numam-dpdk/lib/librte_pmd_ixgbe/ixgbe_rxtx.c

3544 lines
102 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2013 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <sys/queue.h>
#include <endian.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <stdint.h>
#include <stdarg.h>
#include <unistd.h>
#include <inttypes.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_prefetch.h>
#include <rte_udp.h>
#include <rte_tcp.h>
#include <rte_sctp.h>
#include <rte_string_fns.h>
#include <rte_errno.h>
#include "ixgbe_logs.h"
#include "ixgbe/ixgbe_api.h"
#include "ixgbe/ixgbe_vf.h"
#include "ixgbe_ethdev.h"
#include "ixgbe/ixgbe_dcb.h"
#define RTE_PMD_IXGBE_TX_MAX_BURST 32
#ifdef RTE_LIBRTE_IXGBE_RX_ALLOW_BULK_ALLOC
#define RTE_PMD_IXGBE_RX_MAX_BURST 32
#endif
static inline struct rte_mbuf *
rte_rxmbuf_alloc(struct rte_mempool *mp)
{
struct rte_mbuf *m;
m = __rte_mbuf_raw_alloc(mp);
__rte_mbuf_sanity_check_raw(m, RTE_MBUF_PKT, 0);
return (m);
}
#define RTE_MBUF_DATA_DMA_ADDR(mb) \
(uint64_t) ((mb)->buf_physaddr + (uint64_t)((char *)((mb)->pkt.data) - \
(char *)(mb)->buf_addr))
#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
(uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
/**
* Structure associated with each descriptor of the RX ring of a RX queue.
*/
struct igb_rx_entry {
struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
};
/**
* Structure associated with each descriptor of the TX ring of a TX queue.
*/
struct igb_tx_entry {
struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
uint16_t next_id; /**< Index of next descriptor in ring. */
uint16_t last_id; /**< Index of last scattered descriptor. */
};
/**
* Structure associated with each RX queue.
*/
struct igb_rx_queue {
struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
volatile union ixgbe_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
struct igb_rx_entry *sw_ring; /**< address of RX software ring. */
struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
uint16_t nb_rx_desc; /**< number of RX descriptors. */
uint16_t rx_tail; /**< current value of RDT register. */
uint16_t nb_rx_hold; /**< number of held free RX desc. */
#ifdef RTE_LIBRTE_IXGBE_RX_ALLOW_BULK_ALLOC
uint16_t rx_nb_avail; /**< nr of staged pkts ready to ret to app */
uint16_t rx_next_avail; /**< idx of next staged pkt to ret to app */
uint16_t rx_free_trigger; /**< triggers rx buffer allocation */
#endif
uint16_t rx_free_thresh; /**< max free RX desc to hold. */
uint16_t queue_id; /**< RX queue index. */
uint8_t port_id; /**< Device port identifier. */
uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
uint8_t drop_en; /**< If not 0, set SRRCTL.Drop_En. */
#ifdef RTE_LIBRTE_IXGBE_RX_ALLOW_BULK_ALLOC
/** need to alloc dummy mbuf, for wraparound when scanning hw ring */
struct rte_mbuf fake_mbuf;
/** hold packets to return to application */
struct rte_mbuf *rx_stage[RTE_PMD_IXGBE_RX_MAX_BURST*2];
#endif
};
/**
* IXGBE CTX Constants
*/
enum ixgbe_advctx_num {
IXGBE_CTX_0 = 0, /**< CTX0 */
IXGBE_CTX_1 = 1, /**< CTX1 */
IXGBE_CTX_NUM = 2, /**< CTX NUMBER */
};
/**
* Structure to check if new context need be built
*/
struct ixgbe_advctx_info {
uint16_t flags; /**< ol_flags for context build. */
uint32_t cmp_mask; /**< compare mask for vlan_macip_lens */
union rte_vlan_macip vlan_macip_lens; /**< vlan, mac ip length. */
};
/**
* Structure associated with each TX queue.
*/
struct igb_tx_queue {
/** TX ring virtual address. */
volatile union ixgbe_adv_tx_desc *tx_ring;
uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
struct igb_tx_entry *sw_ring; /**< virtual address of SW ring. */
volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
uint16_t nb_tx_desc; /**< number of TX descriptors. */
uint16_t tx_tail; /**< current value of TDT reg. */
uint16_t tx_free_thresh;/**< minimum TX before freeing. */
/** Number of TX descriptors to use before RS bit is set. */
uint16_t tx_rs_thresh;
/** Number of TX descriptors used since RS bit was set. */
uint16_t nb_tx_used;
/** Index to last TX descriptor to have been cleaned. */
uint16_t last_desc_cleaned;
/** Total number of TX descriptors ready to be allocated. */
uint16_t nb_tx_free;
uint16_t tx_next_dd; /**< next desc to scan for DD bit */
uint16_t tx_next_rs; /**< next desc to set RS bit */
uint16_t queue_id; /**< TX queue index. */
uint8_t port_id; /**< Device port identifier. */
uint8_t pthresh; /**< Prefetch threshold register. */
uint8_t hthresh; /**< Host threshold register. */
uint8_t wthresh; /**< Write-back threshold reg. */
uint32_t txq_flags; /**< Holds flags for this TXq */
uint32_t ctx_curr; /**< Hardware context states. */
/** Hardware context0 history. */
struct ixgbe_advctx_info ctx_cache[IXGBE_CTX_NUM];
};
#if 1
#define RTE_PMD_USE_PREFETCH
#endif
#ifdef RTE_PMD_USE_PREFETCH
/*
* Prefetch a cache line into all cache levels.
*/
#define rte_ixgbe_prefetch(p) rte_prefetch0(p)
#else
#define rte_ixgbe_prefetch(p) do {} while(0)
#endif
#ifdef RTE_PMD_PACKET_PREFETCH
#define rte_packet_prefetch(p) rte_prefetch1(p)
#else
#define rte_packet_prefetch(p) do {} while(0)
#endif
/*********************************************************************
*
* TX functions
*
**********************************************************************/
/*
* The "simple" TX queue functions require that the following
* flags are set when the TX queue is configured:
* - ETH_TXQ_FLAGS_NOMULTSEGS
* - ETH_TXQ_FLAGS_NOVLANOFFL
* - ETH_TXQ_FLAGS_NOXSUMSCTP
* - ETH_TXQ_FLAGS_NOXSUMUDP
* - ETH_TXQ_FLAGS_NOXSUMTCP
* and that the RS bit threshold (tx_rs_thresh) is at least equal to
* RTE_PMD_IXGBE_TX_MAX_BURST.
*/
#define IXGBE_SIMPLE_FLAGS ((uint32_t)ETH_TXQ_FLAGS_NOMULTSEGS | \
ETH_TXQ_FLAGS_NOOFFLOADS)
/*
* Check for descriptors with their DD bit set and free mbufs.
* Return the total number of buffers freed.
*/
static inline int
ixgbe_tx_free_bufs(struct igb_tx_queue *txq)
{
struct igb_tx_entry *txep;
uint32_t status;
int i;
/* check DD bit on threshold descriptor */
status = txq->tx_ring[txq->tx_next_dd].wb.status;
if (! (status & IXGBE_ADVTXD_STAT_DD))
return 0;
/*
* first buffer to free from S/W ring is at index
* tx_next_dd - (tx_rs_thresh-1)
*/
txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
/* prefetch the mbufs that are about to be freed */
for (i = 0; i < txq->tx_rs_thresh; ++i)
rte_prefetch0((txep + i)->mbuf);
/* free buffers one at a time */
if ((txq->txq_flags & (uint32_t)ETH_TXQ_FLAGS_NOREFCOUNT) != 0) {
for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
rte_mempool_put(txep->mbuf->pool, txep->mbuf);
txep->mbuf = NULL;
}
} else {
for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
rte_pktmbuf_free_seg(txep->mbuf);
txep->mbuf = NULL;
}
}
/* buffers were freed, update counters */
txq->nb_tx_free += txq->tx_rs_thresh;
txq->tx_next_dd += txq->tx_rs_thresh;
if (txq->tx_next_dd >= txq->nb_tx_desc)
txq->tx_next_dd = txq->tx_rs_thresh - 1;
return txq->tx_rs_thresh;
}
/*
* Populate descriptors with the following info:
* 1.) buffer_addr = phys_addr + headroom
* 2.) cmd_type_len = DCMD_DTYP_FLAGS | pkt_len
* 3.) olinfo_status = pkt_len << PAYLEN_SHIFT
*/
/* Defines for Tx descriptor */
#define DCMD_DTYP_FLAGS (IXGBE_ADVTXD_DTYP_DATA |\
IXGBE_ADVTXD_DCMD_IFCS |\
IXGBE_ADVTXD_DCMD_DEXT |\
IXGBE_ADVTXD_DCMD_EOP)
/* Populate 4 descriptors with data from 4 mbufs */
static inline void
tx4(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
{
uint64_t buf_dma_addr;
uint32_t pkt_len;
int i;
for (i = 0; i < 4; ++i, ++txdp, ++pkts) {
buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(*pkts);
pkt_len = (*pkts)->pkt.data_len;
/* write data to descriptor */
txdp->read.buffer_addr = buf_dma_addr;
txdp->read.cmd_type_len =
((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
txdp->read.olinfo_status =
(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
}
}
/* Populate 1 descriptor with data from 1 mbuf */
static inline void
tx1(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
{
uint64_t buf_dma_addr;
uint32_t pkt_len;
buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(*pkts);
pkt_len = (*pkts)->pkt.data_len;
/* write data to descriptor */
txdp->read.buffer_addr = buf_dma_addr;
txdp->read.cmd_type_len =
((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
txdp->read.olinfo_status =
(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
}
/*
* Fill H/W descriptor ring with mbuf data.
* Copy mbuf pointers to the S/W ring.
*/
static inline void
ixgbe_tx_fill_hw_ring(struct igb_tx_queue *txq, struct rte_mbuf **pkts,
uint16_t nb_pkts)
{
volatile union ixgbe_adv_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
struct igb_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
const int N_PER_LOOP = 4;
const int N_PER_LOOP_MASK = N_PER_LOOP-1;
int mainpart, leftover;
int i, j;
/*
* Process most of the packets in chunks of N pkts. Any
* leftover packets will get processed one at a time.
*/
mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
leftover = (nb_pkts & ((uint32_t) N_PER_LOOP_MASK));
for (i = 0; i < mainpart; i += N_PER_LOOP) {
/* Copy N mbuf pointers to the S/W ring */
for (j = 0; j < N_PER_LOOP; ++j) {
(txep + i + j)->mbuf = *(pkts + i + j);
}
tx4(txdp + i, pkts + i);
}
if (unlikely(leftover > 0)) {
for (i = 0; i < leftover; ++i) {
(txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
tx1(txdp + mainpart + i, pkts + mainpart + i);
}
}
}
static inline uint16_t
tx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct igb_tx_queue *txq = (struct igb_tx_queue *)tx_queue;
volatile union ixgbe_adv_tx_desc *tx_r = txq->tx_ring;
uint16_t n = 0;
/*
* Begin scanning the H/W ring for done descriptors when the
* number of available descriptors drops below tx_free_thresh. For
* each done descriptor, free the associated buffer.
*/
if (txq->nb_tx_free < txq->tx_free_thresh)
ixgbe_tx_free_bufs(txq);
/* Only use descriptors that are available */
nb_pkts = RTE_MIN(txq->nb_tx_free, nb_pkts);
if (unlikely(nb_pkts == 0))
return 0;
/* Use exactly nb_pkts descriptors */
txq->nb_tx_free -= nb_pkts;
/*
* At this point, we know there are enough descriptors in the
* ring to transmit all the packets. This assumes that each
* mbuf contains a single segment, and that no new offloads
* are expected, which would require a new context descriptor.
*/
/*
* See if we're going to wrap-around. If so, handle the top
* of the descriptor ring first, then do the bottom. If not,
* the processing looks just like the "bottom" part anyway...
*/
if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
n = txq->nb_tx_desc - txq->tx_tail;
ixgbe_tx_fill_hw_ring(txq, tx_pkts, n);
/*
* We know that the last descriptor in the ring will need to
* have its RS bit set because tx_rs_thresh has to be
* a divisor of the ring size
*/
tx_r[txq->tx_next_rs].read.cmd_type_len |=
rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
txq->tx_next_rs = txq->tx_rs_thresh - 1;
txq->tx_tail = 0;
}
/* Fill H/W descriptor ring with mbuf data */
ixgbe_tx_fill_hw_ring(txq, tx_pkts + n, nb_pkts - n);
txq->tx_tail += (nb_pkts - n);
/*
* Determine if RS bit should be set
* This is what we actually want:
* if ((txq->tx_tail - 1) >= txq->tx_next_rs)
* but instead of subtracting 1 and doing >=, we can just do
* greater than without subtracting.
*/
if (txq->tx_tail > txq->tx_next_rs) {
tx_r[txq->tx_next_rs].read.cmd_type_len |=
rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
txq->tx_next_rs += txq->tx_rs_thresh;
if (txq->tx_next_rs >= txq->nb_tx_desc)
txq->tx_next_rs = txq->tx_rs_thresh - 1;
}
/*
* Check for wrap-around. This would only happen if we used
* up to the last descriptor in the ring, no more, no less.
