numam-dpdk/lib/librte_eal/common/eal_common_fbarray.c

876 lines
20 KiB
C
Raw Normal View History

eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017-2018 Intel Corporation
*/
#include <inttypes.h>
#include <limits.h>
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
#include <sys/mman.h>
#include <stdint.h>
#include <errno.h>
#include <sys/file.h>
#include <string.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_errno.h>
#include <rte_spinlock.h>
#include <rte_tailq.h>
#include "eal_filesystem.h"
#include "eal_private.h"
#include "rte_fbarray.h"
#define MASK_SHIFT 6ULL
#define MASK_ALIGN (1ULL << MASK_SHIFT)
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
#define MASK_LEN_TO_IDX(x) ((x) >> MASK_SHIFT)
#define MASK_LEN_TO_MOD(x) ((x) - RTE_ALIGN_FLOOR(x, MASK_ALIGN))
#define MASK_GET_IDX(idx, mod) ((idx << MASK_SHIFT) + mod)
/*
* This is a mask that is always stored at the end of array, to provide fast
* way of finding free/used spots without looping through each element.
*/
struct used_mask {
unsigned int n_masks;
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
uint64_t data[];
};
static size_t
calc_mask_size(unsigned int len)
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
{
/* mask must be multiple of MASK_ALIGN, even though length of array
* itself may not be aligned on that boundary.
*/
len = RTE_ALIGN_CEIL(len, MASK_ALIGN);
return sizeof(struct used_mask) +
sizeof(uint64_t) * MASK_LEN_TO_IDX(len);
}
static size_t
calc_data_size(size_t page_sz, unsigned int elt_sz, unsigned int len)
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
{
size_t data_sz = elt_sz * len;
size_t msk_sz = calc_mask_size(len);
return RTE_ALIGN_CEIL(data_sz + msk_sz, page_sz);
}
static struct used_mask *
get_used_mask(void *data, unsigned int elt_sz, unsigned int len)
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
{
return (struct used_mask *) RTE_PTR_ADD(data, elt_sz * len);
}
static int
resize_and_map(int fd, void *addr, size_t len)
{
char path[PATH_MAX];
void *map_addr;
if (ftruncate(fd, len)) {
RTE_LOG(ERR, EAL, "Cannot truncate %s\n", path);
/* pass errno up the chain */
rte_errno = errno;
return -1;
}
map_addr = mmap(addr, len, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_FIXED, fd, 0);
if (map_addr != addr) {
RTE_LOG(ERR, EAL, "mmap() failed: %s\n", strerror(errno));
/* pass errno up the chain */
rte_errno = errno;
return -1;
}
return 0;
}
static int
find_next_n(const struct rte_fbarray *arr, unsigned int start, unsigned int n,
bool used)
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
{
const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
arr->len);
unsigned int msk_idx, lookahead_idx, first, first_mod;
unsigned int last, last_mod;
uint64_t last_msk, ignore_msk;
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
/*
* mask only has granularity of MASK_ALIGN, but start may not be aligned
* on that boundary, so construct a special mask to exclude anything we
* don't want to see to avoid confusing ctz.
*/
first = MASK_LEN_TO_IDX(start);
first_mod = MASK_LEN_TO_MOD(start);
ignore_msk = ~((1ULL << first_mod) - 1);
/* array length may not be aligned, so calculate ignore mask for last
* mask index.
*/
last = MASK_LEN_TO_IDX(arr->len);
last_mod = MASK_LEN_TO_MOD(arr->len);
last_msk = ~(-1ULL << last_mod);
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
for (msk_idx = first; msk_idx < msk->n_masks; msk_idx++) {
uint64_t cur_msk, lookahead_msk;
unsigned int run_start, clz, left;
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
bool found = false;
/*
* The process of getting n consecutive bits for arbitrary n is
* a bit involved, but here it is in a nutshell:
*
* 1. let n be the number of consecutive bits we're looking for
* 2. check if n can fit in one mask, and if so, do n-1
* rshift-ands to see if there is an appropriate run inside
* our current mask
* 2a. if we found a run, bail out early
* 2b. if we didn't find a run, proceed
* 3. invert the mask and count leading zeroes (that is, count
* how many consecutive set bits we had starting from the
* end of current mask) as k
* 3a. if k is 0, continue to next mask
* 3b. if k is not 0, we have a potential run
* 4. to satisfy our requirements, next mask must have n-k
* consecutive set bits right at the start, so we will do
* (n-k-1) rshift-ands and check if first bit is set.
