numam-dpdk/lib/librte_mempool/rte_mempool.c

900 lines
24 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <stdarg.h>
#include <unistd.h>
#include <inttypes.h>
#include <errno.h>
#include <sys/queue.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_atomic.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_ring.h>
#include <rte_errno.h>
#include <rte_string_fns.h>
#include <rte_spinlock.h>
#include "rte_mempool.h"
TAILQ_HEAD(rte_mempool_list, rte_tailq_entry);
static struct rte_tailq_elem rte_mempool_tailq = {
.name = "RTE_MEMPOOL",
};
EAL_REGISTER_TAILQ(rte_mempool_tailq)
#define CACHE_FLUSHTHRESH_MULTIPLIER 1.5
#define CALC_CACHE_FLUSHTHRESH(c) \
((typeof(c))((c) * CACHE_FLUSHTHRESH_MULTIPLIER))
/*
* return the greatest common divisor between a and b (fast algorithm)
*
*/
static unsigned get_gcd(unsigned a, unsigned b)
{
unsigned c;
if (0 == a)
return b;
if (0 == b)
return a;
if (a < b) {
c = a;
a = b;
b = c;
}
while (b != 0) {
c = a % b;
a = b;
b = c;
}
return a;
}
/*
* Depending on memory configuration, objects addresses are spread
* between channels and ranks in RAM: the pool allocator will add
* padding between objects. This function return the new size of the
* object.
*/
static unsigned optimize_object_size(unsigned obj_size)
{
unsigned nrank, nchan;
unsigned new_obj_size;
/* get number of channels */
nchan = rte_memory_get_nchannel();
if (nchan == 0)
nchan = 1;
nrank = rte_memory_get_nrank();
if (nrank == 0)
nrank = 1;
/* process new object size */
new_obj_size = (obj_size + RTE_CACHE_LINE_MASK) / RTE_CACHE_LINE_SIZE;
mem: remove redundant check in optimize_object_size The second condition of this logical OR: (get_gcd(new_obj_size, nrank * nchan) != 1 || get_gcd(nchan, new_obj_size) != 1) is redundant with the first condition. We can show that the first condition is equivalent to its disjunction with the second condition using these two results: - R1: For all conditions A and B, if B implies A, then (A || B) is equivalent to A. - R2: (get_gcd(nchan, new_obj_size) != 1) implies (get_gcd(new_obj_size, nrank * nchan) != 1) We can show R1 with the following truth table (0 is false, 1 is true): +-----+-----++----------+-----+-------------+ | A | B || (A || B) | A | B implies A | +-----+-----++----------+-----+-------------+ | 0 | 0 || 0 | 0 | 1 | | 0 | 1 || 1 | 0 | 0 | | 1 | 0 || 1 | 1 | 1 | | 1 | 1 || 1 | 1 | 1 | +-----+-----++----------+-----+-------------+ Truth table of (A || B) and A We can show R2 by looking at the code of optimize_object_size and get_gcd. We see that: - S1: (nchan >= 1) and (nrank >= 1). - S2: get_gcd returns 0 only when both arguments are 0. Let: - X be get_gcd(new_obj_size, nrank * nchan). - Y be get_gcd(nchan, new_obj_size). Suppose: - H1: get_gcd returns the greatest common divisor of its arguments. - H2: (nrank * nchan) does not exceed UINT_MAX. We prove (Y != 1) implies (X != 1) with the following steps: - Suppose L0: (Y != 1). We have to show (X != 1). - By H1, Y is the greatest common divisor of nchan and new_obj_size. In particular, we have L1: Y divides nchan and new_obj_size. - By H2, we have L2: nchan divides (nrank * nchan) - By L1 and L2, we have L3: Y divides (nrank * nchan) and new_obj_size. - By H1 and L3, we have L4: (Y <= X). - By S1 and S2, we have L5: (Y != 0). - By L0 and L5, we have L6: (Y > 1). - By L4 and L6, we have (X > 1) and thus (X != 1), which concludes. R2 was also tested for all values of new_obj_size, nrank, and nchan between 0 and 2000. This redundant condition was found using TrustInSoft Analyzer. Signed-off-by: Julien Cretin <julien.cretin@trust-in-soft.com> Acked-by: Thomas Monjalon <thomas.monjalon@6wind.com>
