424 lines
13 KiB
C
424 lines
13 KiB
C
|
/*-
|
||
|
* BSD LICENSE
|
||
|
*
|
||
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in
|
||
|
* the documentation and/or other materials provided with the
|
||
|
* distribution.
|
||
|
* * Neither the name of Intel Corporation nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#include "acl_run.h"
|
||
|
#include "acl_vect.h"
|
||
|
|
||
|
enum {
|
||
|
SHUFFLE32_SLOT1 = 0xe5,
|
||
|
SHUFFLE32_SLOT2 = 0xe6,
|
||
|
SHUFFLE32_SLOT3 = 0xe7,
|
||
|
SHUFFLE32_SWAP64 = 0x4e,
|
||
|
};
|
||
|
|
||
|
static const rte_xmm_t xmm_shuffle_input = {
|
||
|
.u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c},
|
||
|
};
|
||
|
|
||
|
static const rte_xmm_t xmm_ones_16 = {
|
||
|
.u16 = {1, 1, 1, 1, 1, 1, 1, 1},
|
||
|
};
|
||
|
|
||
|
static const rte_xmm_t xmm_match_mask = {
|
||
|
.u32 = {
|
||
|
RTE_ACL_NODE_MATCH,
|
||
|
RTE_ACL_NODE_MATCH,
|
||
|
RTE_ACL_NODE_MATCH,
|
||
|
RTE_ACL_NODE_MATCH,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
static const rte_xmm_t xmm_index_mask = {
|
||
|
.u32 = {
|
||
|
RTE_ACL_NODE_INDEX,
|
||
|
RTE_ACL_NODE_INDEX,
|
||
|
RTE_ACL_NODE_INDEX,
|
||
|
RTE_ACL_NODE_INDEX,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Resolve priority for multiple results (sse version).
|
||
|
* This consists comparing the priority of the current traversal with the
|
||
|
* running set of results for the packet.
|
||
|
* For each result, keep a running array of the result (rule number) and
|
||
|
* its priority for each category.
|
||
|
*/
|
||
|
static inline void
|
||
|
resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
|
||
|
struct parms *parms, const struct rte_acl_match_results *p,
|
||
|
uint32_t categories)
|
||
|
{
|
||
|
uint32_t x;
|
||
|
xmm_t results, priority, results1, priority1, selector;
|
||
|
xmm_t *saved_results, *saved_priority;
|
||
|
|
||
|
for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
|
||
|
|
||
|
saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
|
||
|
saved_priority =
|
||
|
(xmm_t *)(&parms[n].cmplt->priority[x]);
|
||
|
|
||
|
/* get results and priorities for completed trie */
|
||
|
results = MM_LOADU((const xmm_t *)&p[transition].results[x]);
|
||
|
priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]);
|
||
|
|
||
|
/* if this is not the first completed trie */
|
||
|
if (parms[n].cmplt->count != ctx->num_tries) {
|
||
|
|
||
|
/* get running best results and their priorities */
|
||
|
results1 = MM_LOADU(saved_results);
|
||
|
priority1 = MM_LOADU(saved_priority);
|
||
|
|
||
|
/* select results that are highest priority */
|
||
|
selector = MM_CMPGT32(priority1, priority);
|
||
|
results = MM_BLENDV8(results, results1, selector);
|
||
|
priority = MM_BLENDV8(priority, priority1, selector);
|
||
|
}
|
||
|
|
||
|
/* save running best results and their priorities */
|
||
|
MM_STOREU(saved_results, results);
|
||
|
MM_STOREU(saved_priority, priority);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Extract transitions from an XMM register and check for any matches
|
||
|
*/
|
||
|
static void
|
||
|
acl_process_matches(xmm_t *indices, int slot, const struct rte_acl_ctx *ctx,
|
||
|
struct parms *parms, struct acl_flow_data *flows)
|
||
|
{
|
||
|
uint64_t transition1, transition2;
|
||
|
|
||
|
/* extract transition from low 64 bits. */
|
||
|
transition1 = MM_CVT64(*indices);
|
||
|
|
||
|
