473 lines
15 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _RTE_LPM_H_
#define _RTE_LPM_H_
/**
* @file
* RTE Longest Prefix Match (LPM)
*/
#include <errno.h>
#include <sys/queue.h>
#include <stdint.h>
#include <stdlib.h>
#include <rte_branch_prediction.h>
#include <rte_memory.h>
#include <rte_common.h>
#include <rte_common_vect.h>
#ifdef __cplusplus
extern "C" {
#endif
/** Max number of characters in LPM name. */
#define RTE_LPM_NAMESIZE 32
/** @deprecated Possible location to allocate memory. This was for last
* parameter of rte_lpm_create(), but is now redundant. The LPM table is always
* allocated in memory using librte_malloc which uses a memzone. */
#define RTE_LPM_HEAP 0
/** @deprecated Possible location to allocate memory. This was for last
* parameter of rte_lpm_create(), but is now redundant. The LPM table is always
* allocated in memory using librte_malloc which uses a memzone. */
#define RTE_LPM_MEMZONE 1
/** Maximum depth value possible for IPv4 LPM. */
#define RTE_LPM_MAX_DEPTH 32
/** @internal Total number of tbl24 entries. */
#define RTE_LPM_TBL24_NUM_ENTRIES (1 << 24)
/** @internal Number of entries in a tbl8 group. */
#define RTE_LPM_TBL8_GROUP_NUM_ENTRIES 256
/** @internal Total number of tbl8 groups in the tbl8. */
#define RTE_LPM_TBL8_NUM_GROUPS 256
/** @internal Total number of tbl8 entries. */
#define RTE_LPM_TBL8_NUM_ENTRIES (RTE_LPM_TBL8_NUM_GROUPS * \
RTE_LPM_TBL8_GROUP_NUM_ENTRIES)
/** @internal Macro to enable/disable run-time checks. */
#if defined(RTE_LIBRTE_LPM_DEBUG)
#define RTE_LPM_RETURN_IF_TRUE(cond, retval) do { \
if (cond) return (retval); \
} while (0)
#else
#define RTE_LPM_RETURN_IF_TRUE(cond, retval)
#endif
/** @internal bitmask with valid and ext_entry/valid_group fields set */
#define RTE_LPM_VALID_EXT_ENTRY_BITMASK 0x0300
/** Bitmask used to indicate successful lookup */
#define RTE_LPM_LOOKUP_SUCCESS 0x0100
/** @internal Tbl24 entry structure. */
struct rte_lpm_tbl24_entry {
/* Stores Next hop or group index (i.e. gindex)into tbl8. */
union {
uint8_t next_hop;
uint8_t tbl8_gindex;
};
/* Using single uint8_t to store 3 values. */
uint8_t valid :1; /**< Validation flag. */
uint8_t ext_entry :1; /**< External entry. */
uint8_t depth :6; /**< Rule depth. */
};
/** @internal Tbl8 entry structure. */
struct rte_lpm_tbl8_entry {
uint8_t next_hop; /**< next hop. */
/* Using single uint8_t to store 3 values. */
uint8_t valid :1; /**< Validation flag. */
uint8_t valid_group :1; /**< Group validation flag. */
uint8_t depth :6; /**< Rule depth. */
};
/** @internal Rule structure. */
struct rte_lpm_rule {
uint32_t ip; /**< Rule IP address. */
uint8_t next_hop; /**< Rule next hop. */
};
/** @internal Contains metadata about the rules table. */
struct rte_lpm_rule_info {
uint32_t used_rules; /**< Used rules so far. */
uint32_t first_rule; /**< Indexes the first rule of a given depth. */
};
/** @internal LPM structure. */
struct rte_lpm {
/* LPM metadata. */
char name[RTE_LPM_NAMESIZE]; /**< Name of the lpm. */
int mem_location; /**< @deprecated @see RTE_LPM_HEAP and RTE_LPM_MEMZONE. */
uint32_t max_rules; /**< Max. balanced rules per lpm. */
struct rte_lpm_rule_info rule_info[RTE_LPM_MAX_DEPTH]; /**< Rule info table. */
/* LPM Tables. */
struct rte_lpm_tbl24_entry tbl24[RTE_LPM_TBL24_NUM_ENTRIES] \
__rte_cache_aligned; /**< LPM tbl24 table. */
struct rte_lpm_tbl8_entry tbl8[RTE_LPM_TBL8_NUM_ENTRIES] \
__rte_cache_aligned; /**< LPM tbl8 table. */
struct rte_lpm_rule rules_tbl[0] \
__rte_cache_aligned; /**< LPM rules. */
};
/**
* Create an LPM object.
