2018-01-29 14:11:34 +01:00
|
|
|
/* SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
* Copyright 2017 6WIND S.A.
|
2018-03-20 21:20:35 +02:00
|
|
|
* Copyright 2017 Mellanox Technologies, Ltd
|
2017-07-18 14:48:14 +02:00
|
|
|
*/
|
|
|
|
|
2018-01-17 16:30:12 +02:00
|
|
|
#include <stdbool.h>
|
2017-07-18 14:48:14 +02:00
|
|
|
#include <stdint.h>
|
2018-01-25 18:19:30 +02:00
|
|
|
#include <unistd.h>
|
2017-07-18 14:48:14 +02:00
|
|
|
|
|
|
|
#include <rte_debug.h>
|
2017-07-18 14:48:20 +02:00
|
|
|
#include <rte_atomic.h>
|
2018-01-22 00:16:22 +00:00
|
|
|
#include <rte_ethdev_driver.h>
|
2017-07-18 14:48:14 +02:00
|
|
|
#include <rte_malloc.h>
|
2017-07-18 14:48:17 +02:00
|
|
|
#include <rte_flow.h>
|
2017-10-21 20:54:46 +00:00
|
|
|
#include <rte_cycles.h>
|
2018-05-10 14:38:10 +00:00
|
|
|
#include <rte_ethdev.h>
|
2019-11-01 13:12:56 -07:00
|
|
|
#include <rte_string_fns.h>
|
2017-07-18 14:48:14 +02:00
|
|
|
|
|
|
|
#include "failsafe_private.h"
|
|
|
|
|
|
|
|
static int
|
|
|
|
fs_dev_configure(struct rte_eth_dev *dev)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
FOREACH_SUBDEV(sdev, i, dev) {
|
2017-07-18 14:48:20 +02:00
|
|
|
int rmv_interrupt = 0;
|
2017-07-18 14:48:21 +02:00
|
|
|
int lsc_interrupt = 0;
|
|
|
|
int lsc_enabled;
|
2017-07-18 14:48:20 +02:00
|
|
|
|
net/failsafe: fix reconfiguration
Fail-safe PMD manages the states of its sub-devices gradually:
DEV_UNDEFINED, DEV_PARSED, DEV_PROBED, DEV_ACTIVE, DEV_STARTED.
When the sub-device arguments successfully was parsed, the state is
raised from DEV_UNDEFINED to DEV_PARSED.
When the sub-device successfully was probed, the state is raised from
DEV_PARSED to DEV_PROBED.
When the sub-device successfully was configured by
rte_eth_dev_configure(), the state is raised from DEV_PROBED to
DEV_ACTIVE.
When the sub-device successfully was started by rte_eth_dev_start(), the
state is raised from DEV_ACTIVE to DEV_STARTED.
When the sub-device successfully was stopped by rte_eth_dev_stop(), the
state is degraded from DEV_STARTED to DEV_ACTIVE.
When the sub-device successfully was closed by rte_eth_dev_close(), the
state is degraded from DEV_ACTIVE to DEV_PROBED.
When the sub-device successfully was removed by
rte_eal_hotplug_remove(), the state is degraded from DEV_PROBED to
DEV_UNDEFINED.
Fail-safe dev_configure() operation calls to its sub-devices
dev_configure() operation, but only for sub-devices which are in
DEV_PROBED state, means that sub-devices which are in DEV_ACTIVE state
because the application triggered dev_stop() operation cannot be
reconfigured again by dev_configure() operation which is really
problematic when application wants to reconfigure its ports.
Actually, the application may get success report when some of the
sub-devices are not in the wanted configuration.
The current behavior of fail-safe dev_configure() is correct only for
the first time dev_configure() is triggered by the application or for
sub-device synchronization in plug-in event, but it ignores the option
for reconfiguration from application side.
Allow calling to sub-devices dev_configure() operations also in
DEV_ACTIVE state when the call was triggered by the application.
Fixes: a46f8d584eb8 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-11 17:27:34 +00:00
|
|
|
if (sdev->state != DEV_PROBED &&
|
|
|
|
!(PRIV(dev)->alarm_lock == 0 && sdev->state == DEV_ACTIVE))
|
2017-07-18 14:48:14 +02:00
|
|
|
continue;
|
2017-07-18 14:48:20 +02:00
|
|
|
|
|
|
|
rmv_interrupt = ETH(sdev)->data->dev_flags &
|
|
|
|
RTE_ETH_DEV_INTR_RMV;
|
|
|
|
if (rmv_interrupt) {
|
|
|
|
DEBUG("Enabling RMV interrupts for sub_device %d", i);
|
|
|
|
dev->data->dev_conf.intr_conf.rmv = 1;
|
|
|
|
} else {
|
|
|
|
DEBUG("sub_device %d does not support RMV event", i);
|
|
|
|
}
|
2017-07-18 14:48:21 +02:00
|
|
|
lsc_enabled = dev->data->dev_conf.intr_conf.lsc;
|
|
|
|
lsc_interrupt = lsc_enabled &&
|
|
|
|
(ETH(sdev)->data->dev_flags &
|
|
|
|
RTE_ETH_DEV_INTR_LSC);
|
|
|
|
if (lsc_interrupt) {
|
|
|
|
DEBUG("Enabling LSC interrupts for sub_device %d", i);
|
|
|
|
dev->data->dev_conf.intr_conf.lsc = 1;
|
|
|
|
} else if (lsc_enabled && !lsc_interrupt) {
|
|
|
|
DEBUG("Disabling LSC interrupts for sub_device %d", i);
|
|
|
|
dev->data->dev_conf.intr_conf.lsc = 0;
|
|
|
|
}
|
2017-07-18 14:48:14 +02:00
|
|
|
DEBUG("Configuring sub-device %d", i);
|
|
|
|
ret = rte_eth_dev_configure(PORT_ID(sdev),
|
|
|
|
dev->data->nb_rx_queues,
|
|
|
|
dev->data->nb_tx_queues,
|
|
|
|
&dev->data->dev_conf);
|
|
|
|
if (ret) {
|
2018-01-20 21:12:24 +00:00
|
|
|
if (!fs_err(sdev, ret))
|
|
|
|
continue;
|
2017-07-18 14:48:14 +02:00
|
|
|
ERROR("Could not configure sub_device %d", i);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return ret;
|
|
|
|
}
|
2018-05-22 12:38:47 +00:00
|
|
|
if (rmv_interrupt && sdev->rmv_callback == 0) {
|
2017-07-18 14:48:20 +02:00
|
|
|
ret = rte_eth_dev_callback_register(PORT_ID(sdev),
|
|
|
|
RTE_ETH_EVENT_INTR_RMV,
|
|
|
|
failsafe_eth_rmv_event_callback,
|
|
|
|
sdev);
|
|
|
|
if (ret)
|
|
|
|
WARN("Failed to register RMV callback for sub_device %d",
|
|
|
|
SUB_ID(sdev));
|
2018-05-22 12:38:46 +00:00
|
|
|
else
|
|
|
|
sdev->rmv_callback = 1;
|
2017-07-18 14:48:20 +02:00
|
|
|
}
|
|
|
|
dev->data->dev_conf.intr_conf.rmv = 0;
|
2018-05-22 12:38:47 +00:00
|
|
|
if (lsc_interrupt && sdev->lsc_callback == 0) {
|
2017-07-18 14:48:21 +02:00
|
|
|
ret = rte_eth_dev_callback_register(PORT_ID(sdev),
|
|
|
|
RTE_ETH_EVENT_INTR_LSC,
|
|
|
|
failsafe_eth_lsc_event_callback,
|
|
|
|
dev);
|
|
|
|
if (ret)
|
|
|
|
WARN("Failed to register LSC callback for sub_device %d",
|
|
|
|
SUB_ID(sdev));
|
2018-05-22 12:38:46 +00:00
|
|
|
else
|
|
|
|
sdev->lsc_callback = 1;
|
2017-07-18 14:48:21 +02:00
|
|
|
}
|
|
|
|
dev->data->dev_conf.intr_conf.lsc = lsc_enabled;
|
2017-07-18 14:48:14 +02:00
|
|
|
sdev->state = DEV_ACTIVE;
|
|
|
|
}
|
2017-07-18 14:48:15 +02:00
|
|
|
if (PRIV(dev)->state < DEV_ACTIVE)
|
|
|
|
PRIV(dev)->state = DEV_ACTIVE;
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-09-20 14:55:51 +01:00
|
|
|
static void
|
|
|
|
fs_set_queues_state_start(struct rte_eth_dev *dev)
|
|
|
|
{
|
|
|
|
struct rxq *rxq;
|
2018-09-20 14:55:52 +01:00
|
|
|
struct txq *txq;
|
2018-09-20 14:55:51 +01:00
|
|
|
uint16_t i;
|
|
|
|
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
|
|
rxq = dev->data->rx_queues[i];
|
2018-08-31 17:09:37 +01:00
|
|
|
if (rxq != NULL && !rxq->info.conf.rx_deferred_start)
|
2018-09-20 14:55:51 +01:00
|
|
|
dev->data->rx_queue_state[i] =
|
|
|
|
RTE_ETH_QUEUE_STATE_STARTED;
|
|
|
|
}
|
2018-09-20 14:55:52 +01:00
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
|
|
txq = dev->data->tx_queues[i];
|
2018-08-31 17:09:38 +01:00
|
|
|
if (txq != NULL && !txq->info.conf.tx_deferred_start)
|
2018-09-20 14:55:52 +01:00
|
|
|
dev->data->tx_queue_state[i] =
|
|
|
|
RTE_ETH_QUEUE_STATE_STARTED;
|
|
|
|
}
|
2018-09-20 14:55:51 +01:00
|
|
|
}
|
|
|
|
|
2017-07-18 14:48:14 +02:00
|
|
|
static int
|
|
|
|
fs_dev_start(struct rte_eth_dev *dev)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2018-01-25 18:19:30 +02:00
|
|
|
ret = failsafe_rx_intr_install(dev);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
if (ret) {
|
|
|
|
fs_unlock(dev, 0);
|
2018-01-25 18:19:30 +02:00
|
|
|
return ret;
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
}
|
2017-07-18 14:48:14 +02:00
|
|
|
FOREACH_SUBDEV(sdev, i, dev) {
|
|
|
|
if (sdev->state != DEV_ACTIVE)
|
|
|
|
continue;
|
|
|
|
DEBUG("Starting sub_device %d", i);
|
|
|
|
