numam-dpdk/lib/librte_eal/common/rte_random.c

212 lines
4.6 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019 Ericsson AB
*/
#ifdef RTE_MACHINE_CPUFLAG_RDSEED
#include <x86intrin.h>
#endif
#include <stdlib.h>
#include <unistd.h>
#include <rte_branch_prediction.h>
#include <rte_cycles.h>
#include <rte_eal.h>
#include <rte_lcore.h>
#include <rte_memory.h>
#include <rte_random.h>
struct rte_rand_state {
uint64_t z1;
uint64_t z2;
uint64_t z3;
uint64_t z4;
uint64_t z5;
} __rte_cache_aligned;
static struct rte_rand_state rand_states[RTE_MAX_LCORE];
static uint32_t
__rte_rand_lcg32(uint32_t *seed)
{
*seed = 1103515245U * *seed + 12345U;
return *seed;
}
static uint64_t
__rte_rand_lcg64(uint32_t *seed)
{
uint64_t low;
uint64_t high;
/* A 64-bit LCG would have been much cleaner, but good
* multiplier/increments for such seem hard to come by.
*/
low = __rte_rand_lcg32(seed);
high = __rte_rand_lcg32(seed);
return low | (high << 32);
}
static uint64_t
__rte_rand_lfsr258_gen_seed(uint32_t *seed, uint64_t min_value)
{
uint64_t res;
res = __rte_rand_lcg64(seed);
if (res < min_value)
res += min_value;
return res;
}
static void
__rte_srand_lfsr258(uint64_t seed, struct rte_rand_state *state)
{
uint32_t lcg_seed;
lcg_seed = (uint32_t)(seed ^ (seed >> 32));
state->z1 = __rte_rand_lfsr258_gen_seed(&lcg_seed, 2UL);
state->z2 = __rte_rand_lfsr258_gen_seed(&lcg_seed, 512UL);
state->z3 = __rte_rand_lfsr258_gen_seed(&lcg_seed, 4096UL);
state->z4 = __rte_rand_lfsr258_gen_seed(&lcg_seed, 131072UL);
state->z5 = __rte_rand_lfsr258_gen_seed(&lcg_seed, 8388608UL);
}
void
rte_srand(uint64_t seed)
{
unsigned int lcore_id;
/* add lcore_id to seed to avoid having the same sequence */
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
__rte_srand_lfsr258(seed + lcore_id, &rand_states[lcore_id]);
}
static __rte_always_inline uint64_t
__rte_rand_lfsr258_comp(uint64_t z, uint64_t a, uint64_t b, uint64_t c,
uint64_t d)
{
return ((z & c) << d) ^ (((z << a) ^ z) >> b);
}
/* Based on LEcuyer, P.: Tables of maximally equidistributed combined
* LFSR generators.
*/
static __rte_always_inline uint64_t
__rte_rand_lfsr258(struct rte_rand_state *state)
{
state->z1 = __rte_rand_lfsr258_comp(state->z1, 1UL, 53UL,
18446744073709551614UL, 10UL);
state->z2 = __rte_rand_lfsr258_comp(state->z2, 24UL, 50UL,
18446744073709551104UL, 5UL);
state->z3 = __rte_rand_lfsr258_comp(state->z3, 3UL, 23UL,
18446744073709547520UL, 29UL);
state->z4 = __rte_rand_lfsr258_comp(state->z4, 5UL, 24UL,
18446744073709420544UL, 23UL);
state->z5 = __rte_rand_lfsr258_comp(state->z5, 3UL, 33UL,
18446744073701163008UL, 8UL);
return state->z1 ^ state->z2 ^ state->z3 ^ state->z4 ^ state->z5;
}
static __rte_always_inline
struct rte_rand_state *__rte_rand_get_state(void)
{
unsigned int lcore_id;
lcore_id = rte_lcore_id();
if (unlikely(lcore_id == LCORE_ID_ANY))
lcore_id = rte_get_master_lcore();
return &rand_states[lcore_id];
}
uint64_t
rte_rand(void)
{
struct rte_rand_state *state;
state = __rte_rand_get_state();
return __rte_rand_lfsr258(state);
}
uint64_t
rte_rand_max(uint64_t upper_bound)
{
struct rte_rand_state *state;
uint8_t ones;
uint8_t leading_zeros;
uint64_t mask = ~((uint64_t)0);
uint64_t res;
if (unlikely(upper_bound < 2))
return 0;
state = __rte_rand_get_state();
ones = __builtin_popcountll(upper_bound);
/* Handle power-of-2 upper_bound as a special case, since it
* has no bias issues.
*/
if (unlikely(ones == 1))
return __rte_rand_lfsr258(state) & (upper_bound - 1);
/* The approach to avoiding bias is to create a mask that
* stretches beyond the request value range, and up to the
* next power-of-2. In case the masked generated random value
* is equal to or greater than the upper bound, just discard
* the value and generate a new one.
*/
leading_zeros = __builtin_clzll(upper_bound);
mask >>= leading_zeros;
do {
res = __rte_rand_lfsr258(state) & mask;
} while (unlikely(res >= upper_bound));
return res;
}
static uint64_t
__rte_random_initial_seed(void)
{
#ifdef RTE_LIBEAL_USE_GETENTROPY
int ge_rc;
uint64_t ge_seed;
ge_rc = getentropy(&ge_seed, sizeof(ge_seed));
if (ge_rc == 0)
return ge_seed;
#endif
#ifdef RTE_MACHINE_CPUFLAG_RDSEED
unsigned int rdseed_low;
unsigned int rdseed_high;
/* first fallback: rdseed instruction, if available */
if (_rdseed32_step(&rdseed_low) == 1 &&
_rdseed32_step(&rdseed_high) == 1)
return (uint64_t)rdseed_low | ((uint64_t)rdseed_high << 32);
#endif
/* second fallback: seed using rdtsc */
return rte_get_timer_cycles();
}
RTE_INIT(rte_rand_init)
{
uint64_t seed;
seed = __rte_random_initial_seed();
rte_srand(seed);
}