*
* @param name
* LPM object name
* @param socket_id
* NUMA socket ID for LPM table memory allocation
* @param max_rules
* Maximum number of LPM rules that can be added
* @param flags
* This parameter is currently unused
* @return
* Handle to LPM object on success, NULL otherwise with rte_errno set
* to an appropriate values. Possible rte_errno values include:
* - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
* - E_RTE_SECONDARY - function was called from a secondary process instance
* - E_RTE_NO_TAILQ - no tailq list could be got for the lpm object list
* - EINVAL - invalid parameter passed to function
* - ENOSPC - the maximum number of memzones has already been allocated
* - EEXIST - a memzone with the same name already exists
* - ENOMEM - no appropriate memory area found in which to create memzone
*/
struct rte_lpm *
rte_lpm_create(const char *name, int socket_id, int max_rules, int flags);
/**
* Find an existing LPM object and return a pointer to it.
*
* @param name
* Name of the lpm object as passed to rte_lpm_create()
* @return
* Pointer to lpm object or NULL if object not found with rte_errno
* set appropriately. Possible rte_errno values include:
* - ENOENT - required entry not available to return.
*/
struct rte_lpm *
rte_lpm_find_existing(const char *name);
/**
* Free an LPM object.
*
* @param lpm
* LPM object handle
* @return
* None
*/
void
rte_lpm_free(struct rte_lpm *lpm);
/**
* Add a rule to the LPM table.
*
* @param lpm
* LPM object handle
* @param ip
* IP of the rule to be added to the LPM table
* @param depth
* Depth of the rule to be added to the LPM table
* @param next_hop
* Next hop of the rule to be added to the LPM table
* @return
* 0 on success, negative value otherwise
*/
int
rte_lpm_add(struct rte_lpm *lpm, uint32_t ip, uint8_t depth, uint8_t next_hop);
/**
* Check if a rule is present in the LPM table,
* and provide its next hop if it is.
*
* @param lpm
* LPM object handle
* @param ip
* IP of the rule to be searched
* @param depth
* Depth of the rule to searched
* @param next_hop
* Next hop of the rule (valid only if it is found)
* @return
* 1 if the rule exists, 0 if it does not, a negative value on failure
*/
int
rte_lpm_is_rule_present(struct rte_lpm *lpm, uint32_t ip, uint8_t depth,
uint8_t *next_hop);
/**
* Delete a rule from the LPM table.
*
* @param lpm
* LPM object handle
* @param ip
* IP of the rule to be deleted from the LPM table
* @param depth
* Depth of the rule to be deleted from the LPM table
* @return
* 0 on success, negative value otherwise
*/
int
rte_lpm_delete(struct rte_lpm *lpm, uint32_t ip, uint8_t depth);
/**
* Delete all rules from the LPM table.
*
* @param lpm
* LPM object handle
*/
void
rte_lpm_delete_all(struct rte_lpm *lpm);
/**
* Lookup an IP into the LPM table.
*
* @param lpm
* LPM object handle
* @param ip
* IP to be looked up in the LPM table
* @param next_hop
* Next hop of the most specific rule found for IP (valid on lookup hit only)
* @return
* -EINVAL for incorrect arguments, -ENOENT on lookup miss, 0 on lookup hit
*/
static inline int
rte_lpm_lookup(struct rte_lpm *lpm, uint32_t ip, uint8_t *next_hop)
{
unsigned tbl24_index = (ip >> 8);
uint16_t tbl_entry;
/* DEBUG: Check user input arguments. */
RTE_LPM_RETURN_IF_TRUE(((lpm == NULL) || (next_hop == NULL)), -EINVAL);
/* Copy tbl24 entry */
tbl_entry = *(const uint16_t *)&lpm->tbl24[tbl24_index];
/* Copy tbl8 entry (only if needed) */
if (unlikely((tbl_entry & RTE_LPM_VALID_EXT_ENTRY_BITMASK) ==
RTE_LPM_VALID_EXT_ENTRY_BITMASK)) {
unsigned tbl8_index = (uint8_t)ip +
((uint8_t)tbl_entry * RTE_LPM_TBL8_GROUP_NUM_ENTRIES);
tbl_entry = *(const uint16_t *)&lpm->tbl8[tbl8_index];
}
*next_hop = (uint8_t)tbl_entry;
return (tbl_entry & RTE_LPM_LOOKUP_SUCCESS) ? 0 : -ENOENT;
}
/**
* Lookup multiple IP addresses in an LPM table. This may be implemented as a
* macro, so the address of the function should not be used.