*
* Step 4 will need to be repeated if (n-k) > MASK_ALIGN until
* we either run out of masks, lose the run, or find what we
* were looking for.
*/
cur_msk = msk->data[msk_idx];
left = n;
/* if we're looking for free spaces, invert the mask */
if (!used)
cur_msk = ~cur_msk;
/* combine current ignore mask with last index ignore mask */
if (msk_idx == last)
ignore_msk |= last_msk;
/* if we have an ignore mask, ignore once */
if (ignore_msk) {
cur_msk &= ignore_msk;
ignore_msk = 0;
}
/* if n can fit in within a single mask, do a search */
if (n <= MASK_ALIGN) {
uint64_t tmp_msk = cur_msk;
unsigned int s_idx;
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
for (s_idx = 0; s_idx < n - 1; s_idx++)
tmp_msk &= tmp_msk >> 1ULL;
/* we found what we were looking for */
if (tmp_msk != 0) {
run_start = __builtin_ctzll(tmp_msk);
return MASK_GET_IDX(msk_idx, run_start);
}
}
/*
* we didn't find our run within the mask, or n > MASK_ALIGN,
* so we're going for plan B.
*/
/* count leading zeroes on inverted mask */
eal: fix undefined behavior in fbarray According to GCC documentation [1], the __builtin_clz() family of functions yield undefined behavior when fed a zero value. There is one instance in the fbarray code where this can occur. Clang (at least version 3.8.0-2ubuntu4) seems much more sensitive to this than GCC and yields random results when compiling optimized code, as shown below: #include <stdio.h> int main(void) { volatile unsigned long long moo; int x; moo = 0; x = __builtin_clzll(moo); printf("%d\n", x); return 0; } $ gcc -O3 -o test test.c && ./test 63 $ clang -O3 -o test test.c && ./test 1742715559 $ clang -O0 -o test test.c && ./test 63 Even 63 can be considered an unexpected result given the number of leading zeroes should be the full width of the underlying type, i.e. 64. In practice it causes find_next_n() to sometimes return negative values interpreted as errors by caller functions, which prevents DPDK applications from starting due to inability to find free memory segments: # testpmd [...] EAL: Detected 32 lcore(s) EAL: Detected 2 NUMA nodes EAL: No free hugepages reported in hugepages-1048576kB EAL: Multi-process socket /var/run/.rte_unix EAL: eal_memalloc_alloc_seg_bulk(): couldn't find suitable memseg_list EAL: FATAL: Cannot init memory EAL: Cannot init memory PANIC in main(): Cannot init EAL 4: [./build/app/testpmd(_start+0x29) [0x462289]] 3: [/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xf0) [0x7f19d54fc830]] 2: [./build/app/testpmd(main+0x8a3) [0x466193]] 1: [./build/app/testpmd(__rte_panic+0xd6) [0x4efaa6]] Aborted This problem appears with commit 66cc45e293ed ("mem: replace memseg with memseg lists") however the root cause is introduced by a prior patch. [1] https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html Fixes: c44d09811b40 ("eal: add shared indexed file-backed array") Signed-off-by: Adrien Mazarguil <adrien.mazarguil@6wind.com> Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
2018-04-13 20:42:58 +02:00
if (~cur_msk == 0)
clz = sizeof(cur_msk) * 8;
else
clz = __builtin_clzll(~cur_msk);
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
/* if there aren't any runs at the end either, just continue */
if (clz == 0)
continue;
/* we have a partial run at the end, so try looking ahead */
run_start = MASK_ALIGN - clz;
left -= clz;
for (lookahead_idx = msk_idx + 1; lookahead_idx < msk->n_masks;
lookahead_idx++) {
unsigned int s_idx, need;
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
lookahead_msk = msk->data[lookahead_idx];
/* if we're looking for free space, invert the mask */
if (!used)
lookahead_msk = ~lookahead_msk;
/* figure out how many consecutive bits we need here */
need = RTE_MIN(left, MASK_ALIGN);
for (s_idx = 0; s_idx < need - 1; s_idx++)
lookahead_msk &= lookahead_msk >> 1ULL;
/* if first bit is not set, we've lost the run */
if ((lookahead_msk & 1) == 0) {
/*
* we've scanned this far, so we know there are
* no runs in the space we've lookahead-scanned
* as well, so skip that on next iteration.