*/
if (txq->tx_tail >= txq->nb_tx_desc)
txq->tx_tail = 0;
/* update tail pointer */
rte_wmb();
IXGBE_PCI_REG_WRITE(txq->tdt_reg_addr, txq->tx_tail);
return nb_pkts;
}
uint16_t
ixgbe_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx;
/* Try to transmit at least chunks of TX_MAX_BURST pkts */
if (likely(nb_pkts <= RTE_PMD_IXGBE_TX_MAX_BURST))
return tx_xmit_pkts(tx_queue, tx_pkts, nb_pkts);
/* transmit more than the max burst, in chunks of TX_MAX_BURST */
nb_tx = 0;
while (nb_pkts) {
uint16_t ret, n;
n = RTE_MIN(nb_pkts, RTE_PMD_IXGBE_TX_MAX_BURST);
ret = tx_xmit_pkts(tx_queue, &(tx_pkts[nb_tx]), n);
nb_tx += ret;
nb_pkts -= ret;
if (ret < n)
break;
}
return nb_tx;
}
static inline void
ixgbe_set_xmit_ctx(struct igb_tx_queue* txq,
volatile struct ixgbe_adv_tx_context_desc *ctx_txd,
uint16_t ol_flags, uint32_t vlan_macip_lens)
{
uint32_t type_tucmd_mlhl;
uint32_t mss_l4len_idx;
uint32_t ctx_idx;
uint32_t cmp_mask;
ctx_idx = txq->ctx_curr;
cmp_mask = 0;
type_tucmd_mlhl = 0;
if (ol_flags & PKT_TX_VLAN_PKT) {
cmp_mask |= TX_VLAN_CMP_MASK;
}
if (ol_flags & PKT_TX_IP_CKSUM) {
type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4;
cmp_mask |= TX_MAC_LEN_CMP_MASK;
}
/* Specify which HW CTX to upload. */
mss_l4len_idx = (ctx_idx << IXGBE_ADVTXD_IDX_SHIFT);
switch (ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_UDP_CKSUM:
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_UDP |
IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
mss_l4len_idx |= sizeof(struct udp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
cmp_mask |= TX_MACIP_LEN_CMP_MASK;
break;
case PKT_TX_TCP_CKSUM:
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP |
IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
mss_l4len_idx |= sizeof(struct tcp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
cmp_mask |= TX_MACIP_LEN_CMP_MASK;
break;
case PKT_TX_SCTP_CKSUM:
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_SCTP |
IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
mss_l4len_idx |= sizeof(struct sctp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
cmp_mask |= TX_MACIP_LEN_CMP_MASK;
break;
default:
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_RSV |
IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
break;
}
txq->ctx_cache[ctx_idx].flags = ol_flags;
txq->ctx_cache[ctx_idx].cmp_mask = cmp_mask;
txq->ctx_cache[ctx_idx].vlan_macip_lens.data =
vlan_macip_lens & cmp_mask;
ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
ctx_txd->seqnum_seed = 0;
}
/*
* Check which hardware context can be used. Use the existing match
* or create a new context descriptor.
*/
static inline uint32_t
what_advctx_update(struct igb_tx_queue *txq, uint16_t flags,
uint32_t vlan_macip_lens)
{
/* If match with the current used context */
if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
(txq->ctx_cache[txq->ctx_curr].vlan_macip_lens.data ==
(txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
return txq->ctx_curr;
}
/* What if match with the next context */
txq->ctx_curr ^= 1;
if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
(txq->ctx_cache[txq->ctx_curr].vlan_macip_lens.data ==
(txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
return txq->ctx_curr;
}
/* Mismatch, use the previous context */
return (IXGBE_CTX_NUM);
}
static inline uint32_t
tx_desc_cksum_flags_to_olinfo(uint16_t ol_flags)
{
static const uint32_t l4_olinfo[2] = {0, IXGBE_ADVTXD_POPTS_TXSM};
static const uint32_t l3_olinfo[2] = {0, IXGBE_ADVTXD_POPTS_IXSM};
uint32_t tmp;
tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
return tmp;
}
static inline uint32_t
tx_desc_vlan_flags_to_cmdtype(uint16_t ol_flags)
{
static const uint32_t vlan_cmd[2] = {0, IXGBE_ADVTXD_DCMD_VLE};
return vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
}
/* Default RS bit threshold values */
#ifndef DEFAULT_TX_RS_THRESH
#define DEFAULT_TX_RS_THRESH 32
#endif
#ifndef DEFAULT_TX_FREE_THRESH
#define DEFAULT_TX_FREE_THRESH 32
#endif
/* Reset transmit descriptors after they have been used */
static inline int
ixgbe_xmit_cleanup(struct igb_tx_queue *txq)
{
struct igb_tx_entry *sw_ring = txq->sw_ring;
volatile union ixgbe_adv_tx_desc *txr = txq->tx_ring;
uint16_t last_desc_cleaned = txq->last_desc_cleaned;
uint16_t nb_tx_desc = txq->nb_tx_desc;
uint16_t desc_to_clean_to;
uint16_t nb_tx_to_clean;
/* Determine the last descriptor needing to be cleaned */
desc_to_clean_to = last_desc_cleaned + txq->tx_rs_thresh;
if (desc_to_clean_to >= nb_tx_desc)
desc_to_clean_to = desc_to_clean_to - nb_tx_desc;
/* Check to make sure the last descriptor to clean is done */
desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
if (! (txr[desc_to_clean_to].wb.status & IXGBE_TXD_STAT_DD))
{
PMD_TX_FREE_LOG(DEBUG,
"TX descriptor %4u is not done"
"(port=%d queue=%d)",
desc_to_clean_to,
txq->port_id, txq->queue_id);
/* Failed to clean any descriptors, better luck next time */
return -(1);
}
/* Figure out how many descriptors will be cleaned */
if (last_desc_cleaned > desc_to_clean_to)
nb_tx_to_clean = ((nb_tx_desc - last_desc_cleaned) +
desc_to_clean_to);
else
nb_tx_to_clean = desc_to_clean_to - last_desc_cleaned;
PMD_TX_FREE_LOG(DEBUG,
"Cleaning %4u TX descriptors: %4u to %4u "
"(port=%d queue=%d)",
nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to,
txq->port_id, txq->queue_id);
/*
* The last descriptor to clean is done, so that means all the
* descriptors from the last descriptor that was cleaned
* up to the last descriptor with the RS bit set
* are done. Only reset the threshold descriptor.
*/
txr[desc_to_clean_to].wb.status = 0;
/* Update the txq to reflect the last descriptor that was cleaned */
txq->last_desc_cleaned = desc_to_clean_to;
txq->nb_tx_free += nb_tx_to_clean;
/* No Error */
return (0);
}
uint16_t
ixgbe_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct igb_tx_queue *txq;
struct igb_tx_entry *sw_ring;
struct igb_tx_entry *txe, *txn;
volatile union ixgbe_adv_tx_desc *txr;
volatile union ixgbe_adv_tx_desc *txd;
struct rte_mbuf *tx_pkt;
struct rte_mbuf *m_seg;
uint64_t buf_dma_addr;
uint32_t olinfo_status;
uint32_t cmd_type_len;
uint32_t pkt_len;
uint16_t slen;
uint16_t ol_flags;
uint16_t tx_id;
uint16_t tx_last;
uint16_t nb_tx;
uint16_t nb_used;
uint16_t tx_ol_req;
uint32_t vlan_macip_lens;
uint32_t ctx = 0;
uint32_t new_ctx;
txq = tx_queue;
sw_ring = txq->sw_ring;
txr = txq->tx_ring;
tx_id = txq->tx_tail;
txe = &sw_ring[tx_id];
/* Determine if the descriptor ring needs to be cleaned. */
if ((txq->nb_tx_desc - txq->nb_tx_free) > txq->tx_free_thresh) {
ixgbe_xmit_cleanup(txq);
}
/* TX loop */
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
new_ctx = 0;
tx_pkt = *tx_pkts++;
pkt_len = tx_pkt->pkt.pkt_len;
RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
/*
* Determine how many (if any) context descriptors
* are needed for offload functionality.
*/
ol_flags = tx_pkt->ol_flags;
vlan_macip_lens = tx_pkt->pkt.vlan_macip.data;
/* If hardware offload required */
tx_ol_req = ol_flags & PKT_TX_OFFLOAD_MASK;
if (tx_ol_req) {
/* If new context need be built or reuse the exist ctx. */
ctx = what_advctx_update(txq, tx_ol_req,
vlan_macip_lens);
/* Only allocate context descriptor if required*/
new_ctx = (ctx == IXGBE_CTX_NUM);
ctx = txq->ctx_curr;
}
/*
* Keep track of how many descriptors are used this loop
* This will always be the number of segments + the number of
* Context descriptors required to transmit the packet
*/
nb_used = tx_pkt->pkt.nb_segs + new_ctx;
/*
* The number of descriptors that must be allocated for a
* packet is the number of segments of that packet, plus 1
* Context Descriptor for the hardware offload, if any.
* Determine the last TX descriptor to allocate in the TX ring
* for the packet, starting from the current position (tx_id)
* in the ring.
*/
tx_last = (uint16_t) (tx_id + nb_used - 1);
/* Circular ring */
if (tx_last >= txq->nb_tx_desc)
tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
" tx_first=%u tx_last=%u\n",
(unsigned) txq->port_id,
(unsigned) txq->queue_id,
(unsigned) pkt_len,
(unsigned) tx_id,
(unsigned) tx_last);
/*
* Make sure there are enough TX descriptors available to
* transmit the entire packet.
* nb_used better be less than or equal to txq->tx_rs_thresh
*/
if (nb_used > txq->nb_tx_free) {
PMD_TX_FREE_LOG(DEBUG,
"Not enough free TX descriptors "
"nb_used=%4u nb_free=%4u "
"(port=%d queue=%d)",
nb_used, txq->nb_tx_free,
txq->port_id, txq->queue_id);
if (ixgbe_xmit_cleanup(txq) != 0) {
/* Could not clean any descriptors */
if (nb_tx == 0)
return (0);
goto end_of_tx;
}
/* nb_used better be <= txq->tx_rs_thresh */
if (unlikely(nb_used > txq->tx_rs_thresh)) {
PMD_TX_FREE_LOG(DEBUG,
"The number of descriptors needed to "
"transmit the packet exceeds the "
"RS bit threshold. This will impact "
"performance."
"nb_used=%4u nb_free=%4u "
"tx_rs_thresh=%4u. "
"(port=%d queue=%d)",
nb_used, txq->nb_tx_free,
txq->tx_rs_thresh,
txq->port_id, txq->queue_id);
/*
* Loop here until there are enough TX
* descriptors or until the ring cannot be
* cleaned.
*/
while (nb_used > txq->nb_tx_free) {
if (ixgbe_xmit_cleanup(txq) != 0) {
/*
* Could not clean any
* descriptors
*/
if (nb_tx == 0)
return (0);
goto end_of_tx;
}
}
}
}
/*
* By now there are enough free TX descriptors to transmit
* the packet.
*/
/*
* Set common flags of all TX Data Descriptors.
*
* The following bits must be set in all Data Descriptors:
* - IXGBE_ADVTXD_DTYP_DATA
* - IXGBE_ADVTXD_DCMD_DEXT
*
* The following bits must be set in the first Data Descriptor
* and are ignored in the other ones:
* - IXGBE_ADVTXD_DCMD_IFCS
* - IXGBE_ADVTXD_MAC_1588
* - IXGBE_ADVTXD_DCMD_VLE
*
* The following bits must only be set in the last Data
* Descriptor:
* - IXGBE_TXD_CMD_EOP
*
* The following bits can be set in any Data Descriptor, but
* are only set in the last Data Descriptor:
* - IXGBE_TXD_CMD_RS
*/
cmd_type_len = IXGBE_ADVTXD_DTYP_DATA |
IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
olinfo_status = (pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
#ifdef RTE_LIBRTE_IEEE1588
if (ol_flags & PKT_TX_IEEE1588_TMST)
cmd_type_len |= IXGBE_ADVTXD_MAC_1588;
#endif
if (tx_ol_req) {
/*
* Setup the TX Advanced Context Descriptor if required
*/
if (new_ctx) {
volatile struct ixgbe_adv_tx_context_desc *
ctx_txd;
ctx_txd = (volatile struct
ixgbe_adv_tx_context_desc *)
&txr[tx_id];
txn = &sw_ring[txe->next_id];
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
if (txe->mbuf != NULL) {
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = NULL;
}
ixgbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
vlan_macip_lens);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
}
/*
* Setup the TX Advanced Data Descriptor,
* This path will go through
* whatever new/reuse the context descriptor
*/
cmd_type_len |= tx_desc_vlan_flags_to_cmdtype(ol_flags);
olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
olinfo_status |= ctx << IXGBE_ADVTXD_IDX_SHIFT;
}
m_seg = tx_pkt;
do {
txd = &txr[tx_id];
txn = &sw_ring[txe->next_id];
if (txe->mbuf != NULL)
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = m_seg;
/*
* Set up Transmit Data Descriptor.