ret = rte_eth_dev_start(PORT_ID(sdev));
|
2018-01-20 21:12:24 +00:00
|
|
|
if (ret) {
|
|
|
|
if (!fs_err(sdev, ret))
|
|
|
|
continue;
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return ret;
|
2018-01-20 21:12:24 +00:00
|
|
|
}
|
2018-01-25 18:19:31 +02:00
|
|
|
ret = failsafe_rx_intr_install_subdevice(sdev);
|
|
|
|
if (ret) {
|
|
|
|
if (!fs_err(sdev, ret))
|
|
|
|
continue;
|
2020-10-15 14:30:44 +01:00
|
|
|
if (fs_err(sdev, rte_eth_dev_stop(PORT_ID(sdev))) < 0)
|
|
|
|
ERROR("Failed to stop sub-device %u",
|
|
|
|
SUB_ID(sdev));
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2018-01-25 18:19:31 +02:00
|
|
|
return ret;
|
|
|
|
}
|
2017-07-18 14:48:14 +02:00
|
|
|
sdev->state = DEV_STARTED;
|
|
|
|
}
|
2018-09-20 14:55:51 +01:00
|
|
|
if (PRIV(dev)->state < DEV_STARTED) {
|
2017-07-18 14:48:15 +02:00
|
|
|
PRIV(dev)->state = DEV_STARTED;
|
2018-09-20 14:55:51 +01:00
|
|
|
fs_set_queues_state_start(dev);
|
|
|
|
}
|
2017-07-18 14:48:20 +02:00
|
|
|
fs_switch_dev(dev, NULL);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-09-20 14:55:51 +01:00
|
|
|
static void
|
|
|
|
fs_set_queues_state_stop(struct rte_eth_dev *dev)
|
|
|
|
{
|
|
|
|
uint16_t i;
|
|
|
|
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++)
|
2018-08-31 17:09:37 +01:00
|
|
|
if (dev->data->rx_queues[i] != NULL)
|
|
|
|
dev->data->rx_queue_state[i] =
|
|
|
|
RTE_ETH_QUEUE_STATE_STOPPED;
|
2018-09-20 14:55:52 +01:00
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++)
|
2018-08-31 17:09:38 +01:00
|
|
|
if (dev->data->tx_queues[i] != NULL)
|
|
|
|
dev->data->tx_queue_state[i] =
|
|
|
|
RTE_ETH_QUEUE_STATE_STOPPED;
|
2018-09-20 14:55:51 +01:00
|
|
|
}
|
|
|
|
|
2020-10-15 14:30:45 +01:00
|
|
|
static int
|
2017-07-18 14:48:14 +02:00
|
|
|
fs_dev_stop(struct rte_eth_dev *dev)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
2020-10-15 14:30:45 +01:00
|
|
|
int ret;
|
2017-07-18 14:48:14 +02:00
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2017-07-18 14:48:15 +02:00
|
|
|
PRIV(dev)->state = DEV_STARTED - 1;
|
2017-07-18 14:48:14 +02:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_STARTED) {
|
2020-10-15 14:30:45 +01:00
|
|
|
ret = rte_eth_dev_stop(PORT_ID(sdev));
|
|
|
|
if (fs_err(sdev, ret) < 0) {
|
|
|
|
ERROR("Failed to stop device %u",
|
|
|
|
PORT_ID(sdev));
|
|
|
|
PRIV(dev)->state = DEV_STARTED + 1;
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
return ret;
|
|
|
|
}
|
2018-01-25 18:19:31 +02:00
|
|
|
failsafe_rx_intr_uninstall_subdevice(sdev);
|
2017-07-18 14:48:14 +02:00
|
|
|
sdev->state = DEV_STARTED - 1;
|
|
|
|
}
|
2018-01-25 18:19:30 +02:00
|
|
|
failsafe_rx_intr_uninstall(dev);
|
2018-09-20 14:55:51 +01:00
|
|
|
fs_set_queues_state_stop(dev);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2020-10-15 14:30:45 +01:00
|
|
|
|
|
|
|
return 0;
|
2017-07-18 14:48:14 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fs_dev_set_link_up(struct rte_eth_dev *dev)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
DEBUG("Calling rte_eth_dev_set_link_up on sub_device %d", i);
|
|
|
|
ret = rte_eth_dev_set_link_up(PORT_ID(sdev));
|
2018-01-20 21:12:24 +00:00
|
|
|
if ((ret = fs_err(sdev, ret))) {
|
2017-07-18 14:48:14 +02:00
|
|
|
ERROR("Operation rte_eth_dev_set_link_up failed for sub_device %d"
|
|
|
|
" with error %d", i, ret);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fs_dev_set_link_down(struct rte_eth_dev *dev)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
DEBUG("Calling rte_eth_dev_set_link_down on sub_device %d", i);
|
|
|
|
ret = rte_eth_dev_set_link_down(PORT_ID(sdev));
|
2018-01-20 21:12:24 +00:00
|
|
|
if ((ret = fs_err(sdev, ret))) {
|
2017-07-18 14:48:14 +02:00
|
|
|
ERROR("Operation rte_eth_dev_set_link_down failed for sub_device %d"
|
|
|
|
" with error %d", i, ret);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-09-20 14:55:51 +01:00
|
|
|
static int
|
|
|
|
fs_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
|
|
|
int err = 0;
|
|
|
|
bool failure = true;
|
|
|
|
|
|
|
|
fs_lock(dev, 0);
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
uint16_t port_id = ETH(sdev)->data->port_id;
|
|
|
|
|
|
|
|
ret = rte_eth_dev_rx_queue_stop(port_id, rx_queue_id);
|
|
|
|
ret = fs_err(sdev, ret);
|
|
|
|
if (ret) {
|
|
|
|
ERROR("Rx queue stop failed for subdevice %d", i);
|
|
|
|
err = ret;
|
|
|
|
} else {
|
|
|
|
failure = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
/* Return 0 in case of at least one successful queue stop */
|
|
|
|
return (failure) ? err : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fs_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
fs_lock(dev, 0);
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
uint16_t port_id = ETH(sdev)->data->port_id;
|
|
|
|
|
|
|
|
ret = rte_eth_dev_rx_queue_start(port_id, rx_queue_id);
|
|
|
|
ret = fs_err(sdev, ret);
|
|
|
|
if (ret) {
|
|
|
|
ERROR("Rx queue start failed for subdevice %d", i);
|
|
|
|
fs_rx_queue_stop(dev, rx_queue_id);
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-09-20 14:55:52 +01:00
|
|
|
static int
|
|
|
|
fs_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
|
|
|
int err = 0;
|
|
|
|
bool failure = true;
|
|
|
|
|
|
|
|
fs_lock(dev, 0);
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
uint16_t port_id = ETH(sdev)->data->port_id;
|
|
|
|
|
|
|
|
ret = rte_eth_dev_tx_queue_stop(port_id, tx_queue_id);
|
|
|
|
ret = fs_err(sdev, ret);
|
|
|
|
if (ret) {
|
|
|
|
ERROR("Tx queue stop failed for subdevice %d", i);
|
|
|
|
err = ret;
|
|
|
|
} else {
|
|
|
|
failure = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
/* Return 0 in case of at least one successful queue stop */
|
|
|
|
return (failure) ? err : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fs_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
fs_lock(dev, 0);
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
uint16_t port_id = ETH(sdev)->data->port_id;
|
|
|
|
|
|
|
|
ret = rte_eth_dev_tx_queue_start(port_id, tx_queue_id);
|
|
|
|
ret = fs_err(sdev, ret);
|
|
|
|
if (ret) {
|
|
|
|
ERROR("Tx queue start failed for subdevice %d", i);
|
|
|
|
fs_tx_queue_stop(dev, tx_queue_id);
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-07-18 14:48:14 +02:00
|
|
|
static void
|
|
|
|
fs_rx_queue_release(void *queue)
|
|
|
|
{
|
|
|
|
struct rte_eth_dev *dev;
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
struct rxq *rxq;
|
|
|
|
|
|
|
|
if (queue == NULL)
|
|
|
|
return;
|
|
|
|
rxq = queue;
|
2019-03-18 16:05:25 +00:00
|
|
|
dev = &rte_eth_devices[rxq->priv->data->port_id];
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2020-04-27 18:44:19 +08:00
|
|
|
if (rxq->event_fd >= 0)
|
2018-01-25 18:19:30 +02:00
|
|
|
close(rxq->event_fd);
|
2018-08-31 17:16:32 +01:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
if (ETH(sdev)->data->rx_queues != NULL &&
|
|
|
|
ETH(sdev)->data->rx_queues[rxq->qid] != NULL) {
|
|
|
|
SUBOPS(sdev, rx_queue_release)
|
|
|
|
(ETH(sdev)->data->rx_queues[rxq->qid]);
|
|
|
|
}
|
|
|
|
}
|
2017-07-18 14:48:14 +02:00
|
|
|
dev->data->rx_queues[rxq->qid] = NULL;
|
|
|
|
rte_free(rxq);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fs_rx_queue_setup(struct rte_eth_dev *dev,
|
|
|
|
uint16_t rx_queue_id,
|
|
|
|
uint16_t nb_rx_desc,
|
|
|
|
unsigned int socket_id,
|
|
|
|
const struct rte_eth_rxconf *rx_conf,
|
|
|
|
struct rte_mempool *mb_pool)
|
|
|
|
{
|
2018-01-25 18:19:30 +02:00
|
|
|
/*
|
|
|
|
* FIXME: Add a proper interface in rte_eal_interrupts for
|
|
|
|
* allocating eventfd as an interrupt vector.
