498 lines
14 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
* Copyright 2018 Mellanox Technologies, Ltd
*/
#include <stdio.h>
#include <rte_bitops.h>
#include <rte_net.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <rte_vxlan.h>
#include <rte_ethdev.h>
#include <rte_flow.h>
#include "testpmd.h"
#define MAX_STRING_LEN 8192
#define MKDUMPSTR(buf, buf_size, cur_len, ...) \
do { \
if (cur_len >= buf_size) \
break; \
cur_len += snprintf(buf + cur_len, buf_size - cur_len, __VA_ARGS__); \
} while (0)
static inline void
print_ether_addr(const char *what, const struct rte_ether_addr *eth_addr,
char print_buf[], size_t buf_size, size_t *cur_len)
{
net: add rte prefix to ether defines Add 'RTE_' prefix to defines: - rename ETHER_ADDR_LEN as RTE_ETHER_ADDR_LEN. - rename ETHER_TYPE_LEN as RTE_ETHER_TYPE_LEN. - rename ETHER_CRC_LEN as RTE_ETHER_CRC_LEN. - rename ETHER_HDR_LEN as RTE_ETHER_HDR_LEN. - rename ETHER_MIN_LEN as RTE_ETHER_MIN_LEN. - rename ETHER_MAX_LEN as RTE_ETHER_MAX_LEN. - rename ETHER_MTU as RTE_ETHER_MTU. - rename ETHER_MAX_VLAN_FRAME_LEN as RTE_ETHER_MAX_VLAN_FRAME_LEN. - rename ETHER_MAX_VLAN_ID as RTE_ETHER_MAX_VLAN_ID. - rename ETHER_MAX_JUMBO_FRAME_LEN as RTE_ETHER_MAX_JUMBO_FRAME_LEN. - rename ETHER_MIN_MTU as RTE_ETHER_MIN_MTU. - rename ETHER_LOCAL_ADMIN_ADDR as RTE_ETHER_LOCAL_ADMIN_ADDR. - rename ETHER_GROUP_ADDR as RTE_ETHER_GROUP_ADDR. - rename ETHER_TYPE_IPv4 as RTE_ETHER_TYPE_IPv4. - rename ETHER_TYPE_IPv6 as RTE_ETHER_TYPE_IPv6. - rename ETHER_TYPE_ARP as RTE_ETHER_TYPE_ARP. - rename ETHER_TYPE_VLAN as RTE_ETHER_TYPE_VLAN. - rename ETHER_TYPE_RARP as RTE_ETHER_TYPE_RARP. - rename ETHER_TYPE_QINQ as RTE_ETHER_TYPE_QINQ. - rename ETHER_TYPE_ETAG as RTE_ETHER_TYPE_ETAG. - rename ETHER_TYPE_1588 as RTE_ETHER_TYPE_1588. - rename ETHER_TYPE_SLOW as RTE_ETHER_TYPE_SLOW. - rename ETHER_TYPE_TEB as RTE_ETHER_TYPE_TEB. - rename ETHER_TYPE_LLDP as RTE_ETHER_TYPE_LLDP. - rename ETHER_TYPE_MPLS as RTE_ETHER_TYPE_MPLS. - rename ETHER_TYPE_MPLSM as RTE_ETHER_TYPE_MPLSM. - rename ETHER_VXLAN_HLEN as RTE_ETHER_VXLAN_HLEN. - rename ETHER_ADDR_FMT_SIZE as RTE_ETHER_ADDR_FMT_SIZE. - rename VXLAN_GPE_TYPE_IPV4 as RTE_VXLAN_GPE_TYPE_IPV4. - rename VXLAN_GPE_TYPE_IPV6 as RTE_VXLAN_GPE_TYPE_IPV6. - rename VXLAN_GPE_TYPE_ETH as RTE_VXLAN_GPE_TYPE_ETH. - rename VXLAN_GPE_TYPE_NSH as RTE_VXLAN_GPE_TYPE_NSH. - rename VXLAN_GPE_TYPE_MPLS as RTE_VXLAN_GPE_TYPE_MPLS. - rename VXLAN_GPE_TYPE_GBP as RTE_VXLAN_GPE_TYPE_GBP. - rename VXLAN_GPE_TYPE_VBNG as RTE_VXLAN_GPE_TYPE_VBNG. - rename ETHER_VXLAN_GPE_HLEN as RTE_ETHER_VXLAN_GPE_HLEN. Do not update the command line library to avoid adding a dependency to librte_net. Signed-off-by: Olivier Matz <olivier.matz@6wind.com> Reviewed-by: Stephen Hemminger <stephen@networkplumber.org> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2019-05-21 18:13:05 +02:00
char buf[RTE_ETHER_ADDR_FMT_SIZE];
net: add rte prefix to ether defines Add 'RTE_' prefix to defines: - rename ETHER_ADDR_LEN as RTE_ETHER_ADDR_LEN. - rename ETHER_TYPE_LEN as RTE_ETHER_TYPE_LEN. - rename ETHER_CRC_LEN as RTE_ETHER_CRC_LEN. - rename ETHER_HDR_LEN as RTE_ETHER_HDR_LEN. - rename ETHER_MIN_LEN as RTE_ETHER_MIN_LEN. - rename ETHER_MAX_LEN as RTE_ETHER_MAX_LEN. - rename ETHER_MTU as RTE_ETHER_MTU. - rename ETHER_MAX_VLAN_FRAME_LEN as RTE_ETHER_MAX_VLAN_FRAME_LEN. - rename ETHER_MAX_VLAN_ID as RTE_ETHER_MAX_VLAN_ID. - rename ETHER_MAX_JUMBO_FRAME_LEN as RTE_ETHER_MAX_JUMBO_FRAME_LEN. - rename ETHER_MIN_MTU as RTE_ETHER_MIN_MTU. - rename ETHER_LOCAL_ADMIN_ADDR as RTE_ETHER_LOCAL_ADMIN_ADDR. - rename ETHER_GROUP_ADDR as RTE_ETHER_GROUP_ADDR. - rename ETHER_TYPE_IPv4 as RTE_ETHER_TYPE_IPv4. - rename ETHER_TYPE_IPv6 as RTE_ETHER_TYPE_IPv6. - rename ETHER_TYPE_ARP as RTE_ETHER_TYPE_ARP. - rename ETHER_TYPE_VLAN as RTE_ETHER_TYPE_VLAN. - rename ETHER_TYPE_RARP as RTE_ETHER_TYPE_RARP. - rename ETHER_TYPE_QINQ as RTE_ETHER_TYPE_QINQ. - rename ETHER_TYPE_ETAG as RTE_ETHER_TYPE_ETAG. - rename ETHER_TYPE_1588 as RTE_ETHER_TYPE_1588. - rename ETHER_TYPE_SLOW as RTE_ETHER_TYPE_SLOW. - rename ETHER_TYPE_TEB as RTE_ETHER_TYPE_TEB. - rename ETHER_TYPE_LLDP as RTE_ETHER_TYPE_LLDP. - rename ETHER_TYPE_MPLS as RTE_ETHER_TYPE_MPLS. - rename ETHER_TYPE_MPLSM as RTE_ETHER_TYPE_MPLSM. - rename ETHER_VXLAN_HLEN as RTE_ETHER_VXLAN_HLEN. - rename ETHER_ADDR_FMT_SIZE as RTE_ETHER_ADDR_FMT_SIZE. - rename VXLAN_GPE_TYPE_IPV4 as RTE_VXLAN_GPE_TYPE_IPV4. - rename VXLAN_GPE_TYPE_IPV6 as RTE_VXLAN_GPE_TYPE_IPV6. - rename VXLAN_GPE_TYPE_ETH as RTE_VXLAN_GPE_TYPE_ETH. - rename VXLAN_GPE_TYPE_NSH as RTE_VXLAN_GPE_TYPE_NSH. - rename VXLAN_GPE_TYPE_MPLS as RTE_VXLAN_GPE_TYPE_MPLS. - rename VXLAN_GPE_TYPE_GBP as RTE_VXLAN_GPE_TYPE_GBP. - rename VXLAN_GPE_TYPE_VBNG as RTE_VXLAN_GPE_TYPE_VBNG. - rename ETHER_VXLAN_GPE_HLEN as RTE_ETHER_VXLAN_GPE_HLEN. Do not update the command line library to avoid adding a dependency to librte_net. Signed-off-by: Olivier Matz <olivier.matz@6wind.com> Reviewed-by: Stephen Hemminger <stephen@networkplumber.org> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2019-05-21 18:13:05 +02:00
rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
MKDUMPSTR(print_buf, buf_size, *cur_len, "%s%s", what, buf);
}
static inline bool
is_timestamp_enabled(const struct rte_mbuf *mbuf)
{
static uint64_t timestamp_rx_dynflag;
int timestamp_rx_dynflag_offset;
if (timestamp_rx_dynflag == 0) {
timestamp_rx_dynflag_offset = rte_mbuf_dynflag_lookup(
RTE_MBUF_DYNFLAG_RX_TIMESTAMP_NAME, NULL);
if (timestamp_rx_dynflag_offset < 0)
return false;
timestamp_rx_dynflag = RTE_BIT64(timestamp_rx_dynflag_offset);
}
return (mbuf->ol_flags & timestamp_rx_dynflag) != 0;
}
static inline rte_mbuf_timestamp_t
get_timestamp(const struct rte_mbuf *mbuf)
{
static int timestamp_dynfield_offset = -1;
if (timestamp_dynfield_offset < 0) {
timestamp_dynfield_offset = rte_mbuf_dynfield_lookup(
RTE_MBUF_DYNFIELD_TIMESTAMP_NAME, NULL);
if (timestamp_dynfield_offset < 0)
return 0;
}
return *RTE_MBUF_DYNFIELD(mbuf,
timestamp_dynfield_offset, rte_mbuf_timestamp_t *);
}
static inline void
dump_pkt_burst(uint16_t port_id, uint16_t queue, struct rte_mbuf *pkts[],
uint16_t nb_pkts, int is_rx)
{
struct rte_mbuf *mb;
const struct rte_ether_hdr *eth_hdr;
struct rte_ether_hdr _eth_hdr;
uint16_t eth_type;
uint64_t ol_flags;
uint16_t i, packet_type;
uint16_t is_encapsulation;
char buf[256];
struct rte_net_hdr_lens hdr_lens;
