numam-dpdk/lib/librte_table/rte_swx_table_wm.c

471 lines
9.6 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Intel Corporation
*/
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <rte_common.h>
#include <rte_prefetch.h>
#include <rte_cycles.h>
#include <rte_acl.h>
#include "rte_swx_table_wm.h"
#ifndef RTE_SWX_TABLE_EM_USE_HUGE_PAGES
#define RTE_SWX_TABLE_EM_USE_HUGE_PAGES 1
#endif
#if RTE_SWX_TABLE_EM_USE_HUGE_PAGES
#include <rte_malloc.h>
static void *
env_malloc(size_t size, size_t alignment, int numa_node)
{
return rte_zmalloc_socket(NULL, size, alignment, numa_node);
}
static void
env_free(void *start, size_t size __rte_unused)
{
rte_free(start);
}
#else
#include <numa.h>
static void *
env_malloc(size_t size, size_t alignment __rte_unused, int numa_node)
{
return numa_alloc_onnode(size, numa_node);
}
static void
env_free(void *start, size_t size)
{
numa_free(start, size);
}
#endif
static char *get_unique_name(void)
{
char *name;
uint64_t *tsc;
name = calloc(7, 1);
if (!name)
return NULL;
tsc = (uint64_t *) name;
*tsc = rte_get_tsc_cycles();
return name;
}
static uint32_t
count_entries(struct rte_swx_table_entry_list *entries)
{
struct rte_swx_table_entry *entry;
uint32_t n_entries = 0;
if (!entries)
return 0;
TAILQ_FOREACH(entry, entries, node)
n_entries++;
return n_entries;
}
static int
acl_table_cfg_get(struct rte_acl_config *cfg, struct rte_swx_table_params *p)
{
uint32_t byte_id = 0, field_id = 0;
/* cfg->num_categories. */
cfg->num_categories = 1;
/* cfg->defs and cfg->num_fields. */
for (byte_id = 0; byte_id < p->key_size; ) {
uint32_t field_size = field_id ? 4 : 1;
uint8_t byte = p->key_mask0 ? p->key_mask0[byte_id] : 0xFF;
if (!byte) {
byte_id++;
continue;
}
if (field_id == RTE_ACL_MAX_FIELDS)
return -1;
cfg->defs[field_id].type = RTE_ACL_FIELD_TYPE_BITMASK;
cfg->defs[field_id].size = field_size;
cfg->defs[field_id].field_index = field_id;
cfg->defs[field_id].input_index = field_id;
cfg->defs[field_id].offset = p->key_offset + byte_id;
field_id++;
byte_id += field_size;
}
if (!field_id)
return -1;
cfg->num_fields = field_id;
/* cfg->max_size. */
cfg->max_size = 0;
return 0;
}
static void
acl_table_rule_field8(uint8_t *value,
uint8_t *mask,
uint8_t *key_mask0,
uint8_t *key_mask,
uint8_t *key,
uint32_t offset)
{
uint8_t km0, km;
km0 = key_mask0 ? key_mask0[offset] : 0xFF;
km = key_mask ? key_mask[offset] : 0xFF;
*value = key[offset];
*mask = km0 & km;
}
static void
acl_table_rule_field32(uint32_t *value,
uint32_t *mask,
uint8_t *key_mask0,
uint8_t *key_mask,
uint8_t *key,
uint32_t key_size,
uint32_t offset)
{
uint32_t km0[4], km[4], k[4];
uint32_t byte_id;
/* Byte 0 = MSB, byte 3 = LSB. */
for (byte_id = 0; byte_id < 4; byte_id++) {
if (offset + byte_id >= key_size) {
km0[byte_id] = 0;
km[byte_id] = 0;
k[byte_id] = 0;
continue;
}
km0[byte_id] = key_mask0 ? key_mask0[offset + byte_id] : 0xFF;
km[byte_id] = key_mask ? key_mask[offset + byte_id] : 0xFF;
k[byte_id] = key[offset + byte_id];
}
*value = (k[0] << 24) |
(k[1] << 16) |