*/
slen = m_seg->pkt.data_len;
buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
txd->read.buffer_addr =
rte_cpu_to_le_64(buf_dma_addr);
txd->read.cmd_type_len =
rte_cpu_to_le_32(cmd_type_len | slen);
txd->read.olinfo_status =
rte_cpu_to_le_32(olinfo_status);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
m_seg = m_seg->pkt.next;
} while (m_seg != NULL);
/*
* The last packet data descriptor needs End Of Packet (EOP)
*/
cmd_type_len |= IXGBE_TXD_CMD_EOP;
txq->nb_tx_used += nb_used;
txq->nb_tx_free -= nb_used;
/* Set RS bit only on threshold packets' last descriptor */
if (txq->nb_tx_used >= txq->tx_rs_thresh) {
PMD_TX_FREE_LOG(DEBUG,
"Setting RS bit on TXD id="
"%4u (port=%d queue=%d)",
tx_last, txq->port_id, txq->queue_id);
cmd_type_len |= IXGBE_TXD_CMD_RS;
/* Update txq RS bit counters */
txq->nb_tx_used = 0;
}
txd->read.cmd_type_len |= rte_cpu_to_le_32(cmd_type_len);
}
end_of_tx:
rte_wmb();
/*
* Set the Transmit Descriptor Tail (TDT)
*/
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
(unsigned) txq->port_id, (unsigned) txq->queue_id,
(unsigned) tx_id, (unsigned) nb_tx);
IXGBE_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
txq->tx_tail = tx_id;
return (nb_tx);
}
/*********************************************************************
*
* RX functions
*
**********************************************************************/
static inline uint16_t
rx_desc_hlen_type_rss_to_pkt_flags(uint32_t hl_tp_rs)
{
uint16_t pkt_flags;
static uint16_t ip_pkt_types_map[16] = {
0, PKT_RX_IPV4_HDR, PKT_RX_IPV4_HDR_EXT, PKT_RX_IPV4_HDR_EXT,
PKT_RX_IPV6_HDR, 0, 0, 0,
PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
};
static uint16_t ip_rss_types_map[16] = {
0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
0, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH,
PKT_RX_RSS_HASH, 0, 0, 0,
0, 0, 0, PKT_RX_FDIR,
};
#ifdef RTE_LIBRTE_IEEE1588
static uint32_t ip_pkt_etqf_map[8] = {
0, 0, 0, PKT_RX_IEEE1588_PTP,
0, 0, 0, 0,
};
pkt_flags = (uint16_t) ((hl_tp_rs & IXGBE_RXDADV_PKTTYPE_ETQF) ?
ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07] :
ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F]);
#else
pkt_flags = (uint16_t) ((hl_tp_rs & IXGBE_RXDADV_PKTTYPE_ETQF) ? 0 :
ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F]);
#endif
return (pkt_flags | ip_rss_types_map[hl_tp_rs & 0xF]);
}
static inline uint16_t
rx_desc_status_to_pkt_flags(uint32_t rx_status)
{
uint16_t pkt_flags;
/*
* Check if VLAN present only.
* Do not check whether L3/L4 rx checksum done by NIC or not,
* That can be found from rte_eth_rxmode.hw_ip_checksum flag
*/
pkt_flags = (uint16_t) (rx_status & IXGBE_RXD_STAT_VP) ? PKT_RX_VLAN_PKT : 0;
#ifdef RTE_LIBRTE_IEEE1588
if (rx_status & IXGBE_RXD_STAT_TMST)
pkt_flags = (pkt_flags | PKT_RX_IEEE1588_TMST);
#endif
return pkt_flags;
}
static inline uint16_t
rx_desc_error_to_pkt_flags(uint32_t rx_status)
{
/*
* Bit 31: IPE, IPv4 checksum error
* Bit 30: L4I, L4I integrity error
*/
static uint16_t error_to_pkt_flags_map[4] = {
0, PKT_RX_L4_CKSUM_BAD, PKT_RX_IP_CKSUM_BAD,
PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
};
return error_to_pkt_flags_map[(rx_status >>
IXGBE_RXDADV_ERR_CKSUM_BIT) & IXGBE_RXDADV_ERR_CKSUM_MSK];
}
#ifdef RTE_LIBRTE_IXGBE_RX_ALLOW_BULK_ALLOC
/*
* LOOK_AHEAD defines how many desc statuses to check beyond the
* current descriptor.
* It must be a pound define for optimal performance.
* Do not change the value of LOOK_AHEAD, as the ixgbe_rx_scan_hw_ring
* function only works with LOOK_AHEAD=8.
*/
#define LOOK_AHEAD 8
#if (LOOK_AHEAD != 8)
#error "PMD IXGBE: LOOK_AHEAD must be 8\n"
#endif
static inline int
ixgbe_rx_scan_hw_ring(struct igb_rx_queue *rxq)
{
volatile union ixgbe_adv_rx_desc *rxdp;
struct igb_rx_entry *rxep;
struct rte_mbuf *mb;
uint16_t pkt_len;
int s[LOOK_AHEAD], nb_dd;
int i, j, nb_rx = 0;
/* get references to current descriptor and S/W ring entry */
rxdp = &rxq->rx_ring[rxq->rx_tail];
rxep = &rxq->sw_ring[rxq->rx_tail];
/* check to make sure there is at least 1 packet to receive */
if (! (rxdp->wb.upper.status_error & IXGBE_RXDADV_STAT_DD))
return 0;
/*
* Scan LOOK_AHEAD descriptors at a time to determine which descriptors
* reference packets that are ready to be received.
*/
for (i = 0; i < RTE_PMD_IXGBE_RX_MAX_BURST;
i += LOOK_AHEAD, rxdp += LOOK_AHEAD, rxep += LOOK_AHEAD)
{
/* Read desc statuses backwards to avoid race condition */
for (j = LOOK_AHEAD-1; j >= 0; --j)
s[j] = rxdp[j].wb.upper.status_error;
/* Clear everything but the status bits (LSB) */
for (j = 0; j < LOOK_AHEAD; ++j)
s[j] &= IXGBE_RXDADV_STAT_DD;
/* Compute how many status bits were set */
nb_dd = s[0]+s[1]+s[2]+s[3]+s[4]+s[5]+s[6]+s[7];
nb_rx += nb_dd;
/* Translate descriptor info to mbuf format */
for (j = 0; j < nb_dd; ++j) {
mb = rxep[j].mbuf;
pkt_len = rxdp[j].wb.upper.length - rxq->crc_len;
mb->pkt.data_len = pkt_len;
mb->pkt.pkt_len = pkt_len;
mb->pkt.vlan_macip.f.vlan_tci = rxdp[j].wb.upper.vlan;
mb->pkt.hash.rss = rxdp[j].wb.lower.hi_dword.rss;
/* convert descriptor fields to rte mbuf flags */
mb->ol_flags = rx_desc_hlen_type_rss_to_pkt_flags(
rxdp[j].wb.lower.lo_dword.data);
/* reuse status field from scan list */
mb->ol_flags |= rx_desc_status_to_pkt_flags(s[j]);
mb->ol_flags |= rx_desc_error_to_pkt_flags(s[j]);
}
/* Move mbuf pointers from the S/W ring to the stage */
for (j = 0; j < LOOK_AHEAD; ++j) {
rxq->rx_stage[i + j] = rxep[j].mbuf;
}
/* stop if all requested packets could not be received */
if (nb_dd != LOOK_AHEAD)
break;
}
/* clear software ring entries so we can cleanup correctly */
for (i = 0; i < nb_rx; ++i)
rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
return nb_rx;
}
static inline int
ixgbe_rx_alloc_bufs(struct igb_rx_queue *rxq)
{
volatile union ixgbe_adv_rx_desc *rxdp;
struct igb_rx_entry *rxep;
struct rte_mbuf *mb;
uint16_t alloc_idx;
uint64_t dma_addr;
int diag, i;
/* allocate buffers in bulk directly into the S/W ring */
alloc_idx = rxq->rx_free_trigger - (rxq->rx_free_thresh - 1);
rxep = &rxq->sw_ring[alloc_idx];
diag = rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep,
rxq->rx_free_thresh);
if (unlikely(diag != 0))
return (-ENOMEM);
rxdp = &rxq->rx_ring[alloc_idx];
for (i = 0; i < rxq->rx_free_thresh; ++i) {
/* populate the static rte mbuf fields */
mb = rxep[i].mbuf;
rte_mbuf_refcnt_set(mb, 1);
mb->type = RTE_MBUF_PKT;
mb->pkt.next = NULL;
mb->pkt.data = (char *)mb->buf_addr + RTE_PKTMBUF_HEADROOM;
mb->pkt.nb_segs = 1;
mb->pkt.in_port = rxq->port_id;
/* populate the descriptors */
dma_addr = (uint64_t)mb->buf_physaddr + RTE_PKTMBUF_HEADROOM;
rxdp[i].read.hdr_addr = dma_addr;
rxdp[i].read.pkt_addr = dma_addr;
}
/* update tail pointer */
rte_wmb();
IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rxq->rx_free_trigger);
/* update state of internal queue structure */
rxq->rx_free_trigger += rxq->rx_free_thresh;
if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
rxq->rx_free_trigger = (rxq->rx_free_thresh - 1);
/* no errors */
return 0;
}
static inline uint16_t
ixgbe_rx_fill_from_stage(struct igb_rx_queue *rxq, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
int i;
/* how many packets are ready to return? */
nb_pkts = RTE_MIN(nb_pkts, rxq->rx_nb_avail);
/* copy mbuf pointers to the application's packet list */
for (i = 0; i < nb_pkts; ++i)
rx_pkts[i] = stage[i];
/* update internal queue state */
rxq->rx_nb_avail -= nb_pkts;
rxq->rx_next_avail += nb_pkts;
return nb_pkts;
}
static inline uint16_t
rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct igb_rx_queue *rxq = (struct igb_rx_queue *)rx_queue;
uint16_t nb_rx = 0;
/* Any previously recv'd pkts will be returned from the Rx stage */
if (rxq->rx_nb_avail)
return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
/* Scan the H/W ring for packets to receive */
nb_rx = ixgbe_rx_scan_hw_ring(rxq);
/* update internal queue state */
rxq->rx_next_avail = 0;
rxq->rx_nb_avail = nb_rx;
rxq->rx_tail += nb_rx;
/* if required, allocate new buffers to replenish descriptors */
if (rxq->rx_tail > rxq->rx_free_trigger) {
if (ixgbe_rx_alloc_bufs(rxq) != 0) {
int i, j;
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u\n", (unsigned) rxq->port_id,
(unsigned) rxq->queue_id);
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
rxq->rx_free_thresh;
/*
* Need to rewind any previous receives if we cannot
* allocate new buffers to replenish the old ones.
*/
rxq->rx_nb_avail = 0;
rxq->rx_tail -= nb_rx;
for (i = 0, j = rxq->rx_tail; i < nb_rx; ++i, ++j)
rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
return 0;
}
}
if (rxq->rx_tail >= rxq->nb_rx_desc)
rxq->rx_tail = 0;
/* received any packets this loop? */
if (rxq->rx_nb_avail)
return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
return 0;
}
/* split requests into chunks of size RTE_PMD_IXGBE_RX_MAX_BURST */
uint16_t
ixgbe_recv_pkts_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_rx;
if (unlikely(nb_pkts == 0))
return 0;
if (likely(nb_pkts <= RTE_PMD_IXGBE_RX_MAX_BURST))
return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
/* request is relatively large, chunk it up */
nb_rx = 0;
while (nb_pkts) {
uint16_t ret, n;
n = RTE_MIN(nb_pkts, RTE_PMD_IXGBE_RX_MAX_BURST);
ret = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
nb_rx += ret;
nb_pkts -= ret;
if (ret < n)
break;
}
return nb_rx;
}
#endif /* RTE_LIBRTE_IXGBE_RX_ALLOW_BULK_ALLOC */
uint16_t
ixgbe_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct igb_rx_queue *rxq;
volatile union ixgbe_adv_rx_desc *rx_ring;
volatile union ixgbe_adv_rx_desc *rxdp;
struct igb_rx_entry *sw_ring;
struct igb_rx_entry *rxe;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
union ixgbe_adv_rx_desc rxd;
uint64_t dma_addr;
uint32_t staterr;
uint32_t hlen_type_rss;
uint16_t pkt_len;
uint16_t rx_id;
uint16_t nb_rx;
uint16_t nb_hold;
uint16_t pkt_flags;
nb_rx = 0;
nb_hold = 0;
rxq = rx_queue;
rx_id = rxq->rx_tail;
rx_ring = rxq->rx_ring;
sw_ring = rxq->sw_ring;
while (nb_rx < nb_pkts) {
/*
* The order of operations here is important as the DD status
* bit must not be read after any other descriptor fields.
* rx_ring and rxdp are pointing to volatile data so the order
* of accesses cannot be reordered by the compiler. If they were
* not volatile, they could be reordered which could lead to
* using invalid descriptor fields when read from rxd.
*/
rxdp = &rx_ring[rx_id];
staterr = rxdp->wb.upper.status_error;
if (! (staterr & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
break;
rxd = *rxdp;
/*
* End of packet.
*
* If the IXGBE_RXDADV_STAT_EOP flag is not set, the RX packet
* is likely to be invalid and to be dropped by the various
* validation checks performed by the network stack.
*
* Allocate a new mbuf to replenish the RX ring descriptor.
* If the allocation fails:
* - arrange for that RX descriptor to be the first one
* being parsed the next time the receive function is
* invoked [on the same queue].
*
* - Stop parsing the RX ring and return immediately.
*
* This policy do not drop the packet received in the RX
* descriptor for which the allocation of a new mbuf failed.
* Thus, it allows that packet to be later retrieved if
* mbuf have been freed in the mean time.
* As a side effect, holding RX descriptors instead of
* systematically giving them back to the NIC may lead to
* RX ring exhaustion situations.