uint32_t sw_packet_type;
uint16_t udp_port;
uint32_t vx_vni;
const char *reason;
int dynf_index;
char print_buf[MAX_STRING_LEN];
size_t buf_size = MAX_STRING_LEN;
size_t cur_len = 0;
if (!nb_pkts)
return;
MKDUMPSTR(print_buf, buf_size, cur_len,
"port %u/queue %u: %s %u packets\n", port_id, queue,
is_rx ? "received" : "sent", (unsigned int) nb_pkts);
for (i = 0; i < nb_pkts; i++) {
app/testpmd: add commands for tunnel offload Tunnel Offload API provides hardware independent, unified model to offload tunneled traffic. Key model elements are: - apply matches to both outer and inner packet headers during entire offload procedure; - restore outer header of partially offloaded packet; - model is implemented as a set of helper functions. Implementation details: * Create application tunnel: flow tunnel create <port> type <tunnel type> On success, the command creates application tunnel object and returns the tunnel descriptor. Tunnel descriptor is used in subsequent flow creation commands to reference the tunnel. * Create tunnel steering flow rule: tunnel_set <tunnel descriptor> parameter used with steering rule template. * Create tunnel matching flow rule: tunnel_match <tunnel descriptor> used with matching rule template. * If tunnel steering rule was offloaded, outer header of a partially offloaded packet is restored after miss. Example: test packet= <Ether dst=24:8a:07:8d:ae:d6 src=50:6b:4b:cc:fc:e2 type=IPv4 | <IP version=4 ihl=5 proto=udp src=1.1.1.1 dst=1.1.1.10 | <UDP sport=4789 dport=4789 len=58 chksum=0x7f7b | <VXLAN NextProtocol=Ethernet vni=0x0 | <Ether dst=24:aa:aa:aa:aa:d6 src=50:bb:bb:bb:bb:e2 type=IPv4 | <IP version=4 ihl=5 proto=icmp src=2.2.2.2 dst=2.2.2.200 | <ICMP type=echo-request code=0 chksum=0xf7ff id=0x0 seq=0x0 |>>>>>>> >>> len(packet) 92 testpmd> flow flush 0 testpmd> port 0/queue 0: received 1 packets src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow tunnel 0 type vxlan port 0: flow tunnel #1 type vxlan testpmd> flow create 0 ingress group 0 tunnel_set 1 pattern eth /ipv4 / udp dst is 4789 / vxlan / end actions jump group 0 / end Flow rule #0 created testpmd> port 0/queue 0: received 1 packets tunnel restore info: - vxlan tunnel - outer header present # <-- src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow create 0 ingress group 0 tunnel_match 1 pattern eth / ipv4 / udp dst is 4789 / vxlan / eth / ipv4 / end actions set_mac_dst mac_addr 02:CA:FE:CA:FA:80 / queue index 0 / end Flow rule #1 created testpmd> port 0/queue 0: received 1 packets src=50:BB:BB:BB:BB:E2 - dst=02:CA:FE:CA:FA:80 - type=0x0800 - length=42 * Destroy flow tunnel flow tunnel destroy <port> id <tunnel id> * Show existing flow tunnels flow tunnel list <port> Signed-off-by: Gregory Etelson <getelson@nvidia.com>
2020-10-16 15:51:07 +03:00
int ret;
struct rte_flow_error error;
struct rte_flow_restore_info info = { 0, };
mb = pkts[i];
eth_hdr = rte_pktmbuf_read(mb, 0, sizeof(_eth_hdr), &_eth_hdr);
eth_type = RTE_BE_TO_CPU_16(eth_hdr->ether_type);
packet_type = mb->packet_type;
is_encapsulation = RTE_ETH_IS_TUNNEL_PKT(packet_type);
app/testpmd: add commands for tunnel offload Tunnel Offload API provides hardware independent, unified model to offload tunneled traffic. Key model elements are: - apply matches to both outer and inner packet headers during entire offload procedure; - restore outer header of partially offloaded packet; - model is implemented as a set of helper functions. Implementation details: * Create application tunnel: flow tunnel create <port> type <tunnel type> On success, the command creates application tunnel object and returns the tunnel descriptor. Tunnel descriptor is used in subsequent flow creation commands to reference the tunnel. * Create tunnel steering flow rule: tunnel_set <tunnel descriptor> parameter used with steering rule template. * Create tunnel matching flow rule: tunnel_match <tunnel descriptor> used with matching rule template. * If tunnel steering rule was offloaded, outer header of a partially offloaded packet is restored after miss. Example: test packet= <Ether dst=24:8a:07:8d:ae:d6 src=50:6b:4b:cc:fc:e2 type=IPv4 | <IP version=4 ihl=5 proto=udp src=1.1.1.1 dst=1.1.1.10 | <UDP sport=4789 dport=4789 len=58 chksum=0x7f7b | <VXLAN NextProtocol=Ethernet vni=0x0 | <Ether dst=24:aa:aa:aa:aa:d6 src=50:bb:bb:bb:bb:e2 type=IPv4 | <IP version=4 ihl=5 proto=icmp src=2.2.2.2 dst=2.2.2.200 | <ICMP type=echo-request code=0 chksum=0xf7ff id=0x0 seq=0x0 |>>>>>>> >>> len(packet) 92 testpmd> flow flush 0 testpmd> port 0/queue 0: received 1 packets src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow tunnel 0 type vxlan port 0: flow tunnel #1 type vxlan testpmd> flow create 0 ingress group 0 tunnel_set 1 pattern eth /ipv4 / udp dst is 4789 / vxlan / end actions jump group 0 / end Flow rule #0 created testpmd> port 0/queue 0: received 1 packets tunnel restore info: - vxlan tunnel - outer header present # <-- src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow create 0 ingress group 0 tunnel_match 1 pattern eth / ipv4 / udp dst is 4789 / vxlan / eth / ipv4 / end actions set_mac_dst mac_addr 02:CA:FE:CA:FA:80 / queue index 0 / end Flow rule #1 created testpmd> port 0/queue 0: received 1 packets src=50:BB:BB:BB:BB:E2 - dst=02:CA:FE:CA:FA:80 - type=0x0800 - length=42 * Destroy flow tunnel flow tunnel destroy <port> id <tunnel id> * Show existing flow tunnels flow tunnel list <port> Signed-off-by: Gregory Etelson <getelson@nvidia.com>
2020-10-16 15:51:07 +03:00
ret = rte_flow_get_restore_info(port_id, mb, &info, &error);
if (!ret) {
MKDUMPSTR(print_buf, buf_size, cur_len,
"restore info:");