2014-05-12 17:35:10 +02:00
while (get_gcd(new_obj_size, nrank * nchan) != 1)
new_obj_size++;
return new_obj_size * RTE_CACHE_LINE_SIZE;
}
static void
mempool_add_elem(struct rte_mempool *mp, void *obj, uint32_t obj_idx,
rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg)
{
struct rte_mempool_objhdr *hdr;
struct rte_mempool_objtlr *tlr __rte_unused;
obj = (char *)obj + mp->header_size;
/* set mempool ptr in header */
hdr = RTE_PTR_SUB(obj, sizeof(*hdr));
hdr->mp = mp;
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
tlr = __mempool_get_trailer(obj);
tlr->cookie = RTE_MEMPOOL_TRAILER_COOKIE;
#endif
/* call the initializer */
if (obj_init)
obj_init(mp, obj_init_arg, obj, obj_idx);
/* enqueue in ring */
rte_ring_sp_enqueue(mp->ring, obj);
}
uint32_t
rte_mempool_obj_iter(void *vaddr, uint32_t elt_num, size_t elt_sz, size_t align,
const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift,
rte_mempool_obj_iter_t obj_iter, void *obj_iter_arg)
{
uint32_t i, j, k;
uint32_t pgn, pgf;
uintptr_t end, start, va;
uintptr_t pg_sz;
pg_sz = (uintptr_t)1 << pg_shift;
va = (uintptr_t)vaddr;
i = 0;
j = 0;
while (i != elt_num && j != pg_num) {
start = RTE_ALIGN_CEIL(va, align);
end = start + elt_sz;
/* index of the first page for the next element. */
pgf = (end >> pg_shift) - (start >> pg_shift);
/* index of the last page for the current element. */
pgn = ((end - 1) >> pg_shift) - (start >> pg_shift);
pgn += j;
/* do we have enough space left for the element. */
if (pgn >= pg_num)
break;
for (k = j;
k != pgn &&
paddr[k] + pg_sz == paddr[k + 1];
k++)
;
/*
* if next pgn chunks of memory physically continuous,
* use it to create next element.
* otherwise, just skip that chunk unused.
*/
if (k == pgn) {
if (obj_iter != NULL)
obj_iter(obj_iter_arg, (void *)start,
(void *)end, i);
va = end;
j += pgf;
i++;
} else {
va = RTE_ALIGN_CEIL((va + 1), pg_sz);
j++;
}
}
return i;
}
/*
* Populate mempool with the objects.
*/
struct mempool_populate_arg {
struct rte_mempool *mp;
rte_mempool_obj_ctor_t *obj_init;
void *obj_init_arg;
};
static void
mempool_obj_populate(void *arg, void *start, void *end, uint32_t idx)
{
struct mempool_populate_arg *pa = arg;
mempool_add_elem(pa->mp, start, idx, pa->obj_init, pa->obj_init_arg);
pa->mp->elt_va_end = (uintptr_t)end;
}
static void
mempool_populate(struct rte_mempool *mp, size_t num, size_t align,
rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg)
{
uint32_t elt_sz;
struct mempool_populate_arg arg;
elt_sz = mp->elt_size + mp->header_size + mp->trailer_size;
arg.mp = mp;
arg.obj_init = obj_init;
arg.obj_init_arg = obj_init_arg;
mp->size = rte_mempool_obj_iter((void *)mp->elt_va_start,
num, elt_sz, align,
mp->elt_pa, mp->pg_num, mp->pg_shift,
mempool_obj_populate, &arg);
}
uint32_t
rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
struct rte_mempool_objsz *sz)
{
struct rte_mempool_objsz lsz;
sz = (sz != NULL) ? sz : &lsz;
/*
* In header, we have at least the pointer to the pool, and
* optionaly a 64 bits cookie.