* However, the NIC can gracefully prevent such situations
* to happen by sending specific "back-pressure" flow control
* frames to its peer(s).
*/
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
"ext_err_stat=0x%08x pkt_len=%u\n",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) staterr,
(unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
nmb = rte_rxmbuf_alloc(rxq->mb_pool);
if (nmb == NULL) {
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u\n", (unsigned) rxq->port_id,
(unsigned) rxq->queue_id);
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
break;
}
nb_hold++;
rxe = &sw_ring[rx_id];
rx_id++;
if (rx_id == rxq->nb_rx_desc)
rx_id = 0;
/* Prefetch next mbuf while processing current one. */
rte_ixgbe_prefetch(sw_ring[rx_id].mbuf);
/*
* When next RX descriptor is on a cache-line boundary,
* prefetch the next 4 RX descriptors and the next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_ixgbe_prefetch(&rx_ring[rx_id]);
rte_ixgbe_prefetch(&sw_ring[rx_id]);
}
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma_addr =
rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
rxdp->read.hdr_addr = dma_addr;
rxdp->read.pkt_addr = dma_addr;
/*
* Initialize the returned mbuf.
* 1) setup generic mbuf fields:
* - number of segments,
* - next segment,
* - packet length,
* - RX port identifier.
* 2) integrate hardware offload data, if any:
* - RSS flag & hash,
* - IP checksum flag,
* - VLAN TCI, if any,
* - error flags.
*/
pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
rxq->crc_len);
rxm->pkt.data = (char*) rxm->buf_addr + RTE_PKTMBUF_HEADROOM;
rte_packet_prefetch(rxm->pkt.data);
rxm->pkt.nb_segs = 1;
rxm->pkt.next = NULL;
rxm->pkt.pkt_len = pkt_len;
rxm->pkt.data_len = pkt_len;
rxm->pkt.in_port = rxq->port_id;
hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
/* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
rxm->pkt.vlan_macip.f.vlan_tci =
rte_le_to_cpu_16(rxd.wb.upper.vlan);
pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
pkt_flags = (pkt_flags | rx_desc_status_to_pkt_flags(staterr));
pkt_flags = (pkt_flags | rx_desc_error_to_pkt_flags(staterr));
rxm->ol_flags = pkt_flags;
if (likely(pkt_flags & PKT_RX_RSS_HASH))
rxm->pkt.hash.rss = rxd.wb.lower.hi_dword.rss;
else if (pkt_flags & PKT_RX_FDIR) {
rxm->pkt.hash.fdir.hash =
(uint16_t)((rxd.wb.lower.hi_dword.csum_ip.csum)
& IXGBE_ATR_HASH_MASK);
rxm->pkt.hash.fdir.id = rxd.wb.lower.hi_dword.csum_ip.ip_id;
}
/*
* Store the mbuf address into the next entry of the array
* of returned packets.
*/
rx_pkts[nb_rx++] = rxm;
}
rxq->rx_tail = rx_id;
/*
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register.
* Update the RDT with the value of the last processed RX descriptor
* minus 1, to guarantee that the RDT register is never equal to the
* RDH register, which creates a "full" ring situtation from the
* hardware point of view...
*/
nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
"nb_hold=%u nb_rx=%u\n",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) nb_hold,
(unsigned) nb_rx);
rx_id = (uint16_t) ((rx_id == 0) ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return (nb_rx);
}
uint16_t
ixgbe_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct igb_rx_queue *rxq;
volatile union ixgbe_adv_rx_desc *rx_ring;
volatile union ixgbe_adv_rx_desc *rxdp;
struct igb_rx_entry *sw_ring;
struct igb_rx_entry *rxe;
struct rte_mbuf *first_seg;
struct rte_mbuf *last_seg;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
union ixgbe_adv_rx_desc rxd;
uint64_t dma; /* Physical address of mbuf data buffer */
uint32_t staterr;
uint32_t hlen_type_rss;
uint16_t rx_id;
uint16_t nb_rx;
uint16_t nb_hold;
uint16_t data_len;
uint16_t pkt_flags;
nb_rx = 0;
nb_hold = 0;
rxq = rx_queue;
rx_id = rxq->rx_tail;
rx_ring = rxq->rx_ring;
sw_ring = rxq->sw_ring;
/*
* Retrieve RX context of current packet, if any.
*/
first_seg = rxq->pkt_first_seg;
last_seg = rxq->pkt_last_seg;
while (nb_rx < nb_pkts) {
next_desc:
/*
* The order of operations here is important as the DD status
* bit must not be read after any other descriptor fields.
* rx_ring and rxdp are pointing to volatile data so the order
* of accesses cannot be reordered by the compiler. If they were
* not volatile, they could be reordered which could lead to
* using invalid descriptor fields when read from rxd.
*/
rxdp = &rx_ring[rx_id];
staterr = rxdp->wb.upper.status_error;
if (! (staterr & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
break;
rxd = *rxdp;
/*
* Descriptor done.
*
* Allocate a new mbuf to replenish the RX ring descriptor.
* If the allocation fails:
* - arrange for that RX descriptor to be the first one
* being parsed the next time the receive function is
* invoked [on the same queue].
*
* - Stop parsing the RX ring and return immediately.
*
* This policy does not drop the packet received in the RX
* descriptor for which the allocation of a new mbuf failed.
* Thus, it allows that packet to be later retrieved if
* mbuf have been freed in the mean time.
* As a side effect, holding RX descriptors instead of
* systematically giving them back to the NIC may lead to
* RX ring exhaustion situations.
* However, the NIC can gracefully prevent such situations
* to happen by sending specific "back-pressure" flow control
* frames to its peer(s).
*/
PMD_RX_LOG(DEBUG, "\nport_id=%u queue_id=%u rx_id=%u "
"staterr=0x%x data_len=%u\n",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) staterr,
(unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
nmb = rte_rxmbuf_alloc(rxq->mb_pool);
if (nmb == NULL) {
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u\n", (unsigned) rxq->port_id,
(unsigned) rxq->queue_id);
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
break;
}
nb_hold++;
rxe = &sw_ring[rx_id];
rx_id++;
if (rx_id == rxq->nb_rx_desc)
rx_id = 0;
/* Prefetch next mbuf while processing current one. */
rte_ixgbe_prefetch(sw_ring[rx_id].mbuf);
/*
* When next RX descriptor is on a cache-line boundary,
* prefetch the next 4 RX descriptors and the next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_ixgbe_prefetch(&rx_ring[rx_id]);
rte_ixgbe_prefetch(&sw_ring[rx_id]);
}
/*
* Update RX descriptor with the physical address of the new
* data buffer of the new allocated mbuf.
*/
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
rxdp->read.hdr_addr = dma;
rxdp->read.pkt_addr = dma;
/*
* Set data length & data buffer address of mbuf.
*/
data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
rxm->pkt.data_len = data_len;
rxm->pkt.data = (char*) rxm->buf_addr + RTE_PKTMBUF_HEADROOM;
/*
* If this is the first buffer of the received packet,
* set the pointer to the first mbuf of the packet and
* initialize its context.
* Otherwise, update the total length and the number of segments
* of the current scattered packet, and update the pointer to
* the last mbuf of the current packet.
*/
if (first_seg == NULL) {
first_seg = rxm;
first_seg->pkt.pkt_len = data_len;
first_seg->pkt.nb_segs = 1;
} else {
first_seg->pkt.pkt_len = (uint16_t)(first_seg->pkt.pkt_len
+ data_len);
first_seg->pkt.nb_segs++;
last_seg->pkt.next = rxm;
}
/*
* If this is not the last buffer of the received packet,
* update the pointer to the last mbuf of the current scattered
* packet and continue to parse the RX ring.
*/
if (! (staterr & IXGBE_RXDADV_STAT_EOP)) {
last_seg = rxm;
goto next_desc;
}
/*
* This is the last buffer of the received packet.
* If the CRC is not stripped by the hardware:
* - Subtract the CRC length from the total packet length.
* - If the last buffer only contains the whole CRC or a part
* of it, free the mbuf associated to the last buffer.
* If part of the CRC is also contained in the previous
* mbuf, subtract the length of that CRC part from the
* data length of the previous mbuf.
*/
rxm->pkt.next = NULL;
if (unlikely(rxq->crc_len > 0)) {
first_seg->pkt.pkt_len -= ETHER_CRC_LEN;
if (data_len <= ETHER_CRC_LEN) {
rte_pktmbuf_free_seg(rxm);
first_seg->pkt.nb_segs--;
last_seg->pkt.data_len = (uint16_t)
(last_seg->pkt.data_len -
(ETHER_CRC_LEN - data_len));
last_seg->pkt.next = NULL;
} else
rxm->pkt.data_len =
(uint16_t) (data_len - ETHER_CRC_LEN);
}
/*
* Initialize the first mbuf of the returned packet:
* - RX port identifier,
* - hardware offload data, if any:
* - RSS flag & hash,
* - IP checksum flag,
* - VLAN TCI, if any,
* - error flags.
*/
first_seg->pkt.in_port = rxq->port_id;
/*
* The vlan_tci field is only valid when PKT_RX_VLAN_PKT is
* set in the pkt_flags field.
*/
first_seg->pkt.vlan_macip.f.vlan_tci =
rte_le_to_cpu_16(rxd.wb.upper.vlan);
hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
pkt_flags = (pkt_flags |
rx_desc_status_to_pkt_flags(staterr));
pkt_flags = (pkt_flags |
rx_desc_error_to_pkt_flags(staterr));
first_seg->ol_flags = pkt_flags;
if (likely(pkt_flags & PKT_RX_RSS_HASH))
first_seg->pkt.hash.rss = rxd.wb.lower.hi_dword.rss;
else if (pkt_flags & PKT_RX_FDIR) {
first_seg->pkt.hash.fdir.hash =
(uint16_t)((rxd.wb.lower.hi_dword.csum_ip.csum)
& IXGBE_ATR_HASH_MASK);
first_seg->pkt.hash.fdir.id =
rxd.wb.lower.hi_dword.csum_ip.ip_id;
}
/* Prefetch data of first segment, if configured to do so. */
rte_packet_prefetch(first_seg->pkt.data);
/*
* Store the mbuf address into the next entry of the array
* of returned packets.
*/
rx_pkts[nb_rx++] = first_seg;
/*
* Setup receipt context for a new packet.
*/
first_seg = NULL;
}
/*
* Record index of the next RX descriptor to probe.
*/
rxq->rx_tail = rx_id;
/*
* Save receive context.
*/
rxq->pkt_first_seg = first_seg;
rxq->pkt_last_seg = last_seg;
/*
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register.
* Update the RDT with the value of the last processed RX descriptor
* minus 1, to guarantee that the RDT register is never equal to the
* RDH register, which creates a "full" ring situtation from the
* hardware point of view...
*/
nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
"nb_hold=%u nb_rx=%u\n",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) nb_hold,
(unsigned) nb_rx);
rx_id = (uint16_t) ((rx_id == 0) ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return (nb_rx);
}
/*********************************************************************
*
* Queue management functions
*
**********************************************************************/
/*
* Rings setup and release.
*
* TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
* multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary. This will
* also optimize cache line size effect. H/W supports up to cache line size 128.
*/
#define IXGBE_ALIGN 128
/*
* Maximum number of Ring Descriptors.
*
* Since RDLEN/TDLEN should be multiple of 128 bytes, the number of ring
* descriptors should meet the following condition:
* (num_ring_desc * sizeof(rx/tx descriptor)) % 128 == 0
*/
#define IXGBE_MIN_RING_DESC 64
#define IXGBE_MAX_RING_DESC 4096
/*
* Create memzone for HW rings. malloc can't be used as the physical address is
* needed. If the memzone is already created, then this function returns a ptr
* to the old one.
*/
static const struct rte_memzone *
ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
uint16_t queue_id, uint32_t ring_size, int socket_id)
{
char z_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz;
rte_snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
dev->driver->pci_drv.name, ring_name,
dev->data->port_id, queue_id);
mz = rte_memzone_lookup(z_name);
if (mz)
return mz;
return rte_memzone_reserve_aligned(z_name, ring_size,
socket_id, 0, IXGBE_ALIGN);
}
static void
ixgbe_tx_queue_release_mbufs(struct igb_tx_queue *txq)
{
unsigned i;
if (txq->sw_ring != NULL) {
for (i = 0; i < txq->nb_tx_desc; i++) {
if (txq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
txq->sw_ring[i].mbuf = NULL;
}
}
}
}
static void
ixgbe_tx_queue_release(struct igb_tx_queue *txq)
{
if (txq != NULL) {
ixgbe_tx_queue_release_mbufs(txq);
rte_free(txq->sw_ring);
rte_free(txq);
}
}
void
ixgbe_dev_tx_queue_release(void *txq)
{
ixgbe_tx_queue_release(txq);
}
/* (Re)set dynamic igb_tx_queue fields to defaults */
static void
ixgbe_reset_tx_queue(struct igb_tx_queue *txq)
{
struct igb_tx_entry *txe = txq->sw_ring;
uint16_t prev, i;
/* Zero out HW ring memory */
for (i = 0; i < sizeof(union ixgbe_adv_tx_desc) * txq->nb_tx_desc; i++) {
((volatile char *)txq->tx_ring)[i] = 0;
}
/* Initialize SW ring entries */
prev = (uint16_t) (txq->nb_tx_desc - 1);
for (i = 0; i < txq->nb_tx_desc; i++) {
volatile union ixgbe_adv_tx_desc *txd = &txq->tx_ring[i];
txd->wb.status = IXGBE_TXD_STAT_DD;
txe[i].mbuf = NULL;
txe[i].last_id = i;
txe[prev].next_id = i;
prev = i;
}
txq->tx_next_dd = txq->tx_rs_thresh - 1;
txq->tx_next_rs = txq->tx_rs_thresh - 1;
txq->tx_tail = 0;
txq->nb_tx_used = 0;
/*
* Always allow 1 descriptor to be un-allocated to avoid
* a H/W race condition
*/
txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
txq->ctx_curr = 0;
memset((void*)&txq->ctx_cache, 0,
IXGBE_CTX_NUM * sizeof(struct ixgbe_advctx_info));
}
int
ixgbe_dev_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
const struct rte_memzone *tz;
struct igb_tx_queue *txq;
struct ixgbe_hw *hw;
uint16_t tx_rs_thresh, tx_free_thresh;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/*
* Validate number of transmit descriptors.