(k[2] << 8) |
k[3];
*mask = ((km[0] & km0[0]) << 24) |
((km[1] & km0[1]) << 16) |
((km[2] & km0[2]) << 8) |
(km[3] & km0[3]);
}
RTE_ACL_RULE_DEF(acl_rule, RTE_ACL_MAX_FIELDS);
static struct rte_acl_rule *
acl_table_rules_get(struct rte_acl_config *acl_cfg,
struct rte_swx_table_params *p,
struct rte_swx_table_entry_list *entries,
uint32_t n_entries)
{
struct rte_swx_table_entry *entry;
uint8_t *memory;
uint32_t acl_rule_size = RTE_ACL_RULE_SZ(acl_cfg->num_fields);
uint32_t n_fields = acl_cfg->num_fields;
uint32_t rule_id;
if (!n_entries)
return NULL;
memory = malloc(n_entries * acl_rule_size);
if (!memory)
return NULL;
rule_id = 0;
TAILQ_FOREACH(entry, entries, node) {
uint8_t *m = &memory[rule_id * acl_rule_size];
struct acl_rule *acl_rule = (struct acl_rule *)m;
uint32_t field_id;
acl_rule->data.category_mask = 1;
acl_rule->data.priority = RTE_ACL_MAX_PRIORITY -
entry->key_priority;
acl_rule->data.userdata = rule_id + 1;
for (field_id = 0; field_id < n_fields; field_id++) {
struct rte_acl_field *f = &acl_rule->field[field_id];
uint32_t size = acl_cfg->defs[field_id].size;
uint32_t offset = acl_cfg->defs[field_id].offset -
p->key_offset;
if (size == 1) {
uint8_t value, mask;
acl_table_rule_field8(&value,
&mask,
p->key_mask0,
entry->key_mask,
entry->key,
offset);
f->value.u8 = value;
f->mask_range.u8 = mask;
} else {
uint32_t value, mask;
acl_table_rule_field32(&value,
&mask,
p->key_mask0,
entry->key_mask,
entry->key,
p->key_size,
offset);
f->value.u32 = value;
f->mask_range.u32 = mask;
}
}
rule_id++;
}
return (struct rte_acl_rule *)memory;
}
/* When the table to be created has no rules, the expected behavior is to always
* get lookup miss for any input key. To achieve this, we add a single bogus
* rule to the table with the rule user data set to 0, i.e. the value returned
* when lookup miss takes place. Whether lookup hit (the bogus rule is hit) or
* miss, a user data of 0 is returned, which for the ACL library is equivalent
* to lookup miss.
*/
static struct rte_acl_rule *
acl_table_rules_default_get(struct rte_acl_config *acl_cfg)
{
struct rte_acl_rule *acl_rule;
uint32_t acl_rule_size = RTE_ACL_RULE_SZ(acl_cfg->num_fields);
acl_rule = calloc(1, acl_rule_size);
if (!acl_rule)
return NULL;
acl_rule->data.category_mask = 1;
acl_rule->data.priority = RTE_ACL_MAX_PRIORITY;
acl_rule->data.userdata = 0;
memset(&acl_rule[1], 0xFF, acl_rule_size - sizeof(struct rte_acl_rule));
return acl_rule;
}
static struct rte_acl_ctx *
acl_table_create(struct rte_swx_table_params *params,
struct rte_swx_table_entry_list *entries,
uint32_t n_entries,
int numa_node)
{
struct rte_acl_param acl_params = {0};
struct rte_acl_config acl_cfg = {0};
struct rte_acl_ctx *acl_ctx = NULL;
struct rte_acl_rule *acl_rules = NULL;
char *name = NULL;
int status = 0;
/* ACL config data structures. */
name = get_unique_name();
if (!name) {
status = -1;
goto free_resources;
}
status = acl_table_cfg_get(&acl_cfg, params);
if (status)
goto free_resources;
acl_rules = n_entries ?