|
|
|
|
* For the time being, fake as if we are using MSIX interrupts,
|
|
|
|
* this will cause rte_intr_efd_enable to allocate an eventfd for us.
|
|
|
|
*/
|
|
|
|
struct rte_intr_handle intr_handle = {
|
|
|
|
.type = RTE_INTR_HANDLE_VFIO_MSIX,
|
|
|
|
.efds = { -1, },
|
|
|
|
};
|
2017-07-18 14:48:14 +02:00
|
|
|
struct sub_device *sdev;
|
|
|
|
struct rxq *rxq;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
|
|
|
|
2018-09-20 14:55:51 +01:00
|
|
|
fs_lock(dev, 0);
|
2018-09-20 14:55:50 +01:00
|
|
|
if (rx_conf->rx_deferred_start) {
|
2018-09-20 14:55:51 +01:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) {
|
|
|
|
if (SUBOPS(sdev, rx_queue_start) == NULL) {
|
|
|
|
ERROR("Rx queue deferred start is not "
|
|
|
|
"supported for subdevice %d", i);
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
}
|
2018-09-20 14:55:50 +01:00
|
|
|
}
|
2017-07-18 14:48:14 +02:00
|
|
|
rxq = dev->data->rx_queues[rx_queue_id];
|
|
|
|
if (rxq != NULL) {
|
|
|
|
fs_rx_queue_release(rxq);
|
|
|
|
dev->data->rx_queues[rx_queue_id] = NULL;
|
|
|
|
}
|
2017-07-18 14:48:20 +02:00
|
|
|
rxq = rte_zmalloc(NULL,
|
|
|
|
sizeof(*rxq) +
|
|
|
|
sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail,
|
2017-07-18 14:48:14 +02:00
|
|
|
RTE_CACHE_LINE_SIZE);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
if (rxq == NULL) {
|
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return -ENOMEM;
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
}
|
2017-07-18 14:48:20 +02:00
|
|
|
FOREACH_SUBDEV(sdev, i, dev)
|
|
|
|
rte_atomic64_init(&rxq->refcnt[i]);
|
2017-07-18 14:48:14 +02:00
|
|
|
rxq->qid = rx_queue_id;
|
|
|
|
rxq->socket_id = socket_id;
|
|
|
|
rxq->info.mp = mb_pool;
|
|
|
|
rxq->info.conf = *rx_conf;
|
|
|
|
rxq->info.nb_desc = nb_rx_desc;
|
|
|
|
rxq->priv = PRIV(dev);
|
2017-12-19 17:14:29 +00:00
|
|
|
rxq->sdev = PRIV(dev)->subs;
|
2018-01-25 18:19:30 +02:00
|
|
|
ret = rte_intr_efd_enable(&intr_handle, 1);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
if (ret < 0) {
|
|
|
|
fs_unlock(dev, 0);
|
2018-01-25 18:19:30 +02:00
|
|
|
return ret;
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
}
|
2018-01-25 18:19:30 +02:00
|
|
|
rxq->event_fd = intr_handle.efds[0];
|
2017-07-18 14:48:14 +02:00
|
|
|
dev->data->rx_queues[rx_queue_id] = rxq;
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
ret = rte_eth_rx_queue_setup(PORT_ID(sdev),
|
|
|
|
rx_queue_id,
|
|
|
|
nb_rx_desc, socket_id,
|
|
|
|
rx_conf, mb_pool);
|
2018-01-20 21:12:24 +00:00
|
|
|
if ((ret = fs_err(sdev, ret))) {
|
2017-07-18 14:48:14 +02:00
|
|
|
ERROR("RX queue setup failed for sub_device %d", i);
|
|
|
|
goto free_rxq;
|
|
|
|
}
|
|
|
|
}
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return 0;
|
|
|
|
free_rxq:
|
|
|
|
fs_rx_queue_release(rxq);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2018-01-25 18:19:30 +02:00
|
|
|
static int
|
|
|
|
fs_rx_intr_enable(struct rte_eth_dev *dev, uint16_t idx)
|
|
|
|
{
|
|
|
|
struct rxq *rxq;
|
2018-01-25 18:19:31 +02:00
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
|
|
|
int rc = 0;
|
2018-01-25 18:19:30 +02:00
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2018-01-25 18:19:30 +02:00
|
|
|
if (idx >= dev->data->nb_rx_queues) {
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
rc = -EINVAL;
|
|
|
|
goto unlock;
|
2018-01-25 18:19:30 +02:00
|
|
|
}
|
|
|
|
rxq = dev->data->rx_queues[idx];
|
|
|
|
if (rxq == NULL || rxq->event_fd <= 0) {
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
rc = -EINVAL;
|
|
|
|
goto unlock;
|
2018-01-25 18:19:30 +02:00
|
|
|
}
|
2018-01-25 18:19:32 +02:00
|
|
|
/* Fail if proxy service is nor running. */
|
|
|
|
if (PRIV(dev)->rxp.sstate != SS_RUNNING) {
|
|
|
|
ERROR("failsafe interrupt services are not running");
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
rc = -EAGAIN;
|
|
|
|
goto unlock;
|
2018-01-25 18:19:32 +02:00
|
|
|
}
|
2018-01-25 18:19:30 +02:00
|
|
|
rxq->enable_events = 1;
|
2018-01-25 18:19:31 +02:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
ret = rte_eth_dev_rx_intr_enable(PORT_ID(sdev), idx);
|
|
|
|
ret = fs_err(sdev, ret);
|
|
|
|
if (ret)
|
|
|
|
rc = ret;
|
|
|
|
}
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
unlock:
|
|
|
|
fs_unlock(dev, 0);
|
2018-01-25 18:19:31 +02:00
|
|
|
if (rc)
|
|
|
|
rte_errno = -rc;
|
|
|
|
return rc;
|
2018-01-25 18:19:30 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fs_rx_intr_disable(struct rte_eth_dev *dev, uint16_t idx)
|
|
|
|
{
|
|
|
|
struct rxq *rxq;
|
2018-01-25 18:19:31 +02:00
|
|
|
struct sub_device *sdev;
|
2018-01-25 18:19:30 +02:00
|
|
|
uint64_t u64;
|
2018-01-25 18:19:31 +02:00
|
|
|
uint8_t i;
|
|
|
|
int rc = 0;
|
|
|
|
int ret;
|
2018-01-25 18:19:30 +02:00
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2018-01-25 18:19:30 +02:00
|
|
|
if (idx >= dev->data->nb_rx_queues) {
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
rc = -EINVAL;
|
|
|
|
goto unlock;
|
2018-01-25 18:19:30 +02:00
|
|
|
}
|
|
|
|
rxq = dev->data->rx_queues[idx];
|
|
|
|
if (rxq == NULL || rxq->event_fd <= 0) {
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
rc = -EINVAL;
|
|
|
|
goto unlock;
|
2018-01-25 18:19:30 +02:00
|
|
|
}
|
|
|
|
rxq->enable_events = 0;
|
2018-01-25 18:19:31 +02:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
ret = rte_eth_dev_rx_intr_disable(PORT_ID(sdev), idx);
|
|
|
|
ret = fs_err(sdev, ret);
|
|
|
|
if (ret)
|
|
|
|
rc = ret;
|
|
|
|
}
|
2018-01-25 18:19:30 +02:00
|
|
|
/* Clear pending events */
|
|
|
|
while (read(rxq->event_fd, &u64, sizeof(uint64_t)) > 0)
|
|
|
|
;
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
unlock:
|
|
|
|
fs_unlock(dev, 0);
|
2018-01-25 18:19:31 +02:00
|
|
|
if (rc)
|
|
|
|
rte_errno = -rc;
|
|
|
|
return rc;
|
2018-01-25 18:19:30 +02:00
|
|
|
}
|
|
|
|
|
2017-07-18 14:48:14 +02:00
|
|
|
static void
|
|
|
|
fs_tx_queue_release(void *queue)
|
|
|
|
{
|
|
|
|
struct rte_eth_dev *dev;
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
struct txq *txq;
|
|
|
|
|
|
|
|
if (queue == NULL)
|
|
|
|
return;
|
|
|
|
txq = queue;
|
2019-03-18 16:05:25 +00:00
|
|
|
dev = &rte_eth_devices[txq->priv->data->port_id];
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2018-08-31 17:16:32 +01:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
if (ETH(sdev)->data->tx_queues != NULL &&
|
|
|
|
ETH(sdev)->data->tx_queues[txq->qid] != NULL) {
|
|
|
|
SUBOPS(sdev, tx_queue_release)
|
|
|
|
(ETH(sdev)->data->tx_queues[txq->qid]);
|
|
|
|
}
|
|
|
|
}
|
2017-07-18 14:48:14 +02:00
|
|
|
dev->data->tx_queues[txq->qid] = NULL;
|
|
|
|
rte_free(txq);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fs_tx_queue_setup(struct rte_eth_dev *dev,
|
|
|
|
uint16_t tx_queue_id,
|
|
|
|
uint16_t nb_tx_desc,
|
|
|
|
unsigned int socket_id,
|
|
|
|
const struct rte_eth_txconf *tx_conf)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
struct txq *txq;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
|
|
|
|
2018-09-20 14:55:52 +01:00
|
|
|
fs_lock(dev, 0);
|
2018-09-20 14:55:50 +01:00
|
|
|
if (tx_conf->tx_deferred_start) {
|
2018-09-20 14:55:52 +01:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) {
|
|
|
|
if (SUBOPS(sdev, tx_queue_start) == NULL) {
|
|
|
|
ERROR("Tx queue deferred start is not "
|
|
|
|
"supported for subdevice %d", i);
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
}
|
2018-09-20 14:55:50 +01:00
|
|
|
}
|
2017-07-18 14:48:14 +02:00
|
|
|
txq = dev->data->tx_queues[tx_queue_id];
|
|
|
|
if (txq != NULL) {
|
|
|
|
fs_tx_queue_release(txq);
|
|
|
|
dev->data->tx_queues[tx_queue_id] = NULL;
|
|
|
|
}
|
2017-07-18 14:48:20 +02:00
|
|
|
txq = rte_zmalloc("ethdev TX queue",
|
|
|
|
sizeof(*txq) +
|
|
|
|
sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail,
|
2017-07-18 14:48:14 +02:00
|
|
|
RTE_CACHE_LINE_SIZE);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
if (txq == NULL) {
|