*/
ignore_msk = ~((1ULL << need) - 1);
msk_idx = lookahead_idx;
break;
}
left -= need;
/* check if we've found what we were looking for */
if (left == 0) {
found = true;
break;
}
}
/* we didn't find anything, so continue */
if (!found)
continue;
return MASK_GET_IDX(msk_idx, run_start);
}
/* we didn't find anything */
rte_errno = used ? -ENOENT : -ENOSPC;
return -1;
}
static int
find_next(const struct rte_fbarray *arr, unsigned int start, bool used)
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
{
const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
arr->len);
unsigned int idx, first, first_mod;
unsigned int last, last_mod;
uint64_t last_msk, ignore_msk;
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
/*
* mask only has granularity of MASK_ALIGN, but start may not be aligned
* on that boundary, so construct a special mask to exclude anything we
* don't want to see to avoid confusing ctz.
*/
first = MASK_LEN_TO_IDX(start);
first_mod = MASK_LEN_TO_MOD(start);
ignore_msk = ~((1ULL << first_mod) - 1ULL);
/* array length may not be aligned, so calculate ignore mask for last
* mask index.
*/
last = MASK_LEN_TO_IDX(arr->len);
last_mod = MASK_LEN_TO_MOD(arr->len);
last_msk = ~(-(1ULL) << last_mod);
for (idx = first; idx < msk->n_masks; idx++) {
uint64_t cur = msk->data[idx];
int found;
/* if we're looking for free entries, invert mask */
if (!used)
cur = ~cur;
if (idx == last)
cur &= last_msk;
/* ignore everything before start on first iteration */
if (idx == first)
cur &= ignore_msk;
/* check if we have any entries */
if (cur == 0)
continue;
/*
* find first set bit - that will correspond to whatever it is
* that we're looking for.
*/
found = __builtin_ctzll(cur);
return MASK_GET_IDX(idx, found);
}
/* we didn't find anything */
rte_errno = used ? -ENOENT : -ENOSPC;
return -1;
}
static int
find_contig(const struct rte_fbarray *arr, unsigned int start, bool used)
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
{
const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
arr->len);
unsigned int idx, first, first_mod;
unsigned int last, last_mod;
uint64_t last_msk;
unsigned int need_len, result = 0;
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
/* array length may not be aligned, so calculate ignore mask for last
* mask index.
*/
last = MASK_LEN_TO_IDX(arr->len);
last_mod = MASK_LEN_TO_MOD(arr->len);
last_msk = ~(-(1ULL) << last_mod);
first = MASK_LEN_TO_IDX(start);
first_mod = MASK_LEN_TO_MOD(start);
for (idx = first; idx < msk->n_masks; idx++, result += need_len) {
uint64_t cur = msk->data[idx];
unsigned int run_len;
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
need_len = MASK_ALIGN;
/* if we're looking for free entries, invert mask */
if (!used)
cur = ~cur;
/* if this is last mask, ignore everything after last bit */
if (idx == last)
cur &= last_msk;
/* ignore everything before start on first iteration */
if (idx == first) {
cur >>= first_mod;
/* at the start, we don't need the full mask len */
need_len -= first_mod;
}
/* we will be looking for zeroes, so invert the mask */
cur = ~cur;
/* if mask is zero, we have a complete run */
if (cur == 0)
continue;
/*
* see if current run ends before mask end.