*/
sz->header_size = 0;
sz->header_size += sizeof(struct rte_mempool *); /* ptr to pool */
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
sz->header_size += sizeof(uint64_t); /* cookie */
#endif
if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0)
sz->header_size = RTE_ALIGN_CEIL(sz->header_size,
RTE_CACHE_LINE_SIZE);
/* trailer contains the cookie in debug mode */
sz->trailer_size = 0;
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
sz->trailer_size += sizeof(uint64_t); /* cookie */
#endif
/* element size is 8 bytes-aligned at least */
sz->elt_size = RTE_ALIGN_CEIL(elt_size, sizeof(uint64_t));
/* expand trailer to next cache line */
if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0) {
sz->total_size = sz->header_size + sz->elt_size +
sz->trailer_size;
sz->trailer_size += ((RTE_CACHE_LINE_SIZE -
(sz->total_size & RTE_CACHE_LINE_MASK)) &
RTE_CACHE_LINE_MASK);
}
/*
* increase trailer to add padding between objects in order to
* spread them across memory channels/ranks
*/
if ((flags & MEMPOOL_F_NO_SPREAD) == 0) {
unsigned new_size;
new_size = optimize_object_size(sz->header_size + sz->elt_size +
sz->trailer_size);
sz->trailer_size = new_size - sz->header_size - sz->elt_size;
}
if (! rte_eal_has_hugepages()) {
/*
* compute trailer size so that pool elements fit exactly in
* a standard page
*/
int page_size = getpagesize();
int new_size = page_size - sz->header_size - sz->elt_size;
if (new_size < 0 || (unsigned int)new_size < sz->trailer_size) {
printf("When hugepages are disabled, pool objects "
"can't exceed PAGE_SIZE: %d + %d + %d > %d\n",
sz->header_size, sz->elt_size, sz->trailer_size,
page_size);
return 0;
}
sz->trailer_size = new_size;
}
/* this is the size of an object, including header and trailer */
sz->total_size = sz->header_size + sz->elt_size + sz->trailer_size;
return sz->total_size;
}
/*
* Calculate maximum amount of memory required to store given number of objects.
*/
size_t
rte_mempool_xmem_size(uint32_t elt_num, size_t elt_sz, uint32_t pg_shift)
{
size_t n, pg_num, pg_sz, sz;
pg_sz = (size_t)1 << pg_shift;
if ((n = pg_sz / elt_sz) > 0) {
pg_num = (elt_num + n - 1) / n;
sz = pg_num << pg_shift;
} else {
sz = RTE_ALIGN_CEIL(elt_sz, pg_sz) * elt_num;
}
return sz;
}
/*
* Calculate how much memory would be actually required with the
* given memory footprint to store required number of elements.
*/
static void
mempool_lelem_iter(void *arg, __rte_unused void *start, void *end,
__rte_unused uint32_t idx)
{
*(uintptr_t *)arg = (uintptr_t)end;
}
ssize_t
rte_mempool_xmem_usage(void *vaddr, uint32_t elt_num, size_t elt_sz,
const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift)
{
uint32_t n;
uintptr_t va, uv;
size_t pg_sz, usz;
pg_sz = (size_t)1 << pg_shift;
va = (uintptr_t)vaddr;
uv = va;
if ((n = rte_mempool_obj_iter(vaddr, elt_num, elt_sz, 1,
paddr, pg_num, pg_shift, mempool_lelem_iter,
&uv)) != elt_num) {
return -(ssize_t)n;
}
uv = RTE_ALIGN_CEIL(uv, pg_sz);
usz = uv - va;
return usz;
}
/* create the mempool */
struct rte_mempool *
rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
unsigned cache_size, unsigned private_data_size,
rte_mempool_ctor_t *mp_init, void *mp_init_arg,
rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg,
int socket_id, unsigned flags)
{
#ifdef RTE_LIBRTE_XEN_DOM0
return rte_dom0_mempool_create(name, n, elt_size,
cache_size, private_data_size,
mp_init, mp_init_arg,
obj_init, obj_init_arg,
socket_id, flags);
#else
return rte_mempool_xmem_create(name, n, elt_size,
cache_size, private_data_size,
mp_init, mp_init_arg,
obj_init, obj_init_arg,
socket_id, flags,
NULL, NULL, MEMPOOL_PG_NUM_DEFAULT, MEMPOOL_PG_SHIFT_MAX);
#endif
}
/*
* Create the mempool over already allocated chunk of memory.