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return -ENOMEM;
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
}
|
2017-07-18 14:48:20 +02:00
|
|
|
FOREACH_SUBDEV(sdev, i, dev)
|
|
|
|
rte_atomic64_init(&txq->refcnt[i]);
|
2017-07-18 14:48:14 +02:00
|
|
|
txq->qid = tx_queue_id;
|
|
|
|
txq->socket_id = socket_id;
|
|
|
|
txq->info.conf = *tx_conf;
|
|
|
|
txq->info.nb_desc = nb_tx_desc;
|
|
|
|
txq->priv = PRIV(dev);
|
|
|
|
dev->data->tx_queues[tx_queue_id] = txq;
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
ret = rte_eth_tx_queue_setup(PORT_ID(sdev),
|
|
|
|
tx_queue_id,
|
|
|
|
nb_tx_desc, socket_id,
|
|
|
|
tx_conf);
|
2018-01-20 21:12:24 +00:00
|
|
|
if ((ret = fs_err(sdev, ret))) {
|
2017-07-18 14:48:14 +02:00
|
|
|
ERROR("TX queue setup failed for sub_device %d", i);
|
|
|
|
goto free_txq;
|
|
|
|
}
|
|
|
|
}
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return 0;
|
|
|
|
free_txq:
|
|
|
|
fs_tx_queue_release(txq);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
fs_dev_free_queues(struct rte_eth_dev *dev)
|
|
|
|
{
|
|
|
|
uint16_t i;
|
|
|
|
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
|
|
fs_rx_queue_release(dev->data->rx_queues[i]);
|
|
|
|
dev->data->rx_queues[i] = NULL;
|
|
|
|
}
|
|
|
|
dev->data->nb_rx_queues = 0;
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
|
|
fs_tx_queue_release(dev->data->tx_queues[i]);
|
|
|
|
dev->data->tx_queues[i] = NULL;
|
|
|
|
}
|
|
|
|
dev->data->nb_tx_queues = 0;
|
|
|
|
}
|
|
|
|
|
2020-09-29 01:14:19 +02:00
|
|
|
int
|
|
|
|
failsafe_eth_dev_close(struct rte_eth_dev *dev)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
2020-10-16 15:32:59 +02:00
|
|
|
int err, ret = 0;
|
2020-09-29 01:14:19 +02:00
|
|
|
|
|
|
|
fs_lock(dev, 0);
|
|
|
|
failsafe_hotplug_alarm_cancel(dev);
|
2020-10-15 14:30:45 +01:00
|
|
|
if (PRIV(dev)->state == DEV_STARTED) {
|
|
|
|
ret = dev->dev_ops->dev_stop(dev);
|
|
|
|
if (ret != 0) {
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
2020-09-29 01:14:19 +02:00
|
|
|
PRIV(dev)->state = DEV_ACTIVE - 1;
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
DEBUG("Closing sub_device %d", i);
|
|
|
|
failsafe_eth_dev_unregister_callbacks(sdev);
|
2020-10-16 15:32:59 +02:00
|
|
|
err = rte_eth_dev_close(PORT_ID(sdev));
|
|
|
|
if (err) {
|
|
|
|
ret = ret ? ret : err;
|
|
|
|
ERROR("Error while closing sub-device %u",
|
|
|
|
PORT_ID(sdev));
|
|
|
|
}
|
2020-09-29 01:14:19 +02:00
|
|
|
sdev->state = DEV_ACTIVE - 1;
|
|
|
|
}
|
|
|
|
rte_eth_dev_callback_unregister(RTE_ETH_ALL, RTE_ETH_EVENT_NEW,
|
|
|
|
failsafe_eth_new_event_callback, dev);
|
|
|
|
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
|
|
|
|
fs_unlock(dev, 0);
|
2020-10-16 15:32:59 +02:00
|
|
|
return ret;
|
2020-09-29 01:14:19 +02:00
|
|
|
}
|
|
|
|
fs_dev_free_queues(dev);
|
2020-10-16 15:32:59 +02:00
|
|
|
err = failsafe_eal_uninit(dev);
|
|
|
|
if (err) {
|
|
|
|
ret = ret ? ret : err;
|
2020-09-29 01:14:19 +02:00
|
|
|
ERROR("Error while uninitializing sub-EAL");
|
2020-10-16 15:32:59 +02:00
|
|
|
}
|
2020-09-29 01:14:19 +02:00
|
|
|
failsafe_args_free(dev);
|
|
|
|
rte_free(PRIV(dev)->subs);
|
|
|
|
rte_free(PRIV(dev)->mcast_addrs);
|
|
|
|
/* mac_addrs must not be freed alone because part of dev_private */
|
|
|
|
dev->data->mac_addrs = NULL;
|
|
|
|
fs_unlock(dev, 0);
|
2020-10-16 15:32:59 +02:00
|
|
|
err = pthread_mutex_destroy(&PRIV(dev)->hotplug_mutex);
|
|
|
|
if (err) {
|
|
|
|
ret = ret ? ret : err;
|
2020-09-29 01:14:19 +02:00
|
|
|
ERROR("Error while destroying hotplug mutex");
|
2020-10-16 15:32:59 +02:00
|
|
|
}
|
|
|
|
return ret;
|
2020-09-29 01:14:19 +02:00
|
|
|
}
|
|
|
|
|
2019-09-14 12:37:24 +01:00
|
|
|
static int
|
2017-07-18 14:48:14 +02:00
|
|
|
fs_promiscuous_enable(struct rte_eth_dev *dev)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
2019-09-14 12:37:22 +01:00
|
|
|
int ret = 0;
|
2017-07-18 14:48:14 +02:00
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2019-09-14 12:37:22 +01:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
ret = rte_eth_promiscuous_enable(PORT_ID(sdev));
|
|
|
|
ret = fs_err(sdev, ret);
|
|
|
|
if (ret != 0) {
|
|
|
|
ERROR("Promiscuous mode enable failed for subdevice %d",
|
|
|
|
PORT_ID(sdev));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (ret != 0) {
|
|
|
|
/* Rollback in the case of failure */
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
ret = rte_eth_promiscuous_disable(PORT_ID(sdev));
|
|
|
|
ret = fs_err(sdev, ret);
|
|
|
|
if (ret != 0)
|
|
|
|
ERROR("Promiscuous mode disable during rollback failed for subdevice %d",
|
|
|
|
PORT_ID(sdev));
|
|
|
|
}
|
|
|
|
}
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2019-09-14 12:37:24 +01:00
|
|
|
|
|
|
|
return ret;
|
2017-07-18 14:48:14 +02:00
|
|
|
}
|
|
|
|
|
2019-09-14 12:37:24 +01:00
|
|
|
static int
|
2017-07-18 14:48:14 +02:00
|
|
|
fs_promiscuous_disable(struct rte_eth_dev *dev)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
2019-09-14 12:37:22 +01:00
|
|
|
int ret = 0;
|
2017-07-18 14:48:14 +02:00
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2019-09-14 12:37:22 +01:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
ret = rte_eth_promiscuous_disable(PORT_ID(sdev));
|
|
|
|
ret = fs_err(sdev, ret);
|
|
|
|
if (ret != 0) {
|
|
|
|
ERROR("Promiscuous mode disable failed for subdevice %d",
|
|
|
|
PORT_ID(sdev));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (ret != 0) {
|
|
|
|
/* Rollback in the case of failure */
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
ret = rte_eth_promiscuous_enable(PORT_ID(sdev));
|
|
|
|
ret = fs_err(sdev, ret);
|
|
|
|
if (ret != 0)
|
|
|
|
ERROR("Promiscuous mode enable during rollback failed for subdevice %d",
|
|
|
|
PORT_ID(sdev));
|
|
|
|
}
|
|
|
|
}
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2019-09-14 12:37:24 +01:00
|
|
|
|
|
|
|
return ret;
|
2017-07-18 14:48:14 +02:00
|
|
|
}
|
|
|
|
|
2019-09-24 13:56:10 +01:00
|
|
|
static int
|
2017-07-18 14:48:14 +02:00
|
|
|
fs_allmulticast_enable(struct rte_eth_dev *dev)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
2019-09-24 13:56:08 +01:00
|
|
|
int ret = 0;
|
2017-07-18 14:48:14 +02:00
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2019-09-24 13:56:08 +01:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
ret = rte_eth_allmulticast_enable(PORT_ID(sdev));
|
|
|
|
ret = fs_err(sdev, ret);
|
|
|
|
if (ret != 0) {
|
|
|
|
ERROR("All-multicast mode enable failed for subdevice %d",
|
|
|
|
PORT_ID(sdev));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (ret != 0) {
|
|
|
|
/* Rollback in the case of failure */
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
ret = rte_eth_allmulticast_disable(PORT_ID(sdev));
|
|
|
|
ret = fs_err(sdev, ret);
|
|
|
|
if (ret != 0)
|
|
|
|
ERROR("All-multicast mode disable during rollback failed for subdevice %d",
|
|
|
|
PORT_ID(sdev));
|
|
|
|
}
|
|
|
|
}
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2019-09-24 13:56:10 +01:00
|
|
|
|
|
|
|
return ret;
|
2017-07-18 14:48:14 +02:00
|
|
|
}
|
|
|
|
|
2019-09-24 13:56:10 +01:00
|
|
|
static int
|
2017-07-18 14:48:14 +02:00
|
|
|
fs_allmulticast_disable(struct rte_eth_dev *dev)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
2019-09-24 13:56:08 +01:00
|
|
|
int ret = 0;
|
2017-07-18 14:48:14 +02:00
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2019-09-24 13:56:08 +01:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
ret = rte_eth_allmulticast_disable(PORT_ID(sdev));
|
|
|
|
ret = fs_err(sdev, ret);
|
|
|
|
if (ret != 0) {
|
|
|
|
ERROR("All-multicast mode disable failed for subdevice %d",
|
|
|
|
PORT_ID(sdev));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (ret != 0) {
|
|
|
|
/* Rollback in the case of failure */
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
ret = rte_eth_allmulticast_enable(PORT_ID(sdev));
|
|
|
|
ret = fs_err(sdev, ret);
|
|
|
|
if (ret != 0)
|
|
|
|