acl_table_rules_get(&acl_cfg, params, entries, n_entries) :
acl_table_rules_default_get(&acl_cfg);
if (!acl_rules) {
status = -1;
goto free_resources;
}
n_entries = n_entries ? n_entries : 1;
/* ACL create. */
acl_params.name = name;
acl_params.socket_id = numa_node;
acl_params.rule_size = RTE_ACL_RULE_SZ(acl_cfg.num_fields);
acl_params.max_rule_num = n_entries;
acl_ctx = rte_acl_create(&acl_params);
if (!acl_ctx) {
status = -1;
goto free_resources;
}
/* ACL add rules. */
status = rte_acl_add_rules(acl_ctx, acl_rules, n_entries);
if (status)
goto free_resources;
/* ACL build. */
status = rte_acl_build(acl_ctx, &acl_cfg);
free_resources:
if (status && acl_ctx)
rte_acl_free(acl_ctx);
free(acl_rules);
free(name);
return status ? NULL : acl_ctx;
}
static void
entry_data_copy(uint8_t *data,
struct rte_swx_table_entry_list *entries,
uint32_t n_entries,
uint32_t entry_data_size)
{
struct rte_swx_table_entry *entry;
uint32_t i = 0;
if (!n_entries)
return;
TAILQ_FOREACH(entry, entries, node) {
uint64_t *d = (uint64_t *)&data[i * entry_data_size];
d[0] = entry->action_id;
memcpy(&d[1], entry->action_data, entry_data_size - 8);
i++;
}
}
struct table {
struct rte_acl_ctx *acl_ctx;
uint8_t *data;
size_t total_size;
uint32_t entry_data_size;
};
static void
table_free(void *table)
{
struct table *t = table;
if (!t)
return;
if (t->acl_ctx)
rte_acl_free(t->acl_ctx);
env_free(t, t->total_size);
}
static void *
table_create(struct rte_swx_table_params *params,
struct rte_swx_table_entry_list *entries,
const char *args __rte_unused,
int numa_node)
{
struct table *t = NULL;
size_t meta_sz, data_sz, total_size;
uint32_t entry_data_size;
uint32_t n_entries = count_entries(entries);
/* Check input arguments. */
if (!params || !params->key_size)
goto error;
/* Memory allocation and initialization. */
entry_data_size = 8 + params->action_data_size;
meta_sz = sizeof(struct table);
data_sz = n_entries * entry_data_size;
total_size = meta_sz + data_sz;
t = env_malloc(total_size, RTE_CACHE_LINE_SIZE, numa_node);
if (!t)
goto error;
memset(t, 0, total_size);
t->entry_data_size = entry_data_size;
t->total_size = total_size;
t->data = (uint8_t *)&t[1];
t->acl_ctx = acl_table_create(params, entries, n_entries, numa_node);
if (!t->acl_ctx)
goto error;
entry_data_copy(t->data, entries, n_entries, entry_data_size);
return t;
error:
table_free(t);
return NULL;
}
struct mailbox {
};
static uint64_t
table_mailbox_size_get(void)
{
return sizeof(struct mailbox);
}
static int
table_lookup(void *table,
void *mailbox __rte_unused,
const uint8_t **key,
uint64_t *action_id,
uint8_t **action_data,
int *hit)
{
struct table *t = table;
uint8_t *data;
uint32_t user_data;
rte_acl_classify(t->acl_ctx, key, &user_data, 1, 1);
if (!user_data) {
*hit = 0;
return 1;
}
data = &t->data[(user_data - 1) * t->entry_data_size];
*action_id = ((uint64_t *)data)[0];
*action_data = &data[8];
*hit = 1;
return 1;
}
struct rte_swx_table_ops rte_swx_table_wildcard_match_ops = {
.footprint_get = NULL,
.mailbox_size_get = table_mailbox_size_get,
.create = table_create,
.add = NULL,
.del = NULL,
.lkp = (rte_swx_table_lookup_t)table_lookup,
.free = table_free,
};