* That external memory buffer can consists of physically disjoint pages.
* Setting vaddr to NULL, makes mempool to fallback to original behaviour
* and allocate space for mempool and it's elements as one big chunk of
* physically continuos memory.
* */
struct rte_mempool *
rte_mempool_xmem_create(const char *name, unsigned n, unsigned elt_size,
unsigned cache_size, unsigned private_data_size,
rte_mempool_ctor_t *mp_init, void *mp_init_arg,
rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg,
int socket_id, unsigned flags, void *vaddr,
const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift)
{
char mz_name[RTE_MEMZONE_NAMESIZE];
char rg_name[RTE_RING_NAMESIZE];
struct rte_mempool_list *mempool_list;
struct rte_mempool *mp = NULL;
struct rte_tailq_entry *te;
struct rte_ring *r;
const struct rte_memzone *mz;
size_t mempool_size;
int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
int rg_flags = 0;
void *obj;
struct rte_mempool_objsz objsz;
void *startaddr;
int page_size = getpagesize();
/* compilation-time checks */
RTE_BUILD_BUG_ON((sizeof(struct rte_mempool) &
RTE_CACHE_LINE_MASK) != 0);
#if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_cache) &
RTE_CACHE_LINE_MASK) != 0);
RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, local_cache) &
RTE_CACHE_LINE_MASK) != 0);
#endif
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_debug_stats) &
RTE_CACHE_LINE_MASK) != 0);
RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, stats) &
RTE_CACHE_LINE_MASK) != 0);
#endif
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
/* asked cache too big */
if (cache_size > RTE_MEMPOOL_CACHE_MAX_SIZE ||
CALC_CACHE_FLUSHTHRESH(cache_size) > n) {
rte_errno = EINVAL;
return NULL;
}
/* check that we have both VA and PA */
if (vaddr != NULL && paddr == NULL) {
rte_errno = EINVAL;
return NULL;
}
/* Check that pg_num and pg_shift parameters are valid. */
if (pg_num < RTE_DIM(mp->elt_pa) || pg_shift > MEMPOOL_PG_SHIFT_MAX) {
rte_errno = EINVAL;
return NULL;
}
/* "no cache align" imply "no spread" */
if (flags & MEMPOOL_F_NO_CACHE_ALIGN)
flags |= MEMPOOL_F_NO_SPREAD;
/* ring flags */
if (flags & MEMPOOL_F_SP_PUT)
rg_flags |= RING_F_SP_ENQ;
if (flags & MEMPOOL_F_SC_GET)
rg_flags |= RING_F_SC_DEQ;
/* calculate mempool object sizes. */
if (!rte_mempool_calc_obj_size(elt_size, flags, &objsz)) {
rte_errno = EINVAL;
return NULL;
}
rte_rwlock_write_lock(RTE_EAL_MEMPOOL_RWLOCK);
/* allocate the ring that will be used to store objects */
/* Ring functions will return appropriate errors if we are
* running as a secondary process etc., so no checks made
* in this function for that condition */
snprintf(rg_name, sizeof(rg_name), RTE_MEMPOOL_MZ_FORMAT, name);
r = rte_ring_create(rg_name, rte_align32pow2(n+1), socket_id, rg_flags);
if (r == NULL)
goto exit;
/*
* reserve a memory zone for this mempool: private data is
* cache-aligned
*/
private_data_size = (private_data_size +
RTE_CACHE_LINE_MASK) & (~RTE_CACHE_LINE_MASK);
if (! rte_eal_has_hugepages()) {
/*
* expand private data size to a whole page, so that the
* first pool element will start on a new standard page
*/
int head = sizeof(struct rte_mempool);
int new_size = (private_data_size + head) % page_size;
if (new_size) {
private_data_size += page_size - new_size;
}
}
/* try to allocate tailq entry */
te = rte_zmalloc("MEMPOOL_TAILQ_ENTRY", sizeof(*te), 0);
if (te == NULL) {
RTE_LOG(ERR, MEMPOOL, "Cannot allocate tailq entry!\n");
goto exit;
}
/*
* If user provided an external memory buffer, then use it to
* store mempool objects. Otherwise reserve a memzone that is large
* enough to hold mempool header and metadata plus mempool objects.
