numam-dpdk/lib/librte_ether/rte_ethdev_pci.h

195 lines
5.3 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright(c) 2017 Brocade Communications Systems, Inc.
* Author: Jan Blunck <jblunck@infradead.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _RTE_ETHDEV_PCI_H_
#define _RTE_ETHDEV_PCI_H_
#include <rte_malloc.h>
#include <rte_pci.h>
#include <rte_ethdev.h>
/**
* Copy pci device info to the Ethernet device data.
*
* @param eth_dev
* The *eth_dev* pointer is the address of the *rte_eth_dev* structure.
* @param pci_dev
* The *pci_dev* pointer is the address of the *rte_pci_device* structure.
*/
static inline void
rte_eth_copy_pci_info(struct rte_eth_dev *eth_dev,
struct rte_pci_device *pci_dev)
{
if ((eth_dev == NULL) || (pci_dev == NULL)) {
RTE_PMD_DEBUG_TRACE("NULL pointer eth_dev=%p pci_dev=%p\n",
eth_dev, pci_dev);
return;
}
eth_dev->intr_handle = &pci_dev->intr_handle;
eth_dev->data->dev_flags = 0;
if (pci_dev->driver->drv_flags & RTE_PCI_DRV_INTR_LSC)
eth_dev->data->dev_flags |= RTE_ETH_DEV_INTR_LSC;
if (pci_dev->driver->drv_flags & RTE_PCI_DRV_INTR_RMV)
eth_dev->data->dev_flags |= RTE_ETH_DEV_INTR_RMV;
eth_dev->data->kdrv = pci_dev->kdrv;
eth_dev->data->numa_node = pci_dev->device.numa_node;
}
/**
* @internal
* Allocates a new ethdev slot for an ethernet device and returns the pointer
* to that slot for the driver to use.
*
* @param dev
* Pointer to the PCI device
*
* @param private_data_size
* Size of private data structure
*
* @return
* A pointer to a rte_eth_dev or NULL if allocation failed.
*/
static inline struct rte_eth_dev *
rte_eth_dev_pci_allocate(struct rte_pci_device *dev, size_t private_data_size)
{
struct rte_eth_dev *eth_dev;
const char *name;
if (!dev)
return NULL;
name = dev->device.name;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
eth_dev = rte_eth_dev_allocate(name);
if (!eth_dev)
return NULL;
if (private_data_size) {
eth_dev->data->dev_private = rte_zmalloc_socket(name,
private_data_size, RTE_CACHE_LINE_SIZE,
dev->device.numa_node);
if (!eth_dev->data->dev_private) {
rte_eth_dev_release_port(eth_dev);
return NULL;
}
}
} else {
eth_dev = rte_eth_dev_attach_secondary(name);
if (!eth_dev)
return NULL;
}
eth_dev->device = &dev->device;
rte_eth_copy_pci_info(eth_dev, dev);
return eth_dev;
}
static inline void
rte_eth_dev_pci_release(struct rte_eth_dev *eth_dev)
{
/* free ether device */
rte_eth_dev_release_port(eth_dev);
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
rte_free(eth_dev->data->dev_private);
eth_dev->data->dev_private = NULL;
ethdev: fix secondary process crash on unused virtio Suppose we have 2 virtio devices for a VM, with only the first one, virtio0, binding to igb_uio. Start a primary DPDK process, driving only virtio0. Then start a secondary DPDK process, it encounters segfault at eth_virtio_dev_init() because hw is NULL, when trying to initialize the 2nd virtio devices. 1539 if (!hw->virtio_user_dev) { We could add a precheck to return error when hw is NULL. But the root cause is that virtio devices which are not driven by the primary process are not exluded by secondary eal probe function. To support legacy virtio devices bound to none kernel driver, we removed RTE_PCI_DRV_NEED_MAPPING in commit 962cf902e6eb ("pci: export device mapping functions"). At the boot of primary process, ether dev is allocated in rte_eth_devices array, rte_eth_dev_data is also allocated in rte_eth_dev_data array; then probe function fails; and ether dev is released. However, the entry in rte_eth_dev_data array is not cleared. Then we start secondary process, and try to attach the virtio device that not used in primary process, the field, dev_private (or hw), in rte_eth_dev_data, is NULL. To fail the dev attach, we need to clear the field, name, when we release any ether devices in primary, so that below loop in rte_eth_dev_attach_secondary() will not find any matched names. for (i = 0; i < RTE_MAX_ETHPORTS; i++) { if (strcmp(rte_eth_dev_data[i].name, name) == 0) break; } Fixes: 6d890f8ab512 ("net/virtio: fix multiple process support") Cc: stable@dpdk.org Reported-by: Reshma Pattan <reshma.pattan@intel.com> Signed-off-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-03 06:37:31 +00:00
/*
* Secondary process will check the name to attach.
* Clear this field to avoid attaching a released ports.
*/
eth_dev->data->name[0] = '\0';
eth_dev->device = NULL;
eth_dev->intr_handle = NULL;
}
typedef int (*eth_dev_pci_callback_t)(struct rte_eth_dev *eth_dev);
/**
* @internal
* Wrapper for use by pci drivers in a .probe function to attach to a ethdev
* interface.
*/
static inline int
rte_eth_dev_pci_generic_probe(struct rte_pci_device *pci_dev,
size_t private_data_size, eth_dev_pci_callback_t dev_init)
{
struct rte_eth_dev *eth_dev;
int ret;
eth_dev = rte_eth_dev_pci_allocate(pci_dev, private_data_size);
if (!eth_dev)
return -ENOMEM;
RTE_FUNC_PTR_OR_ERR_RET(*dev_init, -EINVAL);
ret = dev_init(eth_dev);
if (ret)
rte_eth_dev_pci_release(eth_dev);
return ret;
}
/**
* @internal
* Wrapper for use by pci drivers in a .remove function to detach a ethdev
* interface.
*/
static inline int
rte_eth_dev_pci_generic_remove(struct rte_pci_device *pci_dev,
eth_dev_pci_callback_t dev_uninit)
{
struct rte_eth_dev *eth_dev;
int ret;
eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
if (!eth_dev)
return -ENODEV;
if (dev_uninit) {
ret = dev_uninit(eth_dev);
if (ret)
return ret;
}
rte_eth_dev_pci_release(eth_dev);
return 0;
}
#endif /* _RTE_ETHDEV_PCI_H_ */