*/
run_len = __builtin_ctzll(cur);
/* add however many zeroes we've had in the last run and quit */
if (run_len < need_len) {
result += run_len;
break;
}
}
return result;
}
static int
set_used(struct rte_fbarray *arr, unsigned int idx, bool used)
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
{
struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz, arr->len);
uint64_t msk_bit = 1ULL << MASK_LEN_TO_MOD(idx);
unsigned int msk_idx = MASK_LEN_TO_IDX(idx);
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
bool already_used;
int ret = -1;
if (arr == NULL || idx >= arr->len) {
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
rte_errno = EINVAL;
return -1;
}
ret = 0;
/* prevent array from changing under us */
rte_rwlock_write_lock(&arr->rwlock);
already_used = (msk->data[msk_idx] & msk_bit) != 0;
/* nothing to be done */
if (used == already_used)
goto out;
if (used) {
msk->data[msk_idx] |= msk_bit;
arr->count++;
} else {
msk->data[msk_idx] &= ~msk_bit;
arr->count--;
}
out:
rte_rwlock_write_unlock(&arr->rwlock);
return ret;
}
static int
fully_validate(const char *name, unsigned int elt_sz, unsigned int len)
{
if (name == NULL || elt_sz == 0 || len == 0 || len > INT_MAX) {
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
rte_errno = EINVAL;
return -1;
}
if (strnlen(name, RTE_FBARRAY_NAME_LEN) == RTE_FBARRAY_NAME_LEN) {
rte_errno = ENAMETOOLONG;
return -1;
}
return 0;
}
int __rte_experimental
rte_fbarray_init(struct rte_fbarray *arr, const char *name, unsigned int len,
unsigned int elt_sz)
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
{
size_t page_sz, mmap_len;
char path[PATH_MAX];
struct used_mask *msk;
void *data = NULL;
int fd = -1;
if (arr == NULL) {
rte_errno = EINVAL;
return -1;
}
if (fully_validate(name, elt_sz, len))
return -1;
page_sz = sysconf(_SC_PAGESIZE);
if (page_sz == (size_t)-1)
goto fail;
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
/* calculate our memory limits */
mmap_len = calc_data_size(page_sz, elt_sz, len);
data = eal_get_virtual_area(NULL, &mmap_len, page_sz, 0, 0);
if (data == NULL)
goto fail;
eal_get_fbarray_path(path, sizeof(path), name);
/*
* Each fbarray is unique to process namespace, i.e. the filename
* depends on process prefix. Try to take out a lock and see if we
* succeed. If we don't, someone else is using it already.
*/
fd = open(path, O_CREAT | O_RDWR, 0600);
if (fd < 0) {
RTE_LOG(DEBUG, EAL, "%s(): couldn't open %s: %s\n", __func__,
path, strerror(errno));
rte_errno = errno;
goto fail;
} else if (flock(fd, LOCK_EX | LOCK_NB)) {
RTE_LOG(DEBUG, EAL, "%s(): couldn't lock %s: %s\n", __func__,
path, strerror(errno));
rte_errno = EBUSY;
goto fail;
}
/* take out a non-exclusive lock, so that other processes could still
* attach to it, but no other process could reinitialize it.
*/
if (flock(fd, LOCK_SH | LOCK_NB)) {
rte_errno = errno;
goto fail;
}
if (resize_and_map(fd, data, mmap_len))
goto fail;
/* we've mmap'ed the file, we can now close the fd */
close(fd);
/* initialize the data */
memset(data, 0, mmap_len);
/* populate data structure */
strlcpy(arr->name, name, sizeof(arr->name));
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
arr->data = data;
arr->len = len;
arr->elt_sz = elt_sz;
arr->count = 0;
msk = get_used_mask(data, elt_sz, len);
msk->n_masks = MASK_LEN_TO_IDX(RTE_ALIGN_CEIL(len, MASK_ALIGN));
rte_rwlock_init(&arr->rwlock);
return 0;
fail:
if (data)
munmap(data, mmap_len);
if (fd >= 0)
close(fd);
return -1;
}
int __rte_experimental
rte_fbarray_attach(struct rte_fbarray *arr)
{
size_t page_sz, mmap_len;
char path[PATH_MAX];
void *data = NULL;
int fd = -1;
if (arr == NULL) {
rte_errno = EINVAL;
return -1;
}
/*
* we don't need to synchronize attach as two values we need (element
* size and array length) are constant for the duration of life of
* the array, so the parts we care about will not race.
