numam-dpdk/drivers/net/vmxnet3/vmxnet3_rxtx.c

1105 lines
30 KiB
C
Raw Normal View History

vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/*-
* BSD LICENSE
*
* Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
* All rights reserved.
*
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/queue.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <stdint.h>
#include <stdarg.h>
#include <unistd.h>
#include <inttypes.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_prefetch.h>
#include <rte_ip.h>
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
#include <rte_udp.h>
#include <rte_tcp.h>
#include <rte_sctp.h>
#include <rte_string_fns.h>
#include <rte_errno.h>
#include "base/vmxnet3_defs.h"
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
#include "vmxnet3_ring.h"
#include "vmxnet3_logs.h"
#include "vmxnet3_ethdev.h"
static const uint32_t rxprod_reg[2] = {VMXNET3_REG_RXPROD, VMXNET3_REG_RXPROD2};
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
static int vmxnet3_post_rx_bufs(vmxnet3_rx_queue_t*, uint8_t);
static void vmxnet3_tq_tx_complete(vmxnet3_tx_queue_t *);
#ifdef RTE_LIBRTE_VMXNET3_DEBUG_DRIVER_NOT_USED
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
static void vmxnet3_rxq_dump(struct vmxnet3_rx_queue *);
static void vmxnet3_txq_dump(struct vmxnet3_tx_queue *);
#endif
#ifdef RTE_LIBRTE_VMXNET3_DEBUG_DRIVER_NOT_USED
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
static void
vmxnet3_rxq_dump(struct vmxnet3_rx_queue *rxq)
{
uint32_t avail = 0;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
if (rxq == NULL)
return;
PMD_RX_LOG(DEBUG,
"RXQ: cmd0 base : %p cmd1 base : %p comp ring base : %p.",
rxq->cmd_ring[0].base, rxq->cmd_ring[1].base, rxq->comp_ring.base);
PMD_RX_LOG(DEBUG,
"RXQ: cmd0 basePA : 0x%lx cmd1 basePA : 0x%lx comp ring basePA : 0x%lx.",
(unsigned long)rxq->cmd_ring[0].basePA,
(unsigned long)rxq->cmd_ring[1].basePA,
(unsigned long)rxq->comp_ring.basePA);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
avail = vmxnet3_cmd_ring_desc_avail(&rxq->cmd_ring[0]);
PMD_RX_LOG(DEBUG,
"RXQ:cmd0: size=%u; free=%u; next2proc=%u; queued=%u",
(uint32_t)rxq->cmd_ring[0].size, avail,
rxq->comp_ring.next2proc,
rxq->cmd_ring[0].size - avail);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
avail = vmxnet3_cmd_ring_desc_avail(&rxq->cmd_ring[1]);
PMD_RX_LOG(DEBUG, "RXQ:cmd1 size=%u; free=%u; next2proc=%u; queued=%u",
(uint32_t)rxq->cmd_ring[1].size, avail, rxq->comp_ring.next2proc,
rxq->cmd_ring[1].size - avail);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
static void
vmxnet3_txq_dump(struct vmxnet3_tx_queue *txq)
{
uint32_t avail = 0;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
if (txq == NULL)
return;
PMD_TX_LOG(DEBUG, "TXQ: cmd base : %p comp ring base : %p data ring base : %p.",
txq->cmd_ring.base, txq->comp_ring.base, txq->data_ring.base);
PMD_TX_LOG(DEBUG, "TXQ: cmd basePA : 0x%lx comp ring basePA : 0x%lx data ring basePA : 0x%lx.",
(unsigned long)txq->cmd_ring.basePA,
(unsigned long)txq->comp_ring.basePA,
(unsigned long)txq->data_ring.basePA);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
avail = vmxnet3_cmd_ring_desc_avail(&txq->cmd_ring);
PMD_TX_LOG(DEBUG, "TXQ: size=%u; free=%u; next2proc=%u; queued=%u",
(uint32_t)txq->cmd_ring.size, avail,
txq->comp_ring.next2proc, txq->cmd_ring.size - avail);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
#endif
static void
vmxnet3_cmd_ring_release_mbufs(vmxnet3_cmd_ring_t *ring)
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
{
while (ring->next2comp != ring->next2fill) {
/* No need to worry about tx desc ownership, device is quiesced by now. */
vmxnet3_buf_info_t *buf_info = ring->buf_info + ring->next2comp;