*
* @param lpm
* LPM object handle
* @param ips
* Array of IPs to be looked up in the LPM table
* @param next_hops
* Next hop of the most specific rule found for IP (valid on lookup hit only).
* This is an array of two byte values. The most significant byte in each
* value says whether the lookup was successful (bitmask
* RTE_LPM_LOOKUP_SUCCESS is set). The least significant byte is the
* actual next hop.
* @param n
* Number of elements in ips (and next_hops) array to lookup. This should be a
* compile time constant, and divisible by 8 for best performance.
* @return
* -EINVAL for incorrect arguments, otherwise 0
*/
#define rte_lpm_lookup_bulk(lpm, ips, next_hops, n) \
rte_lpm_lookup_bulk_func(lpm, ips, next_hops, n)
static inline int
rte_lpm_lookup_bulk_func(const struct rte_lpm *lpm, const uint32_t * ips,
uint16_t * next_hops, const unsigned n)
{
unsigned i;
unsigned tbl24_indexes[n];
/* DEBUG: Check user input arguments. */
RTE_LPM_RETURN_IF_TRUE(((lpm == NULL) || (ips == NULL) ||
(next_hops == NULL)), -EINVAL);
for (i = 0; i < n; i++) {
tbl24_indexes[i] = ips[i] >> 8;
}
for (i = 0; i < n; i++) {
/* Simply copy tbl24 entry to output */
next_hops[i] = *(const uint16_t *)&lpm->tbl24[tbl24_indexes[i]];
/* Overwrite output with tbl8 entry if needed */
if (unlikely((next_hops[i] & RTE_LPM_VALID_EXT_ENTRY_BITMASK) ==
RTE_LPM_VALID_EXT_ENTRY_BITMASK)) {
unsigned tbl8_index = (uint8_t)ips[i] +
((uint8_t)next_hops[i] *
RTE_LPM_TBL8_GROUP_NUM_ENTRIES);
next_hops[i] = *(const uint16_t *)&lpm->tbl8[tbl8_index];
}
}
return 0;
}
/* Mask four results. */
#define RTE_LPM_MASKX4_RES UINT64_C(0x00ff00ff00ff00ff)
/**
* Lookup four IP addresses in an LPM table.
*
* @param lpm
* LPM object handle
* @param ip
* Four IPs to be looked up in the LPM table
* @param hop
* Next hop of the most specific rule found for IP (valid on lookup hit only).
* This is an 4 elements array of two byte values.
* If the lookup was succesfull for the given IP, then least significant byte
* of the corresponding element is the actual next hop and the most
* significant byte is zero.
* If the lookup for the given IP failed, then corresponding element would
* contain default value, see description of then next parameter.
* @param defv
* Default value to populate into corresponding element of hop[] array,
* if lookup would fail.
*/
static inline void
rte_lpm_lookupx4(const struct rte_lpm *lpm, __m128i ip, uint16_t hop[4],
uint16_t defv)
{
__m128i i24;
rte_xmm_t i8;
uint16_t tbl[4];
uint64_t idx, pt;
const __m128i mask8 =
_mm_set_epi32(UINT8_MAX, UINT8_MAX, UINT8_MAX, UINT8_MAX);
/*
* RTE_LPM_VALID_EXT_ENTRY_BITMASK for 4 LPM entries
* as one 64-bit value (0x0300030003000300).
*/
const uint64_t mask_xv =
((uint64_t)RTE_LPM_VALID_EXT_ENTRY_BITMASK |
(uint64_t)RTE_LPM_VALID_EXT_ENTRY_BITMASK << 16 |
(uint64_t)RTE_LPM_VALID_EXT_ENTRY_BITMASK << 32 |
(uint64_t)RTE_LPM_VALID_EXT_ENTRY_BITMASK << 48);
/*
* RTE_LPM_LOOKUP_SUCCESS for 4 LPM entries
* as one 64-bit value (0x0100010001000100).