* It must not exceed hardware maximum, and must be multiple
* of IXGBE_ALIGN.
*/
if (((nb_desc * sizeof(union ixgbe_adv_tx_desc)) % IXGBE_ALIGN) != 0 ||
(nb_desc > IXGBE_MAX_RING_DESC) ||
(nb_desc < IXGBE_MIN_RING_DESC)) {
return -EINVAL;
}
/*
* The following two parameters control the setting of the RS bit on
* transmit descriptors.
* TX descriptors will have their RS bit set after txq->tx_rs_thresh
* descriptors have been used.
* The TX descriptor ring will be cleaned after txq->tx_free_thresh
* descriptors are used or if the number of descriptors required
* to transmit a packet is greater than the number of free TX
* descriptors.
* The following constraints must be satisfied:
* tx_rs_thresh must be greater than 0.
* tx_rs_thresh must be less than the size of the ring minus 2.
* tx_rs_thresh must be less than or equal to tx_free_thresh.
* tx_rs_thresh must be a divisor of the ring size.
* tx_free_thresh must be greater than 0.
* tx_free_thresh must be less than the size of the ring minus 3.
* One descriptor in the TX ring is used as a sentinel to avoid a
* H/W race condition, hence the maximum threshold constraints.
* When set to zero use default values.
*/
tx_rs_thresh = (tx_conf->tx_rs_thresh) ?
tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH;
tx_free_thresh = (tx_conf->tx_free_thresh) ?
tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH;
if (tx_rs_thresh >= (nb_desc - 2)) {
RTE_LOG(ERR, PMD,
"tx_rs_thresh must be less than the "
"number of TX descriptors minus 2. "
"(tx_rs_thresh=%u port=%d queue=%d)\n",
tx_rs_thresh, dev->data->port_id, queue_idx);
return -(EINVAL);
}
if (tx_free_thresh >= (nb_desc - 3)) {
RTE_LOG(ERR, PMD,
"tx_rs_thresh must be less than the "
"tx_free_thresh must be less than the "
"number of TX descriptors minus 3. "
"(tx_free_thresh=%u port=%d queue=%d)\n",
tx_free_thresh, dev->data->port_id, queue_idx);
return -(EINVAL);
}
if (tx_rs_thresh > tx_free_thresh) {
RTE_LOG(ERR, PMD,
"tx_rs_thresh must be less than or equal to "
"tx_free_thresh. "
"(tx_free_thresh=%u tx_rs_thresh=%u "
"port=%d queue=%d)\n",
tx_free_thresh, tx_rs_thresh,
dev->data->port_id, queue_idx);
return -(EINVAL);
}
if ((nb_desc % tx_rs_thresh) != 0) {
RTE_LOG(ERR, PMD,
"tx_rs_thresh must be a divisor of the"
"number of TX descriptors. "
"(tx_rs_thresh=%u port=%d queue=%d)\n",
tx_rs_thresh, dev->data->port_id, queue_idx);
return -(EINVAL);
}
/*
* If rs_bit_thresh is greater than 1, then TX WTHRESH should be
* set to 0. If WTHRESH is greater than zero, the RS bit is ignored
* by the NIC and all descriptors are written back after the NIC
* accumulates WTHRESH descriptors.
*/
if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
RTE_LOG(ERR, PMD,
"TX WTHRESH must be set to 0 if "
"tx_rs_thresh is greater than 1. "
"(tx_rs_thresh=%u port=%d queue=%d)\n",
tx_rs_thresh,
dev->data->port_id, queue_idx);
return -(EINVAL);
}
/* Free memory prior to re-allocation if needed... */
if (dev->data->tx_queues[queue_idx] != NULL)
ixgbe_tx_queue_release(dev->data->tx_queues[queue_idx]);
/* First allocate the tx queue data structure */
txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
CACHE_LINE_SIZE);
if (txq == NULL)
return (-ENOMEM);
/*
* Allocate TX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx,
sizeof(union ixgbe_adv_tx_desc) * IXGBE_MAX_RING_DESC,
socket_id);
if (tz == NULL) {
ixgbe_tx_queue_release(txq);
return (-ENOMEM);
}
txq->nb_tx_desc = nb_desc;
txq->tx_rs_thresh = tx_rs_thresh;
txq->tx_free_thresh = tx_free_thresh;
txq->pthresh = tx_conf->tx_thresh.pthresh;
txq->hthresh = tx_conf->tx_thresh.hthresh;
txq->wthresh = tx_conf->tx_thresh.wthresh;
txq->queue_id = queue_idx;
txq->port_id = dev->data->port_id;
txq->txq_flags = tx_conf->txq_flags;
/*
* Modification to set VFTDT for virtual function if vf is detected
*/
if (hw->mac.type == ixgbe_mac_82599_vf)
txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_VFTDT(queue_idx));
else
txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_TDT(queue_idx));
txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
txq->tx_ring = (union ixgbe_adv_tx_desc *) tz->addr;
/* Allocate software ring */
txq->sw_ring = rte_zmalloc("txq->sw_ring",
sizeof(struct igb_tx_entry) * nb_desc,
CACHE_LINE_SIZE);
if (txq->sw_ring == NULL) {
ixgbe_tx_queue_release(txq);
return (-ENOMEM);
}
PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n",
txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
ixgbe_reset_tx_queue(txq);
dev->data->tx_queues[queue_idx] = txq;
/* Use a simple Tx queue (no offloads, no multi segs) if possible */
if (((txq->txq_flags & IXGBE_SIMPLE_FLAGS) == IXGBE_SIMPLE_FLAGS) &&
(txq->tx_rs_thresh >= RTE_PMD_IXGBE_TX_MAX_BURST))
dev->tx_pkt_burst = ixgbe_xmit_pkts_simple;
else
dev->tx_pkt_burst = ixgbe_xmit_pkts;
return (0);
}
static void
ixgbe_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
{
unsigned i;
if (rxq->sw_ring != NULL) {
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
rxq->sw_ring[i].mbuf = NULL;
}
}
#ifdef RTE_LIBRTE_IXGBE_RX_ALLOW_BULK_ALLOC
if (rxq->rx_nb_avail) {
for (i = 0; i < rxq->rx_nb_avail; ++i) {
struct rte_mbuf *mb;
mb = rxq->rx_stage[rxq->rx_next_avail + i];
rte_pktmbuf_free_seg(mb);
}
rxq->rx_nb_avail = 0;
}
#endif
}
}
static void
ixgbe_rx_queue_release(struct igb_rx_queue *rxq)
{
if (rxq != NULL) {
ixgbe_rx_queue_release_mbufs(rxq);
rte_free(rxq->sw_ring);
rte_free(rxq);
}
}
void
ixgbe_dev_rx_queue_release(void *rxq)
{
ixgbe_rx_queue_release(rxq);
}
/*
* Check if Rx Burst Bulk Alloc function can be used.
* Return
* 0: the preconditions are satisfied and the bulk allocation function
* can be used.
* -EINVAL: the preconditions are NOT satisfied and the default Rx burst
* function must be used.
*/
static inline int
check_rx_burst_bulk_alloc_preconditions(struct igb_rx_queue *rxq)
{
int ret = 0;
/*
* Make sure the following pre-conditions are satisfied:
* rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST
* rxq->rx_free_thresh < rxq->nb_rx_desc
* (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0
* rxq->nb_rx_desc<(IXGBE_MAX_RING_DESC-RTE_PMD_IXGBE_RX_MAX_BURST)
* Scattered packets are not supported. This should be checked
* outside of this function.
*/
#ifdef RTE_LIBRTE_IXGBE_RX_ALLOW_BULK_ALLOC
if (! (rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST))
ret = -EINVAL;
else if (! (rxq->rx_free_thresh < rxq->nb_rx_desc))
ret = -EINVAL;
else if (! ((rxq->nb_rx_desc % rxq->rx_free_thresh) == 0))
ret = -EINVAL;
else if (! (rxq->nb_rx_desc <
(IXGBE_MAX_RING_DESC - RTE_PMD_IXGBE_RX_MAX_BURST)))
ret = -EINVAL;
#else
ret = -EINVAL;
#endif
return ret;
}
/* Reset dynamic igb_rx_queue fields back to defaults */
static void
ixgbe_reset_rx_queue(struct igb_rx_queue *rxq)
{
unsigned i;
uint16_t len;
/*
* By default, the Rx queue setup function allocates enough memory for
* IXGBE_MAX_RING_DESC. The Rx Burst bulk allocation function requires
* extra memory at the end of the descriptor ring to be zero'd out. A
* pre-condition for using the Rx burst bulk alloc function is that the
* number of descriptors is less than or equal to
* (IXGBE_MAX_RING_DESC - RTE_PMD_IXGBE_RX_MAX_BURST). Check all the
* constraints here to see if we need to zero out memory after the end
* of the H/W descriptor ring.
*/
#ifdef RTE_LIBRTE_IXGBE_RX_ALLOW_BULK_ALLOC
if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
/* zero out extra memory */
len = rxq->nb_rx_desc + RTE_PMD_IXGBE_RX_MAX_BURST;
else
#endif
/* do not zero out extra memory */
len = rxq->nb_rx_desc;
/*
* Zero out HW ring memory. Zero out extra memory at the end of
* the H/W ring so look-ahead logic in Rx Burst bulk alloc function
* reads extra memory as zeros.
*/
for (i = 0; i < len * sizeof(union ixgbe_adv_rx_desc); i++) {
((volatile char *)rxq->rx_ring)[i] = 0;
}
#ifdef RTE_LIBRTE_IXGBE_RX_ALLOW_BULK_ALLOC
/*
* initialize extra software ring entries. Space for these extra
* entries is always allocated
*/
memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
for (i = 0; i < RTE_PMD_IXGBE_RX_MAX_BURST; ++i) {
rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
}
rxq->rx_nb_avail = 0;
rxq->rx_next_avail = 0;
rxq->rx_free_trigger = rxq->rx_free_thresh - 1;
#endif /* RTE_LIBRTE_IXGBE_RX_ALLOW_BULK_ALLOC */
rxq->rx_tail = 0;
rxq->nb_rx_hold = 0;
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
}
int
ixgbe_dev_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
const struct rte_memzone *rz;
struct igb_rx_queue *rxq;
struct ixgbe_hw *hw;
int use_def_burst_func = 1;
uint16_t len;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/*
* Validate number of receive descriptors.
* It must not exceed hardware maximum, and must be multiple
* of IXGBE_ALIGN.
*/
if (((nb_desc * sizeof(union ixgbe_adv_rx_desc)) % IXGBE_ALIGN) != 0 ||
(nb_desc > IXGBE_MAX_RING_DESC) ||
(nb_desc < IXGBE_MIN_RING_DESC)) {
return (-EINVAL);
}
/* Free memory prior to re-allocation if needed... */
if (dev->data->rx_queues[queue_idx] != NULL)
ixgbe_rx_queue_release(dev->data->rx_queues[queue_idx]);
/* First allocate the rx queue data structure */
rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
CACHE_LINE_SIZE);
if (rxq == NULL)
return (-ENOMEM);
rxq->mb_pool = mp;
rxq->nb_rx_desc = nb_desc;
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
rxq->queue_id = queue_idx;
rxq->port_id = dev->data->port_id;
rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 :
ETHER_CRC_LEN);
rxq->drop_en = rx_conf->rx_drop_en;
/*
* Allocate RX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx,
IXGBE_MAX_RING_DESC * sizeof(union ixgbe_adv_rx_desc),
socket_id);
if (rz == NULL) {
ixgbe_rx_queue_release(rxq);
return (-ENOMEM);
}
/*
* Modified to setup VFRDT for Virtual Function
*/
if (hw->mac.type == ixgbe_mac_82599_vf)
rxq->rdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDT(queue_idx));
else
rxq->rdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_RDT(queue_idx));
rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
rxq->rx_ring = (union ixgbe_adv_rx_desc *) rz->addr;
/*
* Allocate software ring. Allow for space at the end of the
* S/W ring to make sure look-ahead logic in bulk alloc Rx burst
* function does not access an invalid memory region.
*/
#ifdef RTE_LIBRTE_IXGBE_RX_ALLOW_BULK_ALLOC
len = nb_desc + RTE_PMD_IXGBE_RX_MAX_BURST;
#else
len = nb_desc;
#endif
rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
sizeof(struct igb_rx_entry) * len,
CACHE_LINE_SIZE);
if (rxq->sw_ring == NULL) {
ixgbe_rx_queue_release(rxq);
return (-ENOMEM);
}
PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n",
rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
/*
* Certain constaints must be met in order to use the bulk buffer
* allocation Rx burst function.