if (buf_info->m) {
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
rte_pktmbuf_free(buf_info->m);
buf_info->m = NULL;
buf_info->bufPA = 0;
buf_info->len = 0;
}
vmxnet3_cmd_ring_adv_next2comp(ring);
}
}
static void
vmxnet3_cmd_ring_release(vmxnet3_cmd_ring_t *ring)
{
vmxnet3_cmd_ring_release_mbufs(ring);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
rte_free(ring->buf_info);
ring->buf_info = NULL;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
void
vmxnet3_dev_tx_queue_release(void *txq)
{
vmxnet3_tx_queue_t *tq = txq;
if (tq != NULL) {
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/* Release the cmd_ring */
vmxnet3_cmd_ring_release(&tq->cmd_ring);
}
}
void
vmxnet3_dev_rx_queue_release(void *rxq)
{
int i;
vmxnet3_rx_queue_t *rq = rxq;
if (rq != NULL) {
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/* Release both the cmd_rings */
for (i = 0; i < VMXNET3_RX_CMDRING_SIZE; i++)
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
vmxnet3_cmd_ring_release(&rq->cmd_ring[i]);
}
}
static void
vmxnet3_dev_tx_queue_reset(void *txq)
{
vmxnet3_tx_queue_t *tq = txq;
struct vmxnet3_cmd_ring *ring = &tq->cmd_ring;
struct vmxnet3_comp_ring *comp_ring = &tq->comp_ring;
struct vmxnet3_data_ring *data_ring = &tq->data_ring;
int size;
if (tq != NULL) {
/* Release the cmd_ring mbufs */
vmxnet3_cmd_ring_release_mbufs(&tq->cmd_ring);
}
/* Tx vmxnet rings structure initialization*/
ring->next2fill = 0;
ring->next2comp = 0;
ring->gen = VMXNET3_INIT_GEN;
comp_ring->next2proc = 0;
comp_ring->gen = VMXNET3_INIT_GEN;
size = sizeof(struct Vmxnet3_TxDesc) * ring->size;
size += sizeof(struct Vmxnet3_TxCompDesc) * comp_ring->size;
size += sizeof(struct Vmxnet3_TxDataDesc) * data_ring->size;
memset(ring->base, 0, size);
}
static void
vmxnet3_dev_rx_queue_reset(void *rxq)
{
int i;
vmxnet3_rx_queue_t *rq = rxq;
struct vmxnet3_cmd_ring *ring0, *ring1;
struct vmxnet3_comp_ring *comp_ring;
int size;
if (rq != NULL) {
/* Release both the cmd_rings mbufs */
for (i = 0; i < VMXNET3_RX_CMDRING_SIZE; i++)
vmxnet3_cmd_ring_release_mbufs(&rq->cmd_ring[i]);
}
ring0 = &rq->cmd_ring[0];
ring1 = &rq->cmd_ring[1];
comp_ring = &rq->comp_ring;
/* Rx vmxnet rings structure initialization */
ring0->next2fill = 0;
ring1->next2fill = 0;
ring0->next2comp = 0;
ring1->next2comp = 0;
ring0->gen = VMXNET3_INIT_GEN;
ring1->gen = VMXNET3_INIT_GEN;
comp_ring->next2proc = 0;
comp_ring->gen = VMXNET3_INIT_GEN;
size = sizeof(struct Vmxnet3_RxDesc) * (ring0->size + ring1->size);
size += sizeof(struct Vmxnet3_RxCompDesc) * comp_ring->size;
memset(ring0->base, 0, size);
}
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
void
vmxnet3_dev_clear_queues(struct rte_eth_dev *dev)
{
unsigned i;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct vmxnet3_tx_queue *txq = dev->data->tx_queues[i];
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
if (txq != NULL) {
txq->stopped = TRUE;
vmxnet3_dev_tx_queue_reset(txq);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct vmxnet3_rx_queue *rxq = dev->data->rx_queues[i];
if (rxq != NULL) {
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
rxq->stopped = TRUE;
vmxnet3_dev_rx_queue_reset(rxq);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
}
}
static int
vmxnet3_unmap_pkt(uint16_t eop_idx, vmxnet3_tx_queue_t *txq)
{
int completed = 0;
struct rte_mbuf *mbuf;
/* Release cmd_ring descriptor and free mbuf */
RTE_ASSERT(txq->cmd_ring.base[eop_idx].txd.eop == 1);
mbuf = txq->cmd_ring.buf_info[eop_idx].m;
if (mbuf == NULL)
rte_panic("EOP desc does not point to a valid mbuf");
rte_pktmbuf_free(mbuf);
txq->cmd_ring.buf_info[eop_idx].m = NULL;
while (txq->cmd_ring.next2comp != eop_idx) {