/* extract transition from high 64 bits. */
|
||
|
*indices = MM_SHUFFLE32(*indices, SHUFFLE32_SWAP64);
|
||
|
transition2 = MM_CVT64(*indices);
|
||
|
|
||
|
transition1 = acl_match_check(transition1, slot, ctx,
|
||
|
parms, flows, resolve_priority_sse);
|
||
|
transition2 = acl_match_check(transition2, slot + 1, ctx,
|
||
|
parms, flows, resolve_priority_sse);
|
||
|
|
||
|
/* update indices with new transitions. */
|
||
|
*indices = MM_SET64(transition2, transition1);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check for any match in 4 transitions (contained in 2 SSE registers)
|
||
|
*/
|
||
|
static inline __attribute__((always_inline)) void
|
||
|
acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
|
||
|
struct acl_flow_data *flows, xmm_t *indices1, xmm_t *indices2,
|
||
|
xmm_t match_mask)
|
||
|
{
|
||
|
xmm_t temp;
|
||
|
|
||
|
/* put low 32 bits of each transition into one register */
|
||
|
temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1, (__m128)*indices2,
|
||
|
0x88);
|
||
|
/* test for match node */
|
||
|
temp = MM_AND(match_mask, temp);
|
||
|
|
||
|
while (!MM_TESTZ(temp, temp)) {
|
||
|
acl_process_matches(indices1, slot, ctx, parms, flows);
|
||
|
acl_process_matches(indices2, slot + 2, ctx, parms, flows);
|
||
|
|
||
|
temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1,
|
||
|
(__m128)*indices2,
|
||
|
0x88);
|
||
|
temp = MM_AND(match_mask, temp);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Calculate the address of the next transition for
|
||
|
* all types of nodes. Note that only DFA nodes and range
|
||
|
* nodes actually transition to another node. Match
|
||
|
* nodes don't move.
|
||
|
*/
|
||
|
static inline __attribute__((always_inline)) xmm_t
|
||
|
calc_addr_sse(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
|
||
|
xmm_t ones_16, xmm_t indices1, xmm_t indices2)
|
||
|
{
|
||
|
xmm_t addr, node_types, range, temp;
|
||
|
xmm_t dfa_msk, dfa_ofs, quad_ofs;
|
||
|
xmm_t in, r, t;
|
||
|
|
||
|
const xmm_t range_base = _mm_set_epi32(0xffffff0c, 0xffffff08,
|
||
|
0xffffff04, 0xffffff00);
|
||
|
|
||
|
/*
|
||
|
* Note that no transition is done for a match
|
||
|
* node and therefore a stream freezes when
|
||
|
* it reaches a match.
|
||
|
*/
|
||
|
|
||
|
/* Shuffle low 32 into temp and high 32 into indices2 */
|
||
|
temp = (xmm_t)MM_SHUFFLEPS((__m128)indices1, (__m128)indices2, 0x88);
|
||
|
range = (xmm_t)MM_SHUFFLEPS((__m128)indices1, (__m128)indices2, 0xdd);
|
||
|
|
||
|
t = MM_XOR(index_mask, index_mask);
|
||
|
|
||
|
/* shuffle input byte to all 4 positions of 32 bit value */
|
||
|
in = MM_SHUFFLE8(next_input, shuffle_input);
|
||
|
|
||
|
/* Calc node type and node addr */
|
||
|
node_types = MM_ANDNOT(index_mask, temp);
|
||
|
addr = MM_AND(index_mask, temp);
|
||
|
|
||
|
/*
|
||
|
* Calc addr for DFAs - addr = dfa_index + input_byte
|
||
|
*/
|
||
|
|
||
|
/* mask for DFA type (0) nodes */
|
||
|
dfa_msk = MM_CMPEQ32(node_types, t);
|
||
|
|
||
|
r = _mm_srli_epi32(in, 30);
|
||
|
r = _mm_add_epi8(r, range_base);
|
||
|
|
||
|
t = _mm_srli_epi32(in, 24);
|
||
|
r = _mm_shuffle_epi8(range, r);
|
||
|
|
||
|
dfa_ofs = _mm_sub_epi32(t, r);
|
||
|
|
||
|
/*
|
||
|
* Calculate number of range boundaries that are less than the
|
||
|
* input value. Range boundaries for each node are in signed 8 bit,
|
||
|
* ordered from -128 to 127 in the indices2 register.