ERROR("All-multicast mode enable during rollback failed for subdevice %d",
|
|
|
|
PORT_ID(sdev));
|
|
|
|
}
|
|
|
|
}
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2019-09-24 13:56:10 +01:00
|
|
|
|
|
|
|
return ret;
|
2017-07-18 14:48:14 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fs_link_update(struct rte_eth_dev *dev,
|
|
|
|
int wait_to_complete)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
DEBUG("Calling link_update on sub_device %d", i);
|
|
|
|
ret = (SUBOPS(sdev, link_update))(ETH(sdev), wait_to_complete);
|
2018-01-20 21:12:24 +00:00
|
|
|
if (ret && ret != -1 && sdev->remove == 0 &&
|
|
|
|
rte_eth_dev_is_removed(PORT_ID(sdev)) == 0) {
|
2017-07-18 14:48:14 +02:00
|
|
|
ERROR("Link update failed for sub_device %d with error %d",
|
|
|
|
i, ret);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (TX_SUBDEV(dev)) {
|
|
|
|
struct rte_eth_link *l1;
|
|
|
|
struct rte_eth_link *l2;
|
|
|
|
|
|
|
|
l1 = &dev->data->dev_link;
|
|
|
|
l2 = Ð(TX_SUBDEV(dev))->data->dev_link;
|
|
|
|
if (memcmp(l1, l2, sizeof(*l1))) {
|
|
|
|
*l1 = *l2;
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2017-10-10 20:20:18 +00:00
|
|
|
static int
|
2017-07-18 14:48:14 +02:00
|
|
|
fs_stats_get(struct rte_eth_dev *dev,
|
|
|
|
struct rte_eth_stats *stats)
|
|
|
|
{
|
2018-01-20 21:12:24 +00:00
|
|
|
struct rte_eth_stats backup;
|
2017-09-07 14:31:13 +03:00
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
2017-10-10 20:20:18 +00:00
|
|
|
int ret;
|
2017-09-07 14:31:13 +03:00
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2017-09-07 14:31:13 +03:00
|
|
|
rte_memcpy(stats, &PRIV(dev)->stats_accumulator, sizeof(*stats));
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
2017-10-21 20:54:46 +00:00
|
|
|
struct rte_eth_stats *snapshot = &sdev->stats_snapshot.stats;
|
|
|
|
uint64_t *timestamp = &sdev->stats_snapshot.timestamp;
|
|
|
|
|
2018-01-20 21:12:24 +00:00
|
|
|
rte_memcpy(&backup, snapshot, sizeof(backup));
|
2017-10-21 20:54:46 +00:00
|
|
|
ret = rte_eth_stats_get(PORT_ID(sdev), snapshot);
|
2017-10-10 20:20:18 +00:00
|
|
|
if (ret) {
|
2018-01-20 21:12:24 +00:00
|
|
|
if (!fs_err(sdev, ret)) {
|
|
|
|
rte_memcpy(snapshot, &backup, sizeof(backup));
|
|
|
|
goto inc;
|
|
|
|
}
|
2017-10-10 20:20:18 +00:00
|
|
|
ERROR("Operation rte_eth_stats_get failed for sub_device %d with error %d",
|
|
|
|
i, ret);
|
2017-10-21 20:54:46 +00:00
|
|
|
*timestamp = 0;
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-10-10 20:20:18 +00:00
|
|
|
return ret;
|
|
|
|
}
|
2017-10-21 20:54:46 +00:00
|
|
|
*timestamp = rte_rdtsc();
|
2018-01-20 21:12:24 +00:00
|
|
|
inc:
|
2017-10-21 20:54:46 +00:00
|
|
|
failsafe_stats_increment(stats, snapshot);
|
2017-09-07 14:31:13 +03:00
|
|
|
}
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-10-10 20:20:18 +00:00
|
|
|
return 0;
|
2017-07-18 14:48:14 +02:00
|
|
|
}
|
|
|
|
|
2019-09-06 15:34:54 +01:00
|
|
|
static int
|
2017-07-18 14:48:14 +02:00
|
|
|
fs_stats_reset(struct rte_eth_dev *dev)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
2019-09-06 15:34:54 +01:00
|
|
|
int ret;
|
2017-07-18 14:48:14 +02:00
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2017-09-07 14:31:13 +03:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
2019-09-06 15:34:54 +01:00
|
|
|
ret = rte_eth_stats_reset(PORT_ID(sdev));
|
|
|
|
if (ret) {
|
|
|
|
if (!fs_err(sdev, ret))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
ERROR("Operation rte_eth_stats_reset failed for sub_device %d with error %d",
|
|
|
|
i, ret);
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
return ret;
|
|
|
|
}
|
2017-09-07 14:31:13 +03:00
|
|
|
memset(&sdev->stats_snapshot, 0, sizeof(struct rte_eth_stats));
|
|
|
|
}
|
|
|
|
memset(&PRIV(dev)->stats_accumulator, 0, sizeof(struct rte_eth_stats));
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2019-09-06 15:34:54 +01:00
|
|
|
|
|
|
|
return 0;
|
2017-07-18 14:48:14 +02:00
|
|
|
}
|
|
|
|
|
2019-11-01 13:12:56 -07:00
|
|
|
static int
|
|
|
|
__fs_xstats_count(struct rte_eth_dev *dev)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
int count = 0;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
ret = rte_eth_xstats_get_names(PORT_ID(sdev), NULL, 0);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
count += ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
__fs_xstats_get_names(struct rte_eth_dev *dev,
|
|
|
|
struct rte_eth_xstat_name *xstats_names,
|
|
|
|
unsigned int limit)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
unsigned int count = 0;
|
|
|
|
uint8_t i;
|
|
|
|
|
|
|
|
/* Caller only cares about count */
|
|
|
|
if (!xstats_names)
|
|
|
|
return __fs_xstats_count(dev);
|
|
|
|
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
struct rte_eth_xstat_name *sub_names = xstats_names + count;
|
|
|
|
int j, r;
|
|
|
|
|
|
|
|
if (count >= limit)
|
|
|
|
break;
|
|
|
|
|
|
|
|
r = rte_eth_xstats_get_names(PORT_ID(sdev),
|
|
|
|
sub_names, limit - count);
|
|
|
|
if (r < 0)
|
|
|
|
return r;
|
|
|
|
|
|
|
|
/* add subN_ prefix to names */
|
|
|
|
for (j = 0; j < r; j++) {
|
|
|
|
char *xname = sub_names[j].name;
|
|
|
|
char tmp[RTE_ETH_XSTATS_NAME_SIZE];
|
|
|
|
|
|
|
|
if ((xname[0] == 't' || xname[0] == 'r') &&
|
|
|
|
xname[1] == 'x' && xname[2] == '_')
|
|
|
|
snprintf(tmp, sizeof(tmp), "%.3ssub%u_%s",
|
|
|
|
xname, i, xname + 3);
|
|
|
|
else
|
|
|
|
snprintf(tmp, sizeof(tmp), "sub%u_%s",
|
|
|
|
i, xname);
|
|
|
|
|
|
|
|
strlcpy(xname, tmp, RTE_ETH_XSTATS_NAME_SIZE);
|
|
|
|
}
|
|
|
|
count += r;
|
|
|
|
}
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fs_xstats_get_names(struct rte_eth_dev *dev,
|
|
|
|
struct rte_eth_xstat_name *xstats_names,
|
|
|
|
unsigned int limit)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
fs_lock(dev, 0);
|
|
|
|
ret = __fs_xstats_get_names(dev, xstats_names, limit);
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
__fs_xstats_get(struct rte_eth_dev *dev,
|
|
|
|
struct rte_eth_xstat *xstats,
|
|
|
|
unsigned int n)
|
|
|
|
{
|
|
|
|
unsigned int count = 0;
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
int j, ret;
|
|
|
|
|
|
|
|
ret = __fs_xstats_count(dev);
|
|
|
|
/*
|
|
|
|
* if error
|
|
|
|
* or caller did not give enough space
|
|
|
|
* or just querying
|
|
|
|
*/
|
|
|
|
if (ret < 0 || ret > (int)n || xstats == NULL)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
ret = rte_eth_xstats_get(PORT_ID(sdev), xstats, n);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
if (ret > (int)n)
|
|
|
|
return n + count;
|
|
|
|
|
|
|
|
/* add offset to id's from sub-device */
|
|
|
|
for (j = 0; j < ret; j++)
|
|
|
|
xstats[j].id += count;
|
|
|
|
|
|
|
|
xstats += ret;
|
|
|
|
n -= ret;
|
|
|
|
count += ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fs_xstats_get(struct rte_eth_dev *dev,
|
|
|
|
struct rte_eth_xstat *xstats,
|
|
|
|
unsigned int n)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
fs_lock(dev, 0);
|
|
|
|
ret = __fs_xstats_get(dev, xstats, n);
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
fs_xstats_reset(struct rte_eth_dev *dev)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
int r = 0;
|
|
|
|
|
|
|
|
fs_lock(dev, 0);
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
r = rte_eth_xstats_reset(PORT_ID(sdev));
|
|
|
|
if (r < 0)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
2019-05-15 20:53:10 -07:00
|
|
|
static void
|
|
|
|
fs_dev_merge_desc_lim(struct rte_eth_desc_lim *to,
|
|
|
|
const struct rte_eth_desc_lim *from)
|
|
|
|
{
|
|
|
|
to->nb_max = RTE_MIN(to->nb_max, from->nb_max);
|
|
|
|
to->nb_min = RTE_MAX(to->nb_min, from->nb_min);
|
|
|
|
to->nb_align = RTE_MAX(to->nb_align, from->nb_align);
|
|
|
|
|
|
|
|
to->nb_seg_max = RTE_MIN(to->nb_seg_max, from->nb_seg_max);
|
|
|
|
to->nb_mtu_seg_max = RTE_MIN(to->nb_mtu_seg_max, from->nb_mtu_seg_max);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Merge the information from sub-devices.