app/testpmd: add commands for tunnel offload Tunnel Offload API provides hardware independent, unified model to offload tunneled traffic. Key model elements are: - apply matches to both outer and inner packet headers during entire offload procedure; - restore outer header of partially offloaded packet; - model is implemented as a set of helper functions. Implementation details: * Create application tunnel: flow tunnel create <port> type <tunnel type> On success, the command creates application tunnel object and returns the tunnel descriptor. Tunnel descriptor is used in subsequent flow creation commands to reference the tunnel. * Create tunnel steering flow rule: tunnel_set <tunnel descriptor> parameter used with steering rule template. * Create tunnel matching flow rule: tunnel_match <tunnel descriptor> used with matching rule template. * If tunnel steering rule was offloaded, outer header of a partially offloaded packet is restored after miss. Example: test packet= <Ether dst=24:8a:07:8d:ae:d6 src=50:6b:4b:cc:fc:e2 type=IPv4 | <IP version=4 ihl=5 proto=udp src=1.1.1.1 dst=1.1.1.10 | <UDP sport=4789 dport=4789 len=58 chksum=0x7f7b | <VXLAN NextProtocol=Ethernet vni=0x0 | <Ether dst=24:aa:aa:aa:aa:d6 src=50:bb:bb:bb:bb:e2 type=IPv4 | <IP version=4 ihl=5 proto=icmp src=2.2.2.2 dst=2.2.2.200 | <ICMP type=echo-request code=0 chksum=0xf7ff id=0x0 seq=0x0 |>>>>>>> >>> len(packet) 92 testpmd> flow flush 0 testpmd> port 0/queue 0: received 1 packets src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow tunnel 0 type vxlan port 0: flow tunnel #1 type vxlan testpmd> flow create 0 ingress group 0 tunnel_set 1 pattern eth /ipv4 / udp dst is 4789 / vxlan / end actions jump group 0 / end Flow rule #0 created testpmd> port 0/queue 0: received 1 packets tunnel restore info: - vxlan tunnel - outer header present # <-- src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow create 0 ingress group 0 tunnel_match 1 pattern eth / ipv4 / udp dst is 4789 / vxlan / eth / ipv4 / end actions set_mac_dst mac_addr 02:CA:FE:CA:FA:80 / queue index 0 / end Flow rule #1 created testpmd> port 0/queue 0: received 1 packets src=50:BB:BB:BB:BB:E2 - dst=02:CA:FE:CA:FA:80 - type=0x0800 - length=42 * Destroy flow tunnel flow tunnel destroy <port> id <tunnel id> * Show existing flow tunnels flow tunnel list <port> Signed-off-by: Gregory Etelson <getelson@nvidia.com>
2020-10-16 15:51:07 +03:00
if (info.flags & RTE_FLOW_RESTORE_INFO_TUNNEL) {
struct port_flow_tunnel *port_tunnel;
app/testpmd: add commands for tunnel offload Tunnel Offload API provides hardware independent, unified model to offload tunneled traffic. Key model elements are: - apply matches to both outer and inner packet headers during entire offload procedure; - restore outer header of partially offloaded packet; - model is implemented as a set of helper functions. Implementation details: * Create application tunnel: flow tunnel create <port> type <tunnel type> On success, the command creates application tunnel object and returns the tunnel descriptor. Tunnel descriptor is used in subsequent flow creation commands to reference the tunnel. * Create tunnel steering flow rule: tunnel_set <tunnel descriptor> parameter used with steering rule template. * Create tunnel matching flow rule: tunnel_match <tunnel descriptor> used with matching rule template. * If tunnel steering rule was offloaded, outer header of a partially offloaded packet is restored after miss. Example: test packet= <Ether dst=24:8a:07:8d:ae:d6 src=50:6b:4b:cc:fc:e2 type=IPv4 | <IP version=4 ihl=5 proto=udp src=1.1.1.1 dst=1.1.1.10 | <UDP sport=4789 dport=4789 len=58 chksum=0x7f7b | <VXLAN NextProtocol=Ethernet vni=0x0 | <Ether dst=24:aa:aa:aa:aa:d6 src=50:bb:bb:bb:bb:e2 type=IPv4 | <IP version=4 ihl=5 proto=icmp src=2.2.2.2 dst=2.2.2.200 | <ICMP type=echo-request code=0 chksum=0xf7ff id=0x0 seq=0x0 |>>>>>>> >>> len(packet) 92 testpmd> flow flush 0 testpmd> port 0/queue 0: received 1 packets src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow tunnel 0 type vxlan port 0: flow tunnel #1 type vxlan testpmd> flow create 0 ingress group 0 tunnel_set 1 pattern eth /ipv4 / udp dst is 4789 / vxlan / end actions jump group 0 / end Flow rule #0 created testpmd> port 0/queue 0: received 1 packets tunnel restore info: - vxlan tunnel - outer header present # <-- src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow create 0 ingress group 0 tunnel_match 1 pattern eth / ipv4 / udp dst is 4789 / vxlan / eth / ipv4 / end actions set_mac_dst mac_addr 02:CA:FE:CA:FA:80 / queue index 0 / end Flow rule #1 created testpmd> port 0/queue 0: received 1 packets src=50:BB:BB:BB:BB:E2 - dst=02:CA:FE:CA:FA:80 - type=0x0800 - length=42 * Destroy flow tunnel flow tunnel destroy <port> id <tunnel id> * Show existing flow tunnels flow tunnel list <port> Signed-off-by: Gregory Etelson <getelson@nvidia.com>
2020-10-16 15:51:07 +03:00
port_tunnel = port_flow_locate_tunnel
(port_id, &info.tunnel);
MKDUMPSTR(print_buf, buf_size, cur_len,
" - tunnel");
app/testpmd: add commands for tunnel offload Tunnel Offload API provides hardware independent, unified model to offload tunneled traffic. Key model elements are: - apply matches to both outer and inner packet headers during entire offload procedure; - restore outer header of partially offloaded packet; - model is implemented as a set of helper functions. Implementation details: * Create application tunnel: flow tunnel create <port> type <tunnel type> On success, the command creates application tunnel object and returns the tunnel descriptor. Tunnel descriptor is used in subsequent flow creation commands to reference the tunnel. * Create tunnel steering flow rule: tunnel_set <tunnel descriptor> parameter used with steering rule template. * Create tunnel matching flow rule: tunnel_match <tunnel descriptor> used with matching rule template. * If tunnel steering rule was offloaded, outer header of a partially offloaded packet is restored after miss. Example: test packet= <Ether dst=24:8a:07:8d:ae:d6 src=50:6b:4b:cc:fc:e2 type=IPv4 | <IP version=4 ihl=5 proto=udp src=1.1.1.1 dst=1.1.1.10 | <UDP sport=4789 dport=4789 len=58 chksum=0x7f7b | <VXLAN NextProtocol=Ethernet vni=0x0 | <Ether dst=24:aa:aa:aa:aa:d6 src=50:bb:bb:bb:bb:e2 type=IPv4 | <IP version=4 ihl=5 proto=icmp src=2.2.2.2 dst=2.2.2.200 | <ICMP type=echo-request code=0 chksum=0xf7ff id=0x0 seq=0x0 |>>>>>>> >>> len(packet) 92 testpmd> flow flush 0 testpmd> port 0/queue 0: received 1 packets src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow tunnel 0 type vxlan port 0: flow tunnel #1 type vxlan testpmd> flow create 0 ingress group 0 tunnel_set 1 pattern eth /ipv4 / udp dst is 4789 / vxlan / end actions jump group 0 / end Flow rule #0 created testpmd> port 0/queue 0: received 1 packets tunnel restore info: - vxlan tunnel - outer header present # <-- src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow create 0 ingress group 0 tunnel_match 1 pattern eth / ipv4 / udp dst is 4789 / vxlan / eth / ipv4 / end actions set_mac_dst mac_addr 02:CA:FE:CA:FA:80 / queue index 0 / end Flow rule #1 created testpmd> port 0/queue 0: received 1 packets src=50:BB:BB:BB:BB:E2 - dst=02:CA:FE:CA:FA:80 - type=0x0800 - length=42 * Destroy flow tunnel flow tunnel destroy <port> id <tunnel id> * Show existing flow tunnels flow tunnel list <port> Signed-off-by: Gregory Etelson <getelson@nvidia.com>