*/
use_def_burst_func = check_rx_burst_bulk_alloc_preconditions(rxq);
/* Check if pre-conditions are satisfied, and no Scattered Rx */
if (!use_def_burst_func && !dev->data->scattered_rx) {
#ifdef RTE_LIBRTE_IXGBE_RX_ALLOW_BULK_ALLOC
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
"satisfied. Rx Burst Bulk Alloc function will be "
"used on port=%d, queue=%d.\n",
rxq->port_id, rxq->queue_id);
dev->rx_pkt_burst = ixgbe_recv_pkts_bulk_alloc;
#endif
} else {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions "
"are not satisfied, Scattered Rx is requested, "
"or RTE_LIBRTE_IXGBE_RX_ALLOW_BULK_ALLOC is not "
"enabled (port=%d, queue=%d).\n",
rxq->port_id, rxq->queue_id);
}
dev->data->rx_queues[queue_idx] = rxq;
ixgbe_reset_rx_queue(rxq);
return 0;
}
void
ixgbe_dev_clear_queues(struct rte_eth_dev *dev)
{
unsigned i;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct igb_tx_queue *txq = dev->data->tx_queues[i];
if (txq != NULL) {
ixgbe_tx_queue_release_mbufs(txq);
ixgbe_reset_tx_queue(txq);
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct igb_rx_queue *rxq = dev->data->rx_queues[i];
if (rxq != NULL) {
ixgbe_rx_queue_release_mbufs(rxq);
ixgbe_reset_rx_queue(rxq);
}
}
}
/*********************************************************************
*
* Device RX/TX init functions
*
**********************************************************************/
/**
* Receive Side Scaling (RSS)
* See section 7.1.2.8 in the following document:
* "Intel 82599 10 GbE Controller Datasheet" - Revision 2.1 October 2009
*
* Principles:
* The source and destination IP addresses of the IP header and the source
* and destination ports of TCP/UDP headers, if any, of received packets are
* hashed against a configurable random key to compute a 32-bit RSS hash result.
* The seven (7) LSBs of the 32-bit hash result are used as an index into a
* 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit
* RSS output index which is used as the RX queue index where to store the
* received packets.
* The following output is supplied in the RX write-back descriptor:
* - 32-bit result of the Microsoft RSS hash function,
* - 4-bit RSS type field.
*/
/*
* RSS random key supplied in section 7.1.2.8.3 of the Intel 82599 datasheet.
* Used as the default key.
*/
static uint8_t rss_intel_key[40] = {
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
};
static void
ixgbe_rss_disable(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw;
uint32_t mrqc;
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
mrqc = IXGBE_READ_REG(hw, IXGBE_MRQC);
mrqc &= ~IXGBE_MRQC_RSSEN;
IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
}
static void
ixgbe_rss_configure(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw;
uint8_t *hash_key;
uint32_t rss_key;
uint32_t mrqc;
uint32_t reta;
uint16_t rss_hf;
uint16_t i;
uint16_t j;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
rss_hf = dev->data->dev_conf.rx_adv_conf.rss_conf.rss_hf;
if (rss_hf == 0) { /* Disable RSS */
ixgbe_rss_disable(dev);
return;
}
hash_key = dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key;
if (hash_key == NULL)
hash_key = rss_intel_key; /* Default hash key */
/* Fill in RSS hash key */
for (i = 0; i < 10; i++) {
rss_key = hash_key[(i * 4)];
rss_key |= hash_key[(i * 4) + 1] << 8;
rss_key |= hash_key[(i * 4) + 2] << 16;
rss_key |= hash_key[(i * 4) + 3] << 24;
IXGBE_WRITE_REG_ARRAY(hw, IXGBE_RSSRK(0), i, rss_key);
}
/* Fill in redirection table */
reta = 0;
for (i = 0, j = 0; i < 128; i++, j++) {
if (j == dev->data->nb_rx_queues) j = 0;
reta = (reta << 8) | j;
if ((i & 3) == 3)
IXGBE_WRITE_REG(hw, IXGBE_RETA(i >> 2), rte_bswap32(reta));
}
/* Set configured hashing functions in MRQC register */
mrqc = IXGBE_MRQC_RSSEN; /* RSS enable */
if (rss_hf & ETH_RSS_IPV4)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4;
if (rss_hf & ETH_RSS_IPV4_TCP)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_TCP;
if (rss_hf & ETH_RSS_IPV6)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6;
if (rss_hf & ETH_RSS_IPV6_EX)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX;
if (rss_hf & ETH_RSS_IPV6_TCP)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_TCP;
if (rss_hf & ETH_RSS_IPV6_TCP_EX)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP;
if (rss_hf & ETH_RSS_IPV4_UDP)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_UDP;
if (rss_hf & ETH_RSS_IPV6_UDP)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_UDP;
if (rss_hf & ETH_RSS_IPV6_UDP_EX)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP;
IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
}
#define NUM_VFTA_REGISTERS 128
#define NIC_RX_BUFFER_SIZE 0x200
static void
ixgbe_vmdq_dcb_configure(struct rte_eth_dev *dev)
{
struct rte_eth_vmdq_dcb_conf *cfg;
struct ixgbe_hw *hw;
enum rte_eth_nb_pools num_pools;
uint32_t mrqc, vt_ctl, queue_mapping, vlanctrl;
uint16_t pbsize;
uint8_t nb_tcs; /* number of traffic classes */
int i;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
num_pools = cfg->nb_queue_pools;
/* Check we have a valid number of pools */
if (num_pools != ETH_16_POOLS && num_pools != ETH_32_POOLS) {
ixgbe_rss_disable(dev);
return;
}
/* 16 pools -> 8 traffic classes, 32 pools -> 4 traffic classes */
nb_tcs = (uint8_t)(ETH_VMDQ_DCB_NUM_QUEUES / (int)num_pools);
/*
* RXPBSIZE
* split rx buffer up into sections, each for 1 traffic class
*/
pbsize = (uint16_t)(NIC_RX_BUFFER_SIZE / nb_tcs);
for (i = 0 ; i < nb_tcs; i++) {
uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
/* clear 10 bits. */
rxpbsize |= (pbsize << IXGBE_RXPBSIZE_SHIFT); /* set value */
IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
}
/* zero alloc all unused TCs */
for (i = nb_tcs; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
rxpbsize &= (~( 0x3FF << IXGBE_RXPBSIZE_SHIFT ));
/* clear 10 bits. */
IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
}
/* MRQC: enable vmdq and dcb */
mrqc = ((num_pools == ETH_16_POOLS) ? \
IXGBE_MRQC_VMDQRT8TCEN : IXGBE_MRQC_VMDQRT4TCEN );
IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
/* PFVTCTL: turn on virtualisation and set the default pool */
vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
if (cfg->enable_default_pool) {
vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
} else {
vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
}
IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
/* RTRUP2TC: mapping user priorities to traffic classes (TCs) */
queue_mapping = 0;
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++)
/*
* mapping is done with 3 bits per priority,
* so shift by i*3 each time
*/
queue_mapping |= ((cfg->dcb_queue[i] & 0x07) << (i * 3));
IXGBE_WRITE_REG(hw, IXGBE_RTRUP2TC, queue_mapping);
/* RTRPCS: DCB related */
IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, IXGBE_RMCS_RRM);
/* VLNCTRL: enable vlan filtering and allow all vlan tags through */
vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
vlanctrl |= IXGBE_VLNCTRL_VFE ; /* enable vlan filters */
IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
/* VFTA - enable all vlan filters */
for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
}
/* VFRE: pool enabling for receive - 16 or 32 */
IXGBE_WRITE_REG(hw, IXGBE_VFRE(0), \
num_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
/*
* MPSAR - allow pools to read specific mac addresses
* In this case, all pools should be able to read from mac addr 0
*/
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), 0xFFFFFFFF);
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), 0xFFFFFFFF);
/* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
for (i = 0; i < cfg->nb_pool_maps; i++) {
/* set vlan id in VF register and set the valid bit */
IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN | \
(cfg->pool_map[i].vlan_id & 0xFFF)));
/*
* Put the allowed pools in VFB reg. As we only have 16 or 32
* pools, we only need to use the first half of the register
* i.e. bits 0-31
*/
IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i*2), cfg->pool_map[i].pools);
}
}
/**
* ixgbe_dcb_config_tx_hw_config - Configure general DCB TX parameters
* @hw: pointer to hardware structure
* @dcb_config: pointer to ixgbe_dcb_config structure
*/
static void
ixgbe_dcb_tx_hw_config(struct ixgbe_hw *hw,
struct ixgbe_dcb_config *dcb_config)
{
uint32_t reg;
uint32_t q;
PMD_INIT_FUNC_TRACE();
if (hw->mac.type != ixgbe_mac_82598EB) {
/* Disable the Tx desc arbiter so that MTQC can be changed */
reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
reg |= IXGBE_RTTDCS_ARBDIS;
IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
/* Enable DCB for Tx with 8 TCs */
if (dcb_config->num_tcs.pg_tcs == 8) {
reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_8TC_8TQ;
}
else {
reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_4TC_4TQ;
}
if (dcb_config->vt_mode)
reg |= IXGBE_MTQC_VT_ENA;
IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
/* Disable drop for all queues */
for (q = 0; q < 128; q++)
IXGBE_WRITE_REG(hw, IXGBE_QDE,
(IXGBE_QDE_WRITE | (q << IXGBE_QDE_IDX_SHIFT)));
/* Enable the Tx desc arbiter */
reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
reg &= ~IXGBE_RTTDCS_ARBDIS;
IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
/* Enable Security TX Buffer IFG for DCB */
reg = IXGBE_READ_REG(hw, IXGBE_SECTXMINIFG);
reg |= IXGBE_SECTX_DCB;
IXGBE_WRITE_REG(hw, IXGBE_SECTXMINIFG, reg);
}
return;
}
/**
* ixgbe_vmdq_dcb_hw_tx_config - Configure general VMDQ+DCB TX parameters
* @dev: pointer to rte_eth_dev structure
* @dcb_config: pointer to ixgbe_dcb_config structure
*/
static void
ixgbe_vmdq_dcb_hw_tx_config(struct rte_eth_dev *dev,
struct ixgbe_dcb_config *dcb_config)
{
struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
&dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
struct ixgbe_hw *hw =
IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
if (hw->mac.type != ixgbe_mac_82598EB)
/*PF VF Transmit Enable*/
IXGBE_WRITE_REG(hw, IXGBE_VFTE(0),
vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
/*Configure general DCB TX parameters*/
ixgbe_dcb_tx_hw_config(hw,dcb_config);
return;
}
static void
ixgbe_vmdq_dcb_rx_config(struct rte_eth_dev *dev,
struct ixgbe_dcb_config *dcb_config)
{
struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf =
&dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
struct ixgbe_dcb_tc_config *tc;
uint8_t i,j;
/* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
if (vmdq_rx_conf->nb_queue_pools == ETH_16_POOLS ) {
dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
}
else {
dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
}
/* User Priority to Traffic Class mapping */
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
j = vmdq_rx_conf->dcb_queue[i];
tc = &dcb_config->tc_config[j];
tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = (1 << j);
}
}
static void
ixgbe_dcb_vt_tx_config(struct rte_eth_dev *dev,
struct ixgbe_dcb_config *dcb_config)
{
struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
&dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
struct ixgbe_dcb_tc_config *tc;
uint8_t i,j;
/* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
if (vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS ) {
dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
}
else {
dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
}
/* User Priority to Traffic Class mapping */
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
j = vmdq_tx_conf->dcb_queue[i];
tc = &dcb_config->tc_config[j];
tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = (1 << j);
}
return;
}
static void
ixgbe_dcb_rx_config(struct rte_eth_dev *dev,struct ixgbe_dcb_config *dcb_config)
{
struct rte_eth_dcb_rx_conf *rx_conf =
&dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
struct ixgbe_dcb_tc_config *tc;
uint8_t i,j;
dcb_config->num_tcs.pg_tcs = rx_conf->nb_tcs;
dcb_config->num_tcs.pfc_tcs = rx_conf->nb_tcs;
/* User Priority to Traffic Class mapping */
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
j = rx_conf->dcb_queue[i];
tc = &dcb_config->tc_config[j];
tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = (1 << j);