*/
mempool_size = MEMPOOL_HEADER_SIZE(mp, pg_num) + private_data_size;
if (vaddr == NULL)
mempool_size += (size_t)objsz.total_size * n;
if (! rte_eal_has_hugepages()) {
/*
* we want the memory pool to start on a page boundary,
* because pool elements crossing page boundaries would
* result in discontiguous physical addresses
*/
mempool_size += page_size;
}
snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT, name);
mz = rte_memzone_reserve(mz_name, mempool_size, socket_id, mz_flags);
/*
* no more memory: in this case we loose previously reserved
* space for the ring as we cannot free it
*/
if (mz == NULL) {
rte_free(te);
goto exit;
}
if (rte_eal_has_hugepages()) {
startaddr = (void*)mz->addr;
} else {
/* align memory pool start address on a page boundary */
unsigned long addr = (unsigned long)mz->addr;
if (addr & (page_size - 1)) {
addr += page_size;
addr &= ~(page_size - 1);
}
startaddr = (void*)addr;
}
/* init the mempool structure */
mp = startaddr;
memset(mp, 0, sizeof(*mp));
snprintf(mp->name, sizeof(mp->name), "%s", name);
mp->phys_addr = mz->phys_addr;
mp->ring = r;
mp->size = n;
mp->flags = flags;
mp->elt_size = objsz.elt_size;
mp->header_size = objsz.header_size;
mp->trailer_size = objsz.trailer_size;
mp->cache_size = cache_size;
mp->cache_flushthresh = CALC_CACHE_FLUSHTHRESH(cache_size);
mp->private_data_size = private_data_size;
/* calculate address of the first element for continuous mempool. */
obj = (char *)mp + MEMPOOL_HEADER_SIZE(mp, pg_num) +
private_data_size;
/* populate address translation fields. */
mp->pg_num = pg_num;
mp->pg_shift = pg_shift;
mp->pg_mask = RTE_LEN2MASK(mp->pg_shift, typeof(mp->pg_mask));
/* mempool elements allocated together with mempool */
if (vaddr == NULL) {
mp->elt_va_start = (uintptr_t)obj;
mp->elt_pa[0] = mp->phys_addr +
(mp->elt_va_start - (uintptr_t)mp);
/* mempool elements in a separate chunk of memory. */
} else {
mp->elt_va_start = (uintptr_t)vaddr;
memcpy(mp->elt_pa, paddr, sizeof (mp->elt_pa[0]) * pg_num);
}
mp->elt_va_end = mp->elt_va_start;
/* call the initializer */
if (mp_init)
mp_init(mp, mp_init_arg);
mempool_populate(mp, n, 1, obj_init, obj_init_arg);
te->data = (void *) mp;
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
TAILQ_INSERT_TAIL(mempool_list, te, next);
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
exit:
rte_rwlock_write_unlock(RTE_EAL_MEMPOOL_RWLOCK);
return mp;
}
/* Return the number of entries in the mempool */
unsigned
rte_mempool_count(const struct rte_mempool *mp)
{
unsigned count;
count = rte_ring_count(mp->ring);
#if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
{
unsigned lcore_id;
if (mp->cache_size == 0)
return count;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
count += mp->local_cache[lcore_id].len;
}
#endif
/*
* due to race condition (access to len is not locked), the
* total can be greater than size... so fix the result
*/
if (count > mp->size)
return mp->size;
return count;
}
/* dump the cache status */
static unsigned
rte_mempool_dump_cache(FILE *f, const struct rte_mempool *mp)
{
#if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
unsigned lcore_id;
unsigned count = 0;
unsigned cache_count;
fprintf(f, " cache infos:\n");