2020-10-16 15:51:07 +03:00
if (port_tunnel)
MKDUMPSTR(print_buf, buf_size, cur_len,
" #%u", port_tunnel->id);
app/testpmd: add commands for tunnel offload Tunnel Offload API provides hardware independent, unified model to offload tunneled traffic. Key model elements are: - apply matches to both outer and inner packet headers during entire offload procedure; - restore outer header of partially offloaded packet; - model is implemented as a set of helper functions. Implementation details: * Create application tunnel: flow tunnel create <port> type <tunnel type> On success, the command creates application tunnel object and returns the tunnel descriptor. Tunnel descriptor is used in subsequent flow creation commands to reference the tunnel. * Create tunnel steering flow rule: tunnel_set <tunnel descriptor> parameter used with steering rule template. * Create tunnel matching flow rule: tunnel_match <tunnel descriptor> used with matching rule template. * If tunnel steering rule was offloaded, outer header of a partially offloaded packet is restored after miss. Example: test packet= <Ether dst=24:8a:07:8d:ae:d6 src=50:6b:4b:cc:fc:e2 type=IPv4 | <IP version=4 ihl=5 proto=udp src=1.1.1.1 dst=1.1.1.10 | <UDP sport=4789 dport=4789 len=58 chksum=0x7f7b | <VXLAN NextProtocol=Ethernet vni=0x0 | <Ether dst=24:aa:aa:aa:aa:d6 src=50:bb:bb:bb:bb:e2 type=IPv4 | <IP version=4 ihl=5 proto=icmp src=2.2.2.2 dst=2.2.2.200 | <ICMP type=echo-request code=0 chksum=0xf7ff id=0x0 seq=0x0 |>>>>>>> >>> len(packet) 92 testpmd> flow flush 0 testpmd> port 0/queue 0: received 1 packets src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow tunnel 0 type vxlan port 0: flow tunnel #1 type vxlan testpmd> flow create 0 ingress group 0 tunnel_set 1 pattern eth /ipv4 / udp dst is 4789 / vxlan / end actions jump group 0 / end Flow rule #0 created testpmd> port 0/queue 0: received 1 packets tunnel restore info: - vxlan tunnel - outer header present # <-- src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow create 0 ingress group 0 tunnel_match 1 pattern eth / ipv4 / udp dst is 4789 / vxlan / eth / ipv4 / end actions set_mac_dst mac_addr 02:CA:FE:CA:FA:80 / queue index 0 / end Flow rule #1 created testpmd> port 0/queue 0: received 1 packets src=50:BB:BB:BB:BB:E2 - dst=02:CA:FE:CA:FA:80 - type=0x0800 - length=42 * Destroy flow tunnel flow tunnel destroy <port> id <tunnel id> * Show existing flow tunnels flow tunnel list <port> Signed-off-by: Gregory Etelson <getelson@nvidia.com>
2020-10-16 15:51:07 +03:00
else
MKDUMPSTR(print_buf, buf_size, cur_len,
" %s", "-none-");
MKDUMPSTR(print_buf, buf_size, cur_len,
" type %s", port_flow_tunnel_type
(&info.tunnel));
app/testpmd: add commands for tunnel offload Tunnel Offload API provides hardware independent, unified model to offload tunneled traffic. Key model elements are: - apply matches to both outer and inner packet headers during entire offload procedure; - restore outer header of partially offloaded packet; - model is implemented as a set of helper functions. Implementation details: * Create application tunnel: flow tunnel create <port> type <tunnel type> On success, the command creates application tunnel object and returns the tunnel descriptor. Tunnel descriptor is used in subsequent flow creation commands to reference the tunnel. * Create tunnel steering flow rule: tunnel_set <tunnel descriptor> parameter used with steering rule template. * Create tunnel matching flow rule: tunnel_match <tunnel descriptor> used with matching rule template. * If tunnel steering rule was offloaded, outer header of a partially offloaded packet is restored after miss. Example: test packet= <Ether dst=24:8a:07:8d:ae:d6 src=50:6b:4b:cc:fc:e2 type=IPv4 | <IP version=4 ihl=5 proto=udp src=1.1.1.1 dst=1.1.1.10 | <UDP sport=4789 dport=4789 len=58 chksum=0x7f7b | <VXLAN NextProtocol=Ethernet vni=0x0 | <Ether dst=24:aa:aa:aa:aa:d6 src=50:bb:bb:bb:bb:e2 type=IPv4 | <IP version=4 ihl=5 proto=icmp src=2.2.2.2 dst=2.2.2.200 | <ICMP type=echo-request code=0 chksum=0xf7ff id=0x0 seq=0x0 |>>>>>>> >>> len(packet) 92 testpmd> flow flush 0 testpmd> port 0/queue 0: received 1 packets src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow tunnel 0 type vxlan port 0: flow tunnel #1 type vxlan testpmd> flow create 0 ingress group 0 tunnel_set 1 pattern eth /ipv4 / udp dst is 4789 / vxlan / end actions jump group 0 / end Flow rule #0 created testpmd> port 0/queue 0: received 1 packets tunnel restore info: - vxlan tunnel - outer header present # <-- src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow create 0 ingress group 0 tunnel_match 1 pattern eth / ipv4 / udp dst is 4789 / vxlan / eth / ipv4 / end actions set_mac_dst mac_addr 02:CA:FE:CA:FA:80 / queue index 0 / end Flow rule #1 created testpmd> port 0/queue 0: received 1 packets src=50:BB:BB:BB:BB:E2 - dst=02:CA:FE:CA:FA:80 - type=0x0800 - length=42 * Destroy flow tunnel flow tunnel destroy <port> id <tunnel id> * Show existing flow tunnels flow tunnel list <port> Signed-off-by: Gregory Etelson <getelson@nvidia.com>
2020-10-16 15:51:07 +03:00
} else {
MKDUMPSTR(print_buf, buf_size, cur_len,
" - no tunnel info");
app/testpmd: add commands for tunnel offload Tunnel Offload API provides hardware independent, unified model to offload tunneled traffic. Key model elements are: - apply matches to both outer and inner packet headers during entire offload procedure; - restore outer header of partially offloaded packet; - model is implemented as a set of helper functions. Implementation details: * Create application tunnel: flow tunnel create <port> type <tunnel type> On success, the command creates application tunnel object and returns the tunnel descriptor. Tunnel descriptor is used in subsequent flow creation commands to reference the tunnel. * Create tunnel steering flow rule: tunnel_set <tunnel descriptor> parameter used with steering rule template. * Create tunnel matching flow rule: tunnel_match <tunnel descriptor> used with matching rule template. * If tunnel steering rule was offloaded, outer header of a partially offloaded packet is restored after miss. Example: test packet= <Ether dst=24:8a:07:8d:ae:d6 src=50:6b:4b:cc:fc:e2 