}
}
static void
ixgbe_dcb_tx_config(struct rte_eth_dev *dev,struct ixgbe_dcb_config *dcb_config)
{
struct rte_eth_dcb_tx_conf *tx_conf =
&dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
struct ixgbe_dcb_tc_config *tc;
uint8_t i,j;
dcb_config->num_tcs.pg_tcs = tx_conf->nb_tcs;
dcb_config->num_tcs.pfc_tcs = tx_conf->nb_tcs;
/* User Priority to Traffic Class mapping */
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
j = tx_conf->dcb_queue[i];
tc = &dcb_config->tc_config[j];
tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = (1 << j);
}
}
/**
* ixgbe_dcb_rx_hw_config - Configure general DCB RX HW parameters
* @hw: pointer to hardware structure
* @dcb_config: pointer to ixgbe_dcb_config structure
*/
static void
ixgbe_dcb_rx_hw_config(struct ixgbe_hw *hw,
struct ixgbe_dcb_config *dcb_config)
{
uint32_t reg;
uint32_t vlanctrl;
uint8_t i;
PMD_INIT_FUNC_TRACE();
/*
* Disable the arbiter before changing parameters
* (always enable recycle mode; WSP)
*/
reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC | IXGBE_RTRPCS_ARBDIS;
IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
if (hw->mac.type != ixgbe_mac_82598EB) {
reg = IXGBE_READ_REG(hw, IXGBE_MRQC);
if (dcb_config->num_tcs.pg_tcs == 4) {
if (dcb_config->vt_mode)
reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
IXGBE_MRQC_VMDQRT4TCEN;
else {
IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
IXGBE_MRQC_RT4TCEN;
}
}
if (dcb_config->num_tcs.pg_tcs == 8) {
if (dcb_config->vt_mode)
reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
IXGBE_MRQC_VMDQRT8TCEN;
else {
IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
IXGBE_MRQC_RT8TCEN;
}
}
IXGBE_WRITE_REG(hw, IXGBE_MRQC, reg);
}
/* VLNCTRL: enable vlan filtering and allow all vlan tags through */
vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
vlanctrl |= IXGBE_VLNCTRL_VFE ; /* enable vlan filters */
IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
/* VFTA - enable all vlan filters */
for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
}
/*
* Configure Rx packet plane (recycle mode; WSP) and
* enable arbiter
*/
reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC;
IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
return;
}
static void
ixgbe_dcb_hw_arbite_rx_config(struct ixgbe_hw *hw, uint16_t *refill,
uint16_t *max,uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
{
switch (hw->mac.type) {
case ixgbe_mac_82598EB:
ixgbe_dcb_config_rx_arbiter_82598(hw, refill, max, tsa);
break;
case ixgbe_mac_82599EB:
case ixgbe_mac_X540:
ixgbe_dcb_config_rx_arbiter_82599(hw, refill, max, bwg_id,
tsa, map);
break;
default:
break;
}
}
static void
ixgbe_dcb_hw_arbite_tx_config(struct ixgbe_hw *hw, uint16_t *refill, uint16_t *max,
uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
{
switch (hw->mac.type) {
case ixgbe_mac_82598EB:
ixgbe_dcb_config_tx_desc_arbiter_82598(hw, refill, max, bwg_id,tsa);
ixgbe_dcb_config_tx_data_arbiter_82598(hw, refill, max, bwg_id,tsa);
break;
case ixgbe_mac_82599EB:
case ixgbe_mac_X540:
ixgbe_dcb_config_tx_desc_arbiter_82599(hw, refill, max, bwg_id,tsa);
ixgbe_dcb_config_tx_data_arbiter_82599(hw, refill, max, bwg_id,tsa, map);
break;
default:
break;
}
}
#define DCB_RX_CONFIG 1
#define DCB_TX_CONFIG 1
#define DCB_TX_PB 1024
/**
* ixgbe_dcb_hw_configure - Enable DCB and configure
* general DCB in VT mode and non-VT mode parameters
* @dev: pointer to rte_eth_dev structure
* @dcb_config: pointer to ixgbe_dcb_config structure
*/
static int
ixgbe_dcb_hw_configure(struct rte_eth_dev *dev,
struct ixgbe_dcb_config *dcb_config)
{
int ret = 0;
uint8_t i,pfc_en,nb_tcs;
uint16_t pbsize;
uint8_t config_dcb_rx = 0;
uint8_t config_dcb_tx = 0;
uint8_t tsa[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
uint8_t bwgid[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
uint16_t refill[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
uint16_t max[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
uint8_t map[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
struct ixgbe_dcb_tc_config *tc;
uint32_t max_frame = dev->data->max_frame_size;
struct ixgbe_hw *hw =
IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
switch(dev->data->dev_conf.rxmode.mq_mode){
case ETH_VMDQ_DCB:
dcb_config->vt_mode = true;
if (hw->mac.type != ixgbe_mac_82598EB) {
config_dcb_rx = DCB_RX_CONFIG;
/*
*get dcb and VT rx configuration parameters
*from rte_eth_conf
*/
ixgbe_vmdq_dcb_rx_config(dev,dcb_config);
/*Configure general VMDQ and DCB RX parameters*/
ixgbe_vmdq_dcb_configure(dev);
}
break;
case ETH_DCB_RX:
dcb_config->vt_mode = false;
config_dcb_rx = DCB_RX_CONFIG;
/* Get dcb TX configuration parameters from rte_eth_conf */
ixgbe_dcb_rx_config(dev,dcb_config);
/*Configure general DCB RX parameters*/
ixgbe_dcb_rx_hw_config(hw, dcb_config);
break;
default:
PMD_INIT_LOG(ERR, "Incorrect DCB RX mode configuration\n");
break;
}
switch (dev->data->dev_conf.txmode.mq_mode) {
case ETH_VMDQ_DCB_TX:
dcb_config->vt_mode = true;
config_dcb_tx = DCB_TX_CONFIG;
/* get DCB and VT TX configuration parameters from rte_eth_conf */
ixgbe_dcb_vt_tx_config(dev,dcb_config);
/*Configure general VMDQ and DCB TX parameters*/
ixgbe_vmdq_dcb_hw_tx_config(dev,dcb_config);
break;
case ETH_DCB_TX:
dcb_config->vt_mode = false;
config_dcb_tx = DCB_RX_CONFIG;
/*get DCB TX configuration parameters from rte_eth_conf*/
ixgbe_dcb_tx_config(dev,dcb_config);
/*Configure general DCB TX parameters*/
ixgbe_dcb_tx_hw_config(hw, dcb_config);
break;
default:
PMD_INIT_LOG(ERR, "Incorrect DCB TX mode configuration\n");
break;
}
nb_tcs = dcb_config->num_tcs.pfc_tcs;
/* Unpack map */
ixgbe_dcb_unpack_map_cee(dcb_config, IXGBE_DCB_RX_CONFIG, map);
if(nb_tcs == ETH_4_TCS) {
/* Avoid un-configured priority mapping to TC0 */
uint8_t j = 4;
uint8_t mask = 0xFF;
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES - 4; i++)
mask &= ~ (1 << map[i]);
for (i = 0; mask && (i < IXGBE_DCB_MAX_TRAFFIC_CLASS); i++) {
if ((mask & 0x1) && (j < ETH_DCB_NUM_USER_PRIORITIES))
map[j++] = i;
mask >>= 1;
}
/* Re-configure 4 TCs BW */
for (i = 0; i < nb_tcs; i++) {
tc = &dcb_config->tc_config[i];
tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent = 100 / nb_tcs;
tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent = 100 / nb_tcs;
}
for (; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
tc = &dcb_config->tc_config[i];
tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent = 0;
tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent = 0;
}
}
if(config_dcb_rx) {
/* Set RX buffer size */
pbsize = (uint16_t)(NIC_RX_BUFFER_SIZE / nb_tcs);
uint32_t rxpbsize = pbsize << IXGBE_RXPBSIZE_SHIFT;
for (i = 0 ; i < nb_tcs; i++) {
IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
}
/* zero alloc all unused TCs */
for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
}
}
if(config_dcb_tx) {
/* Only support an equally distributed Tx packet buffer strategy. */
uint32_t txpktsize = IXGBE_TXPBSIZE_MAX / nb_tcs;
uint32_t txpbthresh = (txpktsize / DCB_TX_PB) - IXGBE_TXPKT_SIZE_MAX;
for (i = 0; i < nb_tcs; i++) {
IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
}
/* Clear unused TCs, if any, to zero buffer size*/
for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
}
}
/*Calculates traffic class credits*/
ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config,max_frame,
IXGBE_DCB_TX_CONFIG);
ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config,max_frame,
IXGBE_DCB_RX_CONFIG);
if(config_dcb_rx) {
/* Unpack CEE standard containers */
ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_RX_CONFIG, refill);
ixgbe_dcb_unpack_max_cee(dcb_config, max);
ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_RX_CONFIG, bwgid);
ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_RX_CONFIG, tsa);
/* Configure PG(ETS) RX */
ixgbe_dcb_hw_arbite_rx_config(hw,refill,max,bwgid,tsa,map);
}
if(config_dcb_tx) {
/* Unpack CEE standard containers */
ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_TX_CONFIG, refill);
ixgbe_dcb_unpack_max_cee(dcb_config, max);
ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_TX_CONFIG, bwgid);
ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_TX_CONFIG, tsa);
/* Configure PG(ETS) TX */
ixgbe_dcb_hw_arbite_tx_config(hw,refill,max,bwgid,tsa,map);
}
/*Configure queue statistics registers*/
ixgbe_dcb_config_tc_stats_82599(hw, dcb_config);
/* Check if the PFC is supported */
if(dev->data->dev_conf.dcb_capability_en & ETH_DCB_PFC_SUPPORT) {
pbsize = (uint16_t) (NIC_RX_BUFFER_SIZE / nb_tcs);
for (i = 0; i < nb_tcs; i++) {
/*
* If the TC count is 8,and the default high_water is 48,
* the low_water is 16 as default.
*/
hw->fc.high_water[i] = (pbsize * 3 ) / 4;
hw->fc.low_water[i] = pbsize / 4;
/* Enable pfc for this TC */
tc = &dcb_config->tc_config[i];
tc->pfc = ixgbe_dcb_pfc_enabled;
}
ixgbe_dcb_unpack_pfc_cee(dcb_config, map, &pfc_en);
if(dcb_config->num_tcs.pfc_tcs == ETH_4_TCS)
pfc_en &= 0x0F;
ret = ixgbe_dcb_config_pfc(hw, pfc_en, map);
}
return ret;
}
/**
* ixgbe_configure_dcb - Configure DCB Hardware
* @dev: pointer to rte_eth_dev
*/
void ixgbe_configure_dcb(struct rte_eth_dev *dev)
{
struct ixgbe_dcb_config *dcb_cfg =
IXGBE_DEV_PRIVATE_TO_DCB_CFG(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
/** Configure DCB hardware **/
if(((dev->data->dev_conf.rxmode.mq_mode != ETH_RSS) &&
(dev->data->nb_rx_queues == ETH_DCB_NUM_QUEUES))||
((dev->data->dev_conf.txmode.mq_mode != ETH_DCB_NONE) &&
(dev->data->nb_tx_queues == ETH_DCB_NUM_QUEUES))) {
ixgbe_dcb_hw_configure(dev,dcb_cfg);
}
return;
}
static int
ixgbe_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
{
struct igb_rx_entry *rxe = rxq->sw_ring;
uint64_t dma_addr;
unsigned i;
/* Initialize software ring entries */
for (i = 0; i < rxq->nb_rx_desc; i++) {
volatile union ixgbe_adv_rx_desc *rxd;
struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
if (mbuf == NULL) {
PMD_INIT_LOG(ERR, "RX mbuf alloc failed queue_id=%u\n",
(unsigned) rxq->queue_id);
return (-ENOMEM);
}
rte_mbuf_refcnt_set(mbuf, 1);
mbuf->type = RTE_MBUF_PKT;
mbuf->pkt.next = NULL;
mbuf->pkt.data = (char *)mbuf->buf_addr + RTE_PKTMBUF_HEADROOM;
mbuf->pkt.nb_segs = 1;
mbuf->pkt.in_port = rxq->port_id;
dma_addr =
rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
rxd = &rxq->rx_ring[i];
rxd->read.hdr_addr = dma_addr;
rxd->read.pkt_addr = dma_addr;
rxe[i].mbuf = mbuf;
}
return 0;
}
/*
* Initializes Receive Unit.
*/
int
ixgbe_dev_rx_init(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw;
struct igb_rx_queue *rxq;
struct rte_pktmbuf_pool_private *mbp_priv;
uint64_t bus_addr;
uint32_t rxctrl;
uint32_t fctrl;
uint32_t hlreg0;
uint32_t maxfrs;
uint32_t srrctl;
uint32_t rdrxctl;
uint32_t rxcsum;
uint16_t buf_size;
uint16_t i;
int ret;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/*
* Make sure receives are disabled while setting
* up the RX context (registers, descriptor rings, etc.).
*/
rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl & ~IXGBE_RXCTRL_RXEN);
/* Enable receipt of broadcasted frames */
fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
fctrl |= IXGBE_FCTRL_BAM;
fctrl |= IXGBE_FCTRL_DPF;
fctrl |= IXGBE_FCTRL_PMCF;
IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
/*
* Configure CRC stripping, if any.
*/
hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
if (dev->data->dev_conf.rxmode.hw_strip_crc)
hlreg0 |= IXGBE_HLREG0_RXCRCSTRP;
else
hlreg0 &= ~IXGBE_HLREG0_RXCRCSTRP;
/*
* Configure jumbo frame support, if any.
*/
if (dev->data->dev_conf.rxmode.jumbo_frame == 1) {
hlreg0 |= IXGBE_HLREG0_JUMBOEN;
maxfrs = IXGBE_READ_REG(hw, IXGBE_MAXFRS);
maxfrs &= 0x0000FFFF;
maxfrs |= (dev->data->dev_conf.rxmode.max_rx_pkt_len << 16);
IXGBE_WRITE_REG(hw, IXGBE_MAXFRS, maxfrs);
} else
hlreg0 &= ~IXGBE_HLREG0_JUMBOEN;
IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
/* Setup RX queues */
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
/* Allocate buffers for descriptor rings */
ret = ixgbe_alloc_rx_queue_mbufs(rxq);
if (ret)
return ret;
/*
* Reset crc_len in case it was changed after queue setup by a
* call to configure.