|
|
|
|
*
|
|
|
|
* The reported values must be the common subset of all sub devices
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
fs_dev_merge_info(struct rte_eth_dev_info *info,
|
|
|
|
const struct rte_eth_dev_info *sinfo)
|
|
|
|
{
|
|
|
|
info->max_rx_pktlen = RTE_MIN(info->max_rx_pktlen, sinfo->max_rx_pktlen);
|
|
|
|
info->max_rx_queues = RTE_MIN(info->max_rx_queues, sinfo->max_rx_queues);
|
|
|
|
info->max_tx_queues = RTE_MIN(info->max_tx_queues, sinfo->max_tx_queues);
|
|
|
|
info->max_mac_addrs = RTE_MIN(info->max_mac_addrs, sinfo->max_mac_addrs);
|
|
|
|
info->max_hash_mac_addrs = RTE_MIN(info->max_hash_mac_addrs,
|
|
|
|
sinfo->max_hash_mac_addrs);
|
|
|
|
info->max_vmdq_pools = RTE_MIN(info->max_vmdq_pools, sinfo->max_vmdq_pools);
|
|
|
|
info->max_vfs = RTE_MIN(info->max_vfs, sinfo->max_vfs);
|
|
|
|
|
|
|
|
fs_dev_merge_desc_lim(&info->rx_desc_lim, &sinfo->rx_desc_lim);
|
|
|
|
fs_dev_merge_desc_lim(&info->tx_desc_lim, &sinfo->tx_desc_lim);
|
|
|
|
|
|
|
|
info->rx_offload_capa &= sinfo->rx_offload_capa;
|
|
|
|
info->tx_offload_capa &= sinfo->tx_offload_capa;
|
|
|
|
info->rx_queue_offload_capa &= sinfo->rx_queue_offload_capa;
|
|
|
|
info->tx_queue_offload_capa &= sinfo->tx_queue_offload_capa;
|
|
|
|
info->flow_type_rss_offloads &= sinfo->flow_type_rss_offloads;
|
2020-05-27 15:34:33 +01:00
|
|
|
|
|
|
|
/*
|
|
|
|
* RETA size is a GCD of RETA sizes indicated by sub-devices.
|
|
|
|
* Each of these sizes is a power of 2, so use the lower one.
|
|
|
|
*/
|
|
|
|
info->reta_size = RTE_MIN(info->reta_size, sinfo->reta_size);
|
|
|
|
|
2020-02-04 17:10:51 +02:00
|
|
|
info->hash_key_size = RTE_MIN(info->hash_key_size,
|
|
|
|
sinfo->hash_key_size);
|
2019-05-15 20:53:10 -07:00
|
|
|
}
|
|
|
|
|
2017-07-18 14:48:14 +02:00
|
|
|
/**
|
|
|
|
* Fail-safe dev_infos_get rules:
|
|
|
|
*
|
|
|
|
* No sub_device:
|
|
|
|
* Numerables:
|
|
|
|
* Use the maximum possible values for any field, so as not
|
|
|
|
* to impede any further configuration effort.
|
|
|
|
* Capabilities:
|
|
|
|
* Limits capabilities to those that are understood by the
|
|
|
|
* fail-safe PMD. This understanding stems from the fail-safe
|
|
|
|
* being capable of verifying that the related capability is
|
|
|
|
* expressed within the device configuration (struct rte_eth_conf).
|
|
|
|
*
|
|
|
|
* At least one probed sub_device:
|
|
|
|
* Numerables:
|
|
|
|
* Uses values from the active probed sub_device
|
|
|
|
* The rationale here is that if any sub_device is less capable
|
|
|
|
* (for example concerning the number of queues) than the active
|
|
|
|
* sub_device, then its subsequent configuration will fail.
|
|
|
|
* It is impossible to foresee this failure when the failing sub_device
|
|
|
|
* is supposed to be plugged-in later on, so the configuration process
|
|
|
|
* is the single point of failure and error reporting.
|
|
|
|
* Capabilities:
|
|
|
|
* Uses a logical AND of RX capabilities among
|
|
|
|
* all sub_devices and the default capabilities.
|
|
|
|
* Uses a logical AND of TX capabilities among
|
|
|
|
* the active probed sub_device and the default capabilities.
|
2018-09-26 07:38:04 +01:00
|
|
|
* Uses a logical AND of device capabilities among
|
|
|
|
* all sub_devices and the default capabilities.
|
2017-07-18 14:48:14 +02:00
|
|
|
*
|
|
|
|
*/
|
2019-09-12 17:42:28 +01:00
|
|
|
static int
|
2017-07-18 14:48:14 +02:00
|
|
|
fs_dev_infos_get(struct rte_eth_dev *dev,
|
|
|
|
struct rte_eth_dev_info *infos)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
2019-09-12 17:42:25 +01:00
|
|
|
int ret;
|
2017-07-18 14:48:14 +02:00
|
|
|
|
2019-05-15 20:53:10 -07:00
|
|
|
/* Use maximum upper bounds by default */
|
|
|
|
infos->max_rx_pktlen = UINT32_MAX;
|
|
|
|
infos->max_rx_queues = RTE_MAX_QUEUES_PER_PORT;
|
|
|
|
infos->max_tx_queues = RTE_MAX_QUEUES_PER_PORT;
|
|
|
|
infos->max_mac_addrs = FAILSAFE_MAX_ETHADDR;
|
|
|
|
infos->max_hash_mac_addrs = UINT32_MAX;
|
|
|
|
infos->max_vfs = UINT16_MAX;
|
|
|
|
infos->max_vmdq_pools = UINT16_MAX;
|
2020-05-27 15:34:33 +01:00
|
|
|
infos->reta_size = UINT16_MAX;
|
2020-02-04 17:10:51 +02:00
|
|
|
infos->hash_key_size = UINT8_MAX;
|
2019-05-15 20:53:10 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Set of capabilities that can be verified upon
|
|
|
|
* configuring a sub-device.