type=IPv4 | <IP version=4 ihl=5 proto=udp src=1.1.1.1 dst=1.1.1.10 | <UDP sport=4789 dport=4789 len=58 chksum=0x7f7b | <VXLAN NextProtocol=Ethernet vni=0x0 | <Ether dst=24:aa:aa:aa:aa:d6 src=50:bb:bb:bb:bb:e2 type=IPv4 | <IP version=4 ihl=5 proto=icmp src=2.2.2.2 dst=2.2.2.200 | <ICMP type=echo-request code=0 chksum=0xf7ff id=0x0 seq=0x0 |>>>>>>> >>> len(packet) 92 testpmd> flow flush 0 testpmd> port 0/queue 0: received 1 packets src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow tunnel 0 type vxlan port 0: flow tunnel #1 type vxlan testpmd> flow create 0 ingress group 0 tunnel_set 1 pattern eth /ipv4 / udp dst is 4789 / vxlan / end actions jump group 0 / end Flow rule #0 created testpmd> port 0/queue 0: received 1 packets tunnel restore info: - vxlan tunnel - outer header present # <-- src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow create 0 ingress group 0 tunnel_match 1 pattern eth / ipv4 / udp dst is 4789 / vxlan / eth / ipv4 / end actions set_mac_dst mac_addr 02:CA:FE:CA:FA:80 / queue index 0 / end Flow rule #1 created testpmd> port 0/queue 0: received 1 packets src=50:BB:BB:BB:BB:E2 - dst=02:CA:FE:CA:FA:80 - type=0x0800 - length=42 * Destroy flow tunnel flow tunnel destroy <port> id <tunnel id> * Show existing flow tunnels flow tunnel list <port> Signed-off-by: Gregory Etelson <getelson@nvidia.com>
2020-10-16 15:51:07 +03:00
}
if (info.flags & RTE_FLOW_RESTORE_INFO_ENCAPSULATED)
MKDUMPSTR(print_buf, buf_size, cur_len,
" - outer header present");
app/testpmd: add commands for tunnel offload Tunnel Offload API provides hardware independent, unified model to offload tunneled traffic. Key model elements are: - apply matches to both outer and inner packet headers during entire offload procedure; - restore outer header of partially offloaded packet; - model is implemented as a set of helper functions. Implementation details: * Create application tunnel: flow tunnel create <port> type <tunnel type> On success, the command creates application tunnel object and returns the tunnel descriptor. Tunnel descriptor is used in subsequent flow creation commands to reference the tunnel. * Create tunnel steering flow rule: tunnel_set <tunnel descriptor> parameter used with steering rule template. * Create tunnel matching flow rule: tunnel_match <tunnel descriptor> used with matching rule template. * If tunnel steering rule was offloaded, outer header of a partially offloaded packet is restored after miss. Example: test packet= <Ether dst=24:8a:07:8d:ae:d6 src=50:6b:4b:cc:fc:e2 type=IPv4 | <IP version=4 ihl=5 proto=udp src=1.1.1.1 dst=1.1.1.10 | <UDP sport=4789 dport=4789 len=58 chksum=0x7f7b | <VXLAN NextProtocol=Ethernet vni=0x0 | <Ether dst=24:aa:aa:aa:aa:d6 src=50:bb:bb:bb:bb:e2 type=IPv4 | <IP version=4 ihl=5 proto=icmp src=2.2.2.2 dst=2.2.2.200 | <ICMP type=echo-request code=0 chksum=0xf7ff id=0x0 seq=0x0 |>>>>>>> >>> len(packet) 92 testpmd> flow flush 0 testpmd> port 0/queue 0: received 1 packets src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow tunnel 0 type vxlan port 0: flow tunnel #1 type vxlan testpmd> flow create 0 ingress group 0 tunnel_set 1 pattern eth /ipv4 / udp dst is 4789 / vxlan / end actions jump group 0 / end Flow rule #0 created testpmd> port 0/queue 0: received 1 packets tunnel restore info: - vxlan tunnel - outer header present # <-- src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow create 0 ingress group 0 tunnel_match 1 pattern eth / ipv4 / udp dst is 4789 / vxlan / eth / ipv4 / end actions set_mac_dst mac_addr 02:CA:FE:CA:FA:80 / queue index 0 / end Flow rule #1 created testpmd> port 0/queue 0: received 1 packets src=50:BB:BB:BB:BB:E2 - dst=02:CA:FE:CA:FA:80 - type=0x0800 - length=42 * Destroy flow tunnel flow tunnel destroy <port> id <tunnel id> * Show existing flow tunnels flow tunnel list <port> Signed-off-by: Gregory Etelson <getelson@nvidia.com>
2020-10-16 15:51:07 +03:00
else
MKDUMPSTR(print_buf, buf_size, cur_len,
" - no outer header");
app/testpmd: add commands for tunnel offload Tunnel Offload API provides hardware independent, unified model to offload tunneled traffic. Key model elements are: - apply matches to both outer and inner packet headers during entire offload procedure; - restore outer header of partially offloaded packet; - model is implemented as a set of helper functions. Implementation details: * Create application tunnel: flow tunnel create <port> type <tunnel type> On success, the command creates application tunnel object and returns the tunnel descriptor. Tunnel descriptor is used in subsequent flow creation commands to reference the tunnel. * Create tunnel steering flow rule: tunnel_set <tunnel descriptor> parameter used with steering rule template. * Create tunnel matching flow rule: tunnel_match <tunnel descriptor> used with matching rule template. * If tunnel steering rule was offloaded, outer header of a partially offloaded packet is restored after miss. Example: test packet= <Ether dst=24:8a:07:8d:ae:d6 src=50:6b:4b:cc:fc:e2 type=IPv4 | <IP version=4 ihl=5 proto=udp src=1.1.1.1 dst=1.1.1.10 | <UDP sport=4789 dport=4789 len=58 chksum=0x7f7b | <VXLAN NextProtocol=Ethernet vni=0x0 | <Ether dst=24:aa:aa:aa:aa:d6 src=50:bb:bb:bb:bb:e2 type=IPv4 | <IP version=4 ihl=5 proto=icmp src=2.2.2.2 dst=2.2.2.200 | <ICMP type=echo-request code=0 chksum=0xf7ff id=0x0 seq=0x0 |>>>>>>> >>> len(packet) 92 testpmd> flow flush 0 testpmd> port 0/queue 0: received 1 packets src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow tunnel 0 type vxlan port 0: flow tunnel #1 type vxlan testpmd> flow create 0 ingress group 0 tunnel_set 1 pattern eth /ipv4 / udp dst is 4789 / vxlan / end actions jump group 0 / end Flow rule #0 created testpmd> port 0/queue 0: received 1 packets tunnel restore info: - vxlan tunnel - outer header present # <-- src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow create 0 ingress group 0 tunnel_match 1 pattern eth / ipv4 / udp dst is 4789 / vxlan / eth / ipv4 / end actions set_mac_dst mac_addr 02:CA:FE:CA:FA:80 / queue index 0 / end Flow rule #1 created testpmd> port 0/queue 0: received 1 packets src=50:BB:BB:BB:BB:E2 - dst=02:CA:FE:CA:FA:80 - type=0x0800 - length=42 * Destroy flow tunnel flow tunnel destroy <port> id <tunnel id> * Show existing flow tunnels flow tunnel list <port> Signed-off-by: Gregory Etelson <getelson@nvidia.com>
2020-10-16 15:51:07 +03:00