fprintf(f, " cache_size=%"PRIu32"\n", mp->cache_size);
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
cache_count = mp->local_cache[lcore_id].len;
fprintf(f, " cache_count[%u]=%u\n", lcore_id, cache_count);
count += cache_count;
}
fprintf(f, " total_cache_count=%u\n", count);
return count;
#else
RTE_SET_USED(mp);
fprintf(f, " cache disabled\n");
return 0;
#endif
}
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
/* check cookies before and after objects */
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
struct mempool_audit_arg {
const struct rte_mempool *mp;
uintptr_t obj_end;
uint32_t obj_num;
};
static void
mempool_obj_audit(void *arg, void *start, void *end, uint32_t idx)
{
struct mempool_audit_arg *pa = arg;
void *obj;
obj = (char *)start + pa->mp->header_size;
pa->obj_end = (uintptr_t)end;
pa->obj_num = idx + 1;
__mempool_check_cookies(pa->mp, &obj, 1, 2);
}
static void
mempool_audit_cookies(const struct rte_mempool *mp)
{
uint32_t elt_sz, num;
struct mempool_audit_arg arg;
elt_sz = mp->elt_size + mp->header_size + mp->trailer_size;
arg.mp = mp;
arg.obj_end = mp->elt_va_start;
arg.obj_num = 0;
num = rte_mempool_obj_iter((void *)mp->elt_va_start,
mp->size, elt_sz, 1,
mp->elt_pa, mp->pg_num, mp->pg_shift,
mempool_obj_audit, &arg);
if (num != mp->size) {
rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) "
"iterated only over %u elements\n",
mp, mp->size, num);
} else if (arg.obj_end != mp->elt_va_end || arg.obj_num != mp->size) {
rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) "
"last callback va_end: %#tx (%#tx expeceted), "
"num of objects: %u (%u expected)\n",
mp, mp->size,
arg.obj_end, mp->elt_va_end,
arg.obj_num, mp->size);
}
}
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic error "-Wcast-qual"
#endif
#else
#define mempool_audit_cookies(mp) do {} while(0)
#endif
#if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
/* check cookies before and after objects */
static void
mempool_audit_cache(const struct rte_mempool *mp)
{
/* check cache size consistency */
unsigned lcore_id;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (mp->local_cache[lcore_id].len > mp->cache_flushthresh) {
RTE_LOG(CRIT, MEMPOOL, "badness on cache[%u]\n",
lcore_id);
rte_panic("MEMPOOL: invalid cache len\n");
}
}
}
#else
#define mempool_audit_cache(mp) do {} while(0)
#endif
/* check the consistency of mempool (size, cookies, ...) */
void
rte_mempool_audit(const struct rte_mempool *mp)
{
mempool_audit_cache(mp);
mempool_audit_cookies(mp);
/* For case where mempool DEBUG is not set, and cache size is 0 */
RTE_SET_USED(mp);
}
/* dump the status of the mempool on the console */
void
rte_mempool_dump(FILE *f, const struct rte_mempool *mp)
{
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
struct rte_mempool_debug_stats sum;
unsigned lcore_id;
#endif
unsigned common_count;
unsigned cache_count;
RTE_VERIFY(f != NULL);
RTE_VERIFY(mp != NULL);
fprintf(f, "mempool <%s>@%p\n", mp->name, mp);
fprintf(f, " flags=%x\n", mp->flags);
fprintf(f, " ring=<%s>@%p\n", mp->ring->name, mp->ring);
fprintf(f, " phys_addr=0x%" PRIx64 "\n", mp->phys_addr);
fprintf(f, " size=%"PRIu32"\n", mp->size);
