numam-dpdk/app/test-pmd/5tswap.c

209 lines
5.0 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2014-2020 Mellanox Technologies, Ltd
*/
#include <stdarg.h>
#include <stdio.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <sys/stat.h>
#include <rte_common.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ip.h>
#include <rte_flow.h>
#include "macswap_common.h"
#include "testpmd.h"
static inline void
swap_mac(struct rte_ether_hdr *eth_hdr)
{
struct rte_ether_addr addr;
/* Swap dest and src mac addresses. */
rte_ether_addr_copy(&eth_hdr->d_addr, &addr);
rte_ether_addr_copy(&eth_hdr->s_addr, &eth_hdr->d_addr);
rte_ether_addr_copy(&addr, &eth_hdr->s_addr);
}
static inline void
swap_ipv4(struct rte_ipv4_hdr *ipv4_hdr)
{
rte_be32_t addr;
/* Swap dest and src ipv4 addresses. */
addr = ipv4_hdr->src_addr;
ipv4_hdr->src_addr = ipv4_hdr->dst_addr;
ipv4_hdr->dst_addr = addr;
}
static inline void
swap_ipv6(struct rte_ipv6_hdr *ipv6_hdr)
{
uint8_t addr[16];
/* Swap dest and src ipv6 addresses. */
memcpy(&addr, &ipv6_hdr->src_addr, 16);
memcpy(&ipv6_hdr->src_addr, &ipv6_hdr->dst_addr, 16);
memcpy(&ipv6_hdr->dst_addr, &addr, 16);
}
static inline void
swap_tcp(struct rte_tcp_hdr *tcp_hdr)
{
rte_be16_t port;
/* Swap dest and src tcp port. */
port = tcp_hdr->src_port;
tcp_hdr->src_port = tcp_hdr->dst_port;
tcp_hdr->dst_port = port;
}
static inline void
swap_udp(struct rte_udp_hdr *udp_hdr)
{
rte_be16_t port;
/* Swap dest and src udp port */
port = udp_hdr->src_port;
udp_hdr->src_port = udp_hdr->dst_port;
udp_hdr->dst_port = port;
}
/*
* 5 tuple swap forwarding mode: Swap the source and the destination of layers
* 2,3,4. Swaps source and destination for MAC, IPv4/IPv6, UDP/TCP.
* Parses each layer and swaps it. When the next layer doesn't match it stops.
*/
static void
pkt_burst_5tuple_swap(struct fwd_stream *fs)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
struct rte_port *txp;
struct rte_mbuf *mb;
uint16_t next_proto;
uint64_t ol_flags;
uint16_t proto;
uint16_t nb_rx;
uint16_t nb_tx;
uint32_t retry;
int i;
union {
struct rte_ether_hdr *eth;
struct rte_vlan_hdr *vlan;
struct rte_ipv4_hdr *ipv4;
struct rte_ipv6_hdr *ipv6;
struct rte_tcp_hdr *tcp;
struct rte_udp_hdr *udp;
uint8_t *byte;
} h;
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
uint64_t start_tsc;
uint64_t end_tsc;
uint64_t core_cycles;
#endif
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
start_tsc = rte_rdtsc();
#endif
/*
* Receive a burst of packets and forward them.
*/
nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
nb_pkt_per_burst);
if (unlikely(nb_rx == 0))
return;
#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
#endif
fs->rx_packets += nb_rx;
txp = &ports[fs->tx_port];
ol_flags = ol_flags_init(txp->dev_conf.txmode.offloads);
vlan_qinq_set(pkts_burst, nb_rx, ol_flags,
txp->tx_vlan_id, txp->tx_vlan_id_outer);
for (i = 0; i < nb_rx; i++) {
if (likely(i < nb_rx - 1))
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i+1],
void *));
mb = pkts_burst[i];
h.eth = rte_pktmbuf_mtod(mb, struct rte_ether_hdr *);
proto = h.eth->ether_type;
swap_mac(h.eth);
mb->l2_len = sizeof(struct rte_ether_hdr);
h.eth++;
while (proto == RTE_BE16(RTE_ETHER_TYPE_VLAN) ||
proto == RTE_BE16(RTE_ETHER_TYPE_QINQ)) {
proto = h.vlan->eth_proto;
h.vlan++;
mb->l2_len += sizeof(struct rte_vlan_hdr);
}
if (proto == RTE_BE16(RTE_ETHER_TYPE_IPV4)) {
swap_ipv4(h.ipv4);
next_proto = h.ipv4->next_proto_id;
mb->l3_len = (h.ipv4->version_ihl & 0x0f) * 4;
h.byte += mb->l3_len;
} else if (proto == RTE_BE16(RTE_ETHER_TYPE_IPV6)) {
swap_ipv6(h.ipv6);
next_proto = h.ipv6->proto;
h.ipv6++;
mb->l3_len = sizeof(struct rte_ipv6_hdr);
} else {
mbuf_field_set(mb, ol_flags);
continue;
}
if (next_proto == IPPROTO_UDP) {
swap_udp(h.udp);
mb->l4_len = sizeof(struct rte_udp_hdr);
} else if (next_proto == IPPROTO_TCP) {
swap_tcp(h.tcp);
mb->l4_len = (h.tcp->data_off & 0xf0) >> 2;
}
mbuf_field_set(mb, ol_flags);
}
nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_rx);
/*
* Retry if necessary
*/
if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
retry = 0;
while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
rte_delay_us(burst_tx_delay_time);
nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
&pkts_burst[nb_tx], nb_rx - nb_tx);
}
}
fs->tx_packets += nb_tx;
#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
#endif
if (unlikely(nb_tx < nb_rx)) {
fs->fwd_dropped += (nb_rx - nb_tx);
do {
rte_pktmbuf_free(pkts_burst[nb_tx]);
} while (++nb_tx < nb_rx);
}
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
end_tsc = rte_rdtsc();
core_cycles = (end_tsc - start_tsc);
fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
#endif
}
struct fwd_engine five_tuple_swap_fwd_engine = {
.fwd_mode_name = "5tswap",
.port_fwd_begin = NULL,
.port_fwd_end = NULL,
.packet_fwd = pkt_burst_5tuple_swap,
};