if (info.flags & RTE_FLOW_RESTORE_INFO_GROUP_ID)
MKDUMPSTR(print_buf, buf_size, cur_len,
" - miss group %u", info.group_id);
app/testpmd: add commands for tunnel offload Tunnel Offload API provides hardware independent, unified model to offload tunneled traffic. Key model elements are: - apply matches to both outer and inner packet headers during entire offload procedure; - restore outer header of partially offloaded packet; - model is implemented as a set of helper functions. Implementation details: * Create application tunnel: flow tunnel create <port> type <tunnel type> On success, the command creates application tunnel object and returns the tunnel descriptor. Tunnel descriptor is used in subsequent flow creation commands to reference the tunnel. * Create tunnel steering flow rule: tunnel_set <tunnel descriptor> parameter used with steering rule template. * Create tunnel matching flow rule: tunnel_match <tunnel descriptor> used with matching rule template. * If tunnel steering rule was offloaded, outer header of a partially offloaded packet is restored after miss. Example: test packet= <Ether dst=24:8a:07:8d:ae:d6 src=50:6b:4b:cc:fc:e2 type=IPv4 | <IP version=4 ihl=5 proto=udp src=1.1.1.1 dst=1.1.1.10 | <UDP sport=4789 dport=4789 len=58 chksum=0x7f7b | <VXLAN NextProtocol=Ethernet vni=0x0 | <Ether dst=24:aa:aa:aa:aa:d6 src=50:bb:bb:bb:bb:e2 type=IPv4 | <IP version=4 ihl=5 proto=icmp src=2.2.2.2 dst=2.2.2.200 | <ICMP type=echo-request code=0 chksum=0xf7ff id=0x0 seq=0x0 |>>>>>>> >>> len(packet) 92 testpmd> flow flush 0 testpmd> port 0/queue 0: received 1 packets src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow tunnel 0 type vxlan port 0: flow tunnel #1 type vxlan testpmd> flow create 0 ingress group 0 tunnel_set 1 pattern eth /ipv4 / udp dst is 4789 / vxlan / end actions jump group 0 / end Flow rule #0 created testpmd> port 0/queue 0: received 1 packets tunnel restore info: - vxlan tunnel - outer header present # <-- src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow create 0 ingress group 0 tunnel_match 1 pattern eth / ipv4 / udp dst is 4789 / vxlan / eth / ipv4 / end actions set_mac_dst mac_addr 02:CA:FE:CA:FA:80 / queue index 0 / end Flow rule #1 created testpmd> port 0/queue 0: received 1 packets src=50:BB:BB:BB:BB:E2 - dst=02:CA:FE:CA:FA:80 - type=0x0800 - length=42 * Destroy flow tunnel flow tunnel destroy <port> id <tunnel id> * Show existing flow tunnels flow tunnel list <port> Signed-off-by: Gregory Etelson <getelson@nvidia.com>
2020-10-16 15:51:07 +03:00
else
MKDUMPSTR(print_buf, buf_size, cur_len,
" - no miss group");
MKDUMPSTR(print_buf, buf_size, cur_len, "\n");
app/testpmd: add commands for tunnel offload Tunnel Offload API provides hardware independent, unified model to offload tunneled traffic. Key model elements are: - apply matches to both outer and inner packet headers during entire offload procedure; - restore outer header of partially offloaded packet; - model is implemented as a set of helper functions. Implementation details: * Create application tunnel: flow tunnel create <port> type <tunnel type> On success, the command creates application tunnel object and returns the tunnel descriptor. Tunnel descriptor is used in subsequent flow creation commands to reference the tunnel. * Create tunnel steering flow rule: tunnel_set <tunnel descriptor> parameter used with steering rule template. * Create tunnel matching flow rule: tunnel_match <tunnel descriptor> used with matching rule template. * If tunnel steering rule was offloaded, outer header of a partially offloaded packet is restored after miss. Example: test packet= <Ether dst=24:8a:07:8d:ae:d6 src=50:6b:4b:cc:fc:e2 type=IPv4 | <IP version=4 ihl=5 proto=udp src=1.1.1.1 dst=1.1.1.10 | <UDP sport=4789 dport=4789 len=58 chksum=0x7f7b | <VXLAN NextProtocol=Ethernet vni=0x0 | <Ether dst=24:aa:aa:aa:aa:d6 src=50:bb:bb:bb:bb:e2 type=IPv4 | <IP version=4 ihl=5 proto=icmp src=2.2.2.2 dst=2.2.2.200 | <ICMP type=echo-request code=0 chksum=0xf7ff id=0x0 seq=0x0 |>>>>>>> >>> len(packet) 92 testpmd> flow flush 0 testpmd> port 0/queue 0: received 1 packets src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow tunnel 0 type vxlan port 0: flow tunnel #1 type vxlan testpmd> flow create 0 ingress group 0 tunnel_set 1 pattern eth /ipv4 / udp dst is 4789 / vxlan / end actions jump group 0 / end Flow rule #0 created testpmd> port 0/queue 0: received 1 packets tunnel restore info: - vxlan tunnel - outer header present # <-- src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow create 0 ingress group 0 tunnel_match 1 pattern eth / ipv4 / udp dst is 4789 / vxlan / eth / ipv4 / end actions set_mac_dst mac_addr 02:CA:FE:CA:FA:80 / queue index 0 / end Flow rule #1 created testpmd> port 0/queue 0: received 1 packets src=50:BB:BB:BB:BB:E2 - dst=02:CA:FE:CA:FA:80 - type=0x0800 - length=42 * Destroy flow tunnel flow tunnel destroy <port> id <tunnel id> * Show existing flow tunnels flow tunnel list <port> Signed-off-by: Gregory Etelson <getelson@nvidia.com>
2020-10-16 15:51:07 +03:00
}
print_ether_addr(" src=", &eth_hdr->s_addr,
print_buf, buf_size, &cur_len);
print_ether_addr(" - dst=", &eth_hdr->d_addr,
print_buf, buf_size, &cur_len);
MKDUMPSTR(print_buf, buf_size, cur_len,
" - type=0x%04x - length=%u - nb_segs=%d",
eth_type, (unsigned int) mb->pkt_len,
(int)mb->nb_segs);
app/testpmd: add commands for tunnel offload Tunnel Offload API provides hardware independent, unified model to offload tunneled traffic. Key model elements are: - apply matches to both outer and inner packet headers during entire offload procedure; - restore outer header of partially offloaded packet; - model is implemented as a set of helper functions. Implementation details: * Create application tunnel: flow tunnel create <port> type <tunnel type> On success, the command creates application tunnel object and returns the tunnel descriptor. Tunnel descriptor is used in subsequent flow creation commands to reference the tunnel. * Create tunnel steering flow rule: tunnel_set <tunnel descriptor> parameter used with steering rule template. * Create tunnel matching flow rule: tunnel_match <tunnel descriptor> used with matching rule template. * If tunnel steering rule was offloaded, outer header of a partially offloaded packet is restored after miss. Example: test packet= <Ether dst=24:8a:07:8d:ae:d6 src=50:6b:4b:cc:fc:e2 type=IPv4 | <IP version=4 