fprintf(f, " header_size=%"PRIu32"\n", mp->header_size);
fprintf(f, " elt_size=%"PRIu32"\n", mp->elt_size);
fprintf(f, " trailer_size=%"PRIu32"\n", mp->trailer_size);
fprintf(f, " total_obj_size=%"PRIu32"\n",
mp->header_size + mp->elt_size + mp->trailer_size);
fprintf(f, " private_data_size=%"PRIu32"\n", mp->private_data_size);
fprintf(f, " pg_num=%"PRIu32"\n", mp->pg_num);
fprintf(f, " pg_shift=%"PRIu32"\n", mp->pg_shift);
fprintf(f, " pg_mask=%#tx\n", mp->pg_mask);
fprintf(f, " elt_va_start=%#tx\n", mp->elt_va_start);
fprintf(f, " elt_va_end=%#tx\n", mp->elt_va_end);
fprintf(f, " elt_pa[0]=0x%" PRIx64 "\n", mp->elt_pa[0]);
if (mp->size != 0)
fprintf(f, " avg bytes/object=%#Lf\n",
(long double)(mp->elt_va_end - mp->elt_va_start) /
mp->size);
cache_count = rte_mempool_dump_cache(f, mp);
common_count = rte_ring_count(mp->ring);
if ((cache_count + common_count) > mp->size)
common_count = mp->size - cache_count;
fprintf(f, " common_pool_count=%u\n", common_count);
/* sum and dump statistics */
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
memset(&sum, 0, sizeof(sum));
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
sum.put_bulk += mp->stats[lcore_id].put_bulk;
sum.put_objs += mp->stats[lcore_id].put_objs;
sum.get_success_bulk += mp->stats[lcore_id].get_success_bulk;
sum.get_success_objs += mp->stats[lcore_id].get_success_objs;
sum.get_fail_bulk += mp->stats[lcore_id].get_fail_bulk;
sum.get_fail_objs += mp->stats[lcore_id].get_fail_objs;
}
fprintf(f, " stats:\n");
fprintf(f, " put_bulk=%"PRIu64"\n", sum.put_bulk);
fprintf(f, " put_objs=%"PRIu64"\n", sum.put_objs);
fprintf(f, " get_success_bulk=%"PRIu64"\n", sum.get_success_bulk);
fprintf(f, " get_success_objs=%"PRIu64"\n", sum.get_success_objs);
fprintf(f, " get_fail_bulk=%"PRIu64"\n", sum.get_fail_bulk);
fprintf(f, " get_fail_objs=%"PRIu64"\n", sum.get_fail_objs);
#else
fprintf(f, " no statistics available\n");
#endif
rte_mempool_audit(mp);
}
/* dump the status of all mempools on the console */
void
rte_mempool_list_dump(FILE *f)
{
const struct rte_mempool *mp = NULL;
struct rte_tailq_entry *te;
struct rte_mempool_list *mempool_list;
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
TAILQ_FOREACH(te, mempool_list, next) {
mp = (struct rte_mempool *) te->data;
rte_mempool_dump(f, mp);
}
rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
}
/* search a mempool from its name */
struct rte_mempool *
rte_mempool_lookup(const char *name)
{
struct rte_mempool *mp = NULL;
struct rte_tailq_entry *te;
struct rte_mempool_list *mempool_list;
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
TAILQ_FOREACH(te, mempool_list, next) {
mp = (struct rte_mempool *) te->data;
if (strncmp(name, mp->name, RTE_MEMPOOL_NAMESIZE) == 0)
break;
}
rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
if (te == NULL) {
rte_errno = ENOENT;
return NULL;
}
return mp;
}
void rte_mempool_walk(void (*func)(const struct rte_mempool *, void *),
void *arg)
{
struct rte_tailq_entry *te = NULL;
struct rte_mempool_list *mempool_list;
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
TAILQ_FOREACH(te, mempool_list, next) {
(*func)((struct rte_mempool *) te->data, arg);
}
rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
}