*/
const uint64_t mask_v =
((uint64_t)RTE_LPM_LOOKUP_SUCCESS |
(uint64_t)RTE_LPM_LOOKUP_SUCCESS << 16 |
(uint64_t)RTE_LPM_LOOKUP_SUCCESS << 32 |
(uint64_t)RTE_LPM_LOOKUP_SUCCESS << 48);
/* get 4 indexes for tbl24[]. */
i24 = _mm_srli_epi32(ip, CHAR_BIT);
/* extract values from tbl24[] */
idx = _mm_cvtsi128_si64(i24);
i24 = _mm_srli_si128(i24, sizeof(uint64_t));
tbl[0] = *(const uint16_t *)&lpm->tbl24[(uint32_t)idx];
tbl[1] = *(const uint16_t *)&lpm->tbl24[idx >> 32];
idx = _mm_cvtsi128_si64(i24);
tbl[2] = *(const uint16_t *)&lpm->tbl24[(uint32_t)idx];
tbl[3] = *(const uint16_t *)&lpm->tbl24[idx >> 32];
/* get 4 indexes for tbl8[]. */
i8.m = _mm_and_si128(ip, mask8);
pt = (uint64_t)tbl[0] |
(uint64_t)tbl[1] << 16 |
(uint64_t)tbl[2] << 32 |
(uint64_t)tbl[3] << 48;
/* search successfully finished for all 4 IP addresses. */
if (likely((pt & mask_xv) == mask_v)) {
uintptr_t ph = (uintptr_t)hop;
*(uint64_t *)ph = pt & RTE_LPM_MASKX4_RES;
return;
}
if (unlikely((pt & RTE_LPM_VALID_EXT_ENTRY_BITMASK) ==
RTE_LPM_VALID_EXT_ENTRY_BITMASK)) {
i8.u32[0] = i8.u32[0] +
(uint8_t)tbl[0] * RTE_LPM_TBL8_GROUP_NUM_ENTRIES;
tbl[0] = *(const uint16_t *)&lpm->tbl8[i8.u32[0]];
}
if (unlikely((pt >> 16 & RTE_LPM_VALID_EXT_ENTRY_BITMASK) ==
RTE_LPM_VALID_EXT_ENTRY_BITMASK)) {
i8.u32[1] = i8.u32[1] +
(uint8_t)tbl[1] * RTE_LPM_TBL8_GROUP_NUM_ENTRIES;
tbl[1] = *(const uint16_t *)&lpm->tbl8[i8.u32[1]];
}
if (unlikely((pt >> 32 & RTE_LPM_VALID_EXT_ENTRY_BITMASK) ==
RTE_LPM_VALID_EXT_ENTRY_BITMASK)) {
i8.u32[2] = i8.u32[2] +
(uint8_t)tbl[2] * RTE_LPM_TBL8_GROUP_NUM_ENTRIES;
tbl[2] = *(const uint16_t *)&lpm->tbl8[i8.u32[2]];
}
if (unlikely((pt >> 48 & RTE_LPM_VALID_EXT_ENTRY_BITMASK) ==
RTE_LPM_VALID_EXT_ENTRY_BITMASK)) {
i8.u32[3] = i8.u32[3] +
(uint8_t)tbl[3] * RTE_LPM_TBL8_GROUP_NUM_ENTRIES;
tbl[3] = *(const uint16_t *)&lpm->tbl8[i8.u32[3]];
}
hop[0] = (tbl[0] & RTE_LPM_LOOKUP_SUCCESS) ? (uint8_t)tbl[0] : defv;
hop[1] = (tbl[1] & RTE_LPM_LOOKUP_SUCCESS) ? (uint8_t)tbl[1] : defv;
hop[2] = (tbl[2] & RTE_LPM_LOOKUP_SUCCESS) ? (uint8_t)tbl[2] : defv;
hop[3] = (tbl[3] & RTE_LPM_LOOKUP_SUCCESS) ? (uint8_t)tbl[3] : defv;
}
#ifdef __cplusplus
}
#endif
#endif /* _RTE_LPM_H_ */