ihl=5 proto=udp src=1.1.1.1 dst=1.1.1.10 | <UDP sport=4789 dport=4789 len=58 chksum=0x7f7b | <VXLAN NextProtocol=Ethernet vni=0x0 | <Ether dst=24:aa:aa:aa:aa:d6 src=50:bb:bb:bb:bb:e2 type=IPv4 | <IP version=4 ihl=5 proto=icmp src=2.2.2.2 dst=2.2.2.200 | <ICMP type=echo-request code=0 chksum=0xf7ff id=0x0 seq=0x0 |>>>>>>> >>> len(packet) 92 testpmd> flow flush 0 testpmd> port 0/queue 0: received 1 packets src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow tunnel 0 type vxlan port 0: flow tunnel #1 type vxlan testpmd> flow create 0 ingress group 0 tunnel_set 1 pattern eth /ipv4 / udp dst is 4789 / vxlan / end actions jump group 0 / end Flow rule #0 created testpmd> port 0/queue 0: received 1 packets tunnel restore info: - vxlan tunnel - outer header present # <-- src=50:6B:4B:CC:FC:E2 - dst=24:8A:07:8D:AE:D6 - type=0x0800 - length=92 testpmd> flow create 0 ingress group 0 tunnel_match 1 pattern eth / ipv4 / udp dst is 4789 / vxlan / eth / ipv4 / end actions set_mac_dst mac_addr 02:CA:FE:CA:FA:80 / queue index 0 / end Flow rule #1 created testpmd> port 0/queue 0: received 1 packets src=50:BB:BB:BB:BB:E2 - dst=02:CA:FE:CA:FA:80 - type=0x0800 - length=42 * Destroy flow tunnel flow tunnel destroy <port> id <tunnel id> * Show existing flow tunnels flow tunnel list <port> Signed-off-by: Gregory Etelson <getelson@nvidia.com>
2020-10-16 15:51:07 +03:00
ol_flags = mb->ol_flags;
if (ol_flags & PKT_RX_RSS_HASH) {
MKDUMPSTR(print_buf, buf_size, cur_len,
" - RSS hash=0x%x",
(unsigned int) mb->hash.rss);
MKDUMPSTR(print_buf, buf_size, cur_len,
" - RSS queue=0x%x", (unsigned int) queue);
}
if (ol_flags & PKT_RX_FDIR) {
MKDUMPSTR(print_buf, buf_size, cur_len,
" - FDIR matched ");
if (ol_flags & PKT_RX_FDIR_ID)
MKDUMPSTR(print_buf, buf_size, cur_len,
"ID=0x%x", mb->hash.fdir.hi);
else if (ol_flags & PKT_RX_FDIR_FLX)
MKDUMPSTR(print_buf, buf_size, cur_len,
"flex bytes=0x%08x %08x",
mb->hash.fdir.hi, mb->hash.fdir.lo);
else
MKDUMPSTR(print_buf, buf_size, cur_len,
"hash=0x%x ID=0x%x ",
mb->hash.fdir.hash, mb->hash.fdir.id);
}
if (is_timestamp_enabled(mb))
MKDUMPSTR(print_buf, buf_size, cur_len,
" - timestamp %"PRIu64" ", get_timestamp(mb));
if (ol_flags & PKT_RX_QINQ)
MKDUMPSTR(print_buf, buf_size, cur_len,
" - QinQ VLAN tci=0x%x, VLAN tci outer=0x%x",
mb->vlan_tci, mb->vlan_tci_outer);
else if (ol_flags & PKT_RX_VLAN)
MKDUMPSTR(print_buf, buf_size, cur_len,
" - VLAN tci=0x%x", mb->vlan_tci);
if (!is_rx && (ol_flags & PKT_TX_DYNF_METADATA))
MKDUMPSTR(print_buf, buf_size, cur_len,
" - Tx metadata: 0x%x",
*RTE_FLOW_DYNF_METADATA(mb));
if (is_rx && (ol_flags & PKT_RX_DYNF_METADATA))
MKDUMPSTR(print_buf, buf_size, cur_len,
" - Rx metadata: 0x%x",
*RTE_FLOW_DYNF_METADATA(mb));
for (dynf_index = 0; dynf_index < 64; dynf_index++) {
if (dynf_names[dynf_index][0] != '\0')
MKDUMPSTR(print_buf, buf_size, cur_len,
" - dynf %s: %d",
dynf_names[dynf_index],
!!(ol_flags & (1UL << dynf_index)));
}
if (mb->packet_type) {
rte_get_ptype_name(mb->packet_type, buf, sizeof(buf));
MKDUMPSTR(print_buf, buf_size, cur_len,
" - hw ptype: %s", buf);
}
sw_packet_type = rte_net_get_ptype(mb, &hdr_lens,
RTE_PTYPE_ALL_MASK);
rte_get_ptype_name(sw_packet_type, buf, sizeof(buf));
MKDUMPSTR(print_buf, buf_size, cur_len, " - sw ptype: %s", buf);
if (sw_packet_type & RTE_PTYPE_L2_MASK)
MKDUMPSTR(print_buf, buf_size, cur_len, " - l2_len=%d",
hdr_lens.l2_len);
if (sw_packet_type & RTE_PTYPE_L3_MASK)
MKDUMPSTR(print_buf, buf_size, cur_len, " - l3_len=%d",
hdr_lens.l3_len);
if (sw_packet_type & RTE_PTYPE_L4_MASK)
MKDUMPSTR(print_buf, buf_size, cur_len, " - l4_len=%d",
hdr_lens.l4_len);
if (sw_packet_type & RTE_PTYPE_TUNNEL_MASK)
MKDUMPSTR(print_buf, buf_size, cur_len,
" - tunnel_len=%d", hdr_lens.tunnel_len);
if (sw_packet_type & RTE_PTYPE_INNER_L2_MASK)
MKDUMPSTR(print_buf, buf_size, cur_len,
" - inner_l2_len=%d", hdr_lens.inner_l2_len);
if (sw_packet_type & RTE_PTYPE_INNER_L3_MASK)
MKDUMPSTR(print_buf, buf_size, cur_len,
" - inner_l3_len=%d", hdr_lens.inner_l3_len);
if (sw_packet_type & RTE_PTYPE_INNER_L4_MASK)
MKDUMPSTR(print_buf, buf_size, cur_len,
" - inner_l4_len=%d", hdr_lens.inner_l4_len);
if (is_encapsulation) {
struct rte_ipv4_hdr *ipv4_hdr;
struct rte_ipv6_hdr *ipv6_hdr;
struct rte_udp_hdr *udp_hdr;
uint8_t l2_len;
uint8_t l3_len;
uint8_t l4_len;
uint8_t l4_proto;
struct rte_vxlan_hdr *vxlan_hdr;
l2_len = sizeof(struct rte_ether_hdr);
/* Do not support ipv4 option field */
if (RTE_ETH_IS_IPV4_HDR(packet_type)) {
l3_len = sizeof(struct rte_ipv4_hdr);
ipv4_hdr = rte_pktmbuf_mtod_offset(mb,
struct rte_ipv4_hdr *,
l2_len);
l4_proto = ipv4_hdr->next_proto_id;
} else {
l3_len = sizeof(struct rte_ipv6_hdr);
ipv6_hdr = rte_pktmbuf_mtod_offset(mb,
struct rte_ipv6_hdr *,
l2_len);
l4_proto = ipv6_hdr->proto;
}
if (l4_proto == IPPROTO_UDP) {
udp_hdr = rte_pktmbuf_mtod_offset(mb,
struct rte_udp_hdr *,
l2_len + l3_len);
l4_len = sizeof(struct rte_udp_hdr);
vxlan_hdr = rte_pktmbuf_mtod_offset(mb,
struct rte_vxlan_hdr *,
l2_len + l3_len + l4_len);
udp_port = RTE_BE_TO_CPU_16(udp_hdr->dst_port);
vx_vni = rte_be_to_cpu_32(vxlan_hdr->vx_vni);
MKDUMPSTR(print_buf, buf_size, cur_len,
" - VXLAN packet: packet type =%d, "
"Destination UDP port =%d, VNI = %d",
packet_type, udp_port, vx_vni >> 8);
}
}
MKDUMPSTR(print_buf, buf_size, cur_len,
" - %s queue=0x%x", is_rx ? "Receive" : "Send",
(unsigned int) queue);
MKDUMPSTR(print_buf, buf_size, cur_len, "\n");
rte_get_rx_ol_flag_list(mb->ol_flags, buf, sizeof(buf));
MKDUMPSTR(print_buf, buf_size, cur_len,
" ol_flags: %s\n", buf);
if (rte_mbuf_check(mb, 1, &reason) < 0)
MKDUMPSTR(print_buf, buf_size, cur_len,
"INVALID mbuf: %s\n", reason);
if (cur_len >= buf_size)
printf("%s ...\n", print_buf);
else
printf("%s", print_buf);
cur_len = 0;
}
}
uint16_t
dump_rx_pkts(uint16_t port_id, uint16_t queue, struct rte_mbuf *pkts[],
uint16_t nb_pkts, __rte_unused uint16_t max_pkts,
__rte_unused void *user_param)
{
dump_pkt_burst(port_id, queue, pkts, nb_pkts, 1);
return nb_pkts;
}
uint16_t
dump_tx_pkts(uint16_t port_id, uint16_t queue, struct rte_mbuf *pkts[],
uint16_t nb_pkts, __rte_unused void *user_param)
{
dump_pkt_burst(port_id, queue, pkts, nb_pkts, 0);
return nb_pkts;
}
uint16_t
tx_pkt_set_md(uint16_t port_id, __rte_unused uint16_t queue,
struct rte_mbuf *pkts[], uint16_t nb_pkts,
__rte_unused void *user_param)
{
uint16_t i = 0;
/*
* Add metadata value to every Tx packet,
* and set ol_flags accordingly.