|
||
|
* This is effectively a popcnt of bytes that are greater than the
|
||
|
* input byte.
|
||
|
*/
|
||
|
|
||
|
/* check ranges */
|
||
|
temp = MM_CMPGT8(in, range);
|
||
|
|
||
|
/* convert -1 to 1 (bytes greater than input byte */
|
||
|
temp = MM_SIGN8(temp, temp);
|
||
|
|
||
|
/* horizontal add pairs of bytes into words */
|
||
|
temp = MM_MADD8(temp, temp);
|
||
|
|
||
|
/* horizontal add pairs of words into dwords */
|
||
|
quad_ofs = MM_MADD16(temp, ones_16);
|
||
|
|
||
|
/* mask to range type nodes */
|
||
|
temp = _mm_blendv_epi8(quad_ofs, dfa_ofs, dfa_msk);
|
||
|
|
||
|
/* add index into node position */
|
||
|
return MM_ADD32(addr, temp);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Process 4 transitions (in 2 SIMD registers) in parallel
|
||
|
*/
|
||
|
static inline __attribute__((always_inline)) xmm_t
|
||
|
transition4(xmm_t next_input, const uint64_t *trans,
|
||
|
xmm_t *indices1, xmm_t *indices2)
|
||
|
{
|
||
|
xmm_t addr;
|
||
|
uint64_t trans0, trans2;
|
||
|
|
||
|
/* Calculate the address (array index) for all 4 transitions. */
|
||
|
|
||
|
addr = calc_addr_sse(xmm_index_mask.x, next_input, xmm_shuffle_input.x,
|
||
|
xmm_ones_16.x, *indices1, *indices2);
|
||
|
|
||
|
/* Gather 64 bit transitions and pack back into 2 registers. */
|
||
|
|
||
|
trans0 = trans[MM_CVT32(addr)];
|
||
|
|
||
|
/* get slot 2 */
|
||
|
|
||
|
/* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
|
||
|
addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2);
|
||
|
trans2 = trans[MM_CVT32(addr)];
|
||
|
|
||
|
/* get slot 1 */
|
||
|
|
||
|
/* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
|
||
|
addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
|
||
|
*indices1 = MM_SET64(trans[MM_CVT32(addr)], trans0);
|
||
|
|
||
|
/* get slot 3 */
|
||
|
|
||
|
/* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
|
||
|
addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3);
|
||
|
*indices2 = MM_SET64(trans[MM_CVT32(addr)], trans2);
|
||
|
|
||
|
return MM_SRL32(next_input, CHAR_BIT);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Execute trie traversal with 8 traversals in parallel
|
||
|
*/
|
||
|
static inline int
|
||
|
search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
|
||
|
uint32_t *results, uint32_t total_packets, uint32_t categories)
|
||
|
{
|
||
|
int n;
|
||
|
struct acl_flow_data flows;
|
||
|
uint64_t index_array[MAX_SEARCHES_SSE8];
|
||
|
struct completion cmplt[MAX_SEARCHES_SSE8];
|
||
|
struct parms parms[MAX_SEARCHES_SSE8];
|
||
|
xmm_t input0, input1;
|
||
|
xmm_t indices1, indices2, indices3, indices4;
|
||
|
|
||
|
acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
|
||
|
total_packets, categories, ctx->trans_table);
|
||
|
|
||
|
for (n = 0; n < MAX_SEARCHES_SSE8; n++) {
|
||
|
cmplt[n].count = 0;
|
||
|
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* indices1 contains index_array[0,1]
|
||
|
* indices2 contains index_array[2,3]
|
||
|
* indices3 contains index_array[4,5]
|
||
|
* indices4 contains index_array[6,7]
|
||
|
*/
|
||
|
|
||
|
indices1 = MM_LOADU((xmm_t *) &index_array[0]);
|
||
|
indices2 = MM_LOADU((xmm_t *) &index_array[2]);
|
||
|
|
||
|
indices3 = MM_LOADU((xmm_t *) &index_array[4]);
|
||
|
indices4 = MM_LOADU((xmm_t *) &index_array[6]);
|
||
|
|
||
|
/* Check for any matches. */
|
||
|
acl_match_check_x4(0, ctx, parms, &flows,
|
||
|
&indices1, &indices2, xmm_match_mask.x);
|
||
|
acl_match_check_x4(4, ctx, parms, &flows,
|
||
|
&indices3, &indices4, xmm_match_mask.x);
|
||
|
|
||
|
while (flows.started > 0) {