|
|
|
|
*/
|
|
|
|
infos->rx_offload_capa =
|
|
|
|
DEV_RX_OFFLOAD_VLAN_STRIP |
|
|
|
|
DEV_RX_OFFLOAD_IPV4_CKSUM |
|
|
|
|
DEV_RX_OFFLOAD_UDP_CKSUM |
|
|
|
|
DEV_RX_OFFLOAD_TCP_CKSUM |
|
|
|
|
DEV_RX_OFFLOAD_TCP_LRO |
|
|
|
|
DEV_RX_OFFLOAD_QINQ_STRIP |
|
|
|
|
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
|
|
|
|
DEV_RX_OFFLOAD_MACSEC_STRIP |
|
|
|
|
DEV_RX_OFFLOAD_HEADER_SPLIT |
|
|
|
|
DEV_RX_OFFLOAD_VLAN_FILTER |
|
|
|
|
DEV_RX_OFFLOAD_VLAN_EXTEND |
|
|
|
|
DEV_RX_OFFLOAD_JUMBO_FRAME |
|
|
|
|
DEV_RX_OFFLOAD_SCATTER |
|
|
|
|
DEV_RX_OFFLOAD_TIMESTAMP |
|
|
|
|
DEV_RX_OFFLOAD_SECURITY;
|
|
|
|
|
|
|
|
infos->rx_queue_offload_capa =
|
|
|
|
DEV_RX_OFFLOAD_VLAN_STRIP |
|
|
|
|
DEV_RX_OFFLOAD_IPV4_CKSUM |
|
|
|
|
DEV_RX_OFFLOAD_UDP_CKSUM |
|
|
|
|
DEV_RX_OFFLOAD_TCP_CKSUM |
|
|
|
|
DEV_RX_OFFLOAD_TCP_LRO |
|
|
|
|
DEV_RX_OFFLOAD_QINQ_STRIP |
|
|
|
|
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
|
|
|
|
DEV_RX_OFFLOAD_MACSEC_STRIP |
|
|
|
|
DEV_RX_OFFLOAD_HEADER_SPLIT |
|
|
|
|
DEV_RX_OFFLOAD_VLAN_FILTER |
|
|
|
|
DEV_RX_OFFLOAD_VLAN_EXTEND |
|
|
|
|
DEV_RX_OFFLOAD_JUMBO_FRAME |
|
|
|
|
DEV_RX_OFFLOAD_SCATTER |
|
|
|
|
DEV_RX_OFFLOAD_TIMESTAMP |
|
|
|
|
DEV_RX_OFFLOAD_SECURITY;
|
|
|
|
|
|
|
|
infos->tx_offload_capa =
|
|
|
|
DEV_TX_OFFLOAD_MULTI_SEGS |
|
|
|
|
DEV_TX_OFFLOAD_MBUF_FAST_FREE |
|
|
|
|
DEV_TX_OFFLOAD_IPV4_CKSUM |
|
|
|
|
DEV_TX_OFFLOAD_UDP_CKSUM |
|
|
|
|
DEV_TX_OFFLOAD_TCP_CKSUM |
|
|
|
|
DEV_TX_OFFLOAD_TCP_TSO;
|
|
|
|
|
|
|
|
infos->flow_type_rss_offloads =
|
|
|
|
ETH_RSS_IP |
|
|
|
|
ETH_RSS_UDP |
|
|
|
|
ETH_RSS_TCP;
|
|
|
|
infos->dev_capa =
|
|
|
|
RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
|
|
|
|
RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
|
|
|
|
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) {
|
|
|
|
struct rte_eth_dev_info sub_info;
|
|
|
|
|
2019-09-12 17:42:25 +01:00
|
|
|
ret = rte_eth_dev_info_get(PORT_ID(sdev), &sub_info);
|
|
|
|
ret = fs_err(sdev, ret);
|
|
|
|
if (ret != 0)
|
2019-09-12 17:42:28 +01:00
|
|
|
return ret;
|
2019-05-15 20:53:10 -07:00
|
|
|
|
|
|
|
fs_dev_merge_info(infos, &sub_info);
|
|
|
|
}
|
2019-09-12 17:42:28 +01:00
|
|
|
|
|
|
|
return 0;
|
2017-07-18 14:48:14 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static const uint32_t *
|
|
|
|
fs_dev_supported_ptypes_get(struct rte_eth_dev *dev)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
struct rte_eth_dev *edev;
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
const uint32_t *ret;
|
2017-07-18 14:48:14 +02:00
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
sdev = TX_SUBDEV(dev);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
if (sdev == NULL) {
|
|
|
|
ret = NULL;
|
|
|
|
goto unlock;
|
|
|
|
}
|
2017-07-18 14:48:14 +02:00
|
|
|
edev = ETH(sdev);
|
|
|
|
/* ENOTSUP: counts as no supported ptypes */
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
if (SUBOPS(sdev, dev_supported_ptypes_get) == NULL) {
|
|
|
|
ret = NULL;
|
|
|
|
goto unlock;
|
|
|
|
}
|
2017-07-18 14:48:14 +02:00
|
|
|
/*
|
|
|
|
* The API does not permit to do a clean AND of all ptypes,
|
|
|
|
* It is also incomplete by design and we do not really care
|
|
|
|
* to have a best possible value in this context.
|
|
|
|
* We just return the ptypes of the device of highest
|
|
|
|
* priority, usually the PREFERRED device.
|
|
|
|
*/
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
ret = SUBOPS(sdev, dev_supported_ptypes_get)(edev);
|
|
|
|
unlock:
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
return ret;
|
2017-07-18 14:48:14 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fs_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
DEBUG("Calling rte_eth_dev_set_mtu on sub_device %d", i);
|
|
|
|
ret = rte_eth_dev_set_mtu(PORT_ID(sdev), mtu);
|
2018-01-20 21:12:24 +00:00
|
|
|
if ((ret = fs_err(sdev, ret))) {
|
2017-07-18 14:48:14 +02:00
|
|
|
ERROR("Operation rte_eth_dev_set_mtu failed for sub_device %d with error %d",
|
|
|
|
i, ret);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fs_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
DEBUG("Calling rte_eth_dev_vlan_filter on sub_device %d", i);
|
|
|
|
ret = rte_eth_dev_vlan_filter(PORT_ID(sdev), vlan_id, on);
|
2018-01-20 21:12:24 +00:00
|
|
|
if ((ret = fs_err(sdev, ret))) {
|
2017-07-18 14:48:14 +02:00
|
|
|
ERROR("Operation rte_eth_dev_vlan_filter failed for sub_device %d"
|
|
|
|
" with error %d", i, ret);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fs_flow_ctrl_get(struct rte_eth_dev *dev,
|
|
|
|
struct rte_eth_fc_conf *fc_conf)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
int ret;
|
2017-07-18 14:48:14 +02:00
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
sdev = TX_SUBDEV(dev);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
if (sdev == NULL) {
|
|
|
|
ret = 0;
|
|
|
|
goto unlock;
|
|
|
|
}
|
|
|
|
if (SUBOPS(sdev, flow_ctrl_get) == NULL) {
|
|
|
|
ret = -ENOTSUP;
|
|
|
|
goto unlock;
|
|
|
|
}
|
|
|
|
ret = SUBOPS(sdev, flow_ctrl_get)(ETH(sdev), fc_conf);
|
|
|
|
unlock:
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
return ret;
|
2017-07-18 14:48:14 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fs_flow_ctrl_set(struct rte_eth_dev *dev,
|
|
|
|
struct rte_eth_fc_conf *fc_conf)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
DEBUG("Calling rte_eth_dev_flow_ctrl_set on sub_device %d", i);
|
|
|
|
ret = rte_eth_dev_flow_ctrl_set(PORT_ID(sdev), fc_conf);
|
2018-01-20 21:12:24 +00:00
|
|
|
if ((ret = fs_err(sdev, ret))) {
|
2017-07-18 14:48:14 +02:00
|
|
|
ERROR("Operation rte_eth_dev_flow_ctrl_set failed for sub_device %d"
|
|
|
|
" with error %d", i, ret);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
fs_mac_addr_remove(struct rte_eth_dev *dev, uint32_t index)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
/* No check: already done within the rte_eth_dev_mac_addr_remove
|
|
|
|
* call for the fail-safe device.