/* no out-of-order completion */
RTE_ASSERT(txq->cmd_ring.base[txq->cmd_ring.next2comp].txd.cq == 0);
vmxnet3_cmd_ring_adv_next2comp(&txq->cmd_ring);
completed++;
}
/* Mark the txd for which tcd was generated as completed */
vmxnet3_cmd_ring_adv_next2comp(&txq->cmd_ring);
return completed + 1;
}
static void
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
vmxnet3_tq_tx_complete(vmxnet3_tx_queue_t *txq)
{
int completed = 0;
vmxnet3_comp_ring_t *comp_ring = &txq->comp_ring;
struct Vmxnet3_TxCompDesc *tcd = (struct Vmxnet3_TxCompDesc *)
(comp_ring->base + comp_ring->next2proc);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
while (tcd->gen == comp_ring->gen) {
completed += vmxnet3_unmap_pkt(tcd->txdIdx, txq);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
vmxnet3_comp_ring_adv_next2proc(comp_ring);
tcd = (struct Vmxnet3_TxCompDesc *)(comp_ring->base +
comp_ring->next2proc);
}
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
PMD_TX_LOG(DEBUG, "Processed %d tx comps & command descs.", completed);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
uint16_t
vmxnet3_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
{
uint16_t nb_tx;
vmxnet3_tx_queue_t *txq = tx_queue;
struct vmxnet3_hw *hw = txq->hw;
Vmxnet3_TxQueueCtrl *txq_ctrl = &txq->shared->ctrl;
uint32_t deferred = rte_le_to_cpu_32(txq_ctrl->txNumDeferred);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
if (unlikely(txq->stopped)) {
PMD_TX_LOG(DEBUG, "Tx queue is stopped.");
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
return 0;
}
/* Free up the comp_descriptors aggressively */
vmxnet3_tq_tx_complete(txq);
nb_tx = 0;
while (nb_tx < nb_pkts) {
Vmxnet3_GenericDesc *gdesc;
vmxnet3_buf_info_t *tbi;
uint32_t first2fill, avail, dw2;
struct rte_mbuf *txm = tx_pkts[nb_tx];
struct rte_mbuf *m_seg = txm;
int copy_size = 0;
bool tso = (txm->ol_flags & PKT_TX_TCP_SEG) != 0;
/* # of descriptors needed for a packet. */
unsigned count = txm->nb_segs;
avail = vmxnet3_cmd_ring_desc_avail(&txq->cmd_ring);
if (count > avail) {
/* Is command ring full? */
if (unlikely(avail == 0)) {
PMD_TX_LOG(DEBUG, "No free ring descriptors");
txq->stats.tx_ring_full++;
txq->stats.drop_total += (nb_pkts - nb_tx);
break;
}
/* Command ring is not full but cannot handle the
* multi-segmented packet. Let's try the next packet
* in this case.
*/
PMD_TX_LOG(DEBUG, "Running out of ring descriptors "
"(avail %d needed %d)", avail, count);
txq->stats.drop_total++;
if (tso)
txq->stats.drop_tso++;
rte_pktmbuf_free(txm);
nb_tx++;
continue;
}
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/* Drop non-TSO packet that is excessively fragmented */
if (unlikely(!tso && count > VMXNET3_MAX_TXD_PER_PKT)) {
PMD_TX_LOG(ERR, "Non-TSO packet cannot occupy more than %d tx "
"descriptors. Packet dropped.", VMXNET3_MAX_TXD_PER_PKT);
txq->stats.drop_too_many_segs++;
txq->stats.drop_total++;
rte_pktmbuf_free(txm);
nb_tx++;
continue;
}
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
if (txm->nb_segs == 1 &&
rte_pktmbuf_pkt_len(txm) <= VMXNET3_HDR_COPY_SIZE) {
struct Vmxnet3_TxDataDesc *tdd;
tdd = txq->data_ring.base + txq->cmd_ring.next2fill;
copy_size = rte_pktmbuf_pkt_len(txm);
rte_memcpy(tdd->data, rte_pktmbuf_mtod(txm, char *), copy_size);
}
/* use the previous gen bit for the SOP desc */
dw2 = (txq->cmd_ring.gen ^ 0x1) << VMXNET3_TXD_GEN_SHIFT;
first2fill = txq->cmd_ring.next2fill;
do {
/* Remember the transmit buffer for cleanup */
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
tbi = txq->cmd_ring.buf_info + txq->cmd_ring.next2fill;
/* NB: the following assumes that VMXNET3 maximum
* transmit buffer size (16K) is greater than
* maximum size of mbuf segment size.