*/
if (fully_validate(arr->name, arr->elt_sz, arr->len))
return -1;
page_sz = sysconf(_SC_PAGESIZE);
if (page_sz == (size_t)-1)
goto fail;
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
mmap_len = calc_data_size(page_sz, arr->elt_sz, arr->len);
data = eal_get_virtual_area(arr->data, &mmap_len, page_sz, 0, 0);
if (data == NULL)
goto fail;
eal_get_fbarray_path(path, sizeof(path), arr->name);
fd = open(path, O_RDWR);
if (fd < 0) {
rte_errno = errno;
goto fail;
}
/* lock the file, to let others know we're using it */
if (flock(fd, LOCK_SH | LOCK_NB)) {
rte_errno = errno;
goto fail;
}
if (resize_and_map(fd, data, mmap_len))
goto fail;
close(fd);
/* we're done */
return 0;
fail:
if (data)
munmap(data, mmap_len);
if (fd >= 0)
close(fd);
return -1;
}
int __rte_experimental
rte_fbarray_detach(struct rte_fbarray *arr)
{
if (arr == NULL) {
rte_errno = EINVAL;
return -1;
}
/*
* we don't need to synchronize detach as two values we need (element
* size and total capacity) are constant for the duration of life of
* the array, so the parts we care about will not race. if the user is
* detaching while doing something else in the same process, we can't
* really do anything about it, things will blow up either way.
*/
size_t page_sz = sysconf(_SC_PAGESIZE);
/* this may already be unmapped (e.g. repeated call from previously
* failed destroy(), but this is on user, we can't (easily) know if this
* is still mapped.
*/
munmap(arr->data, calc_data_size(page_sz, arr->elt_sz, arr->len));
return 0;
}
int __rte_experimental
rte_fbarray_destroy(struct rte_fbarray *arr)
{
int fd, ret;
char path[PATH_MAX];
ret = rte_fbarray_detach(arr);
if (ret)
return ret;
/* try deleting the file */
eal_get_fbarray_path(path, sizeof(path), arr->name);
fd = open(path, O_RDONLY);
if (fd < 0) {
RTE_LOG(ERR, EAL, "Could not open fbarray file: %s\n",
strerror(errno));
return -1;
}
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
if (flock(fd, LOCK_EX | LOCK_NB)) {
RTE_LOG(DEBUG, EAL, "Cannot destroy fbarray - another process is using it\n");
rte_errno = EBUSY;
ret = -1;
} else {
ret = 0;
unlink(path);
memset(arr, 0, sizeof(*arr));
}
close(fd);
return ret;
}
void * __rte_experimental
rte_fbarray_get(const struct rte_fbarray *arr, unsigned int idx)
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
{
void *ret = NULL;
if (arr == NULL) {
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
rte_errno = EINVAL;
return NULL;
}
if (idx >= arr->len) {
rte_errno = EINVAL;
return NULL;
}
ret = RTE_PTR_ADD(arr->data, idx * arr->elt_sz);
return ret;
}
int __rte_experimental
rte_fbarray_set_used(struct rte_fbarray *arr, unsigned int idx)
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
{
return set_used(arr, idx, true);
}
int __rte_experimental
rte_fbarray_set_free(struct rte_fbarray *arr, unsigned int idx)
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
{
return set_used(arr, idx, false);
}
int __rte_experimental
rte_fbarray_is_used(struct rte_fbarray *arr, unsigned int idx)
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
{
struct used_mask *msk;
int msk_idx;
uint64_t msk_bit;
int ret = -1;
if (arr == NULL || idx >= arr->len) {
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
rte_errno = EINVAL;
return -1;
}
/* prevent array from changing under us */
rte_rwlock_read_lock(&arr->rwlock);
msk = get_used_mask(arr->data, arr->elt_sz, arr->len);
msk_idx = MASK_LEN_TO_IDX(idx);
msk_bit = 1ULL << MASK_LEN_TO_MOD(idx);
ret = (msk->data[msk_idx] & msk_bit) != 0;
rte_rwlock_read_unlock(&arr->rwlock);
return ret;
}
int __rte_experimental
rte_fbarray_find_next_free(struct rte_fbarray *arr, unsigned int start)
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
{
int ret = -1;
if (arr == NULL || start >= arr->len) {
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
rte_errno = EINVAL;
return -1;
}
/* prevent array from changing under us */
rte_rwlock_read_lock(&arr->rwlock);
if (arr->len == arr->count) {
rte_errno = ENOSPC;
goto out;
}
ret = find_next(arr, start, false);
out:
rte_rwlock_read_unlock(&arr->rwlock);