*/
ethdev: move egress metadata to dynamic field The dynamic mbuf fields were introduced by [1]. The egress metadata is good candidate to be moved from statically allocated field tx_metadata to dynamic one. Because mbufs are used in half-duplex fashion only, it is safe to share this dynamic field with ingress metadata. The shared dynamic field contains either egress (if application going to transmit mbuf with tx_burst) or ingress (if mbuf is received with rx_burst) metadata and can be accessed by RTE_FLOW_DYNF_METADATA() macro or with rte_flow_dynf_metadata_set() and rte_flow_dynf_metadata_get() helper routines. PKT_TX_DYNF_METADATA/PKT_RX_DYNF_METADATA flag will be set along with the data. The mbuf dynamic field must be registered by calling rte_flow_dynf_metadata_register() prior accessing the data. The availability of dynamic mbuf metadata field can be checked with rte_flow_dynf_metadata_avail() routine. DEV_TX_OFFLOAD_MATCH_METADATA offload and configuration flag is removed. The metadata support in PMDs is engaged on dynamic field registration. Metadata feature is getting complex. We might have some set of actions and items that might be supported by PMDs in multiple combinations, the supported values and masks are the subjects to query by perfroming trials (with rte_flow_validate). [1] http://patches.dpdk.org/patch/62040/ Signed-off-by: Viacheslav Ovsiienko <viacheslavo@mellanox.com> Acked-by: Andrew Rybchenko <arybchenko@solarflare.com> Acked-by: Olivier Matz <olivier.matz@6wind.com> Acked-by: Ori Kam <orika@mellanox.com>
2019-11-05 14:19:31 +00:00
if (rte_flow_dynf_metadata_avail())
for (i = 0; i < nb_pkts; i++) {
*RTE_FLOW_DYNF_METADATA(pkts[i]) =
ports[port_id].tx_metadata;
pkts[i]->ol_flags |= PKT_TX_DYNF_METADATA;
}
return nb_pkts;
}
void
add_tx_md_callback(portid_t portid)
{
struct rte_eth_dev_info dev_info;
uint16_t queue;
int ret;
if (port_id_is_invalid(portid, ENABLED_WARN))
return;
ret = eth_dev_info_get_print_err(portid, &dev_info);
if (ret != 0)
return;
for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
if (!ports[portid].tx_set_md_cb[queue])
ports[portid].tx_set_md_cb[queue] =
rte_eth_add_tx_callback(portid, queue,
tx_pkt_set_md, NULL);
}
void
remove_tx_md_callback(portid_t portid)
{
struct rte_eth_dev_info dev_info;
uint16_t queue;
int ret;
if (port_id_is_invalid(portid, ENABLED_WARN))
return;
ret = eth_dev_info_get_print_err(portid, &dev_info);
if (ret != 0)
return;
for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
if (ports[portid].tx_set_md_cb[queue]) {
rte_eth_remove_tx_callback(portid, queue,
ports[portid].tx_set_md_cb[queue]);
ports[portid].tx_set_md_cb[queue] = NULL;
}
}
uint16_t
tx_pkt_set_dynf(uint16_t port_id, __rte_unused uint16_t queue,
struct rte_mbuf *pkts[], uint16_t nb_pkts,
__rte_unused void *user_param)
{
uint16_t i = 0;
if (ports[port_id].mbuf_dynf)
for (i = 0; i < nb_pkts; i++)
pkts[i]->ol_flags |= ports[port_id].mbuf_dynf;
return nb_pkts;
}
void
add_tx_dynf_callback(portid_t portid)
{
struct rte_eth_dev_info dev_info;
uint16_t queue;
int ret;
if (port_id_is_invalid(portid, ENABLED_WARN))
return;
ret = eth_dev_info_get_print_err(portid, &dev_info);
if (ret != 0)
return;
for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
if (!ports[portid].tx_set_dynf_cb[queue])
ports[portid].tx_set_dynf_cb[queue] =
rte_eth_add_tx_callback(portid, queue,
tx_pkt_set_dynf, NULL);
}
void
remove_tx_dynf_callback(portid_t portid)
{
struct rte_eth_dev_info dev_info;
uint16_t queue;
int ret;
if (port_id_is_invalid(portid, ENABLED_WARN))
return;
ret = eth_dev_info_get_print_err(portid, &dev_info);
if (ret != 0)
return;
for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
if (ports[portid].tx_set_dynf_cb[queue]) {
rte_eth_remove_tx_callback(portid, queue,
ports[portid].tx_set_dynf_cb[queue]);
ports[portid].tx_set_dynf_cb[queue] = NULL;
}
}
int
eth_dev_info_get_print_err(uint16_t port_id,
struct rte_eth_dev_info *dev_info)
{
int ret;
ret = rte_eth_dev_info_get(port_id, dev_info);
if (ret != 0)
printf("Error during getting device (port %u) info: %s\n",
port_id, strerror(-ret));
return ret;
}
void
eth_set_promisc_mode(uint16_t port, int enable)
{
int ret;
if (enable)
ret = rte_eth_promiscuous_enable(port);
else
ret = rte_eth_promiscuous_disable(port);
if (ret != 0)
printf("Error during %s promiscuous mode for port %u: %s\n",
enable ? "enabling" : "disabling",
port, rte_strerror(-ret));
}
void
eth_set_allmulticast_mode(uint16_t port, int enable)
{
int ret;
if (enable)
ret = rte_eth_allmulticast_enable(port);
else
ret = rte_eth_allmulticast_disable(port);
if (ret != 0)
printf("Error during %s all-multicast mode for port %u: %s\n",
enable ? "enabling" : "disabling",
port, rte_strerror(-ret));
}
int
eth_link_get_nowait_print_err(uint16_t port_id, struct rte_eth_link *link)
{
int ret;
ret = rte_eth_link_get_nowait(port_id, link);
if (ret < 0)
printf("Device (port %u) link get (without wait) failed: %s\n",
port_id, rte_strerror(-ret));
return ret;
}
int
eth_macaddr_get_print_err(uint16_t port_id, struct rte_ether_addr *mac_addr)
{
int ret;
ret = rte_eth_macaddr_get(port_id, mac_addr);
if (ret != 0)
printf("Error getting device (port %u) mac address: %s\n",
port_id, rte_strerror(-ret));
return ret;
}