*/
gdesc = txq->cmd_ring.base + txq->cmd_ring.next2fill;
if (copy_size)
gdesc->txd.addr = rte_cpu_to_le_64(txq->data_ring.basePA +
txq->cmd_ring.next2fill *
sizeof(struct Vmxnet3_TxDataDesc));
else
gdesc->txd.addr = rte_mbuf_data_dma_addr(m_seg);
gdesc->dword[2] = dw2 | m_seg->data_len;
gdesc->dword[3] = 0;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/* move to the next2fill descriptor */
vmxnet3_cmd_ring_adv_next2fill(&txq->cmd_ring);
/* use the right gen for non-SOP desc */
dw2 = txq->cmd_ring.gen << VMXNET3_TXD_GEN_SHIFT;
} while ((m_seg = m_seg->next) != NULL);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/* set the last buf_info for the pkt */
tbi->m = txm;
/* Update the EOP descriptor */
gdesc->dword[3] |= VMXNET3_TXD_EOP | VMXNET3_TXD_CQ;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/* Add VLAN tag if present */
gdesc = txq->cmd_ring.base + first2fill;
if (txm->ol_flags & PKT_TX_VLAN_PKT) {
gdesc->txd.ti = 1;
gdesc->txd.tci = txm->vlan_tci;
}
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
if (tso) {
uint16_t mss = txm->tso_segsz;
RTE_ASSERT(mss > 0);
gdesc->txd.hlen = txm->l2_len + txm->l3_len + txm->l4_len;
gdesc->txd.om = VMXNET3_OM_TSO;
gdesc->txd.msscof = mss;
deferred += (rte_pktmbuf_pkt_len(txm) - gdesc->txd.hlen + mss - 1) / mss;
} else if (txm->ol_flags & PKT_TX_L4_MASK) {
gdesc->txd.om = VMXNET3_OM_CSUM;
gdesc->txd.hlen = txm->l2_len + txm->l3_len;
switch (txm->ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_TCP_CKSUM:
gdesc->txd.msscof = gdesc->txd.hlen + offsetof(struct tcp_hdr, cksum);
break;
case PKT_TX_UDP_CKSUM:
gdesc->txd.msscof = gdesc->txd.hlen + offsetof(struct udp_hdr, dgram_cksum);
break;
default:
PMD_TX_LOG(WARNING, "requested cksum offload not supported %#llx",
txm->ol_flags & PKT_TX_L4_MASK);
abort();
}
deferred++;
} else {
gdesc->txd.hlen = 0;
gdesc->txd.om = VMXNET3_OM_NONE;
gdesc->txd.msscof = 0;
deferred++;
}
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/* flip the GEN bit on the SOP */
rte_compiler_barrier();
gdesc->dword[2] ^= VMXNET3_TXD_GEN;
txq_ctrl->txNumDeferred = rte_cpu_to_le_32(deferred);
nb_tx++;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
PMD_TX_LOG(DEBUG, "vmxnet3 txThreshold: %u", rte_le_to_cpu_32(txq_ctrl->txThreshold));
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
if (deferred >= rte_le_to_cpu_32(txq_ctrl->txThreshold)) {
txq_ctrl->txNumDeferred = 0;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/* Notify vSwitch that packets are available. */
VMXNET3_WRITE_BAR0_REG(hw, (VMXNET3_REG_TXPROD + txq->queue_id * VMXNET3_REG_ALIGN),
txq->cmd_ring.next2fill);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
return nb_tx;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
/*
* Allocates mbufs and clusters. Post rx descriptors with buffer details
* so that device can receive packets in those buffers.
* Ring layout:
* Among the two rings, 1st ring contains buffers of type 0 and type 1.
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
* bufs_per_pkt is set such that for non-LRO cases all the buffers required
* by a frame will fit in 1st ring (1st buf of type0 and rest of type1).
* 2nd ring contains buffers of type 1 alone. Second ring mostly be used
* only for LRO.
*/
static int
vmxnet3_post_rx_bufs(vmxnet3_rx_queue_t *rxq, uint8_t ring_id)
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
{
int err = 0;
uint32_t i = 0, val = 0;
struct vmxnet3_cmd_ring *ring = &rxq->cmd_ring[ring_id];
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
if (ring_id == 0) {
/* Usually: One HEAD type buf per packet
* val = (ring->next2fill % rxq->hw->bufs_per_pkt) ?
* VMXNET3_RXD_BTYPE_BODY : VMXNET3_RXD_BTYPE_HEAD;
*/
/* We use single packet buffer so all heads here */
val = VMXNET3_RXD_BTYPE_HEAD;
} else {
/* All BODY type buffers for 2nd ring */
val = VMXNET3_RXD_BTYPE_BODY;
}
while (vmxnet3_cmd_ring_desc_avail(ring) > 0) {
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
struct Vmxnet3_RxDesc *rxd;
struct rte_mbuf *mbuf;
vmxnet3_buf_info_t *buf_info = &ring->buf_info[ring->next2fill];
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
rxd = (struct Vmxnet3_RxDesc *)(ring->base + ring->next2fill);
/* Allocate blank mbuf for the current Rx Descriptor */
mbuf = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(mbuf == NULL)) {
PMD_RX_LOG(ERR, "Error allocating mbuf");
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