|
|
|
|
*/
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
|
|
|
|
rte_eth_dev_mac_addr_remove(PORT_ID(sdev),
|
|
|
|
&dev->data->mac_addrs[index]);
|
|
|
|
PRIV(dev)->mac_addr_pool[index] = 0;
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fs_mac_addr_add(struct rte_eth_dev *dev,
|
2019-05-21 18:13:03 +02:00
|
|
|
struct rte_ether_addr *mac_addr,
|
2017-07-18 14:48:14 +02:00
|
|
|
uint32_t index,
|
|
|
|
uint32_t vmdq)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
int ret;
|
|
|
|
uint8_t i;
|
|
|
|
|
|
|
|
RTE_ASSERT(index < FAILSAFE_MAX_ETHADDR);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
ret = rte_eth_dev_mac_addr_add(PORT_ID(sdev), mac_addr, vmdq);
|
2018-01-20 21:12:24 +00:00
|
|
|
if ((ret = fs_err(sdev, ret))) {
|
2017-07-18 14:48:14 +02:00
|
|
|
ERROR("Operation rte_eth_dev_mac_addr_add failed for sub_device %"
|
|
|
|
PRIu8 " with error %d", i, ret);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (index >= PRIV(dev)->nb_mac_addr) {
|
|
|
|
DEBUG("Growing mac_addrs array");
|
|
|
|
PRIV(dev)->nb_mac_addr = index;
|
|
|
|
}
|
|
|
|
PRIV(dev)->mac_addr_pool[index] = vmdq;
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2017-07-18 14:48:14 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-04-11 18:32:51 +02:00
|
|
|
static int
|
2019-05-21 18:13:03 +02:00
|
|
|
fs_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
|
2017-07-18 14:48:14 +02:00
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
2018-04-11 18:32:51 +02:00
|
|
|
int ret;
|
2017-07-18 14:48:14 +02:00
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_lock(dev, 0);
|
2018-04-11 18:32:51 +02:00
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
ret = rte_eth_dev_default_mac_addr_set(PORT_ID(sdev), mac_addr);
|
|
|
|
ret = fs_err(sdev, ret);
|
|
|
|
if (ret) {
|
|
|
|
ERROR("Operation rte_eth_dev_mac_addr_set failed for sub_device %d with error %d",
|
|
|
|
i, ret);
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 0);
|
2018-04-11 18:32:51 +02:00
|
|
|
|
|
|
|
return 0;
|
2017-07-18 14:48:14 +02:00
|
|
|
}
|
|
|
|
|
2018-09-21 16:36:22 +01:00
|
|
|
static int
|
|
|
|
fs_set_mc_addr_list(struct rte_eth_dev *dev,
|
2019-05-21 18:13:03 +02:00
|
|
|
struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
|
2018-09-21 16:36:22 +01:00
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
|
|
|
void *mcast_addrs;
|
|
|
|
|
|
|
|
fs_lock(dev, 0);
|
|
|
|
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
ret = rte_eth_dev_set_mc_addr_list(PORT_ID(sdev),
|
|
|
|
mc_addr_set, nb_mc_addr);
|
|
|
|
if (ret != 0) {
|
|
|
|
ERROR("Operation rte_eth_dev_set_mc_addr_list failed for sub_device %d with error %d",
|
|
|
|
i, ret);
|
|
|
|
goto rollback;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
mcast_addrs = rte_realloc(PRIV(dev)->mcast_addrs,
|
|
|
|
nb_mc_addr * sizeof(PRIV(dev)->mcast_addrs[0]), 0);
|
|
|
|
if (mcast_addrs == NULL && nb_mc_addr > 0) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto rollback;
|
|
|
|
}
|
|
|
|
rte_memcpy(mcast_addrs, mc_addr_set,
|
|
|
|
nb_mc_addr * sizeof(PRIV(dev)->mcast_addrs[0]));
|
|
|
|
PRIV(dev)->nb_mcast_addr = nb_mc_addr;
|
|
|
|
PRIV(dev)->mcast_addrs = mcast_addrs;
|
|
|
|
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
rollback:
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
int rc = rte_eth_dev_set_mc_addr_list(PORT_ID(sdev),
|
|
|
|
PRIV(dev)->mcast_addrs, PRIV(dev)->nb_mcast_addr);
|
|
|
|
if (rc != 0) {
|
|
|
|
ERROR("Multicast MAC address list rollback for sub_device %d failed with error %d",
|
|
|
|
i, rc);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2018-05-10 14:38:10 +00:00
|
|
|
static int
|
|
|
|
fs_rss_hash_update(struct rte_eth_dev *dev,
|
|
|
|
struct rte_eth_rss_conf *rss_conf)
|
|
|
|
{
|
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
fs_lock(dev, 0);
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
|
|
|
|
ret = rte_eth_dev_rss_hash_update(PORT_ID(sdev), rss_conf);
|
|
|
|
ret = fs_err(sdev, ret);
|
|
|
|
if (ret) {
|
|
|
|
ERROR("Operation rte_eth_dev_rss_hash_update"
|
|
|
|
" failed for sub_device %d with error %d",
|
|
|
|
i, ret);
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
fs_unlock(dev, 0);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-07-18 14:48:17 +02:00
|
|
|
static int
|
ethdev: deprecate legacy filter API
As stated in the deprecation notice from December 2016,
"the legacy filter API, including rte_eth_dev_filter_supported(),
rte_eth_dev_filter_ctrl() as well as filter types MACVLAN, ETHERTYPE,
FLEXIBLE, SYN, NTUPLE, TUNNEL, FDIR, HASH and L2_TUNNEL, is superseded
by the generic flow API (rte_flow)".
After a long wait of more than two years, the legacy filter API
is marked as deprecated, while still tested with testpmd and
the tep_termination example.
The next step will be to announce a deadline for complete removal.
As preparation of the removal of rte_eth_ctrl.h,
RTE_ETH_FLOW_*, RTE_TUNNEL_TYPE_* and RTE_ETH_HASH_FUNCTION_* definitions
are moved to rte_ethdev.h and rte_flow.h.
Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
Acked-by: Shahaf Shuler <shahafs@mellanox.com>
Acked-by: Andrew Rybchenko <arybchenko@solarflare.com>
Acked-by: Jerin Jacob <jerinj@marvell.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Acked-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Acked-by: Adrien Mazarguil <adrien.mazarguil@6wind.com>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
2019-04-17 02:36:27 +02:00
|
|
|
fs_filter_ctrl(struct rte_eth_dev *dev __rte_unused,
|
2017-07-18 14:48:17 +02:00
|
|
|
enum rte_filter_type type,
|
|
|
|
enum rte_filter_op op,
|
|
|
|
void *arg)
|
|
|
|
{
|
|
|
|
if (type == RTE_ETH_FILTER_GENERIC &&
|
|
|
|
op == RTE_ETH_FILTER_GET) {
|
|
|
|
*(const void **)arg = &fs_flow_ops;
|
|
|
|
return 0;
|
|
|
|
}
|
ethdev: deprecate legacy filter API
As stated in the deprecation notice from December 2016,
"the legacy filter API, including rte_eth_dev_filter_supported(),
rte_eth_dev_filter_ctrl() as well as filter types MACVLAN, ETHERTYPE,
FLEXIBLE, SYN, NTUPLE, TUNNEL, FDIR, HASH and L2_TUNNEL, is superseded
by the generic flow API (rte_flow)".
After a long wait of more than two years, the legacy filter API
is marked as deprecated, while still tested with testpmd and
the tep_termination example.
The next step will be to announce a deadline for complete removal.
As preparation of the removal of rte_eth_ctrl.h,
RTE_ETH_FLOW_*, RTE_TUNNEL_TYPE_* and RTE_ETH_HASH_FUNCTION_* definitions
are moved to rte_ethdev.h and rte_flow.h.
Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
Acked-by: Shahaf Shuler <shahafs@mellanox.com>
Acked-by: Andrew Rybchenko <arybchenko@solarflare.com>
Acked-by: Jerin Jacob <jerinj@marvell.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Acked-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Acked-by: Adrien Mazarguil <adrien.mazarguil@6wind.com>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
2019-04-17 02:36:27 +02:00
|
|
|
return -ENOTSUP;
|
2017-07-18 14:48:17 +02:00
|
|
|
}
|
|
|
|
|
2017-07-18 14:48:14 +02:00
|
|
|
const struct eth_dev_ops failsafe_ops = {
|
|
|
|
.dev_configure = fs_dev_configure,
|
|
|
|
.dev_start = fs_dev_start,
|
|
|
|
.dev_stop = fs_dev_stop,
|
|
|
|
.dev_set_link_down = fs_dev_set_link_down,
|
|
|
|
.dev_set_link_up = fs_dev_set_link_up,
|
2020-09-29 01:14:19 +02:00
|
|
|
.dev_close = failsafe_eth_dev_close,
|
2017-07-18 14:48:14 +02:00
|
|
|
.promiscuous_enable = fs_promiscuous_enable,
|
|
|
|
.promiscuous_disable = fs_promiscuous_disable,
|
|
|
|
.allmulticast_enable = fs_allmulticast_enable,
|
|
|
|
.allmulticast_disable = fs_allmulticast_disable,
|
|
|
|
.link_update = fs_link_update,
|
|
|
|
.stats_get = fs_stats_get,
|
|
|
|
.stats_reset = fs_stats_reset,
|
2019-11-01 13:12:56 -07:00
|
|
|
.xstats_get = fs_xstats_get,
|
|
|
|
.xstats_get_names = fs_xstats_get_names,
|
|
|
|
.xstats_reset = fs_xstats_reset,
|
2017-07-18 14:48:14 +02:00
|
|
|
.dev_infos_get = fs_dev_infos_get,
|
|
|
|
.dev_supported_ptypes_get = fs_dev_supported_ptypes_get,
|
|
|
|
.mtu_set = fs_mtu_set,
|
|
|
|
.vlan_filter_set = fs_vlan_filter_set,
|
2018-09-20 14:55:51 +01:00
|
|
|
.rx_queue_start = fs_rx_queue_start,
|
|
|
|
.rx_queue_stop = fs_rx_queue_stop,
|
2018-09-20 14:55:52 +01:00
|
|
|
.tx_queue_start = fs_tx_queue_start,
|
|
|
|
.tx_queue_stop = fs_tx_queue_stop,
|
2017-07-18 14:48:14 +02:00
|
|
|
.rx_queue_setup = fs_rx_queue_setup,
|
|
|
|
.tx_queue_setup = fs_tx_queue_setup,
|
|
|
|
.rx_queue_release = fs_rx_queue_release,
|
|
|
|
.tx_queue_release = fs_tx_queue_release,
|
2018-01-25 18:19:30 +02:00
|
|
|
.rx_queue_intr_enable = fs_rx_intr_enable,
|
|
|
|
.rx_queue_intr_disable = fs_rx_intr_disable,
|
2017-07-18 14:48:14 +02:00
|
|
|
.flow_ctrl_get = fs_flow_ctrl_get,
|
|
|
|
.flow_ctrl_set = fs_flow_ctrl_set,
|
|
|
|
.mac_addr_remove = fs_mac_addr_remove,
|
|
|
|
.mac_addr_add = fs_mac_addr_add,
|
|
|
|
.mac_addr_set = fs_mac_addr_set,
|
2018-09-21 16:36:22 +01:00
|
|
|
.set_mc_addr_list = fs_set_mc_addr_list,
|
2018-05-10 14:38:10 +00:00
|
|
|
.rss_hash_update = fs_rss_hash_update,
|
2017-07-18 14:48:17 +02:00
|
|
|
.filter_ctrl = fs_filter_ctrl,
|
2017-07-18 14:48:14 +02:00
|
|
|
};
|