_udp4_tbl *gro_tbl = tbl;
|
||
|
|
||
|
if (gro_tbl)
|
||
|
return gro_tbl->item_num;
|
||
|
|
||
|
return 0;
|
||
|
}
|