rxq->stats.rx_buf_alloc_failure++;
err = ENOMEM;
break;
}
/*
* Load mbuf pointer into buf_info[ring_size]
* buf_info structure is equivalent to cookie for virtio-virtqueue
*/
buf_info->m = mbuf;
buf_info->len = (uint16_t)(mbuf->buf_len -
RTE_PKTMBUF_HEADROOM);
buf_info->bufPA = rte_mbuf_data_dma_addr_default(mbuf);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/* Load Rx Descriptor with the buffer's GPA */
rxd->addr = buf_info->bufPA;
/* After this point rxd->addr MUST not be NULL */
rxd->btype = val;
rxd->len = buf_info->len;
/* Flip gen bit at the end to change ownership */
rxd->gen = ring->gen;
vmxnet3_cmd_ring_adv_next2fill(ring);
i++;
}
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/* Return error only if no buffers are posted at present */
if (vmxnet3_cmd_ring_desc_avail(ring) >= (ring->size - 1))
return -err;
else
return i;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
/* Receive side checksum and other offloads */
static void
vmxnet3_rx_offload(const Vmxnet3_RxCompDesc *rcd, struct rte_mbuf *rxm)
{
/* Check for RSS */
if (rcd->rssType != VMXNET3_RCD_RSS_TYPE_NONE) {
rxm->ol_flags |= PKT_RX_RSS_HASH;
rxm->hash.rss = rcd->rssHash;
}
/* Check packet type, checksum errors, etc. Only support IPv4 for now. */
if (rcd->v4) {
struct ether_hdr *eth = rte_pktmbuf_mtod(rxm, struct ether_hdr *);
struct ipv4_hdr *ip = (struct ipv4_hdr *)(eth + 1);
if (((ip->version_ihl & 0xf) << 2) > (int)sizeof(struct ipv4_hdr))
rxm->packet_type = RTE_PTYPE_L3_IPV4_EXT;
else
rxm->packet_type = RTE_PTYPE_L3_IPV4;
if (!rcd->cnc) {
if (!rcd->ipc)
rxm->ol_flags |= PKT_RX_IP_CKSUM_BAD;
if ((rcd->tcp || rcd->udp) && !rcd->tuc)
rxm->ol_flags |= PKT_RX_L4_CKSUM_BAD;
}
}
}
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/*
* Process the Rx Completion Ring of given vmxnet3_rx_queue
* for nb_pkts burst and return the number of packets received
*/
uint16_t
vmxnet3_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
uint16_t nb_rx;
uint32_t nb_rxd, idx;
uint8_t ring_idx;
vmxnet3_rx_queue_t *rxq;
Vmxnet3_RxCompDesc *rcd;
vmxnet3_buf_info_t *rbi;
Vmxnet3_RxDesc *rxd;
struct rte_mbuf *rxm = NULL;
struct vmxnet3_hw *hw;
nb_rx = 0;
ring_idx = 0;
nb_rxd = 0;
idx = 0;
rxq = rx_queue;
hw = rxq->hw;
rcd = &rxq->comp_ring.base[rxq->comp_ring.next2proc].rcd;
if (unlikely(rxq->stopped)) {
PMD_RX_LOG(DEBUG, "Rx queue is stopped.");
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
return 0;
}
while (rcd->gen == rxq->comp_ring.gen) {
if (nb_rx >= nb_pkts)
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
break;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
idx = rcd->rxdIdx;
ring_idx = (uint8_t)((rcd->rqID == rxq->qid1) ? 0 : 1);
rxd = (Vmxnet3_RxDesc *)rxq->cmd_ring[ring_idx].base + idx;
RTE_SET_USED(rxd); /* used only for assert when enabled */
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
rbi = rxq->cmd_ring[ring_idx].buf_info + idx;
PMD_RX_LOG(DEBUG, "rxd idx: %d ring idx: %d.", idx, ring_idx);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
RTE_ASSERT(rcd->len <= rxd->len);
RTE_ASSERT(rbi->m);
/* Get the packet buffer pointer from buf_info */
rxm = rbi->m;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/* Clear descriptor associated buf_info to be reused */
rbi->m = NULL;
rbi->bufPA = 0;
/* Update the index that we received a packet */
rxq->cmd_ring[ring_idx].next2comp = idx;
/* For RCD with EOP set, check if there is frame error */
if (unlikely(rcd->eop && rcd->err)) {
rxq->stats.drop_total++;
rxq->stats.drop_err++;
if (!rcd->fcs) {
rxq->stats.drop_fcs++;
PMD_RX_LOG(ERR, "Recv packet dropped due to frame err.");
}
PMD_RX_LOG(ERR, "Error in received packet rcd#:%d rxd:%d",
(int)(rcd - (struct Vmxnet3_RxCompDesc *)
rxq->comp_ring.base), rcd->rxdIdx);
rte_pktmbuf_free_seg(rxm);
goto rcd_done;
}
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/* Initialize newly received packet buffer */
rxm->port = rxq->port_id;
rxm->nb_segs = 1;
rxm->next = NULL;
rxm->pkt_len = (uint16_t)rcd->len;
rxm->data_len = (uint16_t)rcd->len;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rxm->ol_flags = 0;
rxm->vlan_tci = 0;
/*
* If this is the first buffer of the received packet,
* set the pointer to the first mbuf of the packet
* Otherwise, update the total length and the number of segments
* of the current scattered packet, and update the pointer to
* the last mbuf of the current packet.
*/
if (rcd->sop) {
RTE_ASSERT(rxd->btype == VMXNET3_RXD_BTYPE_HEAD);
if (unlikely(rcd->len == 0)) {
RTE_ASSERT(rcd->eop);
PMD_RX_LOG(DEBUG,
"Rx buf was skipped. rxring[%d][%d])",
ring_idx, idx);
rte_pktmbuf_free_seg(rxm);
goto rcd_done;
}
rxq->start_seg = rxm;
vmxnet3_rx_offload(rcd, rxm);
} else {
struct rte_mbuf *start = rxq->start_seg;
RTE_ASSERT(rxd->btype == VMXNET3_RXD_BTYPE_BODY);
start->pkt_len += rxm->data_len;
start->nb_segs++;
rxq->last_seg->next = rxm;
}
rxq->last_seg = rxm;
if (rcd->eop) {
struct rte_mbuf *start = rxq->start_seg;
/* Check for hardware stripped VLAN tag */
if (rcd->ts) {
start->ol_flags |= (PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED);
start->vlan_tci = rte_le_to_cpu_16((uint16_t)rcd->tci);
}
rx_pkts[nb_rx++] = start;
rxq->start_seg = NULL;
}
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
rcd_done:
rxq->cmd_ring[ring_idx].next2comp = idx;
VMXNET3_INC_RING_IDX_ONLY(rxq->cmd_ring[ring_idx].next2comp,
rxq->cmd_ring[ring_idx].size);
/* It's time to allocate some new buf and renew descriptors */
vmxnet3_post_rx_bufs(rxq, ring_idx);
if (unlikely(rxq->shared->ctrl.updateRxProd)) {
VMXNET3_WRITE_BAR0_REG(hw, rxprod_reg[ring_idx] + (rxq->queue_id * VMXNET3_REG_ALIGN),
rxq->cmd_ring[ring_idx].next2fill);
}
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/* Advance to the next descriptor in comp_ring */
vmxnet3_comp_ring_adv_next2proc(&rxq->comp_ring);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
rcd = &rxq->comp_ring.base[rxq->comp_ring.next2proc].rcd;
nb_rxd++;
if (nb_rxd > rxq->cmd_ring[0].size) {
PMD_RX_LOG(ERR, "Used up quota of receiving packets,"
" relinquish control.");
break;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
}
return nb_rx;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
/*
* Create memzone for device rings. malloc can't be used as the physical address is
* needed. If the memzone is already created, then this function returns a ptr
* to the old one.
*/
static const struct rte_memzone *
ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
uint16_t queue_id, uint32_t ring_size, int socket_id)
{
char z_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz;
snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
dev->driver->pci_drv.driver.name, ring_name,
dev->data->port_id, queue_id);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
mz = rte_memzone_lookup(z_name);
if (mz)
return mz;
return rte_memzone_reserve_aligned(z_name, ring_size,
socket_id, 0, VMXNET3_RING_BA_ALIGN);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
int
vmxnet3_dev_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
__rte_unused const struct rte_eth_txconf *tx_conf)
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
{
struct vmxnet3_hw *hw = dev->data->dev_private;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
const struct rte_memzone *mz;
struct vmxnet3_tx_queue *txq;
struct vmxnet3_cmd_ring *ring;
struct vmxnet3_comp_ring *comp_ring;
struct vmxnet3_data_ring *data_ring;
int size;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
PMD_INIT_FUNC_TRACE();
if ((tx_conf->txq_flags & ETH_TXQ_FLAGS_NOXSUMSCTP) !=
ETH_TXQ_FLAGS_NOXSUMSCTP) {
PMD_INIT_LOG(ERR, "SCTP checksum offload not supported");
return -EINVAL;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
txq = rte_zmalloc("ethdev_tx_queue", sizeof(struct vmxnet3_tx_queue),
RTE_CACHE_LINE_SIZE);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
if (txq == NULL) {
PMD_INIT_LOG(ERR, "Can not allocate tx queue structure");
return -ENOMEM;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
txq->queue_id = queue_idx;
txq->port_id = dev->data->port_id;
txq->shared = &hw->tqd_start[queue_idx];
txq->hw = hw;
txq->qid = queue_idx;
txq->stopped = TRUE;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
ring = &txq->cmd_ring;
comp_ring = &txq->comp_ring;
data_ring = &txq->data_ring;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/* Tx vmxnet ring length should be between 512-4096 */
if (nb_desc < VMXNET3_DEF_TX_RING_SIZE) {
PMD_INIT_LOG(ERR, "VMXNET3 Tx Ring Size Min: %u",
VMXNET3_DEF_TX_RING_SIZE);
return -EINVAL;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
} else if (nb_desc > VMXNET3_TX_RING_MAX_SIZE) {
PMD_INIT_LOG(ERR, "VMXNET3 Tx Ring Size Max: %u",
VMXNET3_TX_RING_MAX_SIZE);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
return -EINVAL;
} else {
ring->size = nb_desc;
ring->size &= ~VMXNET3_RING_SIZE_MASK;
}
comp_ring->size = data_ring->size = ring->size;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/* Tx vmxnet rings structure initialization*/
ring->next2fill = 0;
ring->next2comp = 0;
ring->gen = VMXNET3_INIT_GEN;
comp_ring->next2proc = 0;
comp_ring->gen = VMXNET3_INIT_GEN;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
size = sizeof(struct Vmxnet3_TxDesc) * ring->size;
size += sizeof(struct Vmxnet3_TxCompDesc) * comp_ring->size;
size += sizeof(struct Vmxnet3_TxDataDesc) * data_ring->size;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
mz = ring_dma_zone_reserve(dev, "txdesc", queue_idx, size, socket_id);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
if (mz == NULL) {
PMD_INIT_LOG(ERR, "ERROR: Creating queue descriptors zone");
return -ENOMEM;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
memset(mz->addr, 0, mz->len);
/* cmd_ring initialization */
ring->base = mz->addr;
ring->basePA = mz->phys_addr;
/* comp_ring initialization */
comp_ring->base = ring->base + ring->size;
comp_ring->basePA = ring->basePA +
(sizeof(struct Vmxnet3_TxDesc) * ring->size);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/* data_ring initialization */
data_ring->base = (Vmxnet3_TxDataDesc *)(comp_ring->base + comp_ring->size);
data_ring->basePA = comp_ring->basePA +
(sizeof(struct Vmxnet3_TxCompDesc) * comp_ring->size);
/* cmd_ring0 buf_info allocation */
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
ring->buf_info = rte_zmalloc("tx_ring_buf_info",
ring->size * sizeof(vmxnet3_buf_info_t), RTE_CACHE_LINE_SIZE);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
if (ring->buf_info == NULL) {
PMD_INIT_LOG(ERR, "ERROR: Creating tx_buf_info structure");
return -ENOMEM;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
/* Update the data portion with txq */
dev->data->tx_queues[queue_idx] = txq;
return 0;
}
int
vmxnet3_dev_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
__rte_unused const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
{
const struct rte_memzone *mz;
struct vmxnet3_rx_queue *rxq;
struct vmxnet3_hw *hw = dev->data->dev_private;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
struct vmxnet3_cmd_ring *ring0, *ring1, *ring;
struct vmxnet3_comp_ring *comp_ring;
int size;
uint8_t i;
char mem_name[32];
PMD_INIT_FUNC_TRACE();
rxq = rte_zmalloc("ethdev_rx_queue", sizeof(struct vmxnet3_rx_queue),
RTE_CACHE_LINE_SIZE);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
if (rxq == NULL) {
PMD_INIT_LOG(ERR, "Can not allocate rx queue structure");
return -ENOMEM;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
rxq->mp = mp;
rxq->queue_id = queue_idx;
rxq->port_id = dev->data->port_id;
rxq->shared = &hw->rqd_start[queue_idx];
rxq->hw = hw;
rxq->qid1 = queue_idx;
rxq->qid2 = queue_idx + hw->num_rx_queues;
rxq->stopped = TRUE;
ring0 = &rxq->cmd_ring[0];
ring1 = &rxq->cmd_ring[1];
comp_ring = &rxq->comp_ring;
/* Rx vmxnet rings length should be between 256-4096 */
if (nb_desc < VMXNET3_DEF_RX_RING_SIZE) {
PMD_INIT_LOG(ERR, "VMXNET3 Rx Ring Size Min: 256");
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
return -EINVAL;
} else if (nb_desc > VMXNET3_RX_RING_MAX_SIZE) {
PMD_INIT_LOG(ERR, "VMXNET3 Rx Ring Size Max: 4096");
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
return -EINVAL;
} else {
ring0->size = nb_desc;
ring0->size &= ~VMXNET3_RING_SIZE_MASK;
ring1->size = ring0->size;
}
comp_ring->size = ring0->size + ring1->size;
/* Rx vmxnet rings structure initialization */
ring0->next2fill = 0;
ring1->next2fill = 0;
ring0->next2comp = 0;
ring1->next2comp = 0;
ring0->gen = VMXNET3_INIT_GEN;
ring1->gen = VMXNET3_INIT_GEN;
comp_ring->next2proc = 0;
comp_ring->gen = VMXNET3_INIT_GEN;
size = sizeof(struct Vmxnet3_RxDesc) * (ring0->size + ring1->size);
size += sizeof(struct Vmxnet3_RxCompDesc) * comp_ring->size;
mz = ring_dma_zone_reserve(dev, "rxdesc", queue_idx, size, socket_id);
if (mz == NULL) {
PMD_INIT_LOG(ERR, "ERROR: Creating queue descriptors zone");
return -ENOMEM;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
memset(mz->addr, 0, mz->len);
/* cmd_ring0 initialization */
ring0->base = mz->addr;
ring0->basePA = mz->phys_addr;
/* cmd_ring1 initialization */
ring1->base = ring0->base + ring0->size;
ring1->basePA = ring0->basePA + sizeof(struct Vmxnet3_RxDesc) * ring0->size;
/* comp_ring initialization */
comp_ring->base = ring1->base + ring1->size;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
comp_ring->basePA = ring1->basePA + sizeof(struct Vmxnet3_RxDesc) *
ring1->size;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/* cmd_ring0-cmd_ring1 buf_info allocation */
for (i = 0; i < VMXNET3_RX_CMDRING_SIZE; i++) {
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
ring = &rxq->cmd_ring[i];
ring->rid = i;
snprintf(mem_name, sizeof(mem_name), "rx_ring_%d_buf_info", i);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
ring->buf_info = rte_zmalloc(mem_name,
ring->size * sizeof(vmxnet3_buf_info_t),
RTE_CACHE_LINE_SIZE);
if (ring->buf_info == NULL) {
PMD_INIT_LOG(ERR, "ERROR: Creating rx_buf_info structure");
return -ENOMEM;
}
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
/* Update the data portion with rxq */
dev->data->rx_queues[queue_idx] = rxq;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
return 0;
}
/*
* Initializes Receive Unit
* Load mbufs in rx queue in advance
*/
int
vmxnet3_dev_rxtx_init(struct rte_eth_dev *dev)
{
struct vmxnet3_hw *hw = dev->data->dev_private;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
int i, ret;
uint8_t j;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < hw->num_rx_queues; i++) {
vmxnet3_rx_queue_t *rxq = dev->data->rx_queues[i];
for (j = 0; j < VMXNET3_RX_CMDRING_SIZE; j++) {
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/* Passing 0 as alloc_num will allocate full ring */
ret = vmxnet3_post_rx_bufs(rxq, j);
if (ret <= 0) {
PMD_INIT_LOG(ERR,
"ERROR: Posting Rxq: %d buffers ring: %d",
i, j);
return -ret;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
/*
* Updating device with the index:next2fill to fill the
* mbufs for coming packets.
*/
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
if (unlikely(rxq->shared->ctrl.updateRxProd)) {
VMXNET3_WRITE_BAR0_REG(hw, rxprod_reg[j] + (rxq->queue_id * VMXNET3_REG_ALIGN),
rxq->cmd_ring[j].next2fill);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
}
rxq->stopped = FALSE;
rxq->start_seg = NULL;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct vmxnet3_tx_queue *txq = dev->data->tx_queues[i];
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
txq->stopped = FALSE;
}
return 0;
}
static uint8_t rss_intel_key[40] = {
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
};
/*
* Configure RSS feature
*/
int
vmxnet3_rss_configure(struct rte_eth_dev *dev)
{
struct vmxnet3_hw *hw = dev->data->dev_private;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
struct VMXNET3_RSSConf *dev_rss_conf;
struct rte_eth_rss_conf *port_rss_conf;
uint64_t rss_hf;
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
uint8_t i, j;
PMD_INIT_FUNC_TRACE();
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
dev_rss_conf = hw->rss_conf;
port_rss_conf = &dev->data->dev_conf.rx_adv_conf.rss_conf;
/* loading hashFunc */
dev_rss_conf->hashFunc = VMXNET3_RSS_HASH_FUNC_TOEPLITZ;
/* loading hashKeySize */
dev_rss_conf->hashKeySize = VMXNET3_RSS_MAX_KEY_SIZE;
/* loading indTableSize: Must not exceed VMXNET3_RSS_MAX_IND_TABLE_SIZE (128)*/
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
dev_rss_conf->indTableSize = (uint16_t)(hw->num_rx_queues * 4);
if (port_rss_conf->rss_key == NULL) {
/* Default hash key */
port_rss_conf->rss_key = rss_intel_key;
}
/* loading hashKey */
memcpy(&dev_rss_conf->hashKey[0], port_rss_conf->rss_key,
dev_rss_conf->hashKeySize);
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
/* loading indTable */
for (i = 0, j = 0; i < dev_rss_conf->indTableSize; i++, j++) {
if (j == dev->data->nb_rx_queues)
j = 0;
dev_rss_conf->indTable[i] = j;
}
/* loading hashType */
dev_rss_conf->hashType = 0;
rss_hf = port_rss_conf->rss_hf & VMXNET3_RSS_OFFLOAD_ALL;
if (rss_hf & ETH_RSS_IPV4)
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
dev_rss_conf->hashType |= VMXNET3_RSS_HASH_TYPE_IPV4;
if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
dev_rss_conf->hashType |= VMXNET3_RSS_HASH_TYPE_TCP_IPV4;
if (rss_hf & ETH_RSS_IPV6)
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
dev_rss_conf->hashType |= VMXNET3_RSS_HASH_TYPE_IPV6;
if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
dev_rss_conf->hashType |= VMXNET3_RSS_HASH_TYPE_TCP_IPV6;
return VMXNET3_SUCCESS;
}