return ret;
}
int __rte_experimental
rte_fbarray_find_next_used(struct rte_fbarray *arr, unsigned int start)
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
{
int ret = -1;
if (arr == NULL || start >= arr->len) {
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
rte_errno = EINVAL;
return -1;
}
/* prevent array from changing under us */
rte_rwlock_read_lock(&arr->rwlock);
if (arr->count == 0) {
rte_errno = ENOENT;
goto out;
}
ret = find_next(arr, start, true);
out:
rte_rwlock_read_unlock(&arr->rwlock);
return ret;
}
int __rte_experimental
rte_fbarray_find_next_n_free(struct rte_fbarray *arr, unsigned int start,
unsigned int n)
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
{
int ret = -1;
if (arr == NULL || start >= arr->len || n > arr->len) {
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
rte_errno = EINVAL;
return -1;
}
/* prevent array from changing under us */
rte_rwlock_read_lock(&arr->rwlock);
if (arr->len == arr->count || arr->len - arr->count < n) {
rte_errno = ENOSPC;
goto out;
}
ret = find_next_n(arr, start, n, false);
out:
rte_rwlock_read_unlock(&arr->rwlock);
return ret;
}
int __rte_experimental
rte_fbarray_find_next_n_used(struct rte_fbarray *arr, unsigned int start,
unsigned int n)
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
{
int ret = -1;
if (arr == NULL || start >= arr->len || n > arr->len) {
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
rte_errno = EINVAL;
return -1;
}
/* prevent array from changing under us */
rte_rwlock_read_lock(&arr->rwlock);
if (arr->count < n) {
rte_errno = ENOENT;
goto out;
}
ret = find_next_n(arr, start, n, true);
out:
rte_rwlock_read_unlock(&arr->rwlock);
return ret;
}
int __rte_experimental
rte_fbarray_find_contig_free(struct rte_fbarray *arr, unsigned int start)
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
{
int ret = -1;
if (arr == NULL || start >= arr->len) {
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
rte_errno = EINVAL;
return -1;
}
/* prevent array from changing under us */
rte_rwlock_read_lock(&arr->rwlock);
if (arr->len == arr->count) {
rte_errno = ENOSPC;
goto out;
}
if (arr->count == 0) {
ret = arr->len - start;
goto out;
}
ret = find_contig(arr, start, false);
out:
rte_rwlock_read_unlock(&arr->rwlock);
return ret;
}
int __rte_experimental
rte_fbarray_find_contig_used(struct rte_fbarray *arr, unsigned int start)
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
{
int ret = -1;
if (arr == NULL || start >= arr->len) {
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
rte_errno = EINVAL;
return -1;
}
/* prevent array from changing under us */
rte_rwlock_read_lock(&arr->rwlock);
ret = find_contig(arr, start, true);
rte_rwlock_read_unlock(&arr->rwlock);
return ret;
}
int __rte_experimental
rte_fbarray_find_idx(const struct rte_fbarray *arr, const void *elt)
{
void *end;
int ret = -1;
/*
* no need to synchronize as it doesn't matter if underlying data
* changes - we're doing pointer arithmetic here.
*/
if (arr == NULL || elt == NULL) {
rte_errno = EINVAL;
return -1;
}
end = RTE_PTR_ADD(arr->data, arr->elt_sz * arr->len);
if (elt < arr->data || elt >= end) {
rte_errno = EINVAL;
return -1;
}
ret = RTE_PTR_DIFF(elt, arr->data) / arr->elt_sz;
return ret;
}
void __rte_experimental
rte_fbarray_dump_metadata(struct rte_fbarray *arr, FILE *f)
{
struct used_mask *msk;
unsigned int i;
eal: add shared indexed file-backed array rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 13:30:23 +01:00
if (arr == NULL || f == NULL) {
rte_errno = EINVAL;
return;
}
if (fully_validate(arr->name, arr->elt_sz, arr->len)) {
fprintf(f, "Invalid file-backed array\n");
goto out;
}
/* prevent array from changing under us */
rte_rwlock_read_lock(&arr->rwlock);
fprintf(f, "File-backed array: %s\n", arr->name);
fprintf(f, "size: %i occupied: %i elt_sz: %i\n",
arr->len, arr->count, arr->elt_sz);
msk = get_used_mask(arr->data, arr->elt_sz, arr->len);
for (i = 0; i < msk->n_masks; i++)
fprintf(f, "msk idx %i: 0x%016" PRIx64 "\n", i, msk->data[i]);
out:
rte_rwlock_read_unlock(&arr->rwlock);
}