|
||
|
|
||
|
/* Gather 4 bytes of input data for each stream. */
|
||
|
input0 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
|
||
|
input1 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 4));
|
||
|
|
||
|
input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1);
|
||
|
input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1);
|
||
|
|
||
|
input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2);
|
||
|
input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2);
|
||
|
|
||
|
input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3);
|
||
|
input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3);
|
||
|
|
||
|
/* Process the 4 bytes of input on each stream. */
|
||
|
|
||
|
input0 = transition4(input0, flows.trans,
|
||
|
&indices1, &indices2);
|
||
|
input1 = transition4(input1, flows.trans,
|
||
|
&indices3, &indices4);
|
||
|
|
||
|
input0 = transition4(input0, flows.trans,
|
||
|
&indices1, &indices2);
|
||
|
input1 = transition4(input1, flows.trans,
|
||
|
&indices3, &indices4);
|
||
|
|
||
|
input0 = transition4(input0, flows.trans,
|
||
|
&indices1, &indices2);
|
||
|
input1 = transition4(input1, flows.trans,
|
||
|
&indices3, &indices4);
|
||
|
|
||
|
input0 = transition4(input0, flows.trans,
|
||
|
&indices1, &indices2);
|
||
|
input1 = transition4(input1, flows.trans,
|
||
|
&indices3, &indices4);
|
||
|
|
||
|
/* Check for any matches. */
|
||
|
acl_match_check_x4(0, ctx, parms, &flows,
|
||
|
&indices1, &indices2, xmm_match_mask.x);
|
||
|
acl_match_check_x4(4, ctx, parms, &flows,
|
||
|
&indices3, &indices4, xmm_match_mask.x);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Execute trie traversal with 4 traversals in parallel
|
||
|
*/
|
||
|
static inline int
|
||
|
search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
|
||
|
uint32_t *results, int total_packets, uint32_t categories)
|
||
|
{
|
||
|
int n;
|
||
|
struct acl_flow_data flows;
|
||
|
uint64_t index_array[MAX_SEARCHES_SSE4];
|
||
|
struct completion cmplt[MAX_SEARCHES_SSE4];
|
||
|
struct parms parms[MAX_SEARCHES_SSE4];
|
||
|
xmm_t input, indices1, indices2;
|
||
|
|
||
|
acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
|
||
|
total_packets, categories, ctx->trans_table);
|
||
|
|
||
|
for (n = 0; n < MAX_SEARCHES_SSE4; n++) {
|
||
|
cmplt[n].count = 0;
|
||
|
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
|
||
|
}
|
||
|
|
||
|
indices1 = MM_LOADU((xmm_t *) &index_array[0]);
|
||
|
indices2 = MM_LOADU((xmm_t *) &index_array[2]);
|
||
|
|
||
|
/* Check for any matches. */
|
||
|
acl_match_check_x4(0, ctx, parms, &flows,
|
||
|
&indices1, &indices2, xmm_match_mask.x);
|
||
|
|
||
|
while (flows.started > 0) {
|
||
|
|
||
|
/* Gather 4 bytes of input data for each stream. */
|
||
|
input = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
|
||
|
input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
|
||
|
input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2);
|
||
|
input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3);
|
||
|
|
||
|
/* Process the 4 bytes of input on each stream. */
|
||
|
input = transition4(input, flows.trans, &indices1, &indices2);
|
||
|
input = transition4(input, flows.trans, &indices1, &indices2);
|
||
|
input = transition4(input, flows.trans, &indices1, &indices2);
|
||
|
input = transition4(input, flows.trans, &indices1, &indices2);
|
||
|
|
||
|
/* Check for any matches. */
|
||
|
acl_match_check_x4(0, ctx, parms, &flows,
|
||
|
&indices1, &indices2, xmm_match_mask.x);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|