*/
rxq->crc_len = (uint8_t)
((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 :
ETHER_CRC_LEN);
/* Setup the Base and Length of the Rx Descriptor Rings */
bus_addr = rxq->rx_ring_phys_addr;
IXGBE_WRITE_REG(hw, IXGBE_RDBAL(i),
(uint32_t)(bus_addr & 0x00000000ffffffffULL));
IXGBE_WRITE_REG(hw, IXGBE_RDBAH(i),
(uint32_t)(bus_addr >> 32));
IXGBE_WRITE_REG(hw, IXGBE_RDLEN(i),
rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
IXGBE_WRITE_REG(hw, IXGBE_RDH(i), 0);
IXGBE_WRITE_REG(hw, IXGBE_RDT(i), 0);
/* Configure the SRRCTL register */
#ifdef RTE_HEADER_SPLIT_ENABLE
/*
* Configure Header Split
*/
if (dev->data->dev_conf.rxmode.header_split) {
if (hw->mac.type == ixgbe_mac_82599EB) {
/* Must setup the PSRTYPE register */
uint32_t psrtype;
psrtype = IXGBE_PSRTYPE_TCPHDR |
IXGBE_PSRTYPE_UDPHDR |
IXGBE_PSRTYPE_IPV4HDR |
IXGBE_PSRTYPE_IPV6HDR;
IXGBE_WRITE_REG(hw, IXGBE_PSRTYPE(i), psrtype);
}
srrctl = ((dev->data->dev_conf.rxmode.split_hdr_size <<
IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
IXGBE_SRRCTL_BSIZEHDR_MASK);
srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
} else
#endif
srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
/* Set if packets are dropped when no descriptors available */
if (rxq->drop_en)
srrctl |= IXGBE_SRRCTL_DROP_EN;
/*
* Configure the RX buffer size in the BSIZEPACKET field of
* the SRRCTL register of the queue.
* The value is in 1 KB resolution. Valid values can be from
* 1 KB to 16 KB.
*/
mbp_priv = (struct rte_pktmbuf_pool_private *)
((char *)rxq->mb_pool + sizeof(struct rte_mempool));
buf_size = (uint16_t) (mbp_priv->mbuf_data_room_size -
RTE_PKTMBUF_HEADROOM);
srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
IXGBE_SRRCTL_BSIZEPKT_MASK);
IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(i), srrctl);
buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
IXGBE_SRRCTL_BSIZEPKT_SHIFT);
if (dev->data->dev_conf.rxmode.max_rx_pkt_len +
IXGBE_RX_BUF_THRESHOLD > buf_size){
dev->data->scattered_rx = 1;
dev->rx_pkt_burst = ixgbe_recv_scattered_pkts;
}
}
/*
* Configure RSS if device configured with multiple RX queues.
*/
if (hw->mac.type == ixgbe_mac_82599EB) {
if (dev->data->nb_rx_queues > 1)
switch (dev->data->dev_conf.rxmode.mq_mode) {
case ETH_RSS:
ixgbe_rss_configure(dev);
break;
case ETH_VMDQ_DCB:
ixgbe_vmdq_dcb_configure(dev);
break;
default: ixgbe_rss_disable(dev);
}
else
ixgbe_rss_disable(dev);
}
/*
* Setup the Checksum Register.
* Disable Full-Packet Checksum which is mutually exclusive with RSS.
* Enable IP/L4 checkum computation by hardware if requested to do so.
*/
rxcsum = IXGBE_READ_REG(hw, IXGBE_RXCSUM);
rxcsum |= IXGBE_RXCSUM_PCSD;
if (dev->data->dev_conf.rxmode.hw_ip_checksum)
rxcsum |= IXGBE_RXCSUM_IPPCSE;
else
rxcsum &= ~IXGBE_RXCSUM_IPPCSE;
IXGBE_WRITE_REG(hw, IXGBE_RXCSUM, rxcsum);
if (hw->mac.type == ixgbe_mac_82599EB) {
rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
if (dev->data->dev_conf.rxmode.hw_strip_crc)
rdrxctl |= IXGBE_RDRXCTL_CRCSTRIP;
else
rdrxctl &= ~IXGBE_RDRXCTL_CRCSTRIP;
rdrxctl &= ~IXGBE_RDRXCTL_RSCFRSTSIZE;
IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
}
return 0;
}
/*
* Initializes Transmit Unit.
*/
void
ixgbe_dev_tx_init(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw;
struct igb_tx_queue *txq;
uint64_t bus_addr;
uint32_t hlreg0;
uint32_t txctrl;
uint32_t rttdcs;
uint16_t i;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Enable TX CRC (checksum offload requirement) */
hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
hlreg0 |= IXGBE_HLREG0_TXCRCEN;
IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
/* Setup the Base and Length of the Tx Descriptor Rings */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
bus_addr = txq->tx_ring_phys_addr;
IXGBE_WRITE_REG(hw, IXGBE_TDBAL(i),
(uint32_t)(bus_addr & 0x00000000ffffffffULL));
IXGBE_WRITE_REG(hw, IXGBE_TDBAH(i),
(uint32_t)(bus_addr >> 32));
IXGBE_WRITE_REG(hw, IXGBE_TDLEN(i),
txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
/* Setup the HW Tx Head and TX Tail descriptor pointers */
IXGBE_WRITE_REG(hw, IXGBE_TDH(i), 0);
IXGBE_WRITE_REG(hw, IXGBE_TDT(i), 0);
/*
* Disable Tx Head Writeback RO bit, since this hoses
* bookkeeping if things aren't delivered in order.
*/
switch (hw->mac.type) {
case ixgbe_mac_82598EB:
txctrl = IXGBE_READ_REG(hw,
IXGBE_DCA_TXCTRL(i));
txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL(i),
txctrl);
break;
case ixgbe_mac_82599EB:
case ixgbe_mac_X540:
default:
txctrl = IXGBE_READ_REG(hw,
IXGBE_DCA_TXCTRL_82599(i));
txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i),
txctrl);
break;
}
}
if (hw->mac.type != ixgbe_mac_82598EB) {
/* disable arbiter before setting MTQC */
rttdcs = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
rttdcs |= IXGBE_RTTDCS_ARBDIS;
IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
IXGBE_WRITE_REG(hw, IXGBE_MTQC, IXGBE_MTQC_64Q_1PB);
/* re-enable arbiter */
rttdcs &= ~IXGBE_RTTDCS_ARBDIS;
IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
}
}
/*
* Start Transmit and Receive Units.
*/
void
ixgbe_dev_rxtx_start(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw;
struct igb_tx_queue *txq;
struct igb_rx_queue *rxq;
uint32_t txdctl;
uint32_t dmatxctl;
uint32_t rxdctl;
uint32_t rxctrl;
uint16_t i;
int poll_ms;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
/* Setup Transmit Threshold Registers */
txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
txdctl |= txq->pthresh & 0x7F;
txdctl |= ((txq->hthresh & 0x7F) << 8);
txdctl |= ((txq->wthresh & 0x7F) << 16);
IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), txdctl);
}
if (hw->mac.type != ixgbe_mac_82598EB) {
dmatxctl = IXGBE_READ_REG(hw, IXGBE_DMATXCTL);
dmatxctl |= IXGBE_DMATXCTL_TE;
IXGBE_WRITE_REG(hw, IXGBE_DMATXCTL, dmatxctl);
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
txdctl |= IXGBE_TXDCTL_ENABLE;
IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), txdctl);
/* Wait until TX Enable ready */
if (hw->mac.type == ixgbe_mac_82599EB) {
poll_ms = 10;
do {
rte_delay_ms(1);
txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
} while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
if (!poll_ms)
PMD_INIT_LOG(ERR, "Could not enable "
"Tx Queue %d\n", i);
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
rxdctl |= IXGBE_RXDCTL_ENABLE;
IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), rxdctl);
/* Wait until RX Enable ready */
poll_ms = 10;
do {
rte_delay_ms(1);
rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
} while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
if (!poll_ms)
PMD_INIT_LOG(ERR, "Could not enable "
"Rx Queue %d\n", i);
rte_wmb();
IXGBE_WRITE_REG(hw, IXGBE_RDT(i), rxq->nb_rx_desc - 1);
}
/* Enable Receive engine */
rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
if (hw->mac.type == ixgbe_mac_82598EB)
rxctrl |= IXGBE_RXCTRL_DMBYPS;
rxctrl |= IXGBE_RXCTRL_RXEN;
hw->mac.ops.enable_rx_dma(hw, rxctrl);
}
/*
* [VF] Initializes Receive Unit.
*/
int
ixgbevf_dev_rx_init(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw;
struct igb_rx_queue *rxq;
struct rte_pktmbuf_pool_private *mbp_priv;
uint64_t bus_addr;
uint32_t srrctl;
uint16_t buf_size;
uint16_t i;
int ret;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Setup RX queues */
dev->rx_pkt_burst = ixgbe_recv_pkts;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
/* Allocate buffers for descriptor rings */
ret = ixgbe_alloc_rx_queue_mbufs(rxq);
if (ret)
return ret;
/* Setup the Base and Length of the Rx Descriptor Rings */
bus_addr = rxq->rx_ring_phys_addr;
IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(i),
(uint32_t)(bus_addr & 0x00000000ffffffffULL));
IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(i),
(uint32_t)(bus_addr >> 32));
IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(i),
rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
IXGBE_WRITE_REG(hw, IXGBE_VFRDH(i), 0);
IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), 0);
/* Configure the SRRCTL register */
#ifdef RTE_HEADER_SPLIT_ENABLE
/*
* Configure Header Split
*/
if (dev->data->dev_conf.rxmode.header_split) {
/* Must setup the PSRTYPE register */
uint32_t psrtype;
psrtype = IXGBE_PSRTYPE_TCPHDR |
IXGBE_PSRTYPE_UDPHDR |
IXGBE_PSRTYPE_IPV4HDR |
IXGBE_PSRTYPE_IPV6HDR;
IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE(i), psrtype);
srrctl = ((dev->data->dev_conf.rxmode.split_hdr_size <<
IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
IXGBE_SRRCTL_BSIZEHDR_MASK);
srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
} else
#endif
srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
/* Set if packets are dropped when no descriptors available */
if (rxq->drop_en)
srrctl |= IXGBE_SRRCTL_DROP_EN;
/*
* Configure the RX buffer size in the BSIZEPACKET field of
* the SRRCTL register of the queue.
* The value is in 1 KB resolution. Valid values can be from
* 1 KB to 16 KB.
*/
mbp_priv = (struct rte_pktmbuf_pool_private *)
((char *)rxq->mb_pool + sizeof(struct rte_mempool));
buf_size = (uint16_t) (mbp_priv->mbuf_data_room_size -
RTE_PKTMBUF_HEADROOM);
srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
IXGBE_SRRCTL_BSIZEPKT_MASK);
/*
* VF modification to write virtual function SRRCTL register
*/
IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(i), srrctl);
buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
IXGBE_SRRCTL_BSIZEPKT_SHIFT);
if (dev->data->dev_conf.rxmode.max_rx_pkt_len > buf_size){
dev->data->scattered_rx = 1;
dev->rx_pkt_burst = ixgbe_recv_scattered_pkts;
}
}
return 0;
}
/*
* [VF] Initializes Transmit Unit.
*/
void
ixgbevf_dev_tx_init(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw;
struct igb_tx_queue *txq;
uint64_t bus_addr;
uint32_t txctrl;
uint16_t i;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Setup the Base and Length of the Tx Descriptor Rings */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
bus_addr = txq->tx_ring_phys_addr;
IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(i),
(uint32_t)(bus_addr & 0x00000000ffffffffULL));
IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(i),
(uint32_t)(bus_addr >> 32));
IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(i),
txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
/* Setup the HW Tx Head and TX Tail descriptor pointers */
IXGBE_WRITE_REG(hw, IXGBE_VFTDH(i), 0);
IXGBE_WRITE_REG(hw, IXGBE_VFTDT(i), 0);
/*
* Disable Tx Head Writeback RO bit, since this hoses
* bookkeeping if things aren't delivered in order.
*/
txctrl = IXGBE_READ_REG(hw,
IXGBE_VFDCA_TXCTRL(i));
txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(i),
txctrl);
}
}
/*
* [VF] Start Transmit and Receive Units.
*/
void
ixgbevf_dev_rxtx_start(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw;
struct igb_tx_queue *txq;
struct igb_rx_queue *rxq;
uint32_t txdctl;
uint32_t rxdctl;
uint16_t i;
int poll_ms;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
/* Setup Transmit Threshold Registers */
txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
txdctl |= txq->pthresh & 0x7F;
txdctl |= ((txq->hthresh & 0x7F) << 8);
txdctl |= ((txq->wthresh & 0x7F) << 16);
IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
txdctl |= IXGBE_TXDCTL_ENABLE;
IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
poll_ms = 10;
/* Wait until TX Enable ready */
do {
rte_delay_ms(1);
txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
} while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
if (!poll_ms)
PMD_INIT_LOG(ERR, "Could not enable "
"Tx Queue %d\n", i);
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
rxdctl |= IXGBE_RXDCTL_ENABLE;
IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(i), rxdctl);
/* Wait until RX Enable ready */
poll_ms = 10;
do {
rte_delay_ms(1);
rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
} while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
if (!poll_ms)
PMD_INIT_LOG(ERR, "Could not enable "
"Rx Queue %d\n", i);
rte_wmb();
IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), rxq->nb_